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Abstract. The existing spectral colour difference metrics are not similar
to CIEDE2000. The goal in this study was to implement a system to cal-
culate the difference of spectral colours so that the calculated differences
are similar to CIEDE2000 colour differences. The developed system is
based on a priori calculated differences between known spectra and the
calculus parameters derived from them. With the current system one
can calculate spectral differences between a limited set of spectra which
are derived by mixing the known spectra. The computation of calcu-
lus parameters for the system is a demanding process, and therefore,
the calculations were distributed to a cluster of computers. The pro-
posed spectral difference metric is very similar to CIEDE2000 for most
of the test spectra. In addition, the metric shows non-zero differences for
metameric spectra although CIEDE2000 colour difference metric results
in zero differences. This indicates more correct operation of the spectral
difference than the operation of CIEDE2000 colour difference.

1 Introduction

Spectral differences are needed in many scientific areas, e.g. in colour science
[12], remote sensing [5], and in recording cultural heritage [1]. The applications
of spectral information vary from clustering and classification to spectral recon-
struction and to application of regression analysis [10].

The current approaches for computing spectral differences are emphasizing
low computational complexity, and applications may be built based on the Eu-
clidean distance even though it might not fully match with the requirements. In
remote sensing, Spectral Angle Mapper (SAM) [2] has gained significant popu-
larity. Spectral information is used also in computing the vegetation index. Now
only some bands from the spectrum are used in the calculation [3], [5]. For the
classification task, support vector machines have been introduced [7]. In general,
the classification task does not require exact differences, but only a measure to
construct the hyperplanes that separate the groups of objects from each other.
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The motivation for a new spectral difference metric originates from applica-
tions and cases where the CIEDE2000 difference (ΔE00) is zero even though the
two spectra are different. ΔE00 is computed using inner products between the
spectra and the colour matching functions, and these inner products are exactly
the reason that the spectral differences are concealed. Two metameric spec-
tra act similarly and the illuminant removes the colour difference even though
the actual values for the two spectra are different. Yet another example is the
spectral reconstruction (e.g., multiple regression analysis, MRA) [10] where a
high-dimensional spectrum is estimated from the original colour. If the original
spectrum is available, one can quantify the quality of the estimation process with
the spectral differences [10].

Our goal is to develop a general approach to calculate the difference for any
two spectra. The difference can then be used in various applications. The basic
requirement for the approach is that the differences should match the ΔE00

colour difference values which, in this study, is considered as a model for the
human visual system. This constraint implies that the approach in its current
form is usable only in the human visual range.

The structure of the paper is as follows. In Section 2, we show the traditional
approaches how to calculate the colour and spectral differences. In Section 3, we
introduce the proposal for the calculation of the spectral differences. Section 4
contains the experiments, and the discussion and conclusions are presented in
Section 5.

2 Differences for 3D Colours and Spectral Colours

2.1 Colour Differences

The differences computed by the proposed approach are following the values
from ΔE00 colour difference equation [8], [6]. This difference equation uses Lab
colour space, and it is well designed to take into account also nonlinearities in
the colour space. The equation for ΔE00 is
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where the Lab values are transformed to LCH values (luminance, chroma, hue).
The last term accounts for the special case in the blue region.

2.2 Spectral Differences

For spectral data, many practical solutions have been developed to calculate the
spectral differences. Typically, they are simple to calculate and in many cases
they are measuring the physical stimulus and not the response of the human
visual system. Several approaches are compared in [11]. They found that the



Spectral Colour Differences through Interpolation 89

Spectral Comparison Index (SCI) performed best for various levels of ΔE. SCI
is defined as a sum of weighted differences Mv as

Mv =
∑
λ

w(λ)∗ ‖ Δβ(λ) ‖, (2)

where the weights w(λ) are calculated as

w(λ) =
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+
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where Δβ(λ) contains the spectral differences and dL∗/Δβ(λ), da∗/Δβ(λ), and
db∗/Δβ(λ) contain derivative values with respect to Δβ(λ) [11].

The Spectral Angle Mapper (SAM) measures the angle between the two spec-
tra [2]

SAM(s, t) = arccos

(
s · t

‖ s ‖ ‖ t ‖
)
. (4)

with s and t as the two spectra and it is very popular in remote sensing appli-
cations [5].

When the two spectra are considered as random variables then an information
theoretic approach proposes a measure between the two variables can be derived
as SID [2]. First, the probabilities qj in a spectrum y are computed as

qj =
yj∑L
l=1 yl

, (5)

and similarly to pj from spectrum x, and then the dependency D(x ‖ y) is
defined as

D(x ‖ y) =

L∑
l=1

pl ∗ log
(
pl
ql

)
, (6)

and finally SID is received as

SID(x ‖ y) = D(x ‖ y) +D(y ‖ x). (7)

There are many positive properties with the above measures. The calculations
are simple and they are not limited to spectral colours, but the measures can be
used in any range which is important in remote sensing applications.

