StreamMyRelevance!

Prediction of Result Relevance from Real-Time
Interactions and Its Application to Hotel Search

Maximilian Speicher!-2, Sebastian Nuck??,
Andreas Both?, and Martin Gaedke!

! Chemnitz University of Technology, 09111 Chemnitz, Germany
2 R&D, Unister GmbH, 04109 Leipzig, Germany
3 Leipzig University of Applied Sciences, 04277 Leipzig, Germany
maximilian.speicher@s2013.tu-chemnitz.de,
martin.gaedke@informatik.tu-chemnitz.de,
andreas.bothQunister.de, sebnuck@gmail.com

Abstract. The prime aspect of quality for search-driven web appli-
cations is to provide users with the best possible results for a given
query. Thus, it is necessary to predict the relevance of results a priori.
Current solutions mostly engage clicks on results for respective predic-
tions, but research has shown that it is highly beneficial to also con-
sider additional features of user interaction. Nowadays, such interactions
are produced in steadily growing amounts by internet users. Processing
these amounts calls for streaming-based approaches and incrementally
updateable relevance models. We present StreamMyRelevance!—a novel
streaming-based system for ensuring quality of ranking in search engines.
Our approach provides a complete pipeline from collecting interactions
in real-time to processing them incrementally on the server side. We con-
ducted a large-scale evaluation with real-world data from the hotel search
domain. Results show that our system yields predictions as good as those
of competing state-of-the-art systems, but by design of the underlying
framework at higher efficiency, robustness, and scalability.

Keywords: Streaming, Real-Time, Interaction Tracking, Learning to
Rank, Relevance Prediction.

1 Introduction

Nowadays, search engines are among the most important and most popular web
applications. They are essential for supporting users with finding specific pieces
of information on the web. Thus, their prime aspect of quality is to ensure that
relevant results are displayed where they receive the highest attention. In other
words, the ranking of results is a major quality aspect in the context of the
search application as a whole. This makes it necessary to estimate the relevance
of results a priori. Common methods for obtaining such estimates are generative
click models (e.g., [3,4,15]). Based on certain assumptions about user behavior,
these models predict the relevance of a certain result taking into account the

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 272-289, 2014.
© Springer International Publishing Switzerland 2014

StreamMyRelevance! 273

number of clicks it has received for a given query. However, click data are not
a perfect indicator concerning relevance since users might return to the search
engine results page (SERP) after having clicked a useless result. Additionally,
search engines more and more try to answer queries directly on the SERP, e.g.,
as Google do with their Knowledge Graph'. Thus, additional information that
complement click data should be taken into account for predicting relevance, e.g.,
in terms of dwell times on landing pages [9] or other client-side user behavior
(e.g., [9,13,18]). Previous research has shown the value of such page-level inter-
actions [11,13,20]. Also, generative [12] as well as discriminative [20] approaches
to relevance prediction exist that engage user behavior other than clicks only.

With a growing amount of users, it is possible for search engine providers to
collect enormous amounts of client-side data. This is particularly the case if we
consider interactions other than clicks. Along with the increasing quantities of
tracking data, a short time-to-market becomes more and more important. That
is, providers need to quickly analyze collected information and feed potential
findings back into their products to ensure user satisfaction. This calls for the
use of novel systems for data stream mining, such as Storm?, which are currently
gaining popularity in industry and research. These systems can help to cope with
the seemingly endless streams of data produced by today’s internet users. Yet,
none of the approaches for relevance prediction mentioned above leverages data
stream mining to process collected information.

Hotel Toulouse Hotel Toulouse

1. Hotel Toulouse

interactions relevance model

>22>»»| SMR >

3. ‘Hotel Toulo%e

Fig.1. The intention behind StreamMyRelevancel—from collecting a stream of user
interactions to reordering search results based on relevance models

We present StreamMyRelevance! (SMR), which is a novel streaming-based
system for ensuring ranking quality in search engines. Our system caters for
the whole process from tracking interactions to learning incremental relevance
models, i.e., models that predict the relevance of a search result (for a given
query) based on certain features of user interaction. The latter can be used to
directly feed predictions back into the ranking process of the search engine, e.g.,
as a weighted factor in a learning-to-rank function (cf. Fig. 1). SMR is based
on Storm and leverages tracking and data processing functionalities provided
by TellMyRelevance! (TMR)—a pipeline that has proven its effectiveness in
predicting search result relevance [20]. Yet, TMR is a batch-oriented approach
that does not provide means for incrementally learning relevance models on

! nttp://www.google.com/insidesearch/features/search/knowledge.html (2013-
09-06).
2 http://www.storm-project.net/ (2013-12-30).

http://www. google.com/insidesearch/features/search/knowledge.html
http://www.storm-project.net/

274 M. Speicher et al.

a streaming basis. Thus, SMR wraps the borrowed functionalities into a new
system that is able to handle real-time streams. Our system has three main
advantages over existing approaches, i.e., (1) considering interactions other than
clicks for predicting relevance, (2) collecting and processing these interactions
as a stream and (3) providing incremental relevance models that do not require
re-processing of previously processed data. Based on this, the main hypothesis
investigated in this paper is as follows: SMR is able to achieve the same relevance
prediction quality as TMR at better efficiency, robustness and scalability.

We have evaluated SMR in terms of its feasibility and quality of relevance
predictions. For this, large amounts of real-world data from two hotel booking
portals were available. A comparison to TMR has been performed, which due
to its batch-oriented design has look-ahead capabilities and thus more informa-
tion available [20]. Still, our results show that SMR’s prediction quality is not
significantly worse compared to TMR. Moreover, our system in parts compares
favorably with predictions of the Bayesian Browsing Model (BBM) [16], a state-
of-the-art generative click model successfully applied in industry. Furthermore,
reviews of efficiency, robustness and scalability show that SMR compares favor-
ably with the competing approaches in these respects.

