
Vac - Verifier of Administrative Role-Based

Access Control Policies

Anna Lisa Ferrara1, P. Madhusudan2, Truc L. Nguyen3, and Gennaro Parlato3

1 University of Bristol, UK
2 University of Illinois, USA

3 University of Southampton, UK

Abstract. In this paper we present Vac, an automatic tool for verifying
security properties of administrative Role-based Access Control (RBAC).
RBAC has become an increasingly popular access control model, partic-
ularly suitable for large organizations, and it is implemented in several
software. Automatic security analysis of administrative RBAC systems is
recognized as an important problem, as an analysis tool can help designers
check whether their policies meet expected security properties. Vac con-
verts administrativeRBAC policies to imperative programs that simulate
the policies both precisely and abstractly and supports several automatic
verification back-ends to analyze the resulting programs. In this paper, we
describe the architecture ofVac and overview the analysis techniques that
have been implemented in the tool. We also report on experiments with
several benchmarks from the literature.

1 Introduction

Access control models allow to restrict access to shared resources by selectively
assigning permissions to users. Role-based Access Control (RBAC) has become
an increasingly popular access control model [5], it is standardized by NIST and
is implemented in several software, such as Microsoft SQL Servers, Microsoft
Active Directory, SELinux, and Oracle DBMS. RBAC reduces the complex-
ity of user permissions administration by grouping users into roles and assign-
ing permissions to each role. An Administrative RBAC User-Role Assignment
(ARBAC-URA) policy defines a set of administrative roles and rules which
specify how administrators can assign or can revoke roles to users [27].

Automatic security analysis ofARBAC systems is recognized as an important
problem, as an analysis tool can help designers check whether their policies meet
the expected security properties [25]. This is particularly desirable whenever
policies need to be correct by design, for instance when accesses are not mediated
by a monitor [6]. Most interesting security properties, such as privilege escalation
and separation of duties, can be phrased as the role-reachability problem (i.e., is
there a reachable configuration where some user can eventually be assigned to
a target role?) [19, 7]. The role-reachability problem is known to be PSPACE-
complete and hard to solve on real-world policies having hundreds of roles and
rules and thousands of users [28].

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 184–191, 2014.
c© Springer International Publishing Switzerland 2014



Vac - Verifier of Administrative Role-Based Access Control Policies 185

Input File

Integer Pgm

C Pgm

Horn Pgm

Boolean Pgm

NuSMV Pgm

NO

YES

YES

NO

NO

YES

YES

NO

YES

NO

Pruning
[8]

Policy-to-Program

Translation

Abstract
Transformer

[7]

Interproc

Precise
Transformer

CBMC Counter
Example

Z3

HSF

Eldarica

Getafix

Moped

NuSMV

Unknown

Error Trace

Error

Error

No Error

Fig. 1. Vac’s Architecture

In this paper, we present Vac (Verifier of Access Control), an automatic and
scalable tool for solving the role-reachability problem of ARBAC-URA policies.
The main components of Vac are a pruning module that aims at simplifying the
state space by reducing a policy to a smaller one that preserves the reachability
of the target role, and a policy-to-program translation module that converts a
policy to an imperative program that simulates the policy both precisely and
abstractly. Vac supports a plethora of automatic verification back-ends for the
analysis of the resulting programs and has a built-in counterexample generator.

In the rest of the paper, we describe the architecture of Vac and overview
the analysis techniques implemented in the tool. Finally, we present experimen-
tal results showing the effectiveness of Vac on analyzing realistic and complex
benchmarks from the literature.

2 Software Architecture and Verification Approaches

The high-level architecture of Vac is shown in Fig. 1. We first describe the input
format of Vac and then its components.



186 A.L. Ferrara et al.

Input Format. We refer to [8] for the syntax and the semantics of an ARBAC-
URA system. To illustrate the input format of Vac1 we use the toy example of
an hospital policy shown in Fig. 2.

