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Abstract Computation is based on models and applies algorithms. Both a model
and an algorithm can be sources of risks, which will be discussed in this paper. The
risk from the algorithm stems from erroneous results, the topic of the first part of
this paper. We attempt to give a definition of computational risk, and propose how
to avoid it. Concerning the underlying model, our concern will not be the “model
error”. Rather, even the reality (or a perfect model) can be subjected to structural
changes: Nonlinear relations of underlying laws can trigger sudden or unexpected
changes in the dynamical behavior. These phenomena must be analyzed, as far they
are revealed by a model. A computational approach to such a structural risk will be
discussed in the second part. The paper presents some guidelines on how to limit
computational risk and assess structural risk.
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1 Computational Risk

Early computer codes concentrated on the evaluation of special functions. The empha-
sis was to deliver full accuracy (say, seven correct decimal digits on a 32-bit machine)
in minimal time. Many of these algorithms are based on formulas of [1, 6]. Later
the interest shifted to more complex algorithms such as solving differential equa-
tions, where discretizations are required. Typically, the errors are of the type CΔp,
where Δ represents a discretization parameter, p denotes the convergence order of the
method, and C is a hardly assessable error coefficient. A control of the error is highly
complicated, costly, and frequently somewhat vague, and is source of computational
risk.
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This first part of the paper discusses how to assess the risk from erroneous results
of algorithms. Accuracy properties of algorithms will have to be reconsidered.

1.1 Efficiency of Algorithms

The performance of algorithms can be well compared in a diagram depicting the
costs (computing time) over the achieved relative error. In case, the output of an
algorithm consists of more than one real number, then we think of the largest of all
these errors. Now, for a certain computational task, select and run a set of algorithms,
and enter the points representing their performance into the diagram. Schematically,
the dots look as in Fig. 1.1

For nontrivial computational tasks, there will be hardly a method that is simulta-
neously both highly accurate and extremely fast; there is always a trade-off. Hence,
one will not find algorithms in the lower left corner, below the curve in Fig. 1. This
(smoothed) curve is the efficient frontier. It can be defined in the Pareto sense as min-
imizing computing time and maximizing accuracy. Clearly, the aim of researchers is
to push the frontier down; the curve is not immutable in time. The smoothed frontier
in Fig. 1 may serve as idealized vehicle to define efficiency: Each method on the
frontier is efficient.

This notion of efficiency allows to define the “best” algorithm for a certain task
almost uniquely. A reasonable computational accuracy must be put into relation to
the underlying model error. So, indicate the size of the model error on the horizontal
axis, and let a vertical line at that position cut the efficient frontier, which completes
the choice of the proper algorithm. Of course, the efficient frontier is a snapshot that
compares an artificial selection of algorithms.

research, aim

algorithms

error
low

small

large

costs

large

Fig. 1 Costs (computing time) of algorithms over relative error

1 An example of such a diagram for the task of pricing American-style options is, for example,
Fig. 4.19 in [14], however, for the root mean square error of a set of 60 problems.
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Notice that this error in the final result does not explicitly consider intermediate
errors or inconsistencies in the algorithm. For example, errors from solving linear
equations, instability caused by propagation of rounding errors, or discretization
errors do not enter explicitly. The final lumped error is seen with the eyes of the user.

1.2 Risk of an Algorithm

Computational methods involve parameters on which the accuracy depends. Dis-
cretizations are characterized by their fineness2 M . For example, a binomial method
for option pricing may work with M = 100 or M = 50 time intervals. Let us
call the first algorithm B-100, and the second B-50. Here “algorithm” is understood
as an implementation where all accuracy parameters (as M) are fixed; B-100 is an
algorithm different from B-50.

Now we are prepared to define the computational risk for a given model:

Computational Risk:
The chosen algorithm does not deliver the required accuracy.

For example, when an algorithm provides results with an error of 0.002 where we
required 0.001 (three decimal digits), this would be strictly seen as failure. Nowadays
in practice, it is widespread not to notice such a failure. As a “safety measure” one
frequently chooses unnecessarily high values of the fineness M . This makes a failure
less likely, but leads to overshooting and a lack of efficiency. As outlined above,
we assume that the optimal algorithm is chosen such that it correctly matches the
required accuracy.

