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Abstract. Interpolations are among the most important tools for image
processing. However, whether they are used for image compression and
reconstruction purposes or for the increase of the image resolution along
vertical, horizontal or both dimensions, the induced interpolation errors
are often only qualitatively and a posteriori described. In this paper,
we propose to extend a method used in an OFDM context to achieve
a quantitative a priori estimation of interpolation errors. As shown by
simulations, this estimation proves to be consistent with a posteriori
error and quality measurements, such as mean square error (MSE) and
peak signal-to-noise ratio (PSNR).
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1 Introduction

Interpolations are often used in image processing when it comes to apply com-
pression and decompression techniques, to achieve reconstruction of damaged
images, or resolution change. Although techniques are more and more precise,
such an operation inevitably reduces the picture quality, with respect to the
original image. The tools allowing the measurement of picture quality are widely
described in [1] either by a qualitative and subjective human observation or by
quantitative a posteriori measurements. This article deals with a priori picture
quality prediction by means of quantitative measurements.

The author of [2] proposed a technique to address the problem of transmitting
and archiving large image data, namely in distributed environments. The aim
is to achieve high compression ratios while limiting degradations resulting from
excessive information loss, using multi-resolution wavelet analysis [3]. No theo-
retical assumptions or error estimations are given whatsoever, whether predicted
or a posteriori calculated. In [4], a detailed state of the art of interpolation tech-
niques used in image processing is presented. Among them, the most commonly
used are based on low order polynomial functions, such as the nearest-neighbor
(NN), the linear or the cubic interpolations.
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Even in recently published papers, a subjective evaluation by an observer is a
common way to compare the performance of different interpolation techniques
[5]. A more objective manner is to use picture quality measurements such as the
minimum mean square error (MSE) or the peak signal to noise ratio (PSNR),
used in [6] to compare different zooming methods. Although these approaches are
different, both evaluations prove efficient for the choice of a given interpolation
technique, as shown in [7] where objective measurements corroborate human
observations. However, these evaluations only provide an a posteriori estimation
of interpolation error.

In this paper, we propose a statistics-based method for measuring interpo-
lated picture quality, whose principle has been proposed for the estimation of
Rayleigh channels in an orthogonal frequency division multiplexing (OFDM)
modulation context [8]. Considering images that can be defined by a sum of ran-
dom Gaussian processes we analytically determine the picture quality given the
chosen interpolation method, the increasing resolution rate and the statistical
parameters of the images. Due to their simplicity, the nearest-neighbor and lin-
ear interpolations are used to achieve the theoretical developments, but higher
order interpolations, such as the bicubic interpolator, shall be investigated in
future developments. The main advantage of the proposed method lies in the
opportunity to a priori choose the interpolation method, given the targeted im-
age quality. In the following, synthetic images of stars and waves are simulated,
but one can easily imagine an application of the proposed method on whole or
parts of real pictures.

The rest of this article is organized as follows: Section 2 describes the chosen
image model, the interpolations and picture quality measurements used after-
ward. In Section 3 are developed the statistical analysis from which we obtain
the a priori error, and simulations in Section 4 validate the theoretical results.
Finally, we draw conclusions and perspectives in Section 5.

2 Images Model

In this section, we present the notations that will be used throughout this paper,
as well as the image model and the considered interpolation techniques.

Let S denote a set of N test images, and I, € S, k < N the k' image of the
set. Each image of a single set has the same vertical and horizontal resolutions
Vres and Hges, and we write out py, (7, j) the pixel on the i**row and j*'column
of image I, 0 < i < Vges, 0 < j < Hpes. Keep in mind that, according to the
context, pk (4, j) could represent either the pixel itself or the value (e. g. the
intensity) of the very same pixel.

