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Abstract. Optimal spectral bands selection is a primordial step in mul-
tispectral images based systems for face recognition. In this context, we
select the best spectral bands using a multilinear sparse decomposition
based approach. Multispectral images of 35 subjects presenting 25 dif-
ferent lengths from 480nm to 720nm and three lighting conditions: fluo-
rescent, Halogen and Sun light are groupped in a 3-mode face tensor T
of size 35×25×2 . T is then decomposed using 3-mode SVD where three
mode matrices for subjects, spectral bands and illuminations are sparsely
determined. The 25×25 spectral bands mode matrix defines a sparse
vector for each spectral band. Spectral bands having the sparse vectors
with the lowest variation with illumination are selected as the best spec-
tral bands. Experiments on two state-of-the-art algorithms, MBLBP and
HGPP, showed the effectiveness of our approach for best spectral bands
selection.
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1 Introduction

Face recognition is proved to be a challenging and ill posed task encountered in
several real life applications. Several highly uncontrolled parameters are involved
in such task. The most important of these parameters are those related to the
imaging conditions like illumination, pose, and aging [7] [8] [9]. Specifically, the
illumination factor is one of the most critical of these parameters. It has been
widely addressed by researcher. In [12], algorithms of more than 99% accuracy on
normal face images from the FERET database(Fb image set), do not surpass 80%
when tested on images with high illumination variation from the CAS-PEAL-R1
face database. In [10], extensive experiments have been conducted to study the
effect of illumination variation on state-of-the-art algorithms like MBLBP [13]
HGPP [12] and POEM [14]. Unsatisfactory results have been reported with 62.9
% maximum accuracy on the CAS-PEAL-R1 face database and 65.4% accuracy
upon the HFB face database[15]. The later database presents images from the
NIR and Visible spectrums that were matched against each others. To build illu-
mination invariant systems that are robust against high illumination variation,

A. Elmoataz et al. (Eds.): ICISP 2014, LNCS 8509, pp. 384–391, 2014.
c© Springer International Publishing Switzerland 2014



Multilinear Sparse Decomposition for Best Spectral Bands Selection 385

several research groups have proposed to use images captured at different wave-
lengths of the light spectrum including NIR, LWIR, SWIR, and thermal images.
The partial complimentarity of these wavelenghts have been investigated and
multimodal information were then extracted and fused in different ways. In [20],
the authors proposed to use images captured at multiple wavelenghts of the visi-
ble spectrum. Fluorescent, halogen and day lighted multispectral images ranging
from 480nm to 720nm, with a step of 10nm (providing 25 spectral bands per
subject), where then captured and groupped in one database called IRIS-M3.
Several matching scenarios between lighting modalities including halogen vs flu-
orescent, Halogen vs day light and fluorescent vs day light face matching, were
then experimented. Reported results showned the capacity of these multispec-
tral images to reduce the problem of matching day lighted faces. Using all the 25
visible spectral bands provided for each subject is both source consuming and
not efficient. To solve this problem, Bouchech et al. proposed two approaches to
select the best spectral bands for face matching. The approach in [21] selects the
same optimal spectral bands for all subjects ( static best spectral bands selection
SBSS) using a pursuit optimization formulation, while the second approach [22]
selects different spectral bands for each subject (dymanic best spectral bands se-
lection DBSS) using mixture of Gaussian and likelihood ratio test. Only selected
bands were then used for face matching and the proposed two systems achieved
better performance then systems based on broad band images.

In this paper, we propose a different static approach for best spectral bands se-
lection. All Multispectral images provided by the IRIS-M3 face database are su-
perposed in a 3-mode face tensor T of size 35×25×2 corresponding to 35 subjects,
25 spectral bands and two modalities from the three modalities available in the
database. T is then decomposed as T = Z×Usubject×Uspectralbands×Uillumination

using the domain adapive dictionaries learning (DADL) algorithm proposed in
[23]. The obtained 25×25 matrix Uspectralbands defines a sparse vector for each
spectral band that is theoretically invariant to illumination and subject variation.
We show experimentally that when we significantly change the illumination con-
dition between gallery and probe databases, values of these sparse vectors are sub-
ject to a small change that differs from one spectral band to another. We demon-
strate theoretically that this change has a direct relation with the robustness of
the corresponding spectral band to illumination variation, and is then exploited
to select the best spectral bands for face matching over the IRIS-M3 database.

The remainder of the paper is organized as fellows: Section 2 breifly describes
the IRIS-M3 and DADL algorithm. In section 3 we details our approach for best
spectral selection. Experimental results are displayed in section 4 and in section
5 we conclude our work.

