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Abstract In healthcare settings microbial contaminated surfaces play an important

role in indirect transmission of infection. Especially surfaces close to the patients’

environment may be touched at high frequencies, allowing transmission from

animated sources to others via contaminated inanimate surfaces.

Therefore, the knowledge on the survival of bacteria, fungi, viruses and protozoa

on surfaces, and hence, in a broader sense, in the human environment, is important

for implementing tactics for prevention of Healthcare-acquired Infections (HAI).
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Ernst-Moritz-Arndt University Greifswald, Walther-Rathenau-Str. 49A,

17485 Greifswald, Germany

e-mail: kramer@uni-greifswald.de

O. Assadian, M.D., DTMH (*)

Department for Hospital Hygiene and Infection Control, Medical University of Vienna,

Währinger Guertel 18-20, 1090 Vienna, Austria

e-mail: ojan.assadian@meduniwien.ac.at

G. Borkow (ed.), Use of Biocidal Surfaces for Reduction of Healthcare
Acquired Infections, DOI 10.1007/978-3-319-08057-4_2,
© Springer International Publishing Switzerland 2014

7

mailto:kramer@uni-greifswald.de
mailto:ojan.assadian@meduniwien.ac.at


This chapter will elaborate the role of surfaces in the transmission of pathogens.

Particular emphasis is laid on the current knowledge of the survival time and

conditions favouring survival of the pathogens. Finally, mechanisms of transmis-

sion from inanimate surfaces to patients are highlighted.

Within the multi-barrier strategy of the prevention of HAI, environmental

disinfection policies should be based on risk assessments for surfaces with different

risks for cross contamination such as high- and low-touched surfaces with appro-

priate standards for adequate disinfection measures under consideration of the

persistence and infectious dose of the pathogens. As a result, surface disinfection

is indicated in the following situations:

– Frequently touched surfaces adjacent to patients

– Surfaces with assumed or visible contamination

– Terminal disinfection in rooms or areas where infected or colonized patients

with easily transferable nosocomial pathogens are cared for, and

– in outbreak situations.

Furthermore, the knowledge of the persistence of pathogens will also support

ensuring the biosafety in microbiological and biomedical laboratories, food-

handling settings, and for hygienic behaviour in the everyday life to prevent

transmission of infectious diseases.

Keywords Persistence • Bacteria • Fungi • Viruses • Protozoa transmission

mechanisms • Surface disinfection

List of Abbreviations

HAI Healthcare-acquired infections

MRSA Methicillin-resistant Staphylococcus aureus
MSSA Methicillin-sensible Staphylococcus aureus
RH Relative humidity

SARS Severe acute respiratory syndrome

VRE Vancomycin-resistant enterococci

2.1 Introduction

Microorganisms may be transmitted from animated sources to inanimate environ-

mental sources, which may become secondary reservoirs if they meet the needs of

transmitted pathogens to survive and to multiply. In healthcare settings, however,

contaminated surfaces, which may not always be optimal for microbial survival and

multiplication, still may play a role in the chain of infection, since surfaces close to

the patients’ environment may be touched at high frequencies, allowing transmis-

sion from animated sources to others via contaminated inanimate surfaces.
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Because of this, the knowledge on the survival of bacteria, fungi, viruses and

protozoa on surfaces, and hence, in a broader sense, in the human environment, is

important for planning and implementing tactics for prevention of Healthcare-acquired

Infections (HAI). Furthermore, such knowledge will also assist ensuring the biosafety

in microbiological and biomedical laboratories, food-handling settings, and for

hygienic behaviour in the everyday life to prevent transmission of infectious diseases.

One example of microorganisms with relatively short ability of persisting in the

environment is the severe acute respiratory syndrome (SARS) coronavirus (CoV),

which became pandemic within months in China in 2002. This virus retains

infectivity on different substrates up to 9 days, as compared to the influenza

virus, which demonstrates a relatively long persistence in the environment up to

4 weeks [112]. Both viruses are airborne transmitted infectious agents, however,

they may also be transmitted via hand-surface contacts, supporting the relevance of

hand hygiene and personal protection against infection.

Because of a number of microorganisms’ ability to persist and survive for long-

term periods on surfaces, particularly in healthcare settings, the usage of

antimicrobially impregnated surfaces is increasingly discussed [82]. However,

because of the required long contact times of microorganisms on antimicrobial

surfaces [64, 65, 25, 45], such technologies may be useful for surfaces with low

frequency of hand contacts.

