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Abstract. We consider Markov decision processes (MDPs) which are a standard
model for probabilistic systems. We focus on qualitative properties for MDPs that
can express that desired behaviors of the system arise almost-surely (with prob-
ability 1) or with positive probability. We introduce a new simulation relation to
capture the refinement relation of MDPs with respect to qualitative properties, and
present discrete graph theoretic algorithms with quadratic complexity to compute
the simulation relation. We present an automated technique for assume-guarantee
style reasoning for compositional analysis of MDPs with qualitative properties by
giving a counterexample guided abstraction-refinement approach to compute our
new simulation relation. We have implemented our algorithms and show that the
compositional analysis leads to significant improvements.

1 Introduction

Markov decision processes. Markov decision processes (MDPs) are standard mod-
els for analysis of probabilistic systems that exhibit both probabilistic and non-
deterministic behavior [46,39]. In verification of probabilistic systems, MDPs have been
adopted as models for concurrent probabilistic systems [32], probabilistic systems oper-
ating in open environments [60], under-specified probabilistic systems [9], and applied
in diverse domains [6,52] such as analysis of randomized communication and security
protocols, stochastic distributed systems, biological systems, etc.

Compositional Analysis and CEGAR. One of the key challenges in analysis of prob-
abilistic systems (as in the case of non-probabilistic systems) is the state explosion
problem [29], as the size of concurrent systems grows exponentially in the number of
components. One key technique to combat the state explosion problem is the assume-
guarantee style composition reasoning [58], where the analysis problem is decomposed
into components and the results for components are used to reason about the whole sys-
tem, instead of verifying the whole system directly. For a system with two components,
the compositional reasoning can be captured as the following simple rule: consider a
system with two components G1 and G2, and a specification G′ to be satisfied by the
system; if A is an abstraction of G2 (i.e., G2 refines A) and G1 in composition with A
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satisfies G′, then the composite systems of G1 and G2 also satisfies G′. Intuitively, A is
an assumption on G1’s environment that can be ensured by G2. This simple, yet elegant
asymmetric rule is very effective in practice, specially with a counterexample guided
abstraction-refinement (CEGAR) loop [30]. There are many symmetric [56] as well
as circular compositional reasoning [35,56,53] rules; however the simple asymmetric
rule is most effective in practice and extensively studied, mostly for non-probabilistic
systems [56,38,12,44].

Compositional Analysis for Probabilistic Systems. There are many works that have
studied the abstraction-refinement and compositional analysis for probabilistic sys-
tems [11,45,51,37]. Our work is most closely related to and inspired by [50] where
a CEGAR approach was presented for analysis of MDPs (or labeled probabilistic tran-
sition systems); and the refinement relation was captured by strong simulation that cap-
tures the logical relation induced by safe-pCTL [41,4,9].

Qualitative Analysis and Its Importance. In this work we consider the fragment of
pCTL∗ [41,4,9] that is relevant for qualitative analysis, and refer to this fragment as
QCTL∗. The qualitative analysis for probabilistic systems refers to almost-sure (resp.
positive) properties that are satisfied with probability 1 (resp. positive probability). The
qualitative analysis for probabilistic systems is an important problem in verification
that is of interest independent of the quantitative analysis problem. There are many
applications where we need to know whether the correct behavior arises with proba-
bility 1. For instance, when analyzing a randomized embedded scheduler, we are in-
terested in whether every thread progresses with probability 1 [17]. Even in settings
where it suffices to satisfy certain specifications with probability λ < 1, the cor-
rect choice of λ is a challenging problem, due to the simplifications introduced dur-
ing modeling. For example, in the analysis of randomized distributed algorithms it is
quite common to require correctness with probability 1 (see, e.g., [59,62]). Further-
more, in contrast to quantitative analysis, qualitative analysis is robust to numerical
perturbations and modeling errors in the transition probabilities. The qualitative anal-
ysis problem has been extensively studied for many probabilistic models, such as for
MDPs [24,25,26], perfect-information stochastic games [27,13], concurrent stochastic
games [36,18], partial-observation MDPs [5,28,16,20], and partial-observation stochas-
tic games [22,8,19,21,55,23].

Our Contributions. In this work we focus on the compositional reasoning of proba-
bilistic systems with respect to qualitative properties, and our main contribution is a
CEGAR approach for qualitative analysis of probabilistic systems. The details of our
contributions are as follows:

1. To establish the logical relation induced by QCTL∗ we consider the logic ATL∗

for two-player games and the two-player game interpretation of an MDP where
the probabilistic choices are resolved by an adversary. In case of non-probabilistic
systems and games there are two classical notions for refinement, namely, sim-
ulation [54] and alternating-simulation [1]. We first show that the logical relation
induced by QCTL∗ is finer than the intersection of simulation and alternating simu-
lation. We then introduce a new notion of simulation, namely, combined simulation,
and show that it captures the logical relation induced by QCTL∗.
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2. We show that our new notion of simulation, which captures the logic relation of
QCTL∗, can be computed using discrete graph theoretic algorithms in quadratic
time. In contrast, the current best known algorithm for strong simulation is poly-
nomial of degree seven and requires numerical algorithms. The other advantage of
our approach is that it can be applied uniformly both to qualitative analysis of prob-
abilistic systems as well as analysis of two-player games (that are standard models
for open non-probabilistic systems).

3. We present a CEGAR approach for the computation of combined simulation, and
the counterexample analysis and abstraction refinement is achieved using the ideas
of [43] proposed for abstraction-refinement for games.

4. We have implemented our approach both for qualitative analysis of MDPs as well
as games, and experimented on a number of well-known examples of MDPs and
games. Our experimental results show that our method achieves significantly better
performance as compared to the non-compositional verification as well as compo-
sitional analysis of MDPs with strong simulation.

Related Works. Compositional and assume-guarantee style reasoning has been ex-
tensively studied mostly in the context of non-probabilistic systems [56,38,12,44].
Game-based abstraction refinement has been studied in the context of probabilistic sys-
tems [51]. The CEGAR approach has been adapted to probabilistic systems for reach-
ability [45] and safe-pCTL [11] under non-compositional abstraction refinement. The
work of [50] considers CEGAR for compositional analysis of probabilistic system with
strong simulation. An abstraction-refinement algorithm for a class of quantitative prop-
erties was studied in [33,34] and also implemented [49]. Our logical characterization
of the simulation relation is similar in spirit to [31], which shows how a fragment of
the modal μ-calculus can be used to efficiently decide behavioral preorders between
components. Our work focuses on CEGAR for compositional analysis of probabilis-
tic systems for qualitative analysis: we characterize the required simulation relation;
present a CEGAR approach for the computation of the simulation relation; and show
the effectiveness of our approach both for qualitative analysis of MDPs and games.