To comply with the theoretical assumptions made in [8], images within sets
must follow a Gaussian distribution. To achieve this, we consider that each im-
age set S is a time series of images whose pixel intensities vary according to
coefficients following a Gaussian distribution, i.e.:
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M—-1
Qm, kfm i, .7) (1)
m=0

with ay, . a zero-mean Gaussian process with variance O’im and f,, a determin-

istic function that is C? on R2. Then, any image I} picked from S fulfills the
requirements established by [8] to achieve a priori interpolation error estimation.
Bearing in mind that we aim at using our technique for any image, as will be
discussed in subsequent sections, the way we construct our images is chosen so
as to obtain synthetic images which nonetheless resemble real images, such as
dark sky dotted with stars, interference patterns or sea clutter. In this paper,
we shall present the results obtained for two models:

— the stars: the functions fy, in (1) are defined by
e G, g) = e—((z‘—z’m)2+(j—jm)2)/am’

where, for m =0,.., M — 1, a,, is a fixed real positive coefficient that char-
acterizes the "width” of each function f3,, and the couple (i, jm) defines
the position of the m' stars on the picture, as depicted in Fig. 1 (a). We
also show in the video https://www.youtube.com/watch?v=ktjHhrs1QKg
a set S composed of N = 560 images depicting M = 18 stars. The ran-
dom fluctuations of the star light intensities may simulate the atmospheric
disturbances, e.g. the index change or cloudy spells.
— the waves: the functions f,, in (1) are defined by

(i, §) = Acos (2memapi + 2memyj) 5

where A, ¢, and ¢,y are fixed real coefficients, as depicted in Fig. 1 (b). We
also show in the video https://www.youtube.com/watch?v=XLnq2DHnYC4 a
set S composed of N = 420 images simulating natural sea waves as a sum
of M = 10 stationary waves. For a better observation of the waves, a 3D
visualization is proposed.

In both models, the varying random coefficients a,y, ; are simulated by means
of a Monte-Carlo method. Given an image Iy, picked from a set S built as pre-
sented above, we study the effects of interpolations on I for scenarios such as
subsampling of Ij (for compression purposes, for instance) followed by an inter-
polation step to get back an image I, similar to Iy, zooming in Iy, or stretching
I, along either one or both dimensions.

For the sake of simplicity, we limited ourselves to Nearest-Neighbor and Linear
interpolations, performed along one dimension (vertical or horizontal), though
we shall study other techniques and two-dimensions interpolations in further
works. The results of our a priori interpolation error measurements, which we
might call scores, are then compared to the values one obtains a posteriori with
mean square error (MSE) and peak signal to noise ratio (PSNR) measurements.


https://www.youtube.com/watch?v=ktjHhrs1QKg
https://www.youtube.com/watch?v=XLnq2DHnYC4
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(a) Stars. (b) Waves.

50 100 150 200 250 300
I
Fig. 1. Two pictures I with Gaussian intensities

3 Picture Quality Prediction

According to the previous model, we may reduce the resolution of our images by
suppressing either rows or columns. Let us then define S' the set of N test images
obtained after having removed columns from the images of .S, and I ,i eSLkE<N
the k'™ image of the new set. We suppose that the suppressed columns are
regularly spaced, with a factor ¢ = H ﬁ%es /HRes, where H ﬁ%es is the horizontal
resolution of the images [ ,i Fig. 2 illustrates this with an image taken from the
stars set, the resolution decreasing from (a) to (b) with ¢ = HY_ /Hg.s = 1/8.

(a) High resolution image. (b) Low resolution image.

Fig. 2. Resolution decreasing with ¢ = HEES/HRSS = 1/8 along the 7 axis

From S!, we obtain a set S” (the superscript stands for “reconstructed”) by
means of an interpolation, in such a way that the images I}, € ", 1 <k < N
have the same resolution as I € S. Let us denote py (4, j) the pixels of I},
obtained after the interpolation step. As performed in [8] in an OFDM context,
we now propose a picture quality prediction in terms of PSNR, according to the



362 V. Savaux et al.

statistics of Iy, the factor ¢ and the interpolation method. To this end, whatever
i = 1,.., Vges, we consider a pixel py (i, js) of I} between two adjacent pixels
Pk (4, ja) and py (4, j»). Given the resolution reduction, we have j, — j, = 1/c.