In the following section, we describe important concepts our work is based
on, before giving an overview of related work. Section 3 explains the design and
architecture of SMR, followed by an evaluation of effectiveness, efficiency, robust-
ness and scalability of SMR and competing approaches in Section 4. Limitations
and potential future work are addressed in Section 5, before giving concluding
remarks in Section 6.

2 Background and Related Work

The following gives background information on the underlying concepts of Storm
[17], which are important for understanding the architecture of SMR.

The logic of a Storm application is represented as a graph consisting of spouts
and bolts that are connected by streams, i.e., unbounded sequences of data tu-
ples. This concept is called a topology. On the one hand, spouts act as sources of
streams by reading from external data sources (e.g., a DB) and emitting tuples into
the topology. On the other hand, bolts are the core processing units of a topology.
They receive tuples, process the contained data and emit results as a new stream.
Spouts and bolts can have multiple outgoing streams, which provides the possibil-
ity of separating tuples within bolts and emitting them using different streams.

The direct competitor to Storm is Yahoo!’s S43. It as well provides distributed
stream computing functionality, but its underlying concepts and configuration
are more complex?. As described in [22], benchmarks have shown that S4 is
almost 10 times slower than Storm.

This research is related to a variety of existing work in the fields of relevance
prediction and data stream mining. An overview will be given in the following.

3 http://incubator.apache.org/s4/ (2013-09-28).
* http://demeter.inf.ed.ac.uk/cross/docs/s4vStorm.pdf (2014-01-06).

http://incubator.apache.org/s4/
http://demeter.inf.ed.ac.uk/cross/docs/s4vStorm.pdf

StreamMyRelevance! 275

Concerning the relevance of search results, it is necessary to rely on human
relevance judgments—i.e., asking the user to explicitly rate the relevance of a
result—for the best possible predictions. However, since such data are usually
not available in large numbers, different solutions are required. Joachims [15]
proposes to use clickthrough data instead of human relevance judgments. Based
on the cascade hypothesis [4,16], i.e., the user examines results top-down and
neglects results below the first click, it is possible to infer relative relevances.
That is, the clicked result is more relevant than the non-clicked results at higher
positions. Using such relative relevances, Joachims engages clickthrough data
as training data for learning retrieval functions with a support vector machine
approach [15]. In contrast to the above, models like the Dependent Click Model
[8] assume that more than one result can receive clicks. That is, results below a
clicked position might be examined and thus also clicked if they are relevant.

The Dynamic Bayesian Network Click Model (DBN) described in [3] gener-
alizes the Cascade Model [4] by aiming at relevance predictions that are not
influenced by position bias. To achieve this, the authors (besides the perceived
relevance of a search result) also consider users’ satisfaction with the website
linked by the clicked result.

Generally, click models are based on the examination hypothesis, which states
that only relevant search results that have been examined are clicked [16]. Yet,
not all of these models follow the cascade hypothesis. All of the above described
are generative click models that try to provide an alternative to explicit hu-
man judgments by predicting the relevance of search results based on click logs.
The main differences to SMR are that we aim at predicting relevance using a
discriminative approach also taking into account interactions other than clicks.
Moreover, the above click models are not designed for efficient processing of
massive data streams or incremental updates.

The Bayesian Browsing Model (BBM) [16] is based on the User Browsing Model
(UBM) [7], which assumes that the probability of examination depends on the po-
sition of the last click and the distance to the current result [16]. Contrary to UBM,
BBM aims at scalability to petabyte-scale data and incremental updates. The au-
thors compute “relevance posterior[s] in closed form after a single pass over the
log data” [16]. This enables incremental learning of the click model while making
iterations unnecessary. Still, contrary to SMR, BBM is again a generative model
that does not leverage the advantages of additional interaction data.

Concerning user interactions other than clicks, in [11], Huang has found that
these are a valuable source of information for relevance prediction. Following,
Huang et al. [13] investigate the correlations between human relevance judgments
and mouse features such as hover time and unclicked hovers, among others. They
find positive correlationsand conclude that these can be used for inferring search
result relevance. Also, part of our system is based on a scalable approach for
collecting client-side interactions described by the authors [13].

In [9], Guo and Agichtein present their Post-Click Behavior Model. They in-
corporate interactions like cursor or scrolling speed on a landing page into deter-
mining its relevance, i.e., interactions that happen post-click. This is also partly

276 M. Speicher et al.

related to DBN [3], where the relevance of the landing page is modeled separately
from the perceived relevance of the result. While this approach is promising for
inferring the actual usefulness of a landing page, it would be difficult to realize
since search engines would need access to landing page interactions through, e.g.,
a browser plug-in or tracking scripts.

Making use of scrolling and hover interactions, Huang et al. [12] extend the
Dynamic Bayesian Network Click Model described earlier to leverage information
beyond click logs. Their results show that this improves the performance in terms
of predicting future clicks compared to the baseline model. While this generative
approach involves interactions other than clicks, in contrast to SMR, it does not
specifically aim at incremental learning or efficient processing of massive data
streams.

TMR is a system described by Speicher et al. [20]. Parts of SMR are based on
this work, particularly in terms of client-side interaction tracking, preprocessing
of raw data and computation of interaction features. Like SMR, TMR is a dis-
criminative approach to relevance prediction, but in contrast is a batch-oriented
system. In particular, its relevance models are not trained incrementally, i.e., all
data have to be re-processed before obtaining an updated model.