2 Game Graphs and Alternating-Time Temporal Logics

Notations. Let AP denote a non-empty finite set of atomic propositions. Given a finite
set S we will denote by S∗ (respectively Sω) the set of finite (resp. infinite) sequences
of elements from S, and let S+ = S∗ \ {ε}, where ε is the empty string.

2.1 Two-player Games

Two-player Games. A two-player game is a tuple G = (S,A,Av, δ,L, s0), where
– S is a finite set of states and s0 ∈ S is an initial state; and A is a finite set of actions.
– Av : S → 2A \ ∅ is an action-available function that assigns to every state s ∈ S

the set Av(s) of actions available in s.
– δ : S×A → 2S\∅ is a non-deterministic transition function that given a state s ∈ S

and an action a ∈ Av(s) gives the set δ(s, a) of successors of s given action a.
– L : S → 2AP is a labeling function that labels the states s ∈ S with the set L(s) of

atomic propositions true at s.
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Alternating Games. A two-player gameG is alternating if in every state either Player 1
or Player 2 can make choices. Formally, for all s ∈ S we have either (i) |Av(s)| = 1
(then we refer to s as a Player-2 state); or (ii) for all a ∈ Av(s) we have |δ(s, a)| = 1
(then we refer to s as a Player-1 state). For technical convenience we consider that in
the case of alternating games, there is an atomic proposition turn ∈ AP such that for
Player-1 states s we have turn ∈ L(s), and for Player 2 states s′ we have turn �∈ L(s′).
Plays. A two-player game is played for infinitely many rounds as follows: the game
starts at the initial state, and in every round Player 1 chooses an available action from
the current state and then Player 2 chooses a successor state, and the game proceeds
to the successor state for the next round. Formally, a play in a two-player game is an
infinite sequence ω = s0a0s1a1s2a2 · · · of states and actions such that for all i ≥ 0 we
have that ai ∈ Av(si) and si+1 ∈ δ(si, ai). We denote by Ω the set of all plays.

Strategies. Strategies are recipes that describe how to extend finite prefixes of plays.
Formally, a strategy for Player 1 is a function σ : (S × A)∗ × S → A, that given a
finite history w · s ∈ (S × A)∗ × S of the game gives an action from Av(s) to be
played next. We write Σ for the set of all Player-1 strategies. A strategy for Player 2
is a function θ : (S × A)+ → S, that given a finite history w · s · a of a play selects
a successor state from the set δ(s, a). We write Θ for the set of all Player-2 strategies.
Memoryless strategies are independent of the history, but depend only on the current
state for Player 1 (resp. the current state and action for Player 2) and hence can be
represented as functions S → A for Player 1 (resp. as S ×A → S for Player 2).

Outcomes. Given a strategy σ for Player 1 and θ for Player 2 the outcome is a unique
play, denoted as Plays(s, σ, θ) = s0a0s1a1 · · · , which is defined as follows: (i) s0 = s;
and (ii) for all i ≥ 0 we have ai = σ(s0a0 . . . si) and si+1 = θ(s0a0 . . . siai). Given a
state s ∈ S we denote by Plays(s, σ) (resp. Plays(s, θ)) the set of possible plays given
σ (resp. θ), i.e.,

⋃
θ′∈Θ Plays(s, σ, θ′) (resp.

⋃
σ′∈Σ Plays(s, σ′, θ)).

Parallel Composition of Two-Player Games. Given games G = (S,A,Av, δ,L, s0)
and G′ = (S′, A,Av′, δ′,L′, s′0) the parallel composition of the games G ‖ G′ =
(S,A,Av, δ,L, s0) is defined as follows: (1) The states of the composition are S = S×
S′. (2) The set of actions is A. (3) For all (s, s′) we have Av((s, s′)) = Av(s)∩Av′(s′).
(4) The transition function for a state (s, s′) ∈ S and an action a ∈ Av((s, s′)) is
defined as δ((s, s′), a) = {(t, t′) | t ∈ δ(s, a) ∧ t′ ∈ δ′(s′, a)}. (5) The labeling
function L((s, s′)) is defined as L(s) ∪ L′(s′). (6) The initial state is s0 = (s0, s

′
0).

Remark 1. For simplicity we assume that the set of actions in both components is iden-
tical, and for every pair of states the intersection of their available actions is non-empty.
Parallel composition can be extended to cases where the sets of actions are different [2].

2.2 Alternating-time Temporal Logic
We consider the Alternating-time Temporal Logic (ATL∗) [3] as a logic to specify
properties for two-player games.

Syntax. The syntax of the logic is given in positive normal form by defining the set of
path formulas (ϕ) and state formulas (ψ) according to the following grammar:

state formulas: ψ ::= q | ¬q | ψ ∨ ψ | ψ ∧ ψ | PQ(ϕ)

path formulas: ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ϕUϕ | ϕWϕ;
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where q ∈ AP is an atomic proposition and PQ is a path quantifier. The operators �

(next), U (until), and W (weak until) are the temporal operators. We will use true as a
shorthand for q∨¬q and false for q∧¬q for some q ∈ AP. The path quantifiers PQ are
as follows: ATL∗ path quantifiers: 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉.
Semantics. Given a play ω = s0a0s1a1 · · · we denote by ω[i] the suffix starting at the
i-th state element of the play ω, i.e., ω[i] = siaisi+1ai+1 · · · . The semantics of path
formulas is defined inductively in a standard way. Given a path formula ϕ, we denote
by �ϕ�G the set of plays ω such that ω |= ϕ. We omit the G lower script when the game
is clear from context. The semantics of state formulas for ATL∗ is defined as follows
(the semantics for Boolean formulas is omitted):

s |= 〈〈1〉〉(ϕ) iff ∃σ ∈ Σ, ∀θ ∈ Θ : Plays(s, σ, θ) ∈ �ϕ�

s |= 〈〈2〉〉(ϕ) iff ∃θ ∈ Θ, ∀σ ∈ Σ : Plays(s, σ, θ) ∈ �ϕ�

s |= 〈〈1, 2〉〉(ϕ) iff ∃σ ∈ Σ, ∃θ ∈ Θ : Plays(s, σ, θ) ∈ �ϕ�

s |= 〈〈∅〉〉(ϕ) iff ∀σ ∈ Σ, ∀θ ∈ Θ : Plays(s, σ, θ) ∈ �ϕ�;

where s ∈ S. Given an ATL∗ state formula ψ and a two-player game G, we denote by
�ψ�G = {s ∈ S | s |= ψ} the set of states that satisfy the formula ψ. We omit the G
lower script when the game is clear from context.