1.3 Eliminate the Risk

Occasionally, it was suggested to establish algorithms with guaranteed accuracy [9].
Related algorithms are highly involved, expensive and hence used rarely. Although
the idea of guaranteed accuracy is not really new, it seems appropriate to be pushed
forward for applications in finance. For example, algorithms for option pricing have
reached a level of sophistication which may allow to pursue as second step the
establishing of dependable accuracy information.

In this paper, we propose to unburden algorithms from relevant accuracy and error
control. Rather the algorithms should be made as fast as possible, without iterating to
convergence. As mentioned above, for each algorithm the mesh fineness M will be
fixed. Then the algorithm has fixed costs, and can be regarded as “analytic method”.
The implementation matters. External fine-tuning is not available, and the computer
programs can be regarded as hard-wired.

2 Number of subintervals into which an underlying interval is subdivided by a discretization
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Table 1 Fictive entry in an
accuracy file

Correct digits Algorithm

2 A

3 B-50

4 B-100

5 C

Then these “ultimate” versions of algorithms are investigated for their accuracy.
We suggest to gather accuracy or error information into a file separate from the
algorithm. This “file” can be a look-up table, or a set of inequalities for parameters.
Typically, the accuracy results will be determined empirically. As an illustration,
the accuracy information for a certain task (say, pricing an American-style vanilla
put option) and a specific set of parameters (strike, volatility σ , interest rate r , time
to maturity T ) might look as in Table 1. As application, one chooses the algorithm
according to the information file.

1.4 Effort

Certainly, the above suggestion amounts to a big endeavor. In general, original papers
do not contain the required accuracy information. Instead, usually, convergence
behavior, stability, and intermediate errors are analyzed. Accuracy is mostly tested
on a small selection of numerical examples. It will be a challenge to researchers, to
provide the additional accuracy information for “any” set of parameters. The best way
to organize this is left open. Strong results will establish inequalities for the parame-
ters that guarantee certain accuracy. Weaker results will establish multidimensional
tables of discrete values of the parameters, and the application will interpolate the
accuracy.

To encourage the work, let us repeat the advantages: Accuracy information and
conditions under which algorithms fail will be included in external files. The algo-
rithms will be slimmed down, the production runs will be faster, and the costs on a
particular computer are fixed and known in advance. The computational risk will be
eliminated.

1.5 Example

As an example, consider the pricing of a vanilla American put at the money, with one
year to maturity. We choose an algorithm that implements the analytic interpolation
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Fig. 2 Relative error. level curves: −0.004, −0.002, 0, +0.002

method by Johnson [7].3 For the specific option problem, the remaining parame-
ters are r and σ . Figure 2 shows the relative error in the calculated price of the
option depending on r and σ , and implicitly a map of accuracies. For the underlying
rectangle of realistic r, σ -values, and the assumed type of option, a result can be
summarized as follows:

In case σ > 3r holds, the absolute of the relative accuracy is smaller than 0.005
(two and a half digits).

Of course, the accuracy result can be easily refined.

2 Assessing Structural Risk

We now turn to the second topic of the paper, on how to assess structural changes in a
model computationally. This is based on dynamical systems, in which the dynamical
behavior depends on a certain model parameter. Critical threshold values of this
parameter will be decisive. Below we shall understand “structural risk” as given by
the distance to the next threshold value of the critical parameter. An early paper
stressing the role threshold values (bifurcations) can play for a risk analysis is [11].
The approach has been applied successfully in electrical engineering for assessing
voltage collapse, see [3]. We begin with recalling some basic facts from dynamical
systems.

3 For analytic methods, strong results may be easier to obtain because implementation issues are
less relevant.
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2.1 Simplest Attractor

The basic mean reversion equation is well-known in finance: This is a stochastic
differential equation (SDE) for a stochastic process σt

dσt = α(ζ − σt ) dt + γ σ δ
t dWt

with constant α, ζ, γ, δ > 0, and Wt denotes a Wiener process. This SDE is of
the type

dσt = f (σt ) dt + driving force.