3 SMR: Streaming Interaction Data for Learning
Relevance Models

The following Section describes SMR, which is organized as a streaming-based
process. Its aim is to enable processing of big data streams while leveraging the
advantages of user interaction data for the prediction of search result relevance.
This supports more optimal ranking of results, which is a major quality aspect
of search-driven web applications.

The system comprises four main components as illustrated in Fig. 2: The
Client-Side Interaction Tracking component in terms of a jQuery plug-in;
The Preprocessor for reading and preprocessing streams of tracking data and

| Interaction collected Interaction
Tracking §>§>§>§> Preprocessor §>§>§>§>§> Features
plug-in search sessions Processor
relevance interact.
. judgments M features
search engine
results page . .
pag Classification
storage Processor
@j—
Tttt | Tttt |
SRR e 1 learning to rank :4- ----------- 4 relevance model :
45 . e

Fig. 2. The main components and process flow of SMR (Streams are visualized by
sequences of chevrons; Storm topologies are annotated using a “T”)

StreamMyRelevance! 277

relevance judgments; The Interaction Features Processor for calculating in-
teraction features from tracking data; The Classification Processor for incre-
mentally training a relevance model using the previously computed features and
collected relevance judgments.

Our Storm-based system has been specifically designed with an incremental
approach in mind. The four steps above can be regarded as a sequence of in-
dependent processes. That is, the results of each step as well as the resulting
relevance models are persisted (temporarily). As a result, in case of a crash
within the system, SMR can resume its work at the step prior to the incident
without starting over from the very beginning.

3.1 Client-Side Interaction Tracking

For client-side interaction tracking, SMR builds upon a “minimally invasive
jQuery plug-in” [20] that is provided by TMR. This plug-in tracks mouseenter,
mousepause, mousestart, mouseleave and click events that happen within the
bounds of a search result on a SERP [20]. Each mouse event is extended with the
search query, a user ID and the ID of the corresponding result [20]. The result-
ing data packets are then sent to a specified key-value store at suitable intervals
(Fig. 2) [20]. For integration, the developer has to specify jQuery selectors for (a)
the HTML container element holding all results, (b) a single search result, (c)
an element within a result holding the result ID and (d) links to landing pages.

The second function provided by the plug-in is intended for recording human
relevance judgments, often also referred to as conversions, which are crucial for
learning relevance models. It is realized as a JavaScript method that can be
called from anywhere, e.g., upon clicking an upvote button next to a search
result [20]. This method has to be provided with the value of the judgment (e.g.,
—1 for a downvote and +1 for an upvote) as well as the corresponding search
query, session ID and user ID by the developer.

3.2 Preprocessor

After having been recorded using the above jQuery plug-in, all interaction data
is received by SMR as a stream of individual events for preprocessing (Fig. 2).
Additionally, information about a corresponding search session® is transferred
when a user enters a SERP. These contain an anonymous user ID, the current
search query and the ordered list of all results, among others [20]. Every event
received by SMR is subsequently associated with its respective search session.
This concept is referred to as a collected search session.

It is logically not possible to process events from search sessions that have
not ended yet. Thus, all events are passed on in the SMR pipeline on a per—
search session basis. Since it is unreliable to fire client-side unload events on

5 For our purposes, a search session starts when entering and ends when leaving a
SERP. For example, a reload triggers a new session, even for the same user and

query.

278 M. Speicher et al.

a SERP, this is realized using a configurable time-out on the server side. For
example, if no events related to a given session have been received for 2 minutes, it
is considered finished and the collected search session is passed on for interaction
feature computation (Fig. 2).

Moreover, the preprocessing component receives human relevance judgments
that are required for learning actual models. These judgments are checked for
validity, i.e., whether a corresponding search session exists during which the
judgment happened. The latter is not the case if a judgment is triggered by
a user who did not perform a search beforehand, e.g., because they received a
link to a result from a friend. Relevance judgments are persisted at this point
for later use by the Classification Processor (Fig. 2). Finally, for later filtering
purposes, each valid judgment is associated with the list of queries triggered by
the corresponding user ID.

3.3 Interaction Features Processor

The Interaction Features Processor is realized as a separate topology within
our Storm-based system (Fig. 2). It receives collected search sessions from the
preprocessor that are emitted as a stream by a dedicated spout. To ensure that all
interaction events associated with a search session are ordered logically, invalid
sequences of events are filtered out. This prevents the computation of faulty
interaction feature values. An invalid sequence would be, e.g., if a mouseleave
happens before a mouseenter event on the same search result. Typical causes
for such a case can be faulty time stamps or latency while transferring data from
client to server. Since at the moment we specifically focus on mouse interactions,
search sessions that have been recorded on touch devices are eliminated as well.

Subsequently, the values of the actual interaction features are calculated per
query-result pair. For example, the value of the arrival time is determined by
subtracting the time stamp of the first mouseenter event on a result from the
time stamp of the page load (which is available as meta information about the
associated search session). The features we are considering are:

(i) ARRIVAL TIME, (ii) CLICKS (not leading to a landing page), (iii) CLICK-
THROUGHS (leading to a landing page), (iv) CURSOR MOVEMENT TIME, (v) CUR-
SOR SPEED (cursor trail divided by cursor movement time), (vi) CURSOR TRAIL,
(vil) HOVERS, (viii) HOVER TIME, (ix) MAXIMUM HOVER TIME, (x) POSITION and
(xi) UNCLICKED HOVERS (hovers during which no clickthrough happened).

These are in accordance with [20]. Features are moreover averaged over the
number of hovers, if possible. This applies to clicks, clickthroughs, cursor move-
ment time, cursor trail, hover time and unclicked hovers [20]. Finally, the com-
puted values are persisted, which is important for later normalization purposes
and actual use of SMR’s relevance models (see below). In case feature values
are already present for a query-result pair, they are automatically updated by
adding the new values and taking the average over all values.