Logic Fragments. We define several fragments of the logic ATL∗:
– Restricted temporal operator use. An important fragment of ATL∗ is ATL where

every temporal operator is immediately preceded by a path quantifier.
– Restricting path quantifiers. We also consider fragments of ATL∗ (resp. ATL)

where the path quantifiers are restricted. We consider (i) 1-fragment (denoted
1-ATL∗) where only 〈〈1〉〉 path quantifier is used; (ii) the (1, 2)-fragment (denoted
(1, 2)-ATL

∗) where only 〈〈1, 2〉〉 path quantifier is used; and (iii) the combined frag-
ment (denoted C-ATL∗) where both 〈〈1〉〉 and 〈〈1, 2〉〉 path quantifiers are used. We
use a similar notation for the respective fragments of ATL formulas.

Logical Characterization of States. Given two games G and G′, and a logic fragment
F of ATL∗, we consider the following relations on the state space induced by the logic
fragment F : �F (G,G′) = {(s, s′) ∈ S × S′ | ∀ψ ∈ F : if s |= ψ then s′ |= ψ};
and when the games are clear from context we simply write �F for �F (G,G′). We
will use the following notations for the relation induced by the logic fragments we con-
sider: (i) �∗

1 (resp. �1) for the relation induced by the 1-ATL∗ (resp. 1-ATL) fragment;
(ii) �∗

1,2 (resp. �1,2) for the relation induced by the (1, 2)-ATL
∗ (resp. (1, 2)-ATL)

fragment; and (iii) �∗
C (resp. �C) for the relation induced by the C-ATL∗ (resp.

C-ATL) fragment. Given G and G′ we can also consider G′′ which is the disjoint union
of the two games, and consider the relations on G′′; and hence we will often consider a
single game as input for the relations.

3 Combined Simulation Relation Computation

In this section we first recall the notion of simulation [54] and alternating simulation [1];
and then present a new notion of combined simulation.

Simulation. Given two-player games G = (S,A,Av, δ,L, s0) and G′ =
(S′, A′,Av′, δ′,L′, s′0), a relation S ⊆ S × S′ is a simulation from G to G′ if for
all (s, s′) ∈ S the following conditions hold:
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1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a)

there exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ(s′, a′) such that (t, t′) ∈ S.
We denote by SG,G′

max the largest simulation relation between the two games (we write
Smax instead of SG,G′

max when G and G′ are clear from the context). We write G ∼S G′

when (s0, s
′
0) ∈ Smax. The largest simulation relation characterizes the logic relation of

(1, 2)-ATL and (1, 2)-ATL
∗: the (1, 2)-ATL fragment interprets a game as a transition

system and the formulas coincide with existential CTL, and hence the logic character-
ization follows from the classical results on simulation and CTL [54,2].

Proposition 1. For all games G and G′ we have Smax =�∗
1,2=�1,2.

Alternating Simulation. Given two games G = (S,A,Av, δ,L, s0) and G′ =
(S′, A′,Av′, δ′,L′, s′0), a relation A ⊆ S × S′ is an alternating simulation from G
to G′ if for all (s, s′) ∈ A the following conditions hold:
1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists

an action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state
t ∈ δ(s, a) such that (t, t′) ∈ A.

We denote by AG,G′
max the largest alternating-simulation relation between the two games

(we write Amax instead of AG,G′
max when G and G′ are clear from the context). We

write G ∼A G′ when (s0, s
′
0) ∈ Amax. The largest alternating-simulation relation

characterizes the logic relation of 1-ATL and 1-ATL∗ [1].

Proposition 2. For all games G and G′ we have Amax =�∗
1=�1.

Combined Simulation. We present a new notion of combined simulation that extends
both simulation and alternating simulation, and we show how the combined simulation
characterizes the logic relation induced by C-ATL∗ and C-ATL. Intuitively, the re-
quirements on the combined-simulation relation combine the requirements imposed by
alternating simulation and simulation in a step-wise fashion. Given two-player games
G = (S,A,Av, δ,L, s0) and G′ = (S′, A′,Av′, δ′,L′, s′0), a relation C ⊆ S × S is a
combined simulation from G to G′ if for all (s, s′) ∈ C the following conditions hold:
1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a)

there exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ(s′, a′) such that (t, t′) ∈ C.
3. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists

an action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state
t ∈ δ(s, a) such that (t, t′) ∈ C.

We denote by CG,G′
max the largest combined-simulation relation between the two games

(and write Cmax when G and G′ are clear from the context). We also write G ∼C G′

when (s0, s
′
0) ∈ Cmax. We first illustrate with an example that the logic relation �C in-

duced by C-ATL is finer than the intersection of simulation and alternating-simulation
relation; then present a game theoretic characterization of Cmax; and finally show that
Cmax gives the relations �∗

C and �C .
Example 1. Consider the games G and G′ shown in Figure 1. White nodes are labeled
by an atomic proposition p and gray nodes by q. The largest simulation and alternating-
simulation relations between G and G′ are: Smax = {(s0, t0), (s1, t1)},Amax =
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s0 s1

G

t2 t0 t1

G′

a2 a3

a1

a2
a3

a2

a1

Fig. 1. Games G,G′ such that G ∼S G′ and G ∼A G′, but G �∼C G′

{(s0, t0), (s0, t2), (s1, t1)}. However, consider the formula ψ = 〈〈1〉〉(�(p ∧
〈〈1, 2〉〉(�q))). We have that s0 |= ψ, but t0 �|= ψ. It follows that (s0, t0) �∈�C . ��

Combined-Simulation Games. The simulation and the alternating-simulation relation
can be obtained by solving two-player safety games [42,1,14]. We now define a two-
player game GC for the combined-simulation relation characterization. The game is
played on the synchronized product of the two input games. Given a state (s, s′), first
Player 2 decides whether to check for the step-wise simulation condition or the step-
wise alternating-simulation condition.
1. The step-wise simulation condition is checked by playing a two-step game. Intu-

itively, first Player 2 chooses an action a ∈ Av(s) and a successor t ∈ δ(s, a) and
challenges Player 1 to match, and Player 1 responds with an action a′ ∈ Av′(s′)
and a state t′ ∈ δ′(s′, a′).

