PO-SAAC: A Purpose-Oriented Situation-Aware
Access Control Framework for Software Services

A.S.M. Kayes, Jun Han, and Alan Colman

Swinburne University of Technology, Victoria 3122, Australia
{akayes, jhan,acolman}@swin.edu.au

Abstract. Situation-aware applications need to capture relevant context
information and user intention or purpose, to provide situation-specific
access to software services. As such, a situation-aware access control ap-
proach coupled with purpose-oriented information is of critical impor-
tance. Existing approaches are highly domain-specific and they control
access to services depending on the specific types of context informa-
tion without considering the purpose. To achieve situation-aware access
control, in this paper we consider purpose-oriented situations rather than
conventional situations (e.g., user’s state). We take situation to mean the
states of the entities and the states of the relationships between entities
that are relevant to the purpose of a resource access request. We propose
a generic framework, Purpose-Oriented Situation-Aware Access Control,
that supports access control to software services based on the relevant
situations. We develop a software prototype to demonstrate the practical
applicability of the framework. In addition, we demonstrate the effective-
ness of our framework through a healthcare case study. Experimental
results demonstrate the satisfactory performance of our framework.

Keywords: Situation-aware access control, Context information,
Purpose, Situation reasoning, Access control policy.

1 Introduction

In open and dynamic environments, Situation-Aware Access Control (SAAC)
applications need to capture and manipulate context information [1] to identify
relevant situations and need to adapt their behaviors as the situation changes.
In such environments, users demand access to appropriate software services in
an anytime and anywhere fashion, as described by Weiser [2], with more flexi-
bility and richer resources, and yet not to compromise the relevant privacy and
security requirements of the stakeholders. A security policy (situation-aware ac-
cess control policy) normally states that the particular services can be invoked
based on (i) the states of the relevant entities and (ii) the specific purpose; which
describes the reason for which organizational resources are used [3]. For exam-
ple, an emergency doctor’s request to invoke a healthcare service (access to the
emergency patient’s records when the patient is in a critical health condition)
may be possible from the inside of the hospital but may not from the public bus.

M. Jarke et al. (Eds.): CAiSE 2014, LNCS 8484, pp. 58-74, 2014.
© Springer International Publishing Switzerland 2014

A Purpose-Oriented SAAC Framework for Software Services 59

Also, such service access request can be granted for the emergency treatment
purpose. In the medical domain the American Health Information Management
Association (AHIMA) identifies 18 health care scenarios across 11 purposes
(treatment, payment, research, etc.) for health information exchange [4]. There-
fore, in order to specify situations for SAAC applications, on the one hand, it is
required to capture the states of the relevant situation-specific context entities
(e.g., user, resource, resource owner) and the states of the relevant relationships
between different entities (e.g., the interpersonal relationships between the user
and the resource owner). On the other hand, it is required to identify the purpose
or user’s intention in accessing the software services.

The basic components to achieve situation-awareness have already been de-
fined by Endsley [5], “the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning, and the projec-
tion of their status in the near future”. Some other research describe situation
as the states of the specific kind of entities (e.g., [6],[7],[8]). However, other than
the entity states, the states of the relevant relationships between entities are not
considered in this situation-awareness research.

Some situation-aware access control approaches have been proposed in the
access control literature (e.g., [9], [10]), each of them having different origins,
pursuing different goals and often, by nature, being highly domain-specific. They
consider the specific types of context information (e.g., the user’s state) as policy
constraints to control access to software services or resources. However, other
than the relevant states, the purpose or user’s intention in accessing the services
is not considered in these works. In this paper, we consider the basic elements
of the situation-aware access control are: the combination of the relevant entity
states and the relationship states, and the purpose or user’s intention.

The Contributions. In order to address the above-identified research issues
and challenges, we present a novel framework PO-SAAC (Purpose-Oriented
Situation-Aware Access Control, to provide situation-specific access to software
services. The novel features of this framework are as follows:

(C1) Purpose-Oriented Situation Model. Our framework uses the purpose-oriented
situation information to provide situation-specific access to software services
(authorization), where we present a situation model to represent and reason
about the different types of situations. The purpose-oriented situation can
be composed of the relevant states of the entity and states of the relationships
between entities and the user’s intention or purpose.

(C2) Situation-Aware Access Control Policy Model. Our framework presents a
SAAC policy model to specify situation-aware access control policies. The
policy model supports access control to the appropriate software services
based on the relevant situations.