2.2 The Role of Surfaces in the Transmission of Pathogenic

Microorganisms Causing Healthcare-Acquired

Infections (HAI)

In healthcare settings, bacteria, bacterial spores, viruses and yeasts are mainly

transmitted from infected and/or colonized patients, but also from staff, and in

some situations from visitors to the inanimate hospital environment, particularly to

areas adjacent to patients and frequently touched surfaces by hands (“high-touch

surfaces”). Potential pathogenic microbial flora of the respiratory tract and of the

vestibulum nasi, such as methicillin- sensible (MSSA) or resistant Staphylococcus
aureus (MRSA), is correlated with a higher risk of contamination of surrounding

surfaces through direct or indirect contact with hands [81]. Intestinal infections

caused i.e. by Clostridium difficile and Norovirus, or enteral colonization with

nosocomial pathogens such as vancomycin-resistant enterococci (VRE) may also

be associated with a risk of widespread environmental contamination [30]. Compared

with the large number of published literature on environmental contamination with

MRSA, VRE, and C. difficile, there are relatively few published studies on environ-

mental contamination by Gram-negative bacteria [64, 65]. Aside of a possible

publication bias in the past, one reason for this is the different ability of Gram-

positive and Gram-negative bacteria to survive in the inanimate environment.

The level of microbial bio-burden on surface in healthcare settings is low compared

to the numbers on patients’ skin or in faeces. However, even at low particle numbers

2 Survival of Microorganisms on Inanimate Surfaces 9



there is a risk of transmission (Table 2.1). In immuno-compromised patients, the

required numbers of microorganisms for causing infectious diseases is even lower,

increasing the risk of HAI in these populations. Inanimate surfaces have been described

as source for HAI-outbreaks. Hayden et al. [49] demonstrated that touching the

environment contaminated with relatively low pathogen concentrations in a room

occupied by a patient colonized with VRE is associated with approximately the same

risk of VRE acquisition on hands as touching an affected patient directly. Evidence of

the importance of environmental transmission is further provided by studies showing an

increased risk of infection in patients admitted to the same rooms previously occupied

by other infected/colonised cases. This has been shown for C. difficile [101], VRE and

MRSA ([54, 55], and also own observations). Environmental Norovirus contamination

has been repeatedly found to be correlated with continuing outbreaks [128], although

the significance of this pathway has not been fully elucidated.

The importance of surface contamination is also shown by reduction in the rate of

HAI when effective measures of environmental disinfection are implemented [50, 10,

26]. A recent observational study showed a significant reduction in C. difficile
infection rates following the introduction of sporicidal wipes in an environmental

cleaning regimen in an acute London trust [16]. However, not all studies have shown

a direct link between surface disinfection and reduction in infection rates, probably

because of the complex interactions and transmission routes in the clinical practice.

Yet, in summary it is undisputed that contaminated surfaces may contribute to

the transmission of pathogens and may thus pose a critical element in the chain of

transmission of microorganisms [41].

2.3 Persistence of Microorganisms on Inanimate Surfaces

The risk for transmission of HAI depends of the persistence of nosocomial

pathogens on surfaces. The longer a microorganism may persist on a surface, the

longer the contaminated surface may be a source of transmission and thus endanger

a susceptible patient or healthcare worker of becoming the target of infection.

In order to estimate the risk of cross contamination, Kramer et al. [64, 65]

have published a systematic review on persistence of pathogens on surfaces.

Table 2.1 Infectious doses for selected pathogens

Infectious

dose Organisms Reference

(1)-10–100

viable

particles

Norovirus, Rotavirus, EHEC,

ETEC, C. difficile, Enterococci
incl. VRE

Ward et al. [122], Paton and Paton [88], Pang

et al. [85], Lawley et al. [68], Porter

et al. [92], Yezli and Otter [130], Robine

et al. [97]

�1 viable

particle

in water

Oocysts of cryptosporidia Chappell et al. [17]

>105 viable

particles

Salmonella enteritidis Craven et al. [24]

10 A. Kramer and O. Assadian



The following findings are based on this review; however, knowledge on

persistence of microorganisms on inanimate surfaces is now expanded by addi-

tional findings published after 2005/2006.