2. The step-wise alternating-simulation condition is checked by playing a four-step
game. Intuitively, first Player 2 chooses an action a from Av(s) and Player 1 re-
sponds with an action a′ ∈ Av′(s′) (in the first two-steps); then Player 2 chooses a
successor t′ ∈ δ′(s′, a′) and Player 1 responds by choosing a successor t ∈ δ(s, a).

After checking the step-wise conditions, the game proceeds from the state (t, t′). Intu-
itively, Player 2’s goal is to reach a state (s, s′) where the labeling of the original games
do not match; states that satisfy this condition are labeled by atomic proposition p.

In the combined simulation game we refer to Player 1 as the proponent (trying to
establish the combined simulation) and Player 2 as the adversary (trying to violate the
combined simulation).

Shorthand for Safety Objectives. We will use the following shorthand for safety ob-
jectives: � ϕ ≡ ϕW false.

Theorem 1. For all games G and G′ we have Cmax = �〈〈1〉〉(�¬p)�GC ∩ (S × S′).

We establish the relation between combined simulation and C-ATL∗.

Theorem 2. For all games G and G′ we have Cmax =�∗
C=�C .

Remark 2. Theorem 2 also holds for alternating games. Note that in most cases the
action set is constant and the state space of the games are huge. Then the combined
simulation game construction is quadratic, and solving safety games on them can be
achieved in linear time using discrete graph theoretic algorithms [47,7].

Theorem 3. Given two-player games G and G′, the Cmax, �∗
C , and �C relations can

be computed in quadratic time using discrete graph theoretic algorithms.
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4 MDPs and Qualitative Logics

In this part we consider Markov decisions processes (MDPs) and logics to reason quali-
tatively about them. We consider MDPs which can be viewed as a variant of two-player
games defined in Section 2. First, we fix some notation: a probability distribution f on
a finite set X is a function f : X → [0, 1] such that

∑
x∈X f(x) = 1, and we denote

by D(X) the set of all probability distributions on X . For f ∈ D(X) we denote by
Supp(f) = {x ∈ X | f(x) > 0} the support of f .

4.1 Markov Decision Processes
MDPs. A Markov decision process (MDP) is a tuple G = (S, (S1, SP ), A,Av, δ1,
δP ,L, s0); where (i) S is a finite set of states with a partition of S into Player-1 states
S1 and probabilistic states SP ; (ii) A is a finite set of actions; (iii) Av : S1 → 2A \ ∅ is
an action-available function that assigns to every Player-1 state the non-empty set Av(s)
of actions available in s; (iv) δ1 : S1 × A → S is a deterministic transition function
that given a Player-1 state and an action gives the next state; (v) δP : SP → D(S)
is a probabilistic transition function that given a probabilistic state gives a probability
distribution over the successor states (i.e., δP (s)(s′) is the transition probability from s
to s′); (vi) the function L is the proposition labeling function as for two-player games;
and (vii) s0 is the initial state. Strategies for Player 1 are defined as for games.

Interpretations. We interpret an MDP in two distinct ways: (i) as a 1 1
2 -player game

and (ii) as an alternating two-player game. In the 1 1
2 -player setting in a state s ∈ S1 ,

Player 1 chooses an action a ∈ Av(s) and the MDP moves to a unique successor s′. In
probabilistic states sp ∈ SP the successor is chosen according to the probability distri-
bution δP (sp). In the alternating two-player interpretation, we regard the probabilistic
states as Player-2 states, i.e., in a state sp ∈ SP , Player 2 chooses a successor state
s′ from the support of the probability distribution δP (s). Given an MDP G we denote
by Ĝ its two-player interpretation, and Ĝ is an alternating game. The 1 1

2 -player inter-
pretation is the classical definition of MDPs. We will use the two-player interpretation
to relate logical characterizations of MDPs and logical characterization of two-player
games with fragments of ATL∗.

1 1
2 -Player Interpretation. Once a strategy σ ∈ Σ for Player 1 is fixed, the outcome of

the MDP is a random walk for which the probabilities of events are uniquely defined,
where an event Φ ⊆ Ω is a measurable set of plays [40]. For a state s ∈ S and an event
Φ ⊆ Ω, we write Prσs (Φ) for the probability that a play belongs to Φ if the game starts
from the state s and Player 1 follows the strategy σ.

4.2 Qualitative Logics for MDPs
We consider the qualitative fragment of pCTL∗ [41,4,9] and refer to the logic as quali-
tative pCTL∗ (denoted as QCTL∗) as it can express qualitative properties of MDPs.

Syntax and Semantics. The syntax of the logic is given in positive normal form and is
similar to the syntax of ATL∗. It has the same state and path formulas as ATL∗ with the
exception of path quantifiers. The logic QCTL∗ comes with two path quantifiers (PQ),
namely 〈Almost〉 and 〈Positive〉 (instead of 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉). The semantics
of the logic QCTL∗ is the same for the fragment shared with ATL∗, therefore we
only give semantics for the new path quantifiers. Given a path formula ϕ, we denote
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by �ϕ�G the set of plays ω such that ω |= ϕ. For a state s and a path formula ϕ we
have: s |= 〈Almost〉(ϕ) (resp. s |= 〈Positive〉(ϕ)) iff ∃σ ∈ Σ : Prσs (�ϕ�) = 1 (resp.
Prσs (�ϕ�) > 0). As before, we denote by QCTL the fragment of QCTL∗ where every
temporal operator is immediately preceded by a path quantifier, and for a state formula
ψ the set �ψ�G denotes the set of states in G that satisfy the formula ψ.

Logical Relation Induced by QCTL and QCTL∗. Given two MDPs G and G′, the
logical relation induced by QCTL∗, denoted as �∗

Q, (resp. by QCTL, denoted as �Q),
is defined as: �∗

Q= {(s, s′) ∈ S × S′ | ∀ψ ∈ QCTL∗ : if s |= ψ then s′ |= ψ} (resp.
∀ψ ∈ QCTL).

4.3 Characterization of Qualitative Simulation for MDPs

In this section we establish the equivalence of the �∗
Q relation on MDPs with the �∗

C

relation on the two-player interpretation of MDPs, i.e., we prove that for all MDPs G
and G′ we have �∗

Q (G,G′) =�C (Ĝ, Ĝ′), where Ĝ (resp. Ĝ′) is the two-player inter-
pretation of the MDP G (resp. G′). In the first step we show how to translate some of the
QCTL formulas into C-ATL formulas. We only need to translate the path quantifiers
due to the similarity of path formulas in the logics.