Within this topology, emitting a stream of collected search sessions is realized
using a spout. Contrary, checking event sequence validity, the actual computation

StreamMyRelevance! 279

of feature values and updating values of already existing query-result pairs are
realized through bolts.

The raw search sessions and associated events are not necessarily lost after
they have been used for computing interaction features. Rather, SMR provides
the option to persist all processed data. In this way, it is possible to batch-
wise train a new model from parts of old data (e.g., after removing outdated
information) before continuing to incrementally update this new model using
real-time interactions and judgments.

3.4 Classification Processor

The Classification Processor is as well realized as a separate topology within our
system (Fig. 2). It receives the previously calculated interaction features (one
set per query-result pair) in terms of a stream that is emitted into the Storm
cluster by a dedicated spout. Using the lists of queries associated to judgments
during preprocessing, we filter out sets of interaction feature values that are not
associated with a user who triggered at least one relevance judgment. This helps
to ensure a good quality of our training data.

Moreover, relevance models provided by SMR highly depend on the layout
of a SERP [20]. Thus, normalization of feature values is necessary to guaran-
tee comparability between models related to different SERP layouts [20]. This
happens in terms of dividing feature values by the maximum value of the re-
spective feature across all results for the given query. Since interaction feature
values arrive as a stream, maximum values change over time and have to be con-
stantly updated. Hence, they become more precise the longer the system runs.
This is a major difference compared to TMR, which—due to its batch-oriented
nature—has look-ahead capabilities and knows exact maximum values from the
start.

In the next step, we derive the normalized relevance rely for a query-result
pair using the human relevance judgments that have been persisted in the pre-
processing step. For this, all relevance judgments judg corresponding to the
query-result pair (¢,r) are summed up before dividing them by the sum of all
judgments for the given query [20]:

> Jjudg(u,q,r)
uelU

1 =
relx (g,) > > judg(u, g, s) ’
s€RuecU

with U the set of users who triggered a judgment and R the set of possible results
for the query ¢. Normalizing judgments is important since otherwise, a result X
that was among the results of 20 queries and received 10 positive judgments
(rely=0.5) would be considered more relevant than a result Y that was among
the results of only 5 queries and received 5 positive judgments (rely=1).
Having available interaction feature values and normalized relevance of a
query-result pair, it is possible to use them as a training instance for SMR’s
relevance model. For this, the query—result pair is transformed into an instance

280 M. Speicher et al.

that can be interpreted by the WEKA API [10]. The interaction features are la-
beled as attributes while “relevance” is labeled as the target attribute on which
we train the model. At the moment, SMR has two built-in classifiers available
that are provided by the WEKA APT and trained in parallel. That is, a Hoeffding
Tree, which is specifically aimed at incremental learning and is suitable for very
large datasets [6], and an updateable version of Naive Bayes®, which also works
for smaller datasets. The current states of the relevance models are serialized and
persisted after each incremental update. These models are ready-to-use and can
be instantly engaged for obtaining relevance predictions and feeding them back
into a SERP for results optimization (Fig. 2). Moreover, all training instances
are persisted to a file to enable manual inspections using, e.g., the WEKA GUI.

Within this topology, emitting a stream of interaction feature values is realized
using a spout. Contrary, filtering and normalization tasks as well as incrementally
training the relevance models are realized as bolts.

The incrementally trained relevance models are serialized and persisted after
every update. This makes it possible to manually review the quality of the current
model and interrupt or stop training if the model is reasonably stable, which
helps to prevent overfitting. Moreover, SMR does not require to directly feed
predictions by the incremental relevance model back into the ranking process
of the underlying search engine. Rather, as just described, search engine owners
are given the option to review the model before usage to ensure ranking quality.

3.5 Making Use of Relevance Models

SMR only caters for learning and providing relevance models. This means that
the actual usage of a model is up to the search engine owner. A relevance model
RM takes a vector of interaction feature values I for a given query-result pair
(¢,r) and returns a corresponding relevance prediction ;e\l, ie, RM(q,r,I) =
rel(q,r).

This can, e.g., be integrated into a scheduled process of updating search result
ranking according to a learning-to-rank function that contains rel as a param-
eter (Fig. 2). The interaction feature values used for prediction could be those
recorded by SMR and persisted by the Interaction Features Processor.

4 Evaluation

To show SMR’s capability of coping with realistic workloads, we have performed
a large-scale log analysis of real-world user interactions. The anonymous data
used were collected on two large hotel booking portals. We used the number of
conversions (i.e., when a hotel has been actually booked by users) as relevance
judgments for training our models. This stands in contrast to commonly used
click models, where clicks are the prime indicators of relevance. First, we com-
pare SMR to its analogous batch-wise approach TMR (cf. [20]) in terms of the

5 http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/
NaiveBayesUpdateable.html (2013-10-07).

http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html

StreamMyRelevance! 281

prediction quality of the two systems. Second, we provide BBM (as a state-of-the
art generative click model aiming at stream processing; cf. [16]) with the same
set of raw interaction logs and compare its quality of relevance prediction against
that of SMR. Third, we check SMR against a version of itself that considers click-
throughs only (SMRejick) as well as an analogous version of TMR, i.e., TMRcjick-
Results indicate that SMR is able to provide reasonably good relevance predic-
tions that are not significantly different from those of TMR and might compare
favorably to those of BBM—although the difference is not significant. Moreover,
our system is superior to corresponding discriminative approaches that do not
consider interactions other than clickthroughs. Subsequently, we have a look at
the efficiency, robustness and scalability of the evaluated approaches. Results
show that SMR can easily cope with realistic workloads in a manner that is
robust to external influences. This is especially important in real-world settings
with big data streams.
For detailed figures and descriptive statistics, see http://vsr.informatik.

tu-chemnitz.de/demo/SMR. Also, we provide training data and serialized mod-
els for reproducing this evaluation using WEKA (cf. [10]).