3 Interpolating Spectral Differences in Spectral Domain

Our proposal is based on interpolation: we interpolate between the known values
which are the ΔE00 colour differences between the known spectra. These known
values are precomputed as a separate task. As the set of known spectra we have
been using the Munsell set of spectra [9].
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A new spectrum sp3 is interpolated from the two known spectra sp1 and sp2 as

sp3 = (1 − a) ∗ sp1 + a ∗ sp2 0 ≤ a ≤ 1, (8)

and the corresponding difference ΔEi1(sp2, sp3) between the two spectra sp2
and sp3 becomes

ΔEi1 (sp2, sp3) = k1 ∗ΔE00(sp1, sp2). (9)

Now the problem is to define the dependency between k1 in Eq. 9 and a in Eq.
8. In our initial experiments we found that this dependency is not linear but
parabolic, and now k1 becomes

k1 = f1(a) = p12a
2 + p11a+ p10 . (10)

The coefficients p1i in Eq. 10 need to be computed, and for the parabolic equa-
tion, three additional known spectra between sp1 and sp2 are needed to deter-
mine the coefficients. When the coefficients are found then in Eq. 8 any value can
be set for a, 0 < a < 1. Since these coefficients are static, they were precomputed
and stored in a database.

The setting is shown in Fig. 1a where there are two known spectra, sp1 and
sp2, the interpolated spectrum sp3, and the spectral difference ΔEi1 is computed
between sp2 and sp3.

Next we are adding new neighbors for the interpolation, the various constella-
tions are shown in Fig. 1b, ..., e. In case e, we show only the first group and the
spectrum spn1 in the tetrahedron. The second group has the similar construct
and the second spectrum spn2 exists in that tetrahedron. The difference ΔEi

is calculated between spn1 and spn2 as ΔEi = ΔE(spn1, spn2). More known
spectra can be added in a similar fashion, but the visualization of those higher-
dimensional cases becomes more complicated.

For each case the corresponding equations for the spectral differences ΔEi

and for the multiplier k are as follows:

b) ΔEi2 (sp3, sp4) = k2 ∗ΔE(sp2, sp4) + (1− k2) ∗ΔE(sp1, sp4)

k2 = f2(a) = p24a
4 + p23a

3 + p22a
2 + p21a+ p20

c) ΔEi4 (sp3, sp6) = k4 ∗ΔE(sp3, sp4) + (1− k4) ∗ΔE(sp3, sp5)

k4 = f4(a, b) = p44b
4 + p43b

3 + p42b
2 + p41b+ p40

d, e) ΔEi5 (spn1, spn2) = k5 ∗ΔE(spn1, sps2) + (1 − k5) ∗ΔE(spn1, spp2)

k5 = f5(ps1, ps2) = p64p
4
s2 + p63p

3
s2 + p62p

2
s2 + p61ps2 + p60 . (11)

The solution of the coefficients pi in cases b, ..., e becomes more complicated
than for the basic case a, but in all the cases, the values for the multipliers were
precomputed and they were stored in the database. Now we can freely set the
values for the interpolation parameters, and compute the spectral differences
between those two spectra.

If the two spectra are some known ones, e.g. from a specific application, then
one can calculate the barycentric coordinates for those two spectra and then find
the difference between them.
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Fig. 1. Constellation of spectra. Black circles correspond to known spectra, hashed
spectra correspond to interpolated spectra, and the difference is computed between
the (interpolated) unfilled circles. a) sp1, sp2 and sp3 and the difference is computed
as ΔE(sp2, sp3), b) ΔE(sp3, sp4), c) ΔE(sp3, sp6), d) ΔE(spn1, spn2). e) The first
group is shown as a tetrahedron. Now the spectrum spn1 is selected from this group
and the similar spectrum spn2 is selected from the second group. The difference is then
ΔE(spn1, spn2).
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4 Experiments

In the experiments, we show how our interpolative system finds the spectral
differences. The first experiment is comparing the spectral differences ΔEi to
ΔE00 colour differences. The second test works with the metameric spectra, and
in the third experiment, the interpolative system is compared with the well-
known metrics in calculating the spectral differences.