The response of σt is attracted by the value of ζ , which becomes apparent by a
simple stability analysis of the SDE’s deterministic kernel, the ordinary differential
equation (ODE) ẋ = f (x) = α(ζ − x). The state x = ζ is the simplest example of
an attractor.4

For more flexibility, a constant (and unknown) value of ζ can be replaced by a
suitable process ζt , which in turn is driven by some model equation. This adds a
second equation. A simple example of such a system is the tandem equation

dσt = α1(ζt − σt ) dt + γ σt dWt

dζt = α2(σt − ζt ) dt

An ODE stability analysis of its deterministic kernel does not reveal an attractor.
Rather the equilibrium is degenerate, the Jacobian matrix is singular. Simulating the
tandem system shows two trajectories dancing about each other, but drifting across
the phase space erratically. What is needed is some anchoring, which can be provided
by an additional nonlinear term.

2.2 Mean-Field Models

We digress for a moment to emphasize that the above tandem is a mean-field model.
In canonical variables x1, x2, it is of the type

dx1 = α∗
1

[ 1
2 (x1 + x2) − x1

]
dt + γ1x1 dW (1)

t

dx2 = α∗
2

[ 1
2 (x1 + x2) − x2

]
dt + γ2x2 dW (2)

t

which generalizes to x1, . . . , xn . The reversion is to the mean

4 The equilibrium x = ζ is stable since d f/dx = −α < 0; for t → ∞, x approaches ζ .
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x̄ := 1

n

n∑

i

xi ,

and a key element for modeling interaction among agents [4, 5]. More general mean-
field models include an additional nonlinear term, and are of the type

ẋ = β ∗ f (x) + α ∗ interaction + γ ∗ ext.forces .

Notice that the dimension n is a parameter, and the solution structure thus depends
on the number of variables. The parameters α measure the size of cooperation, and
γ the strength of external random forces. The nonlinearity f (x) and the balance of
the parameters β, α, γ, n control the dynamics.

2.3 Artificial Example

As noted above, a suitable nonlinear term can induce a dynamic control that prevents
the trajectories from drifting around erratically. Here we choose a cubic nonlinearity
of the Duffing-type f (x) = x − x3, since it represents a classical bistability [13].
For slightly more flexibility, we shift the location of equilibria by a constant s;
otherwise, we choose constants artificially. For the purpose of demonstration, our
artificial example is the system

dx1 = 0.1(x1 − s)
{

1 − (x1 − s)2
}

dt + 0.5 [x2 − x1] dt + 0.1x1dWt

dx2 = 0.5 [x1 − x2] dt
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Fig. 3 Artificial example of Sect. 2.3: x1 and x2 over time t , for s = 2, starting at 0.1
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Fig. 4 x1, x2-phase plane, with the trajectory of Fig. 3, and 11 trajectories of the unforced system

Clearly, there are three ODE equilibria, namely two stable nodes at x1 = x2 = s ± 1
and a saddle at x1 = x2 = s. For graphical illustrations of the response, see Figs. 3
and 4.

Figure 3 depicts the quick attraction of the trajectories (starting at 0.1) toward
the smaller node at s − 1 = 1. This dynamical response is shown again in Fig. 4 in
the x1, x2-phase portrait. As a background, this figure shows 11 trajectories of the
deterministic kernel, where the random perturbation is switched off. Starting from 11
initial points in the plane, the trajectories approach one of the two stable nodes. This
part of the plane consists of two basins of attraction, separated by a separatrix that
includes the saddle. The phase portrait of the deterministic kernel serves as skeleton
of the dynamics possible for the randomly perturbed system.

Now imagine to increase the strength of the random force (enlarge γ ). For suf-
ficiently large γ , the trajectories may jump across the wall of the separatrix. Then
the dynamics is attracted by the other node. Obviously, these transitions between
the two regimes may happen repeatedly. In this way, one of the stylized facts can
be modeled, namely the volatility clustering [2]5. This experiment underlines the
modeling power of such nonlinear systems.

2.4 Structure in Phase Spaces

The above gentle reminder on dynamical systems has exhibited the three items node,
saddle, and separatrix. There are many more “beasts” in the phase space. The fol-
lowing is an incomplete list:

5 Phases with high and low volatility are separated from each other.
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• stationary state,
• periodic behavior,
• chaotic behavior,
• jumps, discontinuities,
• loss or gain of stability.