4.1 Effectiveness

Method. Approximately 32 GB of raw tracking data were collected by SMR’s
interaction tracking facilities in May 2013 on two large hotel booking portals. Of
these, ~10 GB of interaction logs were chosen for evaluation, which correspond
to ~3.8 million search sessions over a period of 10 days. Based on these, we com-
puted interaction features for a total of 86,915 query—result pairs. Because the
collected data contained critical information about the cooperating company’s
business model, it was a requirement that all data was saved to a key-value store
controlled by the company. In particular, we are not allowed to publish the con-
crete conversion—-to—search session (CTS) ratio. Yet, it can be stated that this
ratio is very low, i.e., #conversions < #search sessions.

We divided the chosen raw interaction data into 10 distinct datasets DSO-
DS9 (~0.7-1.5 GB each) that were intended for training relevance models and
corresponded to one day each. Since SMR cannot—due to its streaming-based
nature—use fixed maximum values for interaction feature normalization (cf. Sec-
tion 3.4), it produces different feature values for the same tracking data compared
to TMR. Thus, processing the above raw datasets with both systems yields a to-
tal of 20 datasets containing interaction features and relevances (i.e., normalized
conversions) of the extracted query-result pairs: DS%pDS%yr from TMR
and DS%y - DS%yr from SMR. For this, we considered only search sessions
that were produced by users who triggered at least one conversion (in terms of
booking a hotel). Conversions are treated as relevance judgments in analogy to
[20], i.e., a greater number of conversions implies higher relevance and vice versa.
For evaluating SMR, we simulated a stream of search sessions based on the logs
containing raw interaction data.

In analogy to [20], we observed a very low ratio of booked hotels to search
sessions. In addition with a high query diversity this leads to more than 99% of

http://vsr.informatik.tu-chemnitz.de/demo/SMR
http://vsr.informatik.tu-chemnitz.de/demo/SMR

282 M. Speicher et al.

the query-result pairs having a relevance of either 0.0 or 1.0. Therefore, in this
evaluation, we treat relevance prediction as a binary classification problem with
two classes: “bad” (relevance < 0.5) and “good” (relevance > 0.5). With more
than 90% of the query-result pairs having a bad relevance and less than 10%
having a good relevance, these classes are rather unbalanced. Thus, we use the
Matthews Correlation Coefficient (MCC) for evaluations of model quality, which
is suitable for cases with unbalanced classes [1].

Relevance models as provided by SMR and TMR are highly sensitive to lay-
out specifics of the corresponding SERPs [20]. Yet, since the two hotel booking
portals feature the exact same layout template, it is valid to use combined data
from both portals for training the same model(s).

The Storm cluster used for evaluation was based on Amazon EC27. It com-
prised four computing instances. An additional machine was used for logging
purposes and hosting the database used. All computers in the Storm cluster
were instances of type m1.large, featuring two CPUs and 7.5 GB RAM?.

0.4
0.4

0.3

%
i

0.2
0.2

Matthews correlation coefficient
Matthews correlation coefficient

0.1
1
%]
5
0.1

—— SMR
—=— TMR —8— SMRclick
BBM TMRclick
< =
S =
T T T T T T T T T 1 T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Dataset Dataset

Fig. 3. MCC values for DS0-DS9 (threshold = 0.5)

SMR vs. TMR. Based on the datasets described above, we trained a total of 20
Naive Bayes classifiers (10 per system), as provided by TMR and SMR through
the WEKA API. Thereby, our system used the updateable version of the classi-
fier for incremental learning. The Naive Bayes classifier was chosen because the
amount of data available for evaluation was too small to train reasonably good
Hoeffding Tree classifiers [6]. All classifiers learned have been evaluated using
10-fold cross wvalidation, from which we obtained corresponding MCC values. As
can be seen in Fig. 3, the difference between SMR and TMR is not significant
across the 10 datasets. This result has been validated using a Wilcoxon rank sum
test, with p>0.05 (a=0.05, W=T75, 95.67% conf. int. = [-0.047, 0.004]). It implies
that statistically, SMR yields the same prediction quality as TMR, even though
it has less information available; particularly in terms of feature normalization
and missing look-ahead capabilities. While Fig. 3 shows only MCC values at a

" http://aws.amazon.com/ec2 (2013-09-30).
8 http://aws.amazon.com/en/ec2/instance-types/#instance-details
(2013-10-05).

http://aws.amazon.com/ec2
http://aws.amazon.com/en/ec2/instance-types/#instance-details

StreamMyRelevance! 283

threshold of 0.5, our result is underpinned by the exemplary receiver operating
characteristic (ROC) curves depicted in Fig. 4, where SMR does not dominate
TMR or vice versa. This is similar for the remaining nine datasets.

True Positive Rate
True Positive Rate

/ — SMR

— SMR

N |
°© = + TMR ° i = * SMRclick
BBM TMRclick

e e

=] =]
T T T T T 1 T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate False Positive Rate

Fig. 4. ROC values for DS7

SMR vs. BBM. Additionally, we have compared SMR’s prediction quality
to that of a state-of-the-art generative click model designed for very large
amounts of data and incremental learning. For this, we have used an existing
re-implementation of BBM—as described in [16]—and provided it with the exact
same raw interaction logs. Fig. 3 shows that BBM yields slightly better predic-
tions for four out of ten datasets (DS0-DS2, DS9) at a threshold of 0.5 while
SMR has a better prediction quality for the remaining six datasets. For this,
predictions of BBM have been compared to the normalized relevances computed
by SMR based on the available conversions. The difference between the two
approaches is not significant according to a Wilcoxon rank sum test (a«=0.05,
W=64.5, p>0.05, 95.67% conf. int. = [-0.177, 0.021]). Still, our result indicates
that SMR has the potential to provide relevance predictions that compare fa-
vorably to BBM. Particularly, Fig. 4 suggests that predictions of BBM can be
partly dominated by SMR’s predictions for certain datasets. We expect SMR’s
prediction quality to increase with amounts of data larger than used in this eval-
uation. Thus, we hypothesize that our system can predict relevance at least as
good as BBM, whose predictions are being successfully used in industry.