(C3) Ontology-Based Framework Implementation. Based on the situation and
policy models, we introduce an ontology-based platform for modeling and
identifying purpose-oriented situations, and enforcing situation-aware
access control policies that take into account the relevant situations. Our
ontology-based framework represents the basic elements using the ontology

60 A.S.M. Kayes, J. Han, and A. Colman

language OWL, extended with SWRL for identifying and reasoning about
relevant situations and the corresponding access control policies.

(C4) Prototype Implementation and Evaluation. In order to demonstrate the
practical applicability of our approach, we have presented a software pro-
totype for the development of the situation-aware access control applica-
tions. We have carried out a healthcare case study, in order to demonstrate
the effectiveness of our framework. To demonstrate the feasibility of our
framework, we have conducted a number of experiments on a simulated
healthcare environment. We have quantified the performance overhead of
our framework for measuring the response time. Experimental results have
demonstrated the satisfactory performance of our proposed framework.

Paper Outline. The rest of the paper is organized as follows. Section 2 presents
a healthcare application scenario to motivate our work. In Section 3, we present
the design of our PO-SAAC framework, a situation model to specify different
situations and a policy model for specifying situation-specific access control poli-
cies. Section 4 presents an ontology-based development platform for our frame-
work. Section 5 describes the prototype implementation along with the viability
of the framework. Section 6 discusses related work. Finally, Section 7 concludes
the paper and outlines future work.

2 Research Motivation and General Requirements

As an example of the type of situations that a situation-specific access control
framework has to consider, in this section we outline a motivating scenario that
illustrates the need for the incorporation of purpose-oriented situation infor-
mation in access control policies. We then distil the general requirements for
managing the access to software services in a situation-aware manner.

Motivating Scenario. To exemplify the complexity of achieving situation-
awareness in access control systems, we reflect on the area of patient medical
records management in the healthcare domain as a motivating scenario.

Scene #1: The scenario begins with patient Bob who is in the emergency room
due to a heart attack. While not being Bob’s usual treating doctor, Jane, a
general practitioner at the hospital, is required to treat Bob and needs to ac-
cess Bob’s emergency medical records from the emergency room of the hospital.
Concerning this scene, one of the relevant situation-aware access control policy
is shown in Table 1 (see Policy #1).

Scene #2: After getting emergency treatment, Bob is shifted from the emergency
department to the general ward of the hospital and has been assigned a registered
nurse Mary, who has regular follow-up visits to monitor his health condition.
Mary needs to access Bob’s daily medical records from the general ward with
certain conditions (see the corresponding Policy #2 in Table 1).

Concerning the above scenario and their related policies, we can see that a set
of constraints include: the user role (e.g., emergency doctor, registered nurse), the

A Purpose-Oriented SAAC Framework for Software Services 61

Table 1. Example Access Control Policies

No Policy

Policy #1 A general practitioner who is a treating doctor of a patient, is allowed to read/write the
patient’s emergency medical records in the hospital for emergency treatment purpose.
However, in an emergency situation (like Scene #1), all general practitioners should
be able to access the patient’s emergency medical records in the hospital (by playing
the emergency doctor role).

Policy #2 A registered nurse within a hospital is granted the right to read/write a patient’s daily
medical records during her ward duty time and from the location where the patient is
located for daily operational purpose.

relevant environmental information (e.g., the emergency room, the interpersonal
relationship between doctor and patient), the service (e.g., emergency medical
records, daily medical records), and the purpose/user’s intention in accessing the
services (e.g., emergency treatment, daily operation); and these policies refer to
need to be evaluated in conjunction with these relevant information.

General Requirements. To support the situation-aware access control in a
computer application like the patients’ medical record management system, we
need to consider the 3Ws: who (the appropriate users by playing the appropriate
roles) wants to access what (the appropriate services), and when (the relevant
states and the purpose or user’s intention in accessing the services). In particular,
a general purpose-oriented situation-aware access control framework is required
to manage the access to services in such applications by taking into account the
different types of relevant situations. As different types of elementary information
are integrated into the access control processes, some important issues arise.
These issues and their related requirements are as follows:

(R1) Representation of purpose-oriented situations: What access control-specific
elementary information should be identified as part of building a purpose-
oriented situation model specific to SAAC? Furthermore, how to represent
and reason about the different types of situations?

(R2) Specification of situation-aware access control policies: How to define the
access control policies based on the relevant situations to realize a flexible
and dynamic access control scheme?