2.3.1 Persistence of Bacteria

In most reports, persistence was studied on dry surfaces using artificial contamina-

tion of a standardized type of surface in a laboratory. Bacteria were prepared in

broth, water or saline.

Most Gram-positive bacteria, such as Enterococcus spp. including VRE,

S. aureus including MRSA, or Streptococcus pyogenes survive for months on dry

surfaces (Table 2.2). In general, there is no observable difference in survival

between multi-resistant and susceptible strains of S. aureus and Enterococcus
spp. [78]. Only in one study [118] a difference of survival time between antibiotic

resistant and susceptible bacteria was suggested, yet, the susceptible strains dem-

onstrated only a non-significant shorter survival time on surfaces. The factors why

the same bacteria may persist more or less on a surface (i.e. from hours to days as

detailed in Table 2.2) will be discussed later in Sect. 2.3.5.

Many Gram-negative species, such as Acinetobacter spp., Escherichia coli,
Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, or Shigella spp.

can survive on inanimate surfaces even for months (Table 2.2). These species are

found among the most frequent isolates from patients with HAI [64, 65]. However,

a few others Gram-negative bacteria, such as Bordetella pertussis, Haemophilus
influenzae, Proteus vulgaris, or Vibrio cholera persist only for days (Table 2.2).

Mycobacteria, including Mycobacterium tuberculosis, and spore-forming bac-

teria, such as C. difficile, can survive for many months on surfaces (Table 2.2).

Because paper still is omnipresent in healthcare settings worldwide today,

Hübner et al. [56] have analysed the persistence of various Gram-positive and

Gram-negative bacteria including E. coli, S. aureus, P. aeruginosa, and Enterococ-
cus hirae on office paper after contamination with standardised inocula of bacterial

suspensions in the range of 2.8� 107 cfu/mL. Opposite to E. coli, all other organ-
isms were more stabile at room conditions and were reduced on paper only by

3 log10 after 7 days, whereas E. coli was reduced by 5 log10 within

24 h. Furthermore, the transmissibility of bacteria from hands to paper and back

could be demonstrated for all bacteria strains. Similar investigations showed that

paper money notes could harbour and transmit pathogens [62, 111, 115].

2.3.2 Persistence of Viruses

In order to estimate the persistence of viruses on inanimate surfaces, usually cell

culture media are prepared [64, 65]. Most viruses from the respiratory tract such as

Corona-, Coxsackie-, or Influenza virus, SARS, or rhinovirus can persist on surfaces

2 Survival of Microorganisms on Inanimate Surfaces 11



Table 2.2 Published data on survival of nosocomial and community acquired pathogens on

various inanimate surfaces

Organism

Range of survival

(environment) Reference

Acinetobacter spp. 3 days to 1 year (in-vitro) Wagenvoort and Joosten [117],

Espinal et al. [36]a36 days within biofilm

vs. 15 days for

non-biofilm-forming

strains

Bordetella pertussis 3 to >10 days; in pernasal

swabs: >4 days

Hunter [57], Walther and Ewald

[121]a

Campylobacter jejuni >6 days, in water

>60 days

González and Hänninen [44]a

Clostridium difficile
spores

5 months Weber et al. [123]a

C. difficile, vegetative
form

15 min (dry surface)

6 h (moist surface)

Chlamydia pneumoniae �96 h Fukumoto et al. [40], Haider

et al. [51], Matsuo et al. [70]aC. trachomatis <1 week

Chlamydia psittaci 15 days to months

(environment)

Wendel [125]a

Corynebacterium
diphtheriae

7 days to 6 months Walther and Ewald [121]a

Corynebacterium
pseudotuberculosis

1–8 days, up to several

weeks (environment)

Yeruham et al. [129]a,

Dorella et al. [31]