Since the images have a Gaussian intensity, we deduce from [8] that the
interpolated images also have a Gaussian intensity. Consequently, the error

= |pk (4, js) —Pr (i, js) | measured on an interpolated pixel follows a Chi distri-
bution with one degree of freedom. For the NN interpolation, the error is noted
Enn, and is simply given by

M—1
gNN(iajé): ‘ Z am,k(fm (i, j5)*fm (ia ja))|v (2)
for we have py, (i, js) = pk (4, ja). For the linear interpolation, the error is noted
&1i, and is derived from the Taylor’s expansion of f,, on (i, j,) and (i, jp):

. .. . . "o

&t Js) = 4106 = J5)(Ja = J)| < Ipi (4, 3s) |, (3)

where p} is the second derivative of py, which is valid since the functions f,, are
C? on R?%. Using the expression (1), we develop (3) to get:

M—-1

NG = 35)Ga — 31 % | pIPEEACERL! (4)

&ili,js) = 9

From (2) and (4) and using the results of [8], we deduce the variance of the
error 07 = E{&?}, where E{.} is the mathematical expectation. Bearing in mind
that Vm = 0,..,M — 1, ay,  are taken from independent zero-mean Gaussian
processes, we obtain

M-1
- 2
U§NN i .]5 = Z Uam fm Z ,75) fm (Za ja)) ) (5)
m=0
2 (s 1 // .
02, (i:d5) = (G = G5)a — Js)| Z ol |f2 i, js) > (6)

The variances (5) and (6) define the local MSE on the pixels (4, js). Let us define
A the set of the coordinates js corresponding to the interpolated pixels. Then,
the total MSE, noted M SEr is calculated by averaging on all the interpolated
pixels as

VRes
MSEr = 7
= VRescard Z Z 05 i Js); Q

i=1 js€A

with card(A) the cardinality of A. We finally deduce the PSNR:

1'2
PSNR = 10log;, (M’g,‘g ) , (8)
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where I,;,q, is the maximum pixel value. From (5), (6), (7) and (8), we may state
that the total MSE and the PSNR depends on the factor ¢ (or equivalently on
the size of A), the functions f,, and the second-moment order of the image a,zn.
Since all these parameters are known, the quality characteristics MSFEr and
PSNR are deterministic and can be a priori estimated, which is verified in the

next section.

4 Simulations Results

4.1 Simulations Parameters

In order to validate the previous developments, we use the two sets stars and
waves, each composed of 2600 images. The resolutions of the pictures of stars
and waves are Vies = Hpres = 301 and Vges = Hpes = 401 pixels, respectively.
Table 1 gives the positions of the centers of the 18 stars that compose the images
in stars, and the variance of their intensity is given in the third row. For waves,
Table 2 gives the directions and the variance of the 10 waves that compose the
images. In our simulations, the pixels are represented using 8 bits, s0 I;,4,=255.

Table 1. Table of parameters for the stars images.

iaxis 45 16 297 56 234 144 87 166 10 286 33 226 262 90 238 277 132 189
j axis 228 167 179 293 211 280 68 52 107 227 86 280 282 254 137 255 86 260
Oa,y, 0.8 0.64 0.18 0.53 0.22 0.55 0.06 0.59 0.42 0.19 0.06 0.07 0.31 0.94 0.98 0.56 0.99 0.69

Table 2. Table of parameters for the waves images.

cmz -0.58 0.66 -0.36 -0.41 0.86 -0.23 0.62 0.59 0.91 0.97
Cmy -0.16 0.72 0.64 -0.84 -0.67 -0.03 -0.19 -0.96 0.71 -0.5
Oa,, 0.8 0.640.18 0.53 0.22 0.55 0.06 0.59 0.42 0.19

4.2 MSE and PSNR of the Interpolated Images

The tables 3 and 4 present the results obtained for the stars and waves sets. In

these tables, Dyqz (X) represents the maximum value of the absolute difference

between the a posteriori measurement X° , and the a priori measurement X4,

that i8 Diar (MSE) = max (|o(i, js)® — o(i, js)™|), with o(i, j5)* defined as in
»Jé

(5) or (6), D(MSEr) = (|[MSEZ — MSEZ|), with MSEZ defined as in (7)
and D (PSNR) = (|PSNRS — PSNR*|), with PSNR* defined as in (8).
The measurements D,,q. (M SE) are presented so as to give an idea of local
maxima of the difference between a priori and a posteriori calculations. Indeed,
as large part of the images belonging to this set consist only on a uniform
background (namely for the stars set), interpolating pixels there will not lead
to any error, as depicted in Fig. 3, thus diminishing the mean value D (M SEr).
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(a) Simulation. (b) Analysis.