2 The IRIS-M3 Face Database and DADL Algorithm

2.1 IRIS-M3 Face Database

In IRIS-M3 face database [20], there are a total of 82 participants of different
ethnicities, ages, facial, hair characteristics, and genders with a total number of
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2624 face images. The image resolution is 640 × 480 pixels and the interocular
distance is about 120 pixels. The database was collected in 11 sessions between
August 2005 and May 2006 with some participants being photographed multiple
times. The subjects imaged are 76% male and 24% female; the ethnic diversity
was defined as a collection of 57% Caucasian; 23% Asian (Chinese, Japanese,
Korean, and similar); 12% Asian Indian; and 8% of African descents. For each
subject, three groups of images have been captured, depending on the lighting
conditions; a group of day lighted images, a group of halogen lighted images and
a group of fluorescent lighted mages. In turn, each image group was formed by
two categories of images for each subject: a gray image and a multispectral image
(image cube) formed by 25 spectral bands captured in the visible spectrum (from
480nm to 720nm) with a step of 10nm. For our experiments, day lighted images
and halogen lighted images are matched against each other. We first evaluate
the performance of our algorithms upon the gray images, then we enhance their
performances using multispectral images.

2.2 Domain Invariante Dictionary Learning Algorithm

The Domain Invariante Dictionary Learning (DADL) algorithm is an algorithm
that enables to decompose a 3-order face tensor T, using 3-mode SVD, in the
form of T = Z × Usubject × Uspectralbands × Uillumination. The particularity of
DADL is that the mode matrices Usubject, Uspectralbands, and Uillumination are
sparse matrices, i.e, most of their entries are zeros. The proposed algorithm
begins by writing the decomposition of T in the form of flattned matrices
T(3) = DT1

(3).U
T2

subject(3).U
T3

spectralbands(3).U
T4

illumination(3), where Ti=1..4 are vector

transpose operators that ensure the agree of dimensions between multiplied ma-
trices. Then, two iterative algorithms are proposed to learn the base dictionary
D and the sparse matrices Usubject(3) = [Ki,j] ∈ �35×35, Uspectralbands(3) =
[Si,j ] ∈ �25×25, and Uillumination(3) = [Ii,j ] ∈ �2×2. Hence, a new image ysk,i
of subject k at illumination i and spectral band s could be written as ysk,i =

DT1

(3).U
T2

subject(3).U
T3

illumination(3) ×Ss. where D
T1

(3).U
T2

subject(3).U
T3

illumination(3) is the

domain dictionary adapted to the spectral bands domain and Ss is the column
vector number s of S corresponding to spectral band s. As we said, Ss deter-
mine the sparse decomposition of ysk,i on the spectral bands adaptive domain
dictionary. The authors have shown that for the same spectral band s, Ss is
invariante when the saubject k and/or the illumination i changes, i.e, the de-
composition of an image ysk,i1 , captured at a different illumination i1 but for
the same spectral band s, on the spectral bands domain adaptive dictionary
DT1

(3).U
T2

subject(3).U
T3

illumination(3) , is the same, namely Ss. The same properties

of domain invariance hold for the other domain matrices. Finally, the domain
invariance property of DADL has a very interesting application for pose and
illumination invariant face recognition.
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3 Best Spectral Bands Selection Using Multilinear Sparse
Decomposition

As shown by the authors of DADL (see Fig. 13 from [23]), and confirmed by our
experimentations, the vector Ss varies slightly but continuously when varying
the lighting condition. The authors of [23] considered this slight variation as a
negligible error due to the iterative approximation process used by DADL to
determine Ss. We show in this section that the error on Ss could be modeled
as the sum of two errors: the mean square error dE due to the iterative process
of DADL, and an error dK that quantifies the robustness of each spectral band
against illumination variation. We propose to measure dK to determine the best
spectral bands.

In the previous section, we got the following expressions:

ysk,i = DT1

(3).U
T2,k
subject(3).U

T3,i
illumination(3) × Ss

⇒ Ss = (DT1

(3).U
T2,k
subject(3).U

T3,i
illumination(3))

−T .ysk,i

= UTa,i
illumination(3).U

Tb,k
subject(3).D

Tc

(3).y
s
k,i (1)

Where Ta = T1 ◦−T , Tb = T2 ◦−T and Tc = T3 ◦−T . Then dSs could be written
as:

(2)

dSs|illumination = d(UTa,i
illumination(3))|illumination.U

Tb,k
subject(3).D

Tc

(3).y
s
k,i

+ UTa,i
illumination(3).d(U

Tb,k
subject(3))|illumination.D

Tc

(3).y
s
k,i

+ UTa,i
illumination(3).U

Tb,k
subject(3).D

Tc

(3).d(y
s
k,i)|illumination

We define dE and dK as:

dE = d(UTa,i
illumination(3))|illumination.U

Tb,k
subject(3).D

Tc

(3).y
s
k,i+

UTa,i
illumination(3).U

Tb,k
subject(3).D

Tc

(3).d(y
s
k,i)|illumination

dK = UTa,i
illumination(3).d(U

Tb,k
subject(3))|illumination.D

Tc

(3).y
s
k,i

(3)

Hence dSs could be written as:

dSs = dE + dK ⇒ dK = dSs − dE (4)