Enterococcus spp.
including VRE

5 days up to 30 months Robine et al. [97], Wagenvoort

et al. [116]a

Escherichia coli 1.5 h to 16 months Guan and Holley [46], Erickson

et al. [35], Chauret [19]a,

Duffitt et al. [33]
E. coli O157:H7 27 days on spinach leaves,

179 days in soil,

98 days in water

Haemophilus influenzae 12 days a

Helicobacter pylori �90 min; in water: 2–30

days

West et al. [124], Percival and

Thomas [89]a

Klebsiella spp. 2 h to>30 months,�144 h

in detergent solution

Beadle and Verran [6]a

Listeria spp. 1 day–months, 141 days in

water

Budzińska et al. [13]a

Mycobacterium bovis >2 months a

Mycobacterium
tuberculosis

1 day up to 4 months Walther and Ewald [121]a

Neisseria gonorrhoeae 1–3 days a

Neisseria meningitidis 72 h Tzeng et al. [110]a

Parachlamydia
acanthamoebae

<4 weeks, in presence of

blood <7 weeks

Fukumoto et al. [40]a

Proteus vulgaris 1–2 days a

Pseudomonas
aeruginosa

6 h up to 16 months; on

dry floor: 5 weeks; in

aerosol: few hours

Clifton et al. [21]a

Salmonella typhi 6 h up to 4 weeks a

Salmonella typhimurium 10 days up to 4.2 years a

(continued)
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only for a few days [18]. Herpes viruses such as Cytomegalie virus or Herpes simplex

virus type 1 and 2 have been shown to persist from only a few hours up to 7 days.

Viruses from the gastrointestinal tract, such as Astrovirus, Hepatitis A virus,

Polio- and Rotavirus persist significantly longer for approximately 2 months.

Blood-borne viruses, such as Hepatitis B virus or Human Immunodeficiency virus

can persist for more than 1 week (Table 2.3).

2.3.3 Persistence of Fungi

Candida albicans, the most important nosocomial yeast, can survive up to 4 months

on surfaces. Persistence of other yeasts was described to be similar (Torulopsis
glabrata: 5 months) or shorter (Candida parapsilosis: 14 days) (Table 2.4). The

survival of fungi in the environment, however, is strongly influenced by physical

factors in nature, such as temperature and relative humidity (see Sect. 2.3.5).

Table 2.2 (continued)

Organism

Range of survival

(environment) Reference

Salmonella spp. 1 day a

non typhoid Salmonella
spp.

336 days Morita et al. [76]a

Salmonella enteritidis
(broiler farms)

1 year Davies and Wray [27]a

Salmonella enteritica
sv. Tennessie

30 days (dried in

desiccated milk

powder)

Aviles et al. [1]a

Serratia marcescens 3 days up to 2 months; on

dry floor: 5 weeks

a

Shigella spp. 2 days up to 5 months Ghosh and Sehgal [42]a

3–11 days in water

Staphylococcus aureus
including MRSA

and MSSA

7 days up to 1 year

(in-vitro)

Oie and Kamiya [81], Wagenvoort

and Penders [118], Huang

et al. [54, 55], Noyce

et al. [80], Tolba et al. [108],

Petti et al. [90]a

9–12 days (plastic

surfaces)

72 h (stainless steel)

6 h (copper)

�28 days (dry mops)

�14 days (in water)

Streptococcus
pneumoniae

1 day up to 30 month Walsh and Camilli [120]a

Streptococcus pyogenes 3 days up to 6.5 months Wagenvoort et al. [119]a

Vibrio cholerae 1–7 days a

Yersinia enterocolitica Up to 64 weeks (in water) Guan and Holley [46]a

Yersinia pestis Up to 5 days Rose et al. [98]a

aAdditional references in Kramer et al. [64, 65]
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Table 2.3 Survival of clinically relevant viruses on dry inanimate surfaces

Organisms Range of survival (environment) Reference

Adenovirus <6 h up to 3 months (type

dependent), �301 days

(in water)

Hara et al. [48], Rigotto

et al. [95]a

Astrovirus 7–90 days a

Avian

metapneumonovirus

~48 h up to 6 days Tiwari et al. [107]a

SARS Coronavirus <5 min up to 24 h (on paper) Lai et al. [66], Rabenau

et al. [93], Guionie

et al. [47]
5–28 days (at room temp.)