(R3) Implementation framework: How to realize the relevant situations and the
corresponding situation-specific access control policies in an effective way,
in oder to access/manage software services?

3 Purpose-Oriented Situation-Aware Access Control
In this section, we present our Purpose-Oriented Situation-Aware Access Control

(PO-SAAC) framework for software services.

3.1 Purpose-Oriented Situation Model

A situation consists of the set of elementary information (the combination of the
relevant states and the user’s intention or purpose-oriented information). In our

62 A.S.M. Kayes, J. Han, and A. Colman

purpose-oriented situation model, we define the simple situation (atomic situa-
tion) and the complex situation (composite situation) that are used in specifying
situation-specific access control policies.

3.1.1 Representation of Situation
Different atomic situations can be defined based on the data/information from
the organization (domain-specific).

Definition 1 (Atomic Situation, S,). A Situation used in an access control
decision is defined as the states of the relevant entities and the states of the
relevant relationships between different relevant entities at a particular time
that are relevant to a certain goal or purpose of a resource access request. A
Purpose is the user’s intention in accessing software services. The Situation and
Purpose are domain-dependent concepts, and their values can be obtained based
on the access request (i.e., from the sensed contexts, inferred contexts, etc.).
An atomic situation ‘S,’ is the logical conjunction of ‘P’ and ‘St’.

S, = P A St (1)

where ‘P’ denotes the purpose or user’s intention in accessing the service, e.g.,
considering our application scenario (Scene #1), purpose = “EmergencyTreat-
ment”; and ‘St’ denotes the state of the relevant entity, e.g., location(Jane)
= “Hospital”, or the state of the relevant relationships between entities, e.g.,
interpersonal Relationship(Jane, Bob) = “NonTreatingDoctor”.

A purpose ‘P’ can be identified based on the currently available contexts (i.e.,
the states of the relevant entity and the relationships between entities).

Exzample 1. Consider Policy #1 related to our application scenario: a user, who
is a general practitioner, by playing an emergency doctor (ED) role can access
a patient’s emergency medical records (EMR) in the hospital for emergency
treatment (ET) purpose, when the patient is in a critical condition. The following
rule (2) is used to identify that the purpose is ‘ET’ (i.e., a user by playing the
‘ED’ role can access a patient’s medical records for ‘ET’ purpose, when the
patient’s health condition is critical),

Purpose(p) A User(u) A Role(r) A Owner(o) A Resource(res)
A isPlayedBy(r,u) A equal(r, “ED”) A isOwnedBy(res, 0) (2)
A healthStatus(o, “Critical”) — equal(p, “ET”).

Ezxzample 2. Consider the policy mentioned in Fzxample 1, in which the relevant
elementary information is represented as an atomic situation (sq1 € Sy),

sq1 = User(u) A Purpose(p) N intended Purpose(u, p) A equal(p, “ET”)
A Location(l) A hasLocation(u,l) A equal(l, “Hospital”).

3.1.2 Reasoning about Situation
The process of inferring a new composite situation (complex situation) from the
one or more already defined/existing atomic situations is refereed to reasoning

A Purpose-Oriented SAAC Framework for Software Services 63

about situation. One of the main advantages of our framework to situation-
awareness is its reasoning capability; that is, once facts about the world is stated,
other facts can be inferred using an inference engine through the reasoning rules.

Definition 2 (Composite Situation, S.). Given a collection of atomic situa-
tions, the composite situations can be defined by performing logical composition
(AND, OR or NOT) on the same purpose-oriented atomic situations.

Example 3. Consider Policy #2 related to our application scenario. The daily
operation (DO) purpose can be identified using the following rule (4).

Purpose(p) A User(u) A Role(r) A Owner(o) A Resource(res)
A isPlayedBy(r,u) A equal(r, “RN”) A isOwnedBy(res, o) (4)
A healthStatus(o, “Normal”) — equal(p, “DO”).

Two atomic situations regarding the mentioned policy are represented as,

Sa2 = User(u) A Purpose(p) A intended Purpose(u, p) A equal (p, “DO”)
A Location(l) A hasLocation(u,l) A equal(l, “GW?”).