����� and ����� are keywords used
����� Employee Doctor Manager
Patient;
����� Anna Luke Steve Lucy;
�� 〈Anna, Doctor〉 〈Lucy, Man-
ager〉 〈Luke, Doctor〉 〈Steve, Pa-
tient〉;
	� 〈Doctor, Patient〉 〈Doctor,
Manager〉;
	� 〈Doctor, Employee & -Doctor,
Manager〉 〈Doctor, true, Patient〉;
�
��
 Anna Luke;
���� Doctor;

Fig. 2. A Vac’s input file

to list roles and users, respectively.��
defines the initial user-role assignment,
whereas 	� and 	� specify the ad-
ministrative rules Can-Revoke and
Can-Assign, respectively. A 	� rule
is a pair of roles. For instance, the 	�
rule 〈 Doctor, Patient 〉 says that
any administrator with role Doctor
can revoke the role Patient from any
user. A 	� rule also contains a pre-
condition, that is, a Boolean formula
written as a conjunction of literals over
roles. For instance, the	� rule 〈Doc-

tor, Employee & -Doctor, Manager 〉 says that any administrator with
role Doctor can assign any user u to the role Manager provided that u is
member of Employee and not a member of Doctor. The keyword �
��
 is
used to list all users that are also administrators2. Finally, the keyword ����

is used to specify the role-reachability query, namely the target role. Vac can
also be used to check whether the target role is reachable by a specific user. For
instance, the query ���� Lucy Doctor allows to check whether Lucy can
ever obtain role Doctor.

Pruning Module. This module takes as input a policy, which we refer as the
original policy, and outputs a simplified one (in the same format as the input)
that preserves the reachability of the target role. The module implements the
pruning heuristic from [8] which is crucial for scalability. It eliminates roles, rules
and users with the aim of reducing the state space to explore. This heuristic re-
lies upon a fundamental theorem which states that the role-reachability problem
can be solved by tracking only k+1 users, where k is the number of adminis-
trative roles [8]. Thus, the heuristic exploits sufficient conditions to eliminate
administrative roles that are not relevant for the analysis. The effectiveness of
the above method is amplified by a static pruning algorithm consisting of six
pruning actions: the first three aim at discarding roles that are irrelevant to the
reachability of the target role while the remaining ones identify administrative
rules that can be combined or eliminated. Furthermore, whenever the target role
is reachable within two steps in the intermediate policy, the pruning procedure
terminates immediately returning the counterexample.

Policy-to-Program Translation. This module takes as input a policy and
translates it into a program that simulates the evolution of the system. Vac
provides the following two policy-to-program translations:

1 Vac’s input format is compatible with that of Mohawk [16].
2 The list of administrators can be obtained from 	� and 	� rules. However, we
include the keyword �
��
 to be consistent with Mohawk’s input format [16].



Vac - Verifier of Administrative Role-Based Access Control Policies 187

Abstract Transformer. This module implements the policy-to-program transla-
tion proposed in [7]. A policy P is translated into an imperative non-deterministic
while-program P ′ with an error location. P ′ uses only integer variables to capture
the number of users in a subset of role combinations and abstractly simulates the
evolution of the system in such a way that if the error location is not reachable
then the role reachability problem has a negative answer on P . On the contrary,
if the error location is reachable in P ′, this may correspond to a false positive
as P ′ over-approximates the behaviour of P . P ′ is then analyzed by Vac using
Interproc [18] with the box abstract domain.
Precise Transformer. This module translates a policy P into a Boolean program
P ′ that precisely simulates the evolution of the system tracking at most k+1
users picked non-deterministically, where k is the number of administrative roles.
The correctness of this approach relies on a fundamental theorem proven in [8].
The program uses k+1 blocks of n Boolean variables, where n is the number
of roles in the policy. Each block tracks the role-membership of a selected user.
The rest of the program consists of an infinite loop in which the administrative
rules are non-deterministically simulated on a non-deterministically chosen user.
The loop contains also an error location that is reachable whenever a tracked
user reaches the target role. The role-reachability problem admits a positive
answer on P if and only if the error location is reachable in P ′. The reach-
ability problem for Boolean programs is decidable and Vac supports several
automated tools as back-ends for the analysis of P ′. In particular, a complete
analysis can be performed by using either (1) one of the following tools for Horn
clauses: Z3 (µZ) [4, 13], HSF [11, 12], and Eldarica [15, 14], or (2) Moped [20, 29]
and Getafix [23, 24] which are model checkers for Boolean Programs based on
BDDs, or (3) NuSMV a model checker based on BDDs and SAT solvers [2, 3].
Vac uses the C bounded model checker CBMC [21, 22] for under-approximate
analysis, particularly effective to find errors. If CBMC finds an error, it returns a
counterexample showing how the error location can be reached in the program.
Otherwise, Vac reports Unknown.

Counterexample Module. Vac implements an involved built-in counterexam-
ple generationmodule that takes as input the counterexample of the pruned policy
returned by CBMC along with some information collected during the execution
of the pruning, and outputs a counterexample (attack) of the original policy.