4.1 Spectral Differences ΔEi vs. ΔE00 Colour Differences with
Small Colour Differences

Many spectral and colour differences were calculated in various locations in Lab-
space. For each (a, b) center, a set of differences between several spectra were
calculated. The interest in this experiment was in the difference between the
spectral difference and the colour difference, in principle in ||ΔEi −ΔE00||. Fig.
2 illustrates the results. The mean of the absolute differences, standard deviation,
and median are presented for all those sets of differences for many (a, b) centers.
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mean 1.978
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mean 0.403
std 6.26
median 0.0226
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mean 0.896
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mean 1.081
std 43.99
median 0.0780

mean 0.719
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median 0.7062
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median 0.0290
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median 0.0168

mean 1.318
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std 41103.0
median 1.9503

mean 32.28
std 336471.9
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median 0.0272

mean 30.89
std 18726.5
median 1.1909

mean 1.297
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median 0.07267

mean 0.326
std 20.158
median 0.00400

Fig. 2. ΔEi spectral differences vs. ΔE00 colour differences in (a, b) space. L = 50
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The experiment indicates that the proposed measure fulfills the requirement
for matching with ΔE00. The results in Fig. 2 support this conclusion. Large
values for the mean and for the standard deviation show that the calculation of
the differences have failed for some spectrum pairs. The median indicates the
overall operation better than those values that include also outliers.

4.2 Spectral Differences ΔEi vs. ΔE00 Colour Differences for
Metameric Spectra

The colour difference between two metameric spectra disappears. One of the de-
sign goals for the proposed model was to find the difference also for the metameric
spectra. This would reveal that the two basic spectra are different. We con-
structed six metameric pairs and the results for this experiment are in Table 1.
The pairs were computed according to the model proposed in [11].

Table 1. Spectral difference ΔEi vs. ΔE00 colour difference. The two last columns
indicate how metameric the two spectra are. Small values in column Δ(βF1 , βF2) indi-
cate the higher metamerims for the basic spectra. High values in column Δ(βB1 , βB2)
indicate the distance to metameric black.

Pair ΔE00 ΔEi Δ(βF1 , βF2) Δ(βB1 , βB2)

1 3.02 7.08 3.34e-02 1.34
2 3.05 6.56 3.92e-02 1.08
3 0.495 13.9 5.21e-17 1.51
4 0.237 19.1 6.86e-17 1.53
5 0.546 2.15 6.04e-03 1.10
6 0.678 19.8 3.00e-17 1.72

The results with metameric spectra show that the proposed measure is able
to find the difference between the two spectra.

4.3 Spectral Differences ΔEi vs. Differences from the Standard
Metrics

Since the CIEDE2000 colour difference equation is designed for small colour
differences then this experiment is also comparing only small differences, namely
0 < ΔE00 < 10. The results in Table 2 show the difference between the measure
(either ΔEi, RMS, Weighted RMS [4], SAM, SID, and SCI) and ΔE00. Again,
a large set of experiments were run using various Lab centers. Typical results,
for one Lab center, are shown in Table 2.

Also the comparative results in Table 2 indicate the good correspondence with
ΔE00. In general, the proposed measure has better match with the human visual
system than any of the well-known metrics, see Table 2. The large mean and the
value for standard deviation for ΔEi include again some outliers. The median
reflects the general operation.
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Table 2. Spectral differences vs. the differences from the well-known metrics. The test
set was in Lab space close to location (L, a, b) = (50; 4.84;−4.94).

Metric Number of samples Mean Median Std.

ΔEi 2500 2.09e+00 8.35e-03 3.37e+03
RMS 2500 2.51e+00 2.33e+00 1.87e+00
WRMS 2500 2.50e+00 2.32e+00 1.85e+00
SAM 2500 2.47e+00 2.30e+00 1.82e+00
SID 2500 2.52e+00 2.34e+00 1.87e+00
SCI 2500 2.51e+00 2.33e+00 1.88e+00

5 Conclusions

The paper proposes a new approach to calculate spectral differences. The basic
requirement in the design was that the spectral differences should be close to the
ΔE00 values. As a consequence the measure also match with the differences seen
by the human visual system. The reporting allows to show only a limited set
of experimental results, but they indicate the operation quality of the proposed
measure.

There are also some issues where new development steps would be needed. One
consequence of the original requirements is that the measure is applicable only
for the colour spectra. The extension would require some measure that would
provide the learning set, as ΔE00 for the colour spectra. The computational
complexity is also high, both in the pre-calculation of the k parameters in Eq.
11. There are also situations where the model breaks up in calculating k values.
This can be seen in Fig. 2 as the value for standard deviation. In computations
this was seen almost as a division by zero and the reason originates from the
poor selection of the original spectra for the constellation, see Fig. 1.

These shortcomings are difficult to avoid and our future work will concentrate
in non-linear modelling of the spectral space and the corresponding colour space
and then finding the geodesics in those spaces.
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