()

Sa3 = User(u) A Purpose(p) N intended Purpose(u, p) A equal (p, “DO”) 6
A Time(t) A hasRequestTime(u,t) A equal(t, “DT™). ©)
A policy associated with the situation ‘s,2’ can be read as, a user by playing
a registered nurse (RN) role, who is located with a patient in the general ward
(GW) of the hospital, can access the patient’s daily medical records (DMR) for
daily operation (DO) purpose, when the patient’s health condition is normal.
An example policy associated with the situation ‘s,3’ can be read as, a user
by playing the ‘RN’ role can access the patient’s ‘DM R’ during her ward duty
time (DT) for ‘DO’ purpose, when the patient’s health condition is normal.
A composite situation ‘s.;’ (sc1 € S.) with these two atomic situations (s42
and s,3) can be identified using the following logical conjunction, s.1 = Sa2 A Sas-

3.2 Software Services

A service is a self-contained software entity and may be composed of other
services (service composition). We consider the resource (e.g., patient medical
record) in a service oriented manner, in order to provide fine-grained access
control and grant the right access to the appropriate parts of a resource by the
appropriate users. A service can be seen as a pair <res, op> with ‘res’ being
a requested resource and ‘op’ being the action/operation on the resource. For
example, the write operation on the emergency medical records is defined as
<EMR, write> or writetEMR(). In this way, the fine-grained access control to
resources can be realized by managing the access to the service operations.

3.3 The SAAC Policy Model for Software Service

Based on the formalization of the RBAC model in [11], we present a formal
definition of our policy model. Our policy model for SAAC applications that

64 A.S.M. Kayes, J. Han, and A. Colman

extends RBAC with relevant situations, which is defined in the previous section.
Our goal in this research is to provide a way in which the role-permission assign-
ment policies can be specified by incorporating dynamic attributes (i.e., relevant
situations) as policy constraints.

Definition 8 (SAAC Policy Model). Our policy model for access control can
be formally described as a tuple, where R, S, Ser, and SAAC Policy represents
Roles, Situations, Services, and Policies, respectively (Formula (7)):

Mgsaac = (R, S, Ser, SAAC Policy) (7)

1. Roles (R): A set of roles R = {r1,...,7n }. A role reflects user’s job function
or job title within the organization. A user is a human-being (who is a service
requester) whose service access request is being controlled.

2. Situation (S): A set of situations S = {s1,...,sn,} = Sq U S, specified
by using the situation model. S is used to express the relevant situations
(atomic, S, or composite, S) in order to describe the SAAC policies.

3. Services (Ser): A set of services Ser = {sery,...ser,} = {(res,op)
|res € Res,op € OP}, where Res is a set of component parts of resources,
Res = {resy,...,resp} and OP is a set of operations on the resources,
OP = {op1,...,0pq}. In our policy model, a service is a well-defined and
self-contained software entity with an invocable interface to provide certain
capability to perform certain operations on resources.

4. Policies (SAACPolicy): A set of policies SAAC Policy = {sp1, ..., spr} C
R x S x Ser. Our model has situation-aware role-service assignment policies
to provide situation specific access to software services.

Our policy model extends the concept of common role-permission assignments
(RPA) in RBAC (RPA C R x P) [11], by introducing the concept of purpose-
oriented situation, called situation-aware role-service assignments.

Ezample 4: Based on our policy model (Role(r) A Situation(s) N\ Service(ser)
— (1, s, ser) € SAACPolicy), the following rule (shown in Table 2) expresses
the policy mentioned in Example 1, i.e., a User ‘«’ by playing the Role ‘r’ (emer-
gency doctor (ED) role) can invoke the Service ‘ser’ (writeEM R() service), if a
Situation ‘s’ (s denotes s,; mentioned in Example 2) is satisfied.

Table 2. An Example Situation-Aware Access Control Policy

If
SAACPolicy(sp1) A Role(r) A equal(r, “ED”) A hasRole(sp1,r) A
Service(ser) N equal(ser, “writeEMR()”) A hasService(spi, ser) A
Situation(s) A equal(s, “sa1”) A hasSituation(sp, s)

Then
canlInvoke(u, ser)

The identification of the relevant information to represent the purpose-oriented
situations and specify the corresponding SA A C policies satisfies requirements R (1)

A Purpose-Oriented SAAC Framework for Software Services 65

and R(2), which is discussed earlier. To meet requirement R(3), we in the next
section propose an ontology-based development platform.

4 Ontology-Based PO-SAAC Framework

We have introduced an ontology-based PO-SAAC framework to model relevant
purpose-oriented situations and situation-specific access control policies. The
principal goal of our framework is to formalize the situation-aware access control
concepts using a logic-based language. To achieve this goal, we have already
identified relevant concepts in the previous section.