28 days (at 4 �C)
Coxsackievirus 7–10 days, up to >2 weeks Wong et al. [127]a

Cytomegalovirus 1–8 h Faix [37], Stowell

et al. [102]a

Echovirus Up to 7 days a

Hepatitis A virus 2 h up to 60 days a

Hepatitis B virus �1 week a

Human immunodefi-

ciency virus

Up to 7 days, 7 days

(in peritoneal dialysis efflu-

ent), 48 h (on peritoneal dial-

ysis exchange and tubing),

4–8 weeks (on glass cover

slides)

Van Bueren et al. [113],

Farzadegan et al. [38]a

Herpes simplex virus,

Type 1 & 2

<2 h up to 8 weeks Larson and Bryson [67],

Bardell [2], Rabenau

et al. [93]a

Influenza virus 1–28 days (strain dependent) Edward and Derrick [34],

Walther and Ewald

[121], Tiwari

et al. [107]a, Thomas

et al. [106]

1–3 days (on banknotes), up to

8 days (admixed in mucous)

Marburg virus (strain

Popp)

4–5 days Belanov et al. [7]a

Para-influenza virus 10 h Brady et al. [11]a

Norovirus, Feline calici

virus (FCV), Murine

norovirus (MNV)

8 h up to 7 days, MNV> 40 days

(in diapers and gauze)

Cannon et al. [14], Lee

et al. [69]a

Papillomavirus 16 �7 days Hsueh [53]a

Papovavirus 8 days a

Parvovirus >1 year a

Poliovirus type 1 4 h to <8 days a

Poliovirus type 2 1 day up to 8 weeks a

Pseudorabies virus �7 days, <1 h (in aerosol infec-

tivity decreases by 50 % per

hour)

Schoenbaum et al. [100]

Respiratory syncytial

virus

up to 6 h a

Rhinovirus 2 h up to 7 days a

Rotavirus 30 min, 6–60 days Keswick et al. [61]a

Vacciniavirus 3 weeks up to >20 weeks a

aAdditional references in Kramer et al. [64, 65]
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Moulds are ubiquitous in nature, thermo-tolerant, and can survive in house dust for

long time. Indoor airborne mould measurements underline the survival for several

months [4, 5].

2.3.4 Persistence of Other Pathogenic Microorganisms

Cryptosporidium spp. can induce water-born infection. Their oocysts can survive

for months in surface water [96, 20, 75, 15], and up to 120 days in soil [60].

Acanthamoeba are one of the most common protozoa in soil, and frequently

found in fresh water and other environmental habitats. An important habitat and

vector for infection are hydrogel contact lenses, resulting in contact lens associated

keratitis caused by acanthamoeba and fusarium [87], particularly since the contact

lenses’ moist condition supports survival protozoa.

2.3.5 Factors Influencing the Survival of Microorganisms
in the Environment

2.3.5.1 Relative Humidity (RH)

Generally, viruses with lipid envelops, such as most respiratory viruses including

Influenza virus, Para-Influenza virus, Corona virus, Respiratory syncytial virus,

Herpes simplex virus, Measles virus, Rubella virus, and Varicella zoster virus will

tend to survive longer at lower relative humidity (20–30 % RH) [103]. However,

Table 2.4 Survival of clinically relevant fungi on dry inanimate surfaces

Organisms Range of survival (environment) Reference

Aspergillus spp. >30 days Neely and Orloff [79]a

Candida
albicans

1 up to 120 days, 24 weeks (in soil-water

mixture)

Neely and Orloff [79], Théraud

et al. [105]a

Candida
parapsilosis

>30 days Neely and Orloff [79]a

Candida krusei 11 days

Cryptococcus
spp.

24 weeks (in soil-water mixture) Théraud et al. [105]a

Fusarium spp. >30 days Neely and Orloff [79]a

Mucor spp. >30 days

Paecilomyces
spp.

11 days

Torulopsis
glabrata

102–150 days Kane et al. [59]

aAdditional references in Kramer et al. [64, 65]
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Cytomegalie virus makes an exception, as it was more likely isolated from moist

surfaces [102].

Conversely to enveloped viruses, non-lipid enveloped viruses such as Adenovi-

rus, Enterovirus, and Rhinoviruses tend to survive longer at higher relative humid-

ity (70–90 % RH) [103]. For Rotavirus and Poliovirus conflicting results were

reported [64, 65].

S. aureus can persist longer at low humidity [74]. However, for Enterococcus
faecalis the survival kinetic is decreased at 25 % RH compared to 0 % RH [97].