These qualitative labels stand for the structure of dynamical responses. The structure
may change when a parameter is varied. Although a “parameter” is a constant, it may
undergo slow variations, or may be manipulated by some external (political) force.
Such changes in the “constant” parameter are called quasi-stationary. Typically, our
parameter is in the role of a control parameter. Some variations in the parameter may
have little consequences on the response of the system. But there are critical thresh-
old values of the parameter, where the changes in the structure can have dramatic
consequences. At these thresholds, small changes in the parameter can trigger essen-
tial changes in the state of the system. The mathematical mechanism that explains
such qualitative changes is bifurcation.6

When a system drifts toward a bifurcation, then this must be considered as risk!

Bifurcation is at the heart of systemic risk. Hence there is a need for a tool that signals
bifurcations in advance.

2.5 Risk Index

Let λ denote a bifurcation parameter of a dynamical system. For an underlying model,
we denote by λ0 a numerically calculated critical threshold value of λ. At this point,
the model error enters, because λ0 is based on the model. The distance to λ0 is a
measure of structural risk. This is the distance between the current operation point
(λ) and the closest bifurcation. To signal the distance, the risk index

R(λ) := λ

|λ − λ0| − ε

was suggested [12]. (ε is a small number representing several sources of error.)
The larger the value of R, the closer the risk is. The index gives risk a quantitative
meaning, invariant of the scaling of the model.7 A feasible range of the parameter λ

has been defined by

Fc := { λ | R(λ) < c } ,

and its complement is the risk area of level c.

6 For an introduction into bifurcation and related numerical methods, see [13].
7 Essentially, this is a deterministic approach. One may think of incorporating a volatility into R.
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2.6 Example

Sometimes, stock prices behave cyclically, and one may ask whether there is an
underlying deterministic kernel with periodic structure. In this context, behavioral
trading models are of interest. Lux [8] in his model splits traders into chartists and
fundamentalists, and models their impact on the price of an asset. The variables are

• p(t) market price of an asset, with fundamental value p∗;
• z proportion of chartists, and
• x(t) their sentiment index, between −1 for pessimistic and +1 for optimistic.

The growth ṗ will be proportional to zx (impact of chartists) and to (1 − z)(p∗ − p)

(impact of fundamentalists). Combining these two impacts leads to the first of the
two equations in the system

ṗ = β
(
z x ξc + (1 − z)(p∗ − p)ξf

)

ẋ = 2zν1(tanh(U+−) − x) cosh(U+−) + (1 − z)(1 − x2)ν2(sinh(U+f ) − sinh(U−f ))

The second equation models the sentiment x , with incentive functions U+−,
U+f , U−f

U+− : = α1x + α2
ṗ

ν1

U+f : = α3

(
1

p

(
r p∗ + ṗ

ν2

)
− r − s

∣∣
∣∣

p∗ − p

p

∣∣
∣∣∗

)

U−f : = α3

(
r − 1

p

(
r p∗ + ṗ

ν2

)
− s

∣∣∣∣
p∗ − p

p

∣∣∣∣∗

)

| |∗ is a smoothed version of | |, and the chosen constants are:

β = 0.5, ξc = 5, ξf = 5, ν1 = 0.5, ν2 = 0.75,

α1 = 1.02, α2 = 0.25, α3 = 1.5, r = 0.1, s = 0.8, p∗ = 10.

This is an ODE system. The original model [8] includes a third equation for the
proportion z. Our modified model is simpler in that it takes z as external parameter
(our λ). The concern will be the structure of the response of the system as it varies
with z.

For the chosen constants, we calculate λ0 = 0.6914 as critical threshold value of
the parameter z [10]. This is a Hopf bifurcation, at which periodic cycles are born
out of a stationary state. Accordingly, we have the two regimes

• z < λ0: (p, x) = (p∗, 0) stable stationary, and
• z > λ0: stable periodic motion (cyclic behavior of the asset price).

At the Hopf point, there is a transition between the regimes. The risk index R signals
the critical threshold by large values (Fig. 5). For the chosen constants, the threshold
occurs at a proportion of chartists of about 70 % of the traders.
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Fig. 5 Risk index R over parameter z. Left wing index along the stationary states. Right wing index
along the periodic states

2.7 Summary

We summarize the second part of the paper. Provided a good model exists,8 we
suggest to begin with calculating the bifurcations/threshold values of parameters.
They are the pivoting points of possible trend switching. The distance between the
current operation point of the real financial system and the bifurcation point must
be observed. Large values of the risk index can be used as indicator, signaling how
close the risk is. This can be used as a tool for a stress test.
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