In the literature, there are many languages that have been developed for
specifying computer-processable semantics. In the present age, ontology-based
modeling technique has been proven as a suitable logical language for modeling
dynamic contexts/situations (e.g., [12], [13]). The ontology-based modeling ap-
proach to achieve situation-awareness (e.g., [7], [8]) is not only beneficial from
the representational viewpoint but also beneficial from the reasoning viewpoint;
that is, once facts about the world is stated in terms of the ontology, other facts
can be inferred using the inference engine through the inference rules.

To model the PO-SAAC ontology, in this paper, we adopt the OWL lan-
guage as an ontology language to represent the situations, which has been the
most practical choice for most ontological applications because of its considered
trade-off between computational complexity of reasoning and expressiveness [13].

(Layer 3)
hasDecision SAACPolicy

- has
Spatiallnfo
hasRelationship

Purpose

ContextEntity

(Layer 1)

Fig. 1. The PO-SAAC Core Ontology

66 A.S.M. Kayes, J. Han, and A. Colman

In order to support the process of inferring new composite situations, we need to
define a set of reasoning rules that are associated with the existing or already de-
fined situations. In addition, several of the reasoning rules require mathematical
computation, which is not supported by the OWL language. Towards this end,
the expressivity of OWL can be extended by adding SWRL rules to an ontology.
We express the user-defined reasoning rules using the SWRL which provide the
ability to identify the purposes and to reason about new composite situations.

Core Concepts. A graphical representation of the PO-SAAC ontology is shown
in Figure 1. We model our ontology based on the 3Ws: who (user/role) wants
to access what (service) and when (relevant states and purpose). The ontology
facilitates software engineers to analyze and specify purpose-oriented situation
information of service invocation for access control in a situation-aware manner.
The ontology is divided into three layers. The top layer (Layer 8) shows the core
concepts/elements for specifying the SAAC policies. The middle layer (Layer 2)
shows the situation modeling concepts. The bottom layer (Layer 1) shows the
basic concepts for defining the context information and services (resources). The
ontology models the following core concepts.

The top layer has the following core concepts, which are organized into
SAACPolicy hierarchy, namely Role, Situation, Service, and AccessDecision
classes. A policy captures the who/what/when dimensions which can be read
as follows: a SAACPolicy specifies that a user (who is playing a Role) has Ac-
cessDecision (“Granted” or “Denied”) to Service if a Situation is satisfied.

The middle layer has the situation modeling concepts. A Situation consists of
the relevant States and the Purpose of user’s access request. A Purpose is a user’s
intention in accessing the services; and it can be identified based on the currently
available context information. A State can be composed of the relevant context
information. A Situation can be either an AtomicSituation binding a simple
situation or a CompositeSituation composed by one or more atomic situations
using logical operators. (How a new composite situation is specified/reasoned
based on the atomic situations by using the ontology-based reasoning rule, is
discussed in “Reasoning About Situations” Subsection.) A Service consumes a
set of software Resources to perform certain Operations. A Role is linked to the
User class by an object property isPlayedBy for representing the fact that a role
is played by a user. The Purpose class has an object property hasSubPurpose to
model the purpose hierarchy, so as to achieve the users’ service access request at
different granularity levels (detail in “Domain-Specific Concepts” Subsection).

The bottom layer has the following core concepts of the context entities and
context information. The different relevant entities (User, Resource, Owner) are
organized into ContextFEntity hierarchy. The relationship between a Resource and
its Qwner is represented by an object property named isOwnedBy. A context
characterizes the ContextEntity (e.g., the location of user) or the Relationship
between different entities (e.g., the interpersonal relationship between user and
owner). The contexts are represented by a number of context information types
(ContextInfo), namely RelationshipInfo, StatusInfo, Temporallnfo, and Spatial-
Info. To specify the different relationships between different entities, an object

A Purpose-Oriented SAAC Framework for Software Services 67

property hasRelationship is used which links ContextEntity and Relationship
classes. A general and extensible context model specific to access control is pro-
posed in our earlier paper [14].

Domain-Specific Concepts. The PO-SAAC core ontology (shown in Figure 1)
serves as an entry-point for the domain ontologies. The domain-specific concepts
extend the core ontology’s corresponding base concepts. It is important for the
application developers, providing a way to include domain-specific concepts into
the core ontology. Figure 2 shows an excerpt of the representation of the Purpose
ontology for the healthcare domain (e.g. treatment purpose, research purpose) to
exchange patients’ medical records. A purpose is identified based on the currently
available context information. To identify the purpose, we specify a set of user-
defined SWRL rules. An example rule shown in Table 3 identifies the Purpose
is DailyOperation(DO), based on the current contexts.