3 Implementation and Availability

Implementation.Vac is implemented in C and has dependencies with ANTLR
(v3.2 for C), ROXML, and CCL libraries3.
Availability. The source code, a set of benchmarks and static Linux binaries
are available at: http://users.ecs.soton.ac.uk/gp4/VAC.
Usage. The shell command ./vac.sh <InputFile> runs Vac with the default
setting: (1) runs the abstract transformer and Interproc to prove correctness;

3 ANTLR, ROXML and CCL are respectively available at http://www.antlr.org/,
http://www.libroxml.net, and https://code.google.com/p/ccl/.

http://users.ecs.soton.ac.uk/gp4/VAC
http://www.antlr.org/
http://www.libroxml.net
https://code.google.com/p/ccl/


188 A.L. Ferrara et al.

Table 1. Vac’s results on realistic case studies

ARBAC Policy Pruning Reach
name #roles #rules #admin #users #roles #rules #admin #users Time Answer Time

1

Hospital1 13 37 5 1092 4 5 3 6 0.009s No 0.029s
Hospital2 13 37 5 1092 4 5 3 6 0.009s No 0.023s
Hospital3 13 37 5 1092 3 2 1 4 0.009s Yes 0.103s
Hospital4 13 37 5 1092 4 4 1 4 0.009s Yes 0.110s

2

University1 32 449 9 943 6 7 3 13 0.009s No 0.034s
University2 32 449 9 943 6 8 3 13 0.004s Yes 0.192s
University3 32 449 9 943 4 5 1 6 0.006s No 0.021s
University4 32 449 9 943 12 37 4 31 0.004s Yes 1.571s

3

Bank1 343 2225 1 2 3 2 1 2 0.007s Yes 0.112s
Bank2 683 4445 1 2 3 2 1 2 0.019s Yes 0.139s
Bank3 1023 6665 1 2 3 2 1 2 0.024s Yes 0.167s
Bank4 1363 8885 1 2 3 2 1 2 0.030s Yes 0.168s
Bank5 343 2225 1 2 3 2 1 2 0.044s Yes 0.138s
Bank6 683 4445 1 2 3 2 1 2 0.155s Yes 0.247s
Bank7 1023 6665 1 2 3 2 1 2 0.300s Yes 0.435s
Bank8 1363 8885 1 2 3 2 1 2 0.522s Yes 0.663s
Bank9 531 5126 1 2000 2 0 1 2 0.244s No 0.253s
Bank10 531 5126 1 2000 2 0 1 2 0.248s No 0.254s
Bank11 531 5126 1 2000 3 2 1 2 0.245s Yes 0.396s
Bank12 531 5126 1 2000 6 5 1 2 0.066s Yes 0.223s

(2) if a proof cannot be provided, Vac runs the precise transformer and CBMC
(with unwind set to 2) to find a counterexample; (3) if CBMC does not find an
error,Vac runs µZ for complete analysis.Vac has options to print the translated
programs and the simplified policies, and select the back-end for the analysis.

4 Experimental Results

We evaluate Vac, using the default setting, on several benchmarks from the
literature. All experiments have been performed on a Linux 64-bit machine with
Intel Core i7-3770 CPU and 16GB of RAM.

Table 1 shows the results on three sets of benchmarks based on realistic case
studies. The first two case studies are carried out by Stoller at al. [30] and
represent policies for a university and for an hospital, respectively. The third
case study, conducted by Jayaraman et al. [16], models a bank with several
branches4. While the first eight bank policies are from [16], we have built the last
four from [16] by slightly modifying their policies to add more users and to make
two of them correct. Table 1 reports the number of roles, rules, administrative
roles and users of both the original policy and that after pruning. It also reports
the tool’s answer, the time taken by the pruning, and the overall analysis time.

Table 1 shows that the pruning module significantly reduces the size of these
policies. Furthermore, Vac is extremely efficient in verifying these policies,
regardless of whether the target role is reachable or not. More precisely, all
benchmarks with a negative answer can be proved correct in less than a second.
Similarly, on benchmarks with a reachable target the analysis takes less than 2
seconds including the time to generate the counterexample.

4 The number of roles and rules depends on the number of branches considered. For
instance, 343 roles corresponds to 10 branches and 1363 to 40 branches.