Lemma 1. For all atomic propositions q, r and for all MDPs, we have:
(i) �〈Almost〉(�q)� = �〈〈1〉〉(�q)�; (ii) �〈Almost〉(qWr)� = �〈〈1〉〉(qWr)�;
(iii) �〈Positive〉(�q)� = �〈〈1, 2〉〉(�q)�; (iv) �〈Positive〉(q Ur)� = �〈〈1, 2〉〉(q Ur)�;
(v) �〈Positive〉(qWr)� = �〈〈1, 2〉〉(q Ur)� ∪ �〈〈1, 2〉〉(q U(〈〈1〉〉(qWfalse)))�.

To complete the translation of temporal operators we also express theQCTL formula
�〈Almost〉(q Ur)� in terms of C-ATL∗ [15]. We establish the following result.

Theorem 4. For all MDPs G and G′ we have �Q =�C ; and �∗
Q =�Q. The relation

�∗
Q can be computed in quadratic time using discrete graph theoretic algorithms.

5 CEGAR for Combined Simulation

In this section we present a CEGAR approach for computing combined simulation.

5.1 Simulation Abstraction and Alternating-Simulation Abstraction
Abstraction. An abstraction of a game consists of a partition of the game graph such
that in each partition the atomic proposition labeling match for all states. Given an
abstraction of a game, the abstract game can be defined by collapsing states of each
partition and redefining the action-available and transition functions. The redefinition
of the action-available and transition functions can either increase or decrease the power
of the players. If we increase the power of Player 1 and decrease the power of Player 2,
then the abstract game will be in alternating simulation with the original game, and if
we increase the power of both players, then the abstract game will simulate the original
game. We now formally define the partitions, and the two abstractions.

Partitions for Abstraction. A partition of a game G = (S,A,Av, δ,L, s0) is an
equivalence relation Π = {π1, π2, . . . , πk} on S such that: (i) for all 1 ≤ i ≤ k
we have πi ⊆ S and for all s, s′ ∈ πi we have L(s) = L(s′) (labeling match);
(ii)

⋃
1≤i≤k πi = S (covers the state space); and (iii) for all 1 ≤ i, j ≤ k, such that i �= j



482 K. Chatterjee, M. Chmelı́k, and P. Daca

we have πi ∩ πj = ∅ (disjoint). Note that in alternating games Player 1 and Player 2
states are distinguished by proposition turn, so they belong to different partitions.

Simulation Abstraction. Given a two-player game G = (S,A,Av, δ,L, s0) and a
partition Π of G, we define the simulation abstraction of G as a two-player game
AbsΠS (G) = (S,A,Av, δ,L, s0), where: (i) S = Π : the partitions in Π are the states
of the abstract game. (ii) For all πi ∈ Π we have Av(πi) =

⋃
s∈πi

Av(s): the set
of available actions is the union of the actions available to the states in the partition,
and this gives more power to Player 1. (iii) For all πi ∈ Π and a ∈ Av(πi) we have
δ(πi, a) = {πj | ∃s ∈ πi : (a ∈ Av(s)∧∃s′ ∈ πj : s′ ∈ δ(s, a))}: there is a transition
from a partition πi given an action a to a partition πj if some state s ∈ πi can make
an a-transition to some state in s′ ∈ πj . This gives more power to Player 2. (iv) For all
πi ∈ Π we have L(πi) = L(s) for some s ∈ πi: the abstract labeling is well-defined,
since all states in a partition are labeled by the same atomic propositions. (v) s0 is the
partition in Π that contains state s0.

Alternating-Simulation Abstraction. Given a two-player game G =
(S,A,Av, δ,L, s0) and a partition Π of G, we define the alternating-simulation
abstraction of G as a two-player game AbsΠA (G) = (S̃, A, Ãv, δ̃, L̃, s̃0), where:
(i) S̃ = Π ; (ii) for all πi ∈ Π we have Ãv(πi) =

⋃
s∈πi

Av(s); (iii) for all πi ∈ Π we

have L̃(πi) = L(s) for some s ∈ πi; (iv) s̃0 is the partition in Π that contains state
s0 (as in the case of simulation abstraction). (v) For all πi ∈ Π and a ∈ Ãv(πi) we
have δ̃(πi, a) = {πj | ∀s ∈ πi : (a ∈ Av(s) ∧ ∃s′ ∈ πj : s′ ∈ δ(s, a))}: there is a
transition from a partition πi given an action a to a partition πj if all states s ∈ πi can
make an a-transition to some state in s′ ∈ πj . This gives less power to Player 2. For
technical convenience we assume δ̃(πi, a) is non-empty.

The following proposition states that (alternating-)simulation abstraction of a game
G is in (alternating-)simulation with G.

Proposition 3. For all partitions Π of a two-player game G we have: (1) G ∼A
AbsΠA (G); and (2) G ∼S AbsΠS (G).

5.2 Sound Assume-Guarantee Rule

We now present the sound assume-guarantee rule for the combined-simulation problem.
To achieve this we first need an extension of the notion of combined-simulation game.

Modified Combined-Simulation Games. Consider games GAlt = (S,A, δAlt,
AvAlt,L, s0), GSim = (S,A, δSim,AvSim,L, s0) and G′ = (S′, A, δ′,Av′,L′, s′0). The
modified simulation game GM = (SM, AM,AvM, δM,LM, sM0 ) is defined exactly
like the combined simulation game given GAlt and G′, with the exception that the step-
wise simulation gadget is defined using the transitions of GSim instead ofGAlt. We write
(GAlt ⊗GSim) ∼M G′ if and only if (s0, s′0) ∈ �〈〈1〉〉(�¬p)�GM .

Proposition 4. Let G,G′, GAlt, GSim be games such that G ∼A GAlt and G ∼S GSim.
Then (GAlt ⊗GSim) ∼M G′ implies G ∼C G′.

The key proof idea for the above proposition is as follows: if G ∼A GAlt and G ∼S
GSim, then in the modified combined-simulation game GM the adversary is stronger
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than in the combined-simulation game GC . Hence winning in GM for the proponent
implies winning in GC and gives the desired result of the proposition.

Sound Assume-Guarantee Method. Given two games G1 and G2, checking whether
their parallel composition G1 ‖ G2 is in combined simulation with a game G′ can
be done explicitly by constructing the synchronized product. The composition, how-
ever, may be much larger than the components and thus make the method ineffective in
practical cases. We present an alternative method that proves combined simulation in a
compositional manner, by abstracting G2 with some partition Π and then composing it
with G1. The sound assume-guarantee rule follows from Propositions 3 and 4.