Fig. 3. MSE versus (4, j) of NN-interpolated images from stars with ¢ = 10.

Table 3. Measures for stars

stars NN linear
c 2 4 10 2 4 10
Dumaz(MSE) 29%x107% 1.31x1072 1.45x 1071 897 x 107 2.79 x 107* 1.75 x 1072
D(MSET) 2,62 x 107° 6.21 x 107° 3.11x 107% 4.84 x 107% 1.34 x 107% 9.57 x 107°
D(PSNR) in dB -0.12 0.06 -0.17 0.09 0.31 0.86
PSNR ref in dB 81.9 79.09 72.25 103.34 93.02 78.35

The disparity between Dye, (MSE) and D (MSEr) is not as significant for
the waves set as for the stars set, because wave images are built from sums
of continuous cosine contributions, and interpolations therefore produce errors
everywhere on the image.

The values we obtained are consistent: one can observe the PSNR we estimate
follows the trend of the a posteriori calculated PSNR, decreasing when the col-
umn suppression factor ¢ increases. Besides, the estimated values are very close
to the measured ones. We also notice the results obtained for linear interpolation
are significantly better than those obtained for the NN-interpolation. This can
be easily explained by the better precision of the linear interpolation compared
to the NN one. Consequently, we verify that the proposed method allows a very
accurate error estimation.

4.3 Discussion and Further Works

The method yields very good results on highly synthetic images, and with simple
low order interpolation techniques. With regards to such results, the proposed
analysis may lead to consider practical implementations. For instance, an obvious
application is to use the technique for image quality prediction. In order to
extend that, the quality prediction may enable an adaptive resolution process,
in function of a target image quality that can be a priori accurately computed.
We plan to further investigate our method with the following objectives in mind:
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tests with higher order interpolations, such as spline or bicubic interpolator,
— extension of the analysis whatever the image probability density,
modification of the resolution along both dimensions,

— tests on real images.

We shall have two different image types for our tests on real image sets. First,
we shall test the method on images which resemble the highly synthetic test
images we first used, that is photos of starred skies, of sea clutter and waves, of
cloud formations, or any real image which we could reasonably approximate with
sums of Gaussian distributions. On the other hand, we shall test images with no
assumption about their Gaussian nature whatsoever. If need be, we shall also
test the method locally in these images, selecting areas for which theoretical
requirements are met, or for which the Gaussian assumption holds true. As
aforementioned, this latter consideration opens another exciting perspective: one
could imagine choosing different interpolations techniques given a region within
the image, thus designing an adaptive interpolation system.

Table 4. Measures for waves

waves NN linear
c 2 4 10 2 4 10
Doz (MSE) 5.46 x 1074 1.8 x 1072 247 x 1072 22x 1077 3.35x10°% 1.42x107%
D(MSET) 1.41 x107% 223 x107% 1.7x 1073  6.59 x 1078 6.52 x 1077 2.72 x 10~°
D(PSNR) in dB 9.15 x 1072 -0.11 0.145 0.2 -0.04 -0.25
PSNR ref in dB  70.26 67.05 60.57 103.67 92.9 77.54

5 Conclusion

This paper dealt with a method for the a priori picture quality measurement in
image processing. Interpolations are usually required when decompressing im-
ages or when reconstructing damaged images, inducing errors that deteriorate
the picture quality. In the literature, some common quality measurements such
as the MSE or the PSNR a posteriori characterize the interpolated image quality.
We here proposed to a priori perform this measurements, using the statistical
properties of the images, and we showed the accuracy of our method, in compar-
ison to the a posteriori measurements. Thus, for an expected picture quality, the
proposed analysis allows to a priori choose the resolution decreasing factor ¢ and
the interpolation method that fulfill the better trade-off between data rate and
complexity. The developments was achieved considering the simple NN and the
linear interpolation, but we are investigating the analysis with higher-order in-
terpolator functions. Moreover, a resolution decreasing over the two dimensions
has to be considered, and a practical implementation on more realistic pictures
would be interesting for a practical implementation.
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