Vac - Verifier of Administrative Role-Based Access Control Policies 189

Table 2. Vac’ s results on complex test suites

Size Policy
Vac

First Suite Second Suite Third Suite

#roles #rules
Pruning Verification Pruning Verification Pruning Verification

#roles #rules Time #roles #rules Time #roles #rules Time
4 10 3 1 0.080s 3 1 0.084s 2 1 0.085s
5 25 4 2 0.087s 4 2 0.096s 2 1 0.092s

20 100 3 1 0.099s 3 1 0.089s 3 2 0.087s
40 200 4 2 0.099s 4 2 0.096s 2 1 0.091s

200 1000 2 1 0.101s 2 1 0.088s 2 1 0.096s
500 2500 3 1 0.100s 3 1 0.104s 3 2 0.128s

4000 20000 2 1 0.239s 2 1 0.198s 4 3 0.252s
20000 80000 2 1 0.844s 2 1 0.579s 3 2 0.922s
30000 120000 2 1 1.288s 2 1 0.849s 2 1 1.285s
40000 200000 2 1 1.586s 2 1 1.100s 4 3 1.646s

Table 2 shows the results on three sets of complex test suites, synthetically
generated by Jayaraman et al. [16], with the aim of capturing the complexity of
real systems. Each suite consists of ten policies where the number of roles and
rules ranges respectively from 4 to 40k and 10 to 200k. The role-reachability
problem has a positive answer on all these benchmarks. Vac is very effective on
these policies as well. The analysis takes less than 2 seconds on all policies and
the pruning module reduces the policies to equivalent systems with a handful of
roles and rules.

5 Conclusions

We have presented Vac an automatic and efficient tool for verifying security
properties of administrative role-based access control policies. The main com-
ponents of Vac are a pruning module which is essential for scalability, and a
policy-to-program translation module that reduces the role-reachability prob-
lem to program verification problems. It supports several tools for the analysis,
such as CBMC, Eldarica, Getafix, Interproc, Moped, NuSMV, HSF, and Z3
(µZ). Furthermore, it can provide counterexamples.

Related Work. Among the state-of-the-art tools for the analysis of ARBAC-
URA systems, Vac is the only tool that simultaneously has the following fea-
tures: (1) complete analysis (2) counterexample generation, and (3) scalable
analysis on large policies. Mohawk [16] performs only under-approximate analy-
sis, though it now considers thresholds for completeness [17]; RBAC-PAT [10] is
unable to handle large policies. They also can only analyze policies with separate
administration where administrators cannot change their role-membership; this
is not realistic, but simplifies analysis as only a single user needs to be tracked.

asaspXL is the latest tool developed by Ranise et al. for the analysis of
ARBAC policies [26]. A previous version (asasp [1]) was not able to scale on
large policies. asaspXL is mainly designed to handle large policies and does so
by encoding the instances to MCMT [9] which is a model checker for infinite state
systems based on SMT solvers and backward reachability. In contrast, Vac does
not target any specific kind of instances, and handles large policies by carrying
out an effective pruning that is independent of the verification technique used



190 A.L. Ferrara et al.

for the analysis. Vac and asaspXL can potentially handle the same kind of
instances though they have different input formats.

All tools above do not generate counterexamples. Furthermore, Vac, on the
policies of Section 4, has either the same performances or outperforms the tools
mentioned above.Vac has also been used for the analysis of temporal RBAC [31].

Acknowledgements. Research was partially supported by ERC Advanced
Grant ERC-2010-AdG-267188-CRIPTO and NSF CCF #1018182.

References

[1] Alberti, F., Armando, A., Ranise, S.: ASASP: Automated Symbolic Analysis of
Security Policies. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 26–33. Springer, Heidelberg (2011)

[2] Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV: A New Symbolic Model Checker,
http://nusmv.fbk.eu

[3] Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Sym-
bolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 359–364. Springer, Heidelberg (2002)

[4] de Moura, L., Berdine, J., Bjorner, N.: Z3 High-performance Theorem Prover,
http://z3.codeplex.com

[5] Ferraiolo, D., Kuhn, R.: Role-Based Access Control. In: 15th NIST-NCSC Na-
tional Computer Security Conference, pp. 554–563. Springer (1992)

[6] Ferrara, A.L., Fuchsbauer, G., Warinschi, B.: Cryptographically Enforced RBAC.
In: CSF, pp. 115–129. IEEE (2013)

[7] Ferrara, A.L., Madhusudan, P., Parlato, G.: Security Analysis of Role-Based Ac-
cess Control through Program Verification. In: CSF, pp. 113–125 (2012)

[8] Ferrara, A.L., Madhusudan, P., Parlato, G.: Policy Analysis for Self-administrated
Role-Based Access Control. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013
(ETAPS 2013). LNCS, vol. 7795, pp. 432–447. Springer, Heidelberg (2013)