Proposition 5 (Sound assume-guarantee rule). Given games G1, G2, G
′, and a par-

tition Π of G2, let A = G1 ‖ AbsΠA (G2) and S = G1 ‖ AbsΠS (G2). If (A⊗S) ∼M G′,
then (G1 ‖ G2) ∼C G′, i.e.,

A = G1 ‖ AbsΠA (G2); S = G1 ‖ AbsΠS (G2); (A ⊗ S) ∼M G′

(G1 ‖ G2) ∼C G′ (1)

If the partition Π is coarse, then the abstractions in the assume-guarantee rule can be
smaller than G2 and also their composition with G1. As a consequence, combined sim-
ulation can be proved faster as compared to explicitly computing the composition. In
Section 5.4 we describe how to effectively compute the partitions Π and refine them
using CEGAR approach.

5.3 Counter-examples Analysis

If the premise (A ⊗ S) ∼M G′ of the assume-guarantee rule (1) is not satisfied, then
the adversary (Player 2) has a memoryless winning strategy in GM, and the memory-
less strategy is the counter-example. To use the sound assume-guarantee rule (1) in a
CEGAR loop, we need analysis of counter-examples.

Representation of counter-examples. A counter-example is a memoryless winning strat-
egy for Player 2 in GM. Note that in GM Player 2 has a reachability objective, and thus
a winning strategy ensures that the target set is always reached from the starting state,
and hence no cycle can be formed without reaching the target state once the memory-
less winning strategy is fixed. Hence we represent counter-examples as directed-acyclic
graphs (DAG), where the leafs are the target states and every non-leaf state has a single
successor chosen by the strategy of Player 2 and has all available actions for Player 1.

Abstract, concrete, and spurious counter-examples. Given two-player games G1 and
G2, let G = (G1 ‖ G2) be the parallel composition. Given G and G′, let GC be
the combined-simulation game of G and G′. The abstract game GM is the modified
combined-simulation game of (A ⊗ S) and G′, where A = G1 ‖ AbsΠA (G2) and
S = G1 ‖ AbsΠS (G2). We refer to a counter-example θabs in GM as abstract, and to
a counter-example θcon in GC as concrete. An abstract counter-example is feasible if
we can substitute partitions in A and S with states of G2 to obtain a concrete counter-
example. An abstract counter-example is spurious if it is not feasible.

Concretization of counter-examples. We follow the approach of [43] to check the fea-
sibility of a counter-example by finding a concretization function Conc from states in
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GM to a set of states in G2 that witness a concrete strategy from the abstract strategy.
A state in GM has a component which is a partition for G2, and the concretization con-
structs a subset of the partition. Intuitively, for a state s of GM in the counter-example
DAG, the concretization represents the subset of states of G2 in the partition where
a concrete winning strategy exists using the strategy represented by the DAG below
the state s. Informally, the witness concrete strategy is constructed inductively, going
bottom-up in the DAG as follows: (i) the leaves already represents winning states and
hence their concretization is the entire partition; (ii) for non-leaf states in the DAG of
the abstract counter-example, the concretization represents the set of states of G2 of
the partition which lead to a successor state that belongs to the concretization of the
successor in the DAG. An abstract counter-example is feasible, if the concretization of
the root of the DAG contains the initial state of G2.

5.4 CEGAR

The counter-example analysis presented in the previous section allows us to automati-
cally refine abstractions using the CEGAR paradigm [30]. The algorithm takes games
G1, G2, G

′ as arguments and answers whether (G1 ‖ G2) ∼C G′ holds. Initially, the al-
gorithms computes the coarsest partition Π of G2. Then, it executes the CEGAR loop:
in every iteration the algorithm constructs A (resp. S) as the parallel composition of
G1 and the alternating-simulation abstraction (resp. simulation abstraction) of G2. Let
GM be the modified combined-simulation game of (A ⊗ S) and G′. If Player 1 has a
winning strategy in GM then the algorithm returns YES; otherwise it finds an abstract
counter-example Cex in GM. In case Cex is feasible, then it corresponds to a concrete
counter-example, and the algorithm returns NO. If Cex is spurious a refinement proce-
dure is called that uses the concretization of Cex to return a partition Π ′ finer than Π .

Refinement Procedure. Given a partition Π and a spurious counter-example Cex to-
gether with its concretization function Conc we describe how to compute the refined
partition Π ′. Consider a partition π ∈ Π and let Sπ = {s1, s2, . . . , sm} denote the
states of the abstract counter-example Cex that contain π as its component. Every state
si splits π into at most two sets Conc(si) and π \Conc(si), and let this partition be de-
noted as Ti. We define a partitionPπ as the largest equivalence relation on π that is finer
than any equivalence relation Ti for all 1 ≤ i ≤ m. Formally, Pπ = {π1, π2, . . . , πk}
is a partition of π such that for all 1 ≤ j ≤ k and 1 ≤ i ≤ m we have πj ⊆ Conc(si)
or πj ⊆ π \ Conc(si). The new partition Π ′ is then defined as the union over Pπ for
all π ∈ Π .

Proposition 6. Given a partition Π and a spurious counter-example Cex, the partition
Π ′ obtained as refinement of Π is finer than Π .

Since we consider finite games, the refinement procedure only executes for finitely
many steps and hence the CEGAR loop eventually terminates.

6 Experimental Results

We implemented our CEGAR approach for combined simulation in Java, and experi-
mented with our tool on a number of MDPs and two-player games examples. We use
PRISM [52] model checker to specify the examples and generate input files for our tool.
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Observable actions. To be compatible with the existing benchmarks (e.g. [50]) in our
tool actions are observable instead of atomic propositions. Our algorithms are easily
adapted to this setting. We also allow the user to specify silent actions for components,
which are not required to be matched by the specification G′.

Improved (modified) combined-simulation game. We leverage the fact that MDPs are
interpreted as alternating games to simplify the (modified) combined-simulation game.
When comparing two Player-1 states, the last two steps in the alternating-simulation
gadget can be omitted, since the players have unique successors given the actions cho-
sen in the first two steps. Similarly, for two probabilistic states, the first two steps in the
alternating-simulation gadget can be skipped.

Improved partition refinement procedure. In the implementation we adopt the approach
of [43] for refinement. Given a state s of the abstract counter-example with partition
π as its component, the equivalence relation may split the set π \ Conc(s) into mul-
tiple equivalence classes. Intuitively, this ensures that similar-shaped spurious counter-
examples do not reappear in the following iterations. This approach is more efficient
than the naive one, and also implemented in our tool.