The survival of aerosolized Gram-negative bacteria including Pseudomonas
spp., Enterobacter spp. and Klebsiella spp. improved at higher relative humidity

and low temperature [103]. Studies on airborne Gram-negative bacteria such as

S. marcescens, E. coli, Salmonella pullorum, Salmonella derby, and Proteus
vulgaris showed decreased survival at intermediate (approx. 50–70 % RH) to

high (approx. 70–90 % RH) relative humidity. For some airborne Gram-positive

bacteria, such as Staphylococcus epidermidis, Streptococcus haemolyticus, Bacillus
subtilis, and Streptococcus pneumoniae, their survival rate also decreased at inter-

mediate relative humidity ranging at 50–70 % RH [103]. Gram-positive cocci were

most prevalent in indoor air, followed by Gram-positive rods (e.g. Bacillus spp. and
Actinomycetes spp.), Gram-negative rods and Gram-negative cocci [103]. The

reason for this bacterial behaviour is the design of bacterial cell wall, which allows

Gram-positive organisms to tolerate dry conditions better than Gram-negative

organisms. Because of a lipid double-layer structure with a thin peptidoglycan

(Murein) layer consisting of alternating residues of β-(1,4) N-acetylglucosamine

and N-acetylmuramic acid, the later are not so well protected against physical stress

and need higher RH in order to survive.

2.3.5.2 Temperature

The viral genome (viral DNA or RNA) is sensitive to the surrounding temperature.

Indeed, temperature is an important factor influencing the survival of a number of

viruses. Higher temperatures impact viral proteins and enzymes, as well as the viral

genome. In general, DNA viruses are more stable than RNA viruses; yet, high

temperature also will affect DNA integrity.

For most viruses, such as Astrovirus, Adenovirus, Poliovirus, Herpes simplex

virus, and Hepatitis A virus, low temperature is associated with a longer persistence

[64, 65]. Constant temperatures >24 �C appear universally to decrease airborne

bacterial survival [103].

2.3.5.3 Biofilm

Biofilm is the predominate form of life for microorganisms in a nutrient-sufficient

ecosystem. Adhesion triggers the expression of a sigma factor that depresses a large

number of genes so that bacteria within the biofilm are at least 500 times more

16 A. Kramer and O. Assadian



tolerable against antimicrobial agents [23] as well as against physical cold plasma

[71, 72]. The reason for the unspecific increased tolerance is the production of

extracellular substances like polysaccharides, proteins and DNA after attachment to

surfaces. A precondition for biofilm formation is the presence of certain amounts of

humidity. The biofilm matrix restrains water and nutrients and protects the micro-

organisms against environmental influences [28, 39]. Because of that, once formed

biofilms are an important factor of persistence of microorganisms on surfaces in

nature as well as in industrial or medical areas [22, 29, 12]. The persistence on

inanimate surfaces is prolonged and depends of the environmental conditions,

especially the humidity. Also on hospital surfaces biofilms were demonstrated on

a number of objects and surfaces, such as sterile supply buckets, opaque plastic

doors, venetian blind cords, and sink rubbers, and it was possible to cultivate viable

bacteria. Currently, there is not enough research to elucidate whether presence or

absence of biofilm affect the risk of transmission or possibility for cross-

transmission. However, multi-drug resistant bacteria may not only be protected

within biofilms, which may be the mechanism why they persist within the hospital

environment [114], but may also exchange virulence factors among their own

species or to other species present in biofilms as well [29, 43, 109].

2.3.5.4 Other Factors

A number of other factors may influence the survival of microorganisms on

surfaces. Clearly, the material character of a surface itself may play in important

role. However, inconsistent results are reported for the influence of type of mate-

rials on microbial survival. Some authors described that the type of material did not

affect the persistence of Echovirus, Adenovirus, Para-Influenza virus, Rotavirus,

Respiratory syncytial virus, Poliovirus, or Norovirus. Other investigators found that

persistence was favoured on non-porous surfaces for Influenza virus on formica and

gloves for Respiratory syncytial virus, and on hand pieces of telephones for Feline

calicivirus [64, 65]. Other factors for a longer persistence of viruses include the

presence of faecal suspension and a higher bio-inoculum [66, 64, 65]. Interestingly

and by nature, Urease activity enhances the survival of Haemophilus influenzae at a
reduced pH [77].