Table 3. An Example Rule that Captures the Purpose is DO

Purpose(?purpose) A Role(?role) A roleID(?role, “RegisteredNurse”) A User(?user) A is-
PlayedBy/(?role, Tuser) A Resource(?resource) A Owner(?owner) A isOwnedBy/(?resource, Towner)
A healthStatus(?owner, “Normal”) — intendedPurpose(?user, “DO”)

The different purposes at various
granularity levels of a user’s service
access request are individually iden-
tifiable, so as to achieve fine-grained
control over access to services. As
such, the Purpose class contains an
important data type property (zsd:int
type) named granLevel, which indi-
cates the granularity level. By doing
so, we can provide different levels of
purpose granularity. For example, an
Emergency Doctor can access a patient’s emergency medical records for the
Treatment purpose, at granLevel 0 (highest level), which means she also can
access for all the other sub-purposes (at the lower granularity levels). A Gen-
eral Practitioner can access a patient’s some medical records (e.g., daily medical
records) for the NormalTreatment purpose. However, she can not access a pa-
tient’s emergency medical records for EmergencyTreatment purpose.

We also consider the granularity levels of the healthcare Role and Resource
(patient’s medical records) hierarchies, in order to facilitate different fine-grained
control for different types (roles) of users, so as to achieve fine-grained control
over access to resource components at various granularity levels [14].

granLevel

granLevel=0
is-a N
Normal rergency
granLevel=1

Fig. 2. An Excerpt of Purpose Ontology

Reasoning about Situations. Various types of ontology-based inferences can
be performed for the situation identification and reasoning, service composition
and policy evaluation, including implicit knowledge reasoning as well as con-
sistency checking. A set of reasoning rules are specified for implicit knowledge

68 A.S.M. Kayes, J. Han, and A. Colman

reasoning, which reasons about the implicit knowledge conveyed by the specifica-
tion. For example, the rule specified in Ezample 3 is written in OWL/XML that
is used to reason about a new composite situation (S¢1 = Sq2 M Sa3, Sc1 C Se).
The specification of these two atomic situations (s,2 and s,3) are discussed in
Example 3. An example policy associated with this composite situation s.; spec-
ifies a registered nurse (RN) can access a patient’s daily medical records from the
general ward (GW) during her ward duty time (DT) for daily operation (DO)
purpose. The specification of this composite situation is shown in Table 4.

Table 4. An Example Composite Situation RNFromGWAtDTForDO

<CompositeSituation rdf:ID=%s.; RNFromGWAtDTForDO” >
<supportedSituation rdf:resource=“#s,2 RNFromGWForDO” />
<supportedSituation rdf:resource=“#s,3 RNAtDTForDO” />
< /CompositeSituation>
<Situation>
<owl:intersectionOf rdf:parseType= “Collection” >
<Situation rdf:about=“#s,2 RNFromGWForDO” />
<Situation rdf:about=“#s,3 RNAtDTForDO” />
< /owl:intersectionOf>
<rdfs:subClassOf>
<Situation rdf:about=“#CompositeSituation” />
< /rdfs:subClassOf>
< /Situation>

5 Prototype Implementation and Evaluation

We have developed our prototype in Java2 SE using widely supported tools and
it has been deployed on a Intel(R) Core(TM) Duo T2450 @ 2.00 GHz processor
computer with 1GB of memory running Windows XP Professional OS. We have
used the Protégé-OWL API to implement the core and healthcare ontologies.
During the SAAC policy evaluation phase, an access query is used to process
the user’s service access request. We have used the SWRL rules to evaluate the
policies. We have used the Jess Rule Engine for executing the SWRL rules. In
particular, the query language SQWRL, which is based on OWL and SWRL, is
adopted to process service access requests.

5.1 Prototype Architecture

A high-level architecture of our prototype framework is shown in Figure 3. We
have implemented a set of Software Components, which can support the software
engineers to develop Situation-Aware Access Control (SAAC) applications using
this framework.