MDP Examples. We used our tool on all the MDP examples from [50]:
– CS1 and CSn model a Client-Server protocol with mutual exclusion with proba-

bilistic failures in one or all of the n clients, respectively.
– MER is an arbiter module of NASAs software for Mars Exploration Rovers which

grants shared resources for several users.
– SN models a network of sensors that communicate via a bounded buffer with prob-

abilistic behavior in the components.
In addition, we also considered two other classical MDP examples:

– LE is based on a PRISM case study [52] that models the Leader election proto-
col [48], where n agents on a ring randomly pick a number from a pool of K
numbers. The agent with the highest number becomes the leader. In case there
are multiple agents with the same highest number the election proceed to the next
round. The specification requires that two leaders cannot be elected at the same
time. The MDP is parametrized by the number of agents and the size of the pool.

– PETP is based on a Peterson’s algorithm [57] for mutual exclusion of n threads,
where the execution order is controlled by a randomized scheduler. The specifica-
tion requires that two threads cannot access the critical section at the same time.
We extend Peterson’s algorithm by giving the threads a non-deterministic choice
to restart before entering the critical section. The restart operation succeeds with
probability 1

2 and with probability 1
2 the thread enters the critical section.

Details of experimental results. Table 1 shows the results for MDP examples we ob-
tained using our assume-guarantee algorithm and the monolithic approach (where the
composition is computed explicitly). We also compared our results with the tool pre-
sented in [50] that implements both assume-guarantee and monolithic approaches for
strong simulation [61]. All the results were obtained on a Ubuntu-13.04 64-bit ma-
chine running on an Intel Core i5-2540M CPU of 2.60GHz. We imposed a 4.3GB up-
per bound on Java heap memory and one hour time limit. For MER(6) and PETP(5)
PRISM cannot parse the input file (probably it runs out of memory).
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Table 1. Results for MDPs examples: AGCS stands for our assume-guarantee combined simula-
tion; AGSS stands for assume-guarantee with strong simulation; MONCS stands for our mono-
lithic combined simulation; and MONSS stands for monolithic strong simulation. The number I
denotes the number of CEGAR iterations and |Π | the size of the abstraction in the last CEGAR it-
eration. TO and MO stand for a time-out and memory-out, respectively, and Error means an error
occurred during execution. The memory consumption is measured using the time command.

AGCS AGSS MONCS MONSS
Ex. |G1| |G2| |G′| T ime Mem I |Π | T ime Mem I |Π | T ime Mem Time Mem

CS1(5) 36 405 16 1.13s 112MB 49 85 6.11s 213MB 32 33 0.04s 34MB 0.18s 95MB
CS1(6) 49 1215 19 2.52s 220MB 65 123 11.41s 243MB 40 41 0.04s 51MB 0.31s 99MB
CS1(7) 64 3645 22 5.41s 408MB 84 156 31.16s 867MB 56 57 0.05s 82MB 0.77s 113MB
CSn(3) 125 16 54 0.65s 102MB 9 24 33.43s 258MB 11 12 0.09s 35MB 11.29s 115MB
CSn(4) 625 25 189 6.22s 495MB 15 42 TO - - - 0.4s 106MB 1349.6s 577MB
CSn(5) 3k 36 648 117.06s 2818MB 24 60 TO - - - 2.56s 345MB TO -
MER(3) 278 1728 11 1.42s 143MB 8 14 2.74s 189MB 6 7 1.96s 228MB 128.1s 548MB
MER(4) 465 21k 14 4.63s 464MB 13 22 10.81s 870MB 10 11 11.02s 1204MB TO -
MER(5) 700 250k 17 29.23s 1603MB 20 32 67s 2879MB 15 16 - MO MO -
SN(1) 43 32 18 0.13s 38MB 3 6 0.28s 88MB 2 3 0.04s 29MB 3.51s 135MB
SN(2) 796 32 54 0.9s 117MB 3 6 66.09s 258MB 2 3 0.38s 103MB 3580.83s 1022MB
SN(3) 7k 32 162 4.99s 408MB 3 6 TO - - - 4.99s 612MB TO -
SN(4) 52k 32 486 34.09s 2448MB 3 6 TO - - - 44.47s 3409MB TO -
LE(3, 4) 2 652 256 0.24s 70MB 6 14 1.63s 223MB 6 7 0.38s 103MB TO -
LE(3, 5) 2 1280 500 0.31s 87MB 6 14 Error - - - 1.77s 253MB Error -
LE(4, 4) 3 3160 1280 0.61s 106MB 6 16 TO - - - 9.34s 1067MB TO -
LE(5, 5) 4 18k 12k 3.37s 364MB 6 18 TO - - - - MO TO -
LE(6, 4) 5 27k 20k 6.37s 743MB 6 20 TO - - - - MO TO -
LE(6, 5) 5 107k 78k 23.72s 2192MB 6 20 TO - - - - MO TO -
PETP(2) 68 3 3 0.04s 31MB 0 2 0.04s 87MB 0 1 0.04s 30MB 0.04s 90MB
PETP(3) 4 1730 4 0.19s 65MB 6 8 0.29s 153MB 3 4 0.24s 72MB 1.07s 170MB
PETP(4) 5 54k 5 1.58s 325MB 8 10 3.12s 727MB 4 5 7.04s 960MB 31.52s 1741MB

Summary of results. For all examples, other than the Client-Server protocol, the assume-
guarantee method scales better than the monolithic reasoning; and in all examples our
qualitative analysis scales better than the strong simulation approach.

Two-player Games Examples. We also experimented with our tool on several exam-
ples of games, where one of the players controls the choices of the system and the other
player represents the environment.

– EC is based on [10] and models an error-correcting device that sends and receives
data blocks over a communication channel. Notation EC(n, k, d) means that a data
block consists of n bits and it encodes k bits of data; value d is the minimum
Hamming distance between two distinct blocks. In the first component Player 2
chooses a message to be sent over the channel and is allowed to flip some bits in
the block. The second component restricts the number of bits that Player 2 can flip.
The specification requires that every message is correctly decoded.

– PETG is the Peterson’s algorithm [57] example for MDPs, with the following dif-
ferences: (a) the system may choose to restart instead of entering the critical sec-
tion; (b) instead of a randomized scheduler we consider an adversarial scheduler.
As before, the specification requires mutual exclusion.