SMR vs. SMRjjck VS- TMR[jck- To investigate the influence of the addi-
tional user interactions, we have performed a comparison of SMR. to versions of
itself and TMR that consider clickthroughs only, named SMR¢jick and TMRejick-
Results show that SMR outperforms the click-only approaches across all 10
datasets (Fig. 3) based on 10-fold cross-validation. Moreover, the MCC differ-
ences between SMR and SMRjick/ TMRelick are significant, as has been shown
by two Wilcoxon rank sum tests (SMReick: @=0.05, W=84.5, p<0.05, 95.67%
conf. int. = [-0.075, -0.020]; TMRejick: @=0.05, W=90, p<0.01, 95.67% conf. int.
= [-0.101, -0.044]). Our results are further supported by the ROC curves shown
in Fig. 4, where SMR (area under ROC = 0.861) performs better than both
SMRciick (area under ROC = 0.834) and TMRj;cx (area under ROC = 0.759).

284 M. Speicher et al.

These findings underpin that adding interaction data other than clicks yields con-

siderable improvements for discriminative approaches, as has also been outlined

in [11,13]. This is true even if clickthroughs show a correlation with relevance

that is notably higher than those of the additional attributes (e.g., r=0.34 for
2

DSryr)-

4.2 Efficiency, Scalability and Robustness

Efficiency and Scalability. SMR is a feasible approach for processing
web-scale interaction data. In contrast, TMR uses a batch-wise approach and
non-incremental classifiers [20]. This means that all training data (in terms of
query—result pairs, i.e., interaction features and relevances) already put into a
model have to be re-processed for an update, which yields a time-complexity of
O(q) + O(s) with s = #search sessions in new log, ¢ = #previously processed
query-result pairs. Assume we receive one log with raw interaction data per
day and want a daily model update. Then the amount of data that needs to
be re-processed grows linearly. At some point, processing these data would take
longer than 24 hours unless we add more/faster hardware to the system, which is,
however, not a feasible approach in the long-term. Particularly, re-processing pre-
viously processed query—result pairs involves numerous slow database requests.
To give just one concrete example from our evaluation, TMR needs ~5 hours for
processing a single 1.5 GB log on a dual-core machine with a 2.3 GHz Intel Core
i5 CPU and 4 GB RAM. Since this corresponds to one day, processing the logs
for two days would already take ~10 hours etc. This means that after five days,
we exceed a processing time of 24 hours, which makes it impossible to provide a
daily model update unless we use a better machine than the given one.

In contrast, SMR does not need to re-process logs from previous days since
data is processed on a per—search session basis and models are learned incre-
mentally. Thus, a model update considers only one search session at a time and
the time-complexity of the update depends on the complexity of the classifier
used. For example, “constant time per example [i.e., a query—result pair in our
case]” [6] if using a Hoeffding Tree. SMR needs ~2 hours for processing all search
sessions in a 1.5 GB log using the cluster described in Section 4.1. For this, the
search sessions have been put into the system at the highest possible frequency.
The log used corresponds to one day of real-world traffic from two hotel booking
portals. This means that—using simple interpolation—SMR would be able to
cope with approximately 12 times the load based on the relatively simple cluster
set-up used.

Finally, BBM has been specifically designed for incremental updates and web-
scalability. As described in [16], 0.25 PB of data were processed using the gener-
ative click model. The authors state that it was possible to compute relevances
for 1.15 billion query-result pairs in three hours on a MapReduce [5] cluster.
BBM’s time-complexity for updating a relevance model is O(s).

Due to the differences in system architecture—TMR runs on a single node
while the other two approaches require a cluster—the above is not an absolute,
hardware-independent comparison of performance. Rather, it describes relative

StreamMyRelevance! 285

performances between the three systems. An overall, relative comparison of effi-
ciency and scalability of the compared approaches is shown in Table 1.

Robustness. Being based on Storm, SMR is a highly robust system by design.
In particular, it features guaranteed message passing” and high fault-tolerance!®
if one or more nodes die due to external reasons—which happened numerous
times during our evaluation. In such a case, SMR continued processing the cur-
rent interaction data from the step prior to the incident.

In [16], Liu et al. do not explicitly address the robustness of their approach.
Rather, BBM has been designed for use as a MapReduce job on a Hadoop clus-
ter. That is, differences in robustness between SMR and BBM originate from
corresponding differences between Storm and Hadoop. Particularly, Hadoop has
disadvantages when it comes to guaranteed message processing or when super-
vising/master nodes are killed.

Finally, TMR is the least robust of the compared approaches. In case the
processing of a batch of data is stopped due to external reasons (e.g., a mem-
ory overflow), all data need to be re-processed. In particular, this means that
already computed values of interaction features are useless since contributions
of already processed data can not be subtracted out before starting over an it-
eration. Therefore, careful evaluation and set-up of the required hardware are
necessary before using TMR to minimize the risk of costly and time-consuming
€rTOorS.