Currently a simple Java class SAAC DecisionEngine is used to check the
user’s request to access the services and makes situation-specific access con-
trol decisions. We have implemented PolicyEn forcementPoint as part of the
SAAC DecisionEngine. Once the SAAC DecisionEngine receives the request

A Purpose-Oriented SAAC Framework for Software Services 69

in accessing software services, it queries the PolicyManager class for the rele-
vant policies. The PolicyDecisionPoint, and PolicyAdministrationPoint are im-
plemented as parts of the class PolicyM anager that are used to allow the

Table 5. An Example SAAC Policy (simplified)

<SAACPolicy rdf:ID=%spl” >
<hasDecision rdf:resource=“#AccessDecision Granted” />
<hasRole rdf:resource=“#EmergencyDoctor ED” />
<hasService rdf:resource=“#Service EMR Write” />
<hasSituation rdf:resource=“#s,1 EDFromHospitalForET” />

</SAACPolicy>
. . Poli
engineers to add, edit, and delete ac- Manager
cess control policies. We have devel- PO-SAAC

. Ontology
oped a number of ContextProviders

(which capture low-level context in- SAAC ~ \\‘
formation) and the ContertReasoner Engine - N
(which infers high-level information) User Seryice
as parts of the SituationManager. —

The SituationManager is used to Manager POSAAC
identify relevant purposes and sit- 1 Ontology
uations. The ontology knowledge User { Environment)

bases are stored in the form of
the OWL concepts, SWRL rules
and SQWRL queries (PO-SAAC

Fig. 3. Our Prototype Architecture
Ontology).

5.2 Developing a SAAC Application for Healthcare

A situation-aware application in the healthcare domain is built to illustrate
the operation of our situation-aware access control. The environment of our
application is the patients’ medical records management (PMRM). The main
goal that we aim with this application is to access different medical records
of patients based on the relevant situations. We simulate the Java programs
and the relational databases as different context sources. For example, our
prototype application has context sources: SystemTime (which provides cur-
rent time), Location (which provides location address), User Pass relational ta-
ble (containing usr id and password), User Role table (containing usr id and
usr role id), Patient Pofile table (containing patient id, patient name and con-
nected people id), patient Health Profile (which provides patient id, heart rate
and body temperature), etc.

Policy Specification. Table 5 shows the Policy #1 written in OWL that is
related to our application scenario. In this policy, the access decision (“Granted’

70 A.S.M. Kayes, J. Han, and A. Colman

decision) is based on the following policy constraints: who the user is (user’s
role, e.g., “ED"), what service being requested (service, e.g., “write EMR()”),
and when the user sends the request (purpose-oriented situation). The ‘purpose’
and ‘situation’ regarding this policy are specified in Examples 1 and 2.

Case Study. To demonstrate the effectiveness of our framework, we present a
case study. Consider our application scenario (Scene #1), where Jane, by playing
an emergency doctor role, wants to access the requested service write EM R()
(i.e., the write access to the emergency medical records of patient Bob). The bot-
tom layer of our PO-SAAC ontology captures the relevant context information
(interpersonal relationship, location, health status, etc.). The middle layer of
the ontology captures the relevant situation based on the captured information
and situation specification rules. For the PMRM application we have specified
different situations. Some of these ‘situations’ and their associated ‘context in-
formation’ and ‘purpose’ using situation reasoning rules are shown in Table 6.

Table 6. Definition of Different Situations

Situation Situation Definition (high-level description)
An emergency doctor from the hospital for User Role(ED) A Location ED(Hospital)A Pur-
emergency treatment (EDFromHospitalForET) pose(ET)

A general practitioner from the hospital for nor- User Role(GP) A Location GP(Hospital)A Pur-
mal treatment (GPFromHospitalForNT) pose(NT)

A registered nurse from the general ward for User Role(RN) A Location RN(GeneralWard) A
daily operation (RNFromGWForDO) Purpose(DO)

A guest researcher from the hospital for research User Role(GR) A Location GR(Hospital)A Pur-
(GRFromHospitalForR) pose(R)

Our ontology (top layer) also captures the relevant SAAC policy. Based on
this information, the ontology returns the SAAC decision, i.e., Jane’s service
access request is Granted (see an access query in Table 7 and result in Table
8), because the ontology captures relevant situation, and satisfies a SAAC policy
which is stored in the policy base (ontology knowledge base).

Table 7. An Example Access Query (Simplified)

SAACPolicy(?policy) A User(?user) A Role(?role) A Situation(?situation) A Service(?service)
A AccessDecision(?decision) — sqwrl:select(?user, ?role, ?situation, ?service, ?decision)

Table 8. Access Query Result (Shown Only One Entry)

?user ?role ?situation ?service ?decision
Jane ED EDFromHospitalForET EMR Write Granted

A Purpose-Oriented SAAC Framework for Software Services 71

5.3 Performance Evaluation

We evaluate the runtime system performance using our prototype system, where
we adopt our PO-SAAC approach to identify and reason about the relevant
purpose-oriented situation.