[9] Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

[10] Gofman, M.I., Luo, R., Solomon, A.C., Zhang, Y., Yang, P., Stoller, S.D.: RBAC-
PAT: A Policy Analysis Tool for Role Based Access Control. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 46–49. Springer, Heidel-
berg (2009)

[11] Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C.,
Rybalchenko, A.: HSF(C): A Software Verifier based on Horn Clauses,
http://www7.in.tum.de/tools/hsf

[12] Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.:
HSF(C): A Software Verifier Based on Horn Clauses. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012)

[13] Hoder, K., Bjørner, N., de Moura, L.: µZ– An Efficient Engine for Fixed Points
with Constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 457–462. Springer, Heidelberg (2011)

http://nusmv.fbk.eu
http://z3.codeplex.com
http://www7.in.tum.de/tools/hsf


Vac - Verifier of Administrative Role-Based Access Control Policies 191

[14] Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A Verifi-
cation Toolkit for Numerical Transition Systems. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg (2012)

[15] Hojjat, H., Rümmer, P., Konecny, F.: A Predicate Abstraction Engine,
http://lara.epfl.ch/w/eldarica

[16] Jayaraman, K., Ganesh, V., Tripunitara, M.V., Rinard, M.C., Chapin, S.J.: Au-
tomatic Error Finding in Access-Control Policies. In: CCS, pp. 163–174 (2011)

[17] Jayaraman, K., Tripunitara, M.V., Ganesh, V., Rinard, M.C., Chapin, S.J.: Mo-
hawk: Abstraction-Refinement and Bound-Estimation for Verifying Access Con-
trol Policies. ACM Trans. Inf. Syst. Secur. 15(4), 18 (2013)

[18] Jeannet, B., Lalire, G., Argoud, M.: The Interproc Analyzer,
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

[19] Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.: Towards Formal
Verification of Role-Based Access Control Policies. IEEE Transactions on Depend-
able and Secure Computing 5(4), 242–255 (2008)

[20] Kiefer, S., Schwoon, S., Suwimonteerabuth, D.: A Model Checker for Pushdown
Systems, http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped

[21] Kroening, D., Clarke, E.: CBMC - Bounded Model Checking for ANSI-C,
http://www.cprover.org/cbmc

[22] Kroening, D., Tautschnig, M.: CBMC – C Bounded Model Checker - (Competi-
tion Contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 389–391. Springer, Heidelberg (2014)

[23] La Torre, S., Madhusudan, P., Parlato, G.: Getafix: A Symbolic Model-checker
for Recursive Programs, http://www.cs.uiuc.edu/~madhu/getafix

[24] La Torre, S., Madhusudan, P., Parlato, G.: Analyzing Recursive Programs using
a Fixed-point Calculus. In: Hind, M., Diwan, A. (eds.) PLDI, pp. 211–222. ACM
(2009)

[25] Li, N., Tripunitara, M.V.: Security Analysis in Role-Based Access Control. ACM
Trans. Inf. Syst. Secur. 9(4), 391–420 (2006)

[26] Ranise, S., Truong, A., Armando, A.: Boosting Model Checking to Analyse Large
ARBAC Policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012.
LNCS, vol. 7783, pp. 273–288. Springer, Heidelberg (2013)

[27] Sandhu, R.S., Bhamidipati, V., Munawer, Q.: The ARBAC97 Model for Role-
Based Administration of Roles. ACM Trans. Inf. Syst. Secur. 2(1), 105–135 (1999)

[28] Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.: Policy analysis for Ad-
ministrative Role-Based Access Control. Theoretical Computer Science 412(44),
6208–6234 (2011)

[29] Schwoon, S.: Model-Checking Pushdown Systems. Ph.D. Thesis, Technische Uni-
versität München (June 2002)

[30] Stoller, S.D., Yang, P., Ramakrishnan, C.R., Gofman, M.I.: Efficient Policy Anal-
ysis for Administrative Role Based Access Control. In: CCS, pp. 445–455 (2007)

[31] Uzun, E., Atluri, V., Sural, S., Vaidya, J., Parlato, G., Ferrara, A.L., Madhusudan,
P.: Analyzing temporal role based access control models. In: Atluri, V., Vaidya,
J., Kern, A., Kantarcioglu, M. (eds.) SACMAT, pp. 177–186. ACM (2012)

http://lara.epfl.ch/w/eldarica
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped
http://www.cprover.org/cbmc
http://www.cs.uiuc.edu/~madhu/getafix

	Vac - Verifier of Administrative Role-Based 
Access Control Policies
	1 Introduction
	2 Software Architecture and Verification Approaches
	3 Implementation and Availability
	4 Experimental Results
	5 Conclusions
	References