4.3 Discussion and Summary

In this evaluation, we have shown that SMR does not perform significantly less
effective than TMR, even though it relies on lower-quality information for train-
ing its relevance models. Moreover, SMR is more efficient, robust and scalable
compared to its batch-wise predecessor. The difference of SMR’s predictions to
those of the generative state-of-the-art click model BBM were not significant
as well. Yet, our results indicate that our discriminative approach can be ad-
vantageous over BBM for certain datasets and that it is more robust at similar
efficiency and scalability. Finally, we have underpinned the value of interaction
data other than clicks for relevance prediction, with clickthrough-only versions
SMR c1ick and TMR ek performing significantly worse than SMR. However, there
are some points remaining for discussion.

Discussion. Why does SMR show the tendency to perform better than TMR,
although its training data are of lower quality? As described in Section 3.4, the
maximum values for feature normalization change during the processing of a
dataset due to SMR’s streaming-based nature (i.e., no look-ahead is possible).
This means that SMR has less information available and as a result, the training

° https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-
processing (2013-12-30).
1% https://github.com/nathanmarz/storm/wiki/Fault-tolerance (2013-12-30).

https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
https://github.com/nathanmarz/storm/wiki/Fault-tolerance

286 M. Speicher et al.

data has lower quality. However, the different feature values for query-result pairs
that appear early in a dataset can—purely by chance—lead to better predictions
of SMR. This is especially the case because in this evaluation we were working
with relatively small and closed datasets, as compared to a real-world setting.
Hence, we strongly assume that in such a setting, the already non-significant
difference between SMR and TMR would become even smaller.

Why does BBM make better predictions than SMR for DS2 but predicts worse
for DS7% SMR computes almost the same amount of query-result pairs for the
two datasets, with nearly identical means and distributions of the individual in-
teraction features. In contrast, BBM has approximately 12% less search sessions
available in DS7 compared to DS2, which is due to the fact that search sessions
are treated differently by BBM. Our system treats every page load event on a
SERP as the beginning of a new search session. That is, if a user clicks a result
and then returns to the SERP for clicking another result, SMR interprets this as
two separate sessions. However, BBM handles this as a single search session with
two clickthrough events. Besides containing more of these “combined” search ses-
sions, DS7 also features ~12% less clickthrough events. All in all, this results
in BBM having less data available for training its relevance model, which is an
explanation for the lower-quality prediction compared to DS2. The same holds
for other datasets showing similar differences, DS2 and DS7 are only used for
representative purposes here.

Why are the MCC values relatively low (< 0.5) in general? The data collected
for evaluation featured a very low CTS ratio, i.e., the amount of interaction data
exceeded the available relevance judgments by far. To give just one example, the
CTS ratios of both DS0 and DS1 lie under 1%, which is similar for the remaining
datasets. This and the fact that the datasets used for evaluation were relatively
small (compared to a realistic long-term scenario) leads to a rather low data
quality. Yet, in an evaluation with larger amounts of data, we would expect
increasing MCC values. This is, e.g., indicated in [20], where the authors work
with datasets that are notably larger than 1.5 GB. Also, Huang et al. state that
“adding more data can result in an order of magnitude of greater improvement in
the system than making incremental improvements to the processing algorithms”
[12].

How does SMR deal with click spam? Click spam is a major problem in systems
where clicks are the main indicator for relevance [19]. However, in the specific
setting we are focusing on in this paper, a high number of conversions indicates
high relevance. Since conversions imply a confirmed payment, we do not have
to deal with “traditional” click spam as described in [19]. Yet, in settings where
no conversions are available, our discriminative approach has to rely on other
indicators of relevance, such as clicks on social media buttons, for training its
models. In such cases, additional measures have to be taken that prevent fraudu-
lent behavior aiming at manipulating relevance models. Potential measures could
be based on, e.g., filtering pre-defined behavior profiles, blacklists, personalized
search [19] or the ranking framework described by [2].

StreamMyRelevance! 287

Table 1. Overall relative comparison of the considered approaches

effectiveness efficiency robustness scalability

SMR 0 ++ ++ ++
BBM - o + ++
TMR (baseline) 0 0 0 0
SMRCliCk —— ++ ++ ++
TMR Ji o) - 0 0 0

Summary. Table 1 shows a comparison of all approaches considered in the eval-
uation. Since the systems—due to differences in the underlying architectures—
are difficult to compare in an absolute, hardware-independent manner, we give a
comparison of relative performances. Using TMR as the baseline, “0” indicates
similar performance, “+”/“—" indicate a tendency and “++”/“—=" indicate a
major or significant difference.

5 Limitations and Future Work

The following section discusses limitations of SMR and provides an overview of
potential future work.

As described, in this paper SMR specifically aims at relevance prediction in
the context of travel search. One specific feature of this setting is the fact that we
can use hotel booking conversions as indicators of relevance. However, in a more
general setting, other implicit or explicit relevance judgments are necessary. For
example, one could obtain such judgments by providing optional vote up/down
buttons to visitors or tracking clicks on Facebook “Like” buttons of a search
result. Transferring SMR into such a more general context is our current work-
in-progress.

Concerning the evaluation of our system, we had to rely on relatively small
datasets compared to the real-world settings the system is intended for in the
long-term. As part of our future work, we intend to evaluate SMR with larger
datasets that simulate a real-world setting of a timespan considerably longer
than 10 days. This will also give us the chance to investigate the performance
of the Hoeffding Tree classifier, which becomes feasible only for very massive
amounts of data [6].

Currently, SMR is only able to track client-side interactions on desktop PCs,
i.e., mouse input. However, since the mobile market is steadily growing, an in-
creasing number of users access search engines using their (small-screen) touch
devices. This demands for also making use of touch interactions for predicting
the relevance of results. Leveraging these valuable information is especially im-
portant for search engine owners and intended in future versions of SMR.