In Fig. 1, we determine the variation of dS, dE and dK. dS is determined by vary-
ing the illumination and subjects (all combinations of illumination and subjects
are considered) and measures the average error on Ss, while dE is determined by
varying only the illumination and keeping the subjects and spectral bands fixed.
dS, dE and dK are determined for three spectral bands (SB) which are SB20 (at
670nm), SB24 (at 710nm) and SB25 (at 720nm). From Fig. 1 we can see that i)
dK never become null (either for each combination (subject/illumination) or in
average) and varies from one spectral band to another and that ii) dK is roughly
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Fig. 1. Variation of different errors with the number of iterations for spetral bands a)
SB24, b)SB25 and c)SB20

constant. Hence, the value of dK could be used to characterize spectral bands.
On the other hand, the expression of dK is only function of d(UTb,k

subject(3)), and

hence should become null whenever the same subject is used. This contradic-
tory results between theory and experiments could be explained as follows: The
traits of a given subject at a given spectral band are affected by illumination
variation so that for a given recognition system, the identity of that subject is
like being changed and hence d(UTb,k

subject(3)) does not vanish. This explanation

is consistent with the roughly constant value of dK; the subject variation due
to illumination happens only one time and without reversibility. Easily, we can
see from the expression of dK, that the spectral band with the smallest dK is
the less affected by illumination and hence the best for face recognition. we call
dK the robustness to illumination factor or RIF. After computing the RIF of all
spectral bands, we found out that SB25 and SB20 had the lowest RIF and were
chosen as the best spectral bands for the studied illumination conditions. These
results are consistent with those obtained by [21] and [22]. In the next section,
selected spectral bands will be used to enhance the recognition performance of
two state-of-the-art algorithms, which are MBLBP, and HGPP.

4 Experimental Results

In this section, two state-of-the-art algorithms are applied on images captured in
the selected spectral bands SB25 and SB20 instead of usual braod band images.
The aim of these experiments is to prove the efficiency of using multispectral
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images to solve problems of high illumination variation. The distance D between
two multispectral images Ip = (IpSB25, I

p
SB20) and Ig = (IgSB25, I

g
SB20) from the

probe and gallery databases respectively, is computed as:

D(Ig, Ip) = ωSB25.‖IgSB25 − IpSB25‖2+ωSB20.‖IgSB20 − IpSB20‖2 (5)

ωSB25 = 0.035 and ωSB20 = 0.05 are RIFs obtained for SB25 and SB20 re-
spectively. The proposed approach with its two steps: best bands selection using
RIF and spectral bands fusion at match score level using Eq 5, is compared to
three other basic approaches which are : using broad band images Xgray, using
randomly selected two spectral bands Xtwo (in our case we have chosen SB12
and SB19) and using all the 25 spectral bands Xall for face matching. The letter
X designates the used algorithm (MBLBP or HGPP). For the multispectral im-
ages based approaches, each spectral band is weighted by its RIF and summed
similarly as in Eq 5. CMC curves in Fig 2 and rank-1 recognition rates in Table
1 summarize the obtained results. we can see that using all or randomly chosen
spectral bands gave bad results compared to using broad band images, while us-
ing selected best spectral bands gave the best performances. We conclude from
this, that a multispectral images based face recognition system is inefficient and
may be very time consuming, unless its preceded by a good system/phase for
best spectral bands selection. Our approach has increased the recognition per-
formance with 10% and 14% for MBLBP and HGPP algorithms respectively,
which promote the use of multispectral images for illumination related problems
in face recognition.

Fig. 2. CMC curves obtained for HGPP and MBLBP algorithms using different set of
selected spectral bands

Table 1. Rank-1 recognition rates (%) of studied algorithms

RIF gray two all

HGPP 65 51 46 43

MBLBP 54 44 41 34
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5 Conclusion

In this paper, we proposed a new approach for best spectral bands selection for
face recognition. Multispectral images of 35 subjects presenting 25 different spec-
trums from 480nm to 720nm and three lighting conditions are grouped in a 3-mode
face tensor T of size 35× 25× 2 . T is then decomposed using 3-mode SVD where
three mode matrices for subjects, spectral bands and illuminations are sparsely
determined. The 25×25 spectral bands mode matrix contains a sparse vector for
each spectral band that changes value with the change of illumination condition.
We proposed to measure this change of sparse values to determine the robust-
ness of each spectral band against high illumination variation presented by sun
lighted images. Spectral bands with the lowest change in their sparse vectors are
the less affected by illumination variation and hence were selected as the best spec-
tral bands. Two spectral bands SB25 and SB20 at 720nm and 670nm respectively,
were chosen by our approach as best spectral bands and were used to enhance the
recognition performance of MBLBP and HGPP algorithms. An increase of ac-
curacy of more then 11% have been registered for both algorithms compared to
their performances on braod band images. These results highlighted the efficiency
of multispectral images when they are coupled with an optimized system for best
spectral selection. In future work, we plan to apply our algorithm on other mul-
tispectral images databases and investigate the different mode matrices provided
by the multilinear decomposition approach.
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