2.3.6 Limitations on the Knowledge of Microbial Survival
on Inanimate Surfaces

Laboratory studies to determine the survival and persistence do not reflect the

clinical situation, in which surfaces can be simultaneously contaminated with

various nosocomial pathogens, different types of bodily and other fluids, secretions,

2 Survival of Microorganisms on Inanimate Surfaces 17



and antimicrobial residues, i.e. from the last surfaces disinfection. However, little

dispute exists that beside the hands of healthcare workers surfaces in the close

vicinity of patients may play a key role for the transfer of nosocomial pathogens.

2.4 Mechanisms of Transmission from Inanimate Surfaces

to Susceptible Patients and Consequences Thereof

The main route of transmission of HAI is via transiently contaminated hands of

healthcare workers, but contaminated surfaces may serve as important vectors for

cross transmission after hand contact as well (Fig. 2.1).

A single hand contact with a contaminated surface results in a variable degree of

pathogen transfer. Transmission from surfaces to hands was most successful with

E. coli, Salmonella spp., S. aureus (all 100 %), C. albicans (90 %), Rhinovirus

(61 %), Hepatitis A virus (22–33 %), and Rotavirus (16 %) [64, 65]. Other transfer

rates were calculated for Echovirus, Poliovirus, and Rotavirus with 50 % transmis-

sibility, and for Salmonella enteritidis, Shigella spp., and E. coli O157:H7 with

33 % [104]. Contaminated hands can transfer viruses to 5 more surfaces or 14 other

subjects. Contaminated hands can also be the source of re-contamination of the

surface, as demonstrated with Hepatitis A virus [64, 65].

Because of this, it is critical to note that healthcare workers’ compliance with

hand hygiene varies between 13 % and 94 % with a median of less than 50 %

[91]. Moreover hand hygiene is performed less frequently after contact with the

environment than with the patient [94]. Both facts underline the necessity to

perform additional surface decontamination procedures to interrupt the transmis-

sion of nosocomial pathogens. Due to the overwhelming evidence of low compli-

ance of hand disinfection, the risk from contaminated surfaces cannot be

overlooked and must not be down played by hospital administrations.

Fig. 2.1 Transmission

routes for nosocomial

pathogens
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During outbreaks, the role of the patients’ environment is particularly evident, as

suggested by observed evidence for Acinetobacter baumannii, C. difficile, MRSA,

P. aeruginosa, VRE, Adenovirus, SARS virus, Rotavirus, and Norovirus [64, 65,

54, 55, 99, 9, 123, 83, 58]. The role of contaminated surfaces is also underlined by

the observation that after environmental disinfection, significant decrease of trans-

missions and HAI have been shown, i.e. for C. difficile [73, 126], for VRE [50], for

MRSA [32], for multidrug-resistant A. baumanii [84], for S. marcescens [3], and for
other multidrug-resistant Gram-negative rods [86].

If performed correctly, also the burden of microbial airborne transmission can be

significantly decreased by surface disinfection. This again may have an impact on

healthcare organisations, resulting in i.e. higher clean room class of drug

manufacturing areas [8] by elimination of critical bacterial and fungal contamina-

tion [63]. As consequence for the successful interruption of cross contamination

and infections a multi-barrier approach is required with the key points of hand

hygiene and surface disinfection, appropriate used of antisepsis, barrier nursing,

and safe reprocessing of contaminated medical devices. Within such multi-barrier

strategy, environmental disinfection policies should be based on risk assessments

for surfaces with different risks for cross contamination such as high- and

low-touched surfaces with appropriate standards for adequate disinfection mea-

sures. Generally, surface disinfection is indicated in the following situations:

– Frequently touched surfaces adjacent to patients

– Surfaces with assumed or visible contamination

– Terminal disinfection in rooms or areas where infected or colonized patients

with easily transferable nosocomial pathogens are cared for, and

– in outbreak situations.

The purpose of preventive or targeted disinfection on inanimate surfaces is the

killing or irreversible inactivation of pathogens to an extent which prevents subse-

quent infection transmission [41]. In order to ensure the success of environmental

disinfection, education, training [52], and targeted microbiological control are impor-

tant measures and have been shown to improve both, cleaning performance and

infection prevention [50]. Increasingly, novel technologies are introduced, which

may be used additionally to cleaning. Such technologies may include antimicrobial

surfaces on basis of different antimicrobial compounds and are provided for hospital

door handles, alarm knobs, curtains, and other objects with high frequencies of hand

contact. However, such technologies must be used appropriately and as an adjunct

measure to meaningful cleaning and disinfection processes.
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