Finally, interaction features are often coupled with temporal features or their
values change over time. This has to be addressed in the context of concept drift
[21]. SMR is generally capable of handling changing data streams, as Tsymbal
states that “[ijncremental learning is more suited for the task of handling con-
cept drift” [21]. However, the Naive Bayes classifier used in the context of this

288 M. Speicher et al.

paper would have to be replaced by an adequate concept drift-ready learner. A
potential candidate is the CVFDT learner, which is based on Hoeffding trees
and dismisses a subtree based on old data whenever a subtree based on recent
data becomes more accurate [14].

6 Conclusions

This paper presented SMR, which is a novel approach to providing incremental
models for predicting the relevance of web search results from real-time user
interaction data. Our approach helps to ensure one of the prime aspects of search
engine quality, i.e., providing users with the most relevant results for their queries.
In contrast to numerous existing approaches, SMR does not require re-processing
of already processed data for obtaining an up-to-date relevance model. Moreover,
our system involves interaction features other than clicks and was specifically
designed for coping with large amounts of data in real-time. This allows for
feeding relevance predictions back into SERPs with relatively low latency.

For evaluating SMR, we have simulated a real-world setting with large amounts
of interaction data from two large hotel booking portals. Comparison of our sys-
tem to an analogous batch-wise approach showed that SMR is able to predict rel-
evances that do not differ significantly, although it has less information available
for training. Furthermore, we have compared the discriminative SMR, approach
to BBM—a generative state-of-the-art click model for incrementally processing
big data streams that is successfully applied in industry. Results show that pre-
diction quality does not differ significantly between the two systems. Still, they
indicate that predictions by SMR might compare favorably to those of BBM,
as it outperforms the click model for the majority of datasets. Additionally, we
have considered a click-only version of SMR, that was compared to the complete
system. From the significantly better predictions of the latter, we conclude that
interactions other than clicks yield valuable information for relevance prediction
and should not be neglected.

As future work, we plan to adjust SMR to more general settings besides
travel search. Moreover, it is planned to further optimize the system regarding
performance and perform an evaluation with even larger amounts of real-world
interaction data.

Acknowledgments. We thank Christiane Lemke and Liliya
Avdiyenko for supporting us with their implementation of
BBM. This work has been supported by the ESF and the
Free State of Saxony.

References

1. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics
16(5) (2000)

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

StreamMyRelevance! 289

. Bian, J., Liu, Y., Agichtein, E., Zha, H.: A Few Bad Votes Too Many? Towards

Robust Ranking in Social Media. In: Proc. AIRWeb (2008)

. Chapelle, O., Zhang, Y.: A Dynamic Bayesian Network Click Model for Web Search

Ranking. In: Proc. WWW (2009)

. Craswell, N., Zoeter, O., Tylor, M., Ramsey, B.: An Experimental Comparison of

Click Position-Bias Models. In: Proc. WSDM (2008)

. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.

CACM 51(1) (2008)

. Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proc. KDD (2000)
. Dupret, G.E., Piwowarski, B.: A User Browsing Model to Predict Search Engine

Click Data from Past Observations. In: Proc. SIGIR (2008)

. Guo, F., Liu, C., Wang, Y.M.: Efficient Multiple-Click Models in Web Search. In:

Proc. WSDM (2009)

. Guo, Q., Agichtein, E.: Beyond Dwell Time: Estimating Document Relevance from

Cursor Movements and other Post-click Searcher Behavior. In: Proc. WWW (2012)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11(1) (2009)
Huang, J.: On the Value of Page-Level Interactions in Web Search. In: HCIR
Workshop (2011)

Huang, J., White, R.W., Buscher, G., Wang, K.: Improving Searcher Models Using
Mouse Cursor Activity. In: Proc. SIGIR (2012)

Huang, J., White, R.W., Dumais, S.: No Clicks, No Problem: Using Cursor Move-
ments to Understand and Improve Search. In: Proc. CHI (2011)

Hulten, G., Spencer, L., Domingos, P.: Mining Time-Changing Data Streams. In:
Proc. KDD (2001)

Joachims, T.: Optimizing Search Engines using Clickthrough Data. In: Proc. KDD
(2002)

Liu, C., Guo, F., Faloutsos, C.: BBM: Bayesian Browsing Model from Petabyte-
scale Data. In: Proc. KDD (2009)

Marz, N.: Storm Wiki, http://github.com/nathanmarz/storm/wiki
Navalpakkam, V., Churchill, E.F.: Mouse Tracking: Measuring and Predicting
Users’ Experience of Web-based Content. In: Proc. CHI (2012)

Radlinski, F.: Addressing Malicious Noise in Clickthrough Data. In: LR4IR Work-
shop at SIGIR (2007)

Speicher, M., Both, A., Gaedke, M.: TellMyRelevance! Predicting the Relevance of
Web Search Results from Cursor Interactions. In: Proc. CIKM (2013)

Tsymbal, A.: The problem of concept drift: definitions and related work. Technical
Report, Trinity College Dublin (2004)

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
A fault-tolerant model for scalable stream processing. Technical Report, UC Berke-
ley (2012)

http://github.com/nathanmarz/storm/wiki

	StreamMyRelevance!
	Prediction of Result Relevance from Real-Time Interactions and Its Application to Hotel Search
	1 Introduction
	2 Background and Related Work
	3 SMR: Streaming Interaction Data for Learning Relevance Models
	3.1 Client-Side Interaction Tracking
	3.2 Preprocessor
	3.3 Interaction Features Processor
	3.4 Classification Processor
	3.5 Making Use of Relevance Models

	4 Evaluation
	4.1 Effectiveness
	4.2 Efficiency, Scalability and Robustness
	4.3 Discussion and Summary

	5 Limitations and Future Work
	6 Conclusions
	References