– VIR1 models a virus that attacks a computer system with n nodes (based on case
study from PRISM [52]). Player 1 represents the virus and is trying to infect as
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Table 2. Results for two-player games examples

AGCS MONCS AGAS MONAS
Ex. |G1| |G2| |G′| T ime Mem I |Π | T ime Mem Time Mem I |Π | T ime Mem

EC(32, 6, 16) 71k 193 129 3.55s 446MB 1 7 1.15s 281MB 2.34s 391MB 0 2 1.03s 251MB
EC(64, 7, 16) 549k 385 257 70.5s 3704MB 1 131 9.07s 1725MB 16.79s 1812MB 0 2 4.83s 1467MB
EC(64, 8, 16) 1.1m 769 513 - MO - - - MO 52.63s 3619MB 0 2 - MO
EC(64, 8, 32) 1.1m 1025 513 - MO - - - MO 54.08s 3665MB 0 2 - MO
PETG(2) 3 52 3 0.08s 35MB 4 6 0.03s 30MB 0.07s 35MB 4 6 0.03s 29MB
PETG(3) 4 1514 4 0.2s 63MB 6 8 0.25s 74MB 0.22s 62MB 6 8 0.21s 64MB
PETG(4) 5 49k 5 1.75s 316MB 8 10 8.16s 1080MB 1.6s 311MB 8 10 6.94s 939MB
VIR1(12) 14 4097 1 0.91s 159MB 15 30 1.69s 255MB 0.35s 114MB 2 4 1.53s 215MB
VIR1(13) 15 8193 1 1.47s 197MB 16 32 4.36s 601MB 0.6s 178MB 2 4 2.8s 402MB
VIR1(14) 16 16k 1 3.09s 326MB 17 34 8.22s 992MB 0.75s 241MB 2 4 6.49s 816MB
VIR1(15) 17 32k 1 4.47s 643MB 18 36 15.13s 2047MB 1.05s 490MB 2 4 9.67s 1361MB
VIR1(16) 18 65k 1 8.65s 1015MB 19 38 41.28s 3785MB 1.37s 839MB 2 4 23.71s 2591MB
VIR1(17) 19 131k 1 18.68s 1803MB 20 40 - MO 2.12s 1653MB 2 4 62.24s 4309MB
VIR1(18) 20 262k 1 38.68s 3079MB 21 42 - MO 3.35s 2878MB 2 4 - MO
VIR2(12) 13 4096 1 1.02s 151MB 19 34 0.81 154MB 0.68s 122MB 9 14 0.57s 133MB
VIR2(13) 14 8192 1 1.48s 190MB 20 36 1.13s 216MB 1.01s 183MB 9 14 1.01s 208MB
VIR2(14) 15 16k 1 2.9s 315MB 21 38 2.33s 389MB 1.94s 311MB 9 14 2.09s 388MB
VIR2(15) 16 32k 1 5s 631MB 22 40 6.29s 964MB 2.12s 489MB 9 14 4.69s 757MB
VIR2(16) 17 65k 1 9.82s 949MB 23 42 7.55s 1468MB 3.96s 897MB 9 14 6.09s 1315MB
VIR2(17) 18 131k 1 23.33s 1815MB 24 44 23.54s 3012MB 8.16s 1676MB 9 14 15.36s 2542MB
VIR2(18) 19 262k 1 45.89s 3049MB 25 46 55.28s 4288MB 20.3s 2875MB 9 14 28.79s 3755MB

many nodes of the network as possible. Player 2 represents the system and may
recover an infected node to an uninfected state. The specification requires that the
virus has a strategy to avoid being completely erased, i.e., maintain at least one
infected node in the network. VIR2 is a modified version of VIR1 with two special
critical nodes in the network. Whenever both of the nodes are infected, the virus can
overtake the system. The specification is as for VIR1, i.e., the virus can play such
that at least one node in the network remains infected, but it additionally requires
that even if the system cooperates with the virus, the system is designed in a way
that the special nodes will never be infected at the same time.

The results for two-player game examples are shown in Table 2. Along with AGCS
and MONCS for assume-guarantee and monolithic combined simulation, we also con-
sider AGAS and MONAS for assume-guarantee and monolithic alternating simulation,
as for properties in 1-ATL it suffices to consider only alternating simulation. For all the
examples, the assume-guarantee algorithms scale better than the monolithic ones. Com-
bined simulation is finer than alternating simulation and therefore combined simulation
may require more CEGAR iterations.

Concluding Remarks. In this work we considered compositional analysis of MDPs
for qualitative properties and presented a CEGAR approach. Our algorithms are discrete
graph theoretic algorithms. An interesting direction of future work would be to consider
symbolic approaches to the problem.
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50. Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-guarantee abstraction refinement

for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 310–326. Springer, Heidelberg (2012)

51. Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for Markov decision
processes. In: QEST, pp. 157–166 (2006)

52. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 585–591. Springer, Heidelberg (2011)

53. Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for
probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 23–37. Springer, Heidelberg (2010)

54. Milner, R.: An algebraic definition of simulation between programs. IJCAI, 481–489 (1971)
55. Nain, S., Vardi, M.Y.: Solving partial-information stochastic parity games. In: LICS,

pp. 341–348 (2013)
56. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning

to divide and conquer: applying the l* algorithm to automate assume-guarantee reasoning.
Formal Methods in System Design 32(3), 175–205 (2008)

57. Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing Let-
ters 12(3), 115–116 (1981)

58. Pnueli, A.: In: transition from global to modular temporal reasoning about programs. In:
Logics and Models of Concurrent Systems, NATO Advanced Summer Institutes F-13,
pp. 123–144. Springer (1985)

59. Pogosyants, A., Segala, R., Lynch, N.: Verification of the randomized consensus algorithm
of Aspnes and Herlihy: a case study. Distributed Computing 13(3), 155–186 (2000)

60. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT Press, Technical Report MIT/LCS/TR-676 (1995)

61. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord. J. Com-
put. 2(2), 250–273 (1995)

62. Stoelinga, M.: Fun with FireWire: Experiments with verifying the IEEE1394 root contention
protocol. In: Formal Aspects of Computing (2002)


	CEGAR for Qualitative Analysis of Probabilistic Systems
	1 Introduction
	2 Game Graphs and Alternating-Time Temporal Logics
	2.1 Two-player Games
	2.2 Alternating-time Temporal Logic

	3 Combined Simulation Relation Computation
	4 MDPs and Qualitative Logics
	4.1 Markov Decision Processes
	4.2 Qualitative Logics for MDPs
	4.3 Characterization of Qualitative Simulation for MDPs

	5 CEGAR for Combined Simulation
	5.1 Simulation Abstraction and Alternating-Simulation Abstraction
	5.2 Sound Assume-Guarantee Rule
	5.3 Counter-examples Analysis
	5.4 CEGAR

	6 Experimental Results
	References