Ezxperimental Setting. With the goal of evaluating the runtime performance
of the various stages of our prototype framework, we have conducted two sets
of experiments on a Windows XP Professional operating system running on
Intel(R) Core(TM) Duo T2450 @ 2.00 GHz processor with 1GB of memory.

Measurement. The main purpose of this experimental investigation is to quan-
tify the performance overhead of our approach. Our main measures included
situation identification time and policy evaluation time. The first measure indi-
cates how long it took to identify/infer a relevant situation (by capturing the
currently available context information and identifying the purpose using this
information). The second measure indicates how long it took to determine a
user’s access permission on a requested service (by incorporating the identified
situation into the access control process and making situation-aware access con-
trol decision). We calculate the average end-to-end response time (Trr), time
from the arrival of the user’s service access request (query) to the end of its
execution, which equals to the time for identifying relevant situation and time
for evaluating relevant policy.

Results and Analysis. We have examined the performance of PO-SAAC. The
main finding was that the time for making situation-aware access control deci-
sion (based on the situation identification time and policy evaluation time) is
acceptable, as they impose just a small, acceptable overhead.

The first test focuses on measuring the response time of our prototype in
the light of increasing number of policies. First, we have selected 20 policy rules
in which 5 situation types (ST) act as the policy constraints (e.g., the situation-
aware policy rule for emergency doctor for emergency treatment purpose is shown
in Table 5). We have varied the number of policies up to 100 with 15 different
types of situation variations. Each of these variations is executed 10 times for
each of following cases: 5 ST (situation types), 10 ST, and 15 ST. For each
setting, the average value of the 10 execution runs is used for the analysis (see
test results in Figure 4(a)). The test results show that the average response time
increases when the number of situation types and policies increases. For example,
it varies between 4.1 and 5.2 seconds for 15 types of situation information and
for the variation of 20 to 100 policy rules. We can see that the average response
time seems to be linear. Overall, the performance is acceptable.

In the second test, we have again evaluated the total response time (situation
identification and policy evaluation time) over various size of the knowledge base.
We have varied the number of policies up to 500 with respect to 138 different
types of health professionals [15] (i.e., 138 roles). To build the ontology KB of
increasing sizes, we have specified 2000 policies. In order to measure the response
time, we have run each experiment 10 times and the average value of the 10
execution runs is used for the analysis (see test results in Figure 4(b)). As the size

72 A.S.M. Kayes, J. Han, and A. Colman

|Test-1 Results (KB in 92 to 687 KilobvtE)| Test-2 Results (up to 2000 policy rules)‘
6000
7 __ 60000 -
E 5500 3
e J % 50000 Y/
E 5000 £ //
] @
5 4500 ,//
& 4000 /2/
-
g 3500 //
g —— — —
3000 - . . . s , e
20 4 60 80 100 %2 183 687 954 1347 1618 2529 3706
Number of Situation-Aware Policy Rules Knowledge base (KB) i Kilobyte
== #5T=15 —@=—=#ST=10 <-ehe- #ST=5 —m=—Total Response Time i ification Time Evaluation Time
(a) Number of Policies V Response time (b) Size of KB V Response time

Fig. 4. Average Response Time Over Different Number/Size of Policies/KB

of the ontology KB increases beyond 1618 kilobyte, the computational overhead
increases dramatically. This is due to the large number of policy rules (larger
KB size), fully utilizing the memory capacity of the computer. At the point of
the KB being 1618 kilobyte (500 policy rules for the 138 health professional
roles), it takes approzimately 10 seconds to process the request. We can see that
changes to the number of access control policies do not have much impact on the
response time, when the ontology knowledge base (KB) size is small. Overall,
the runtime performance is acceptable for a reasonable sized KB.

6 Related Work and Discussion

In [9], Kim and Lim propose the Situation-Aware Role-Based Access Control
(SA-RBAC) model, which extends the basic RBAC model [11] and dynamically
grants roles (or permissions) to users based on the situation information of the
user. The SA-RBAC model is used to deal with the situation information by
considering the combination of the required credentials of users, and the con-
text information such as location, time, and system resources relevant to the
user’s access request. In [16], Yau and others have defined the situation as a set
of context attributes of users, systems and environments over a period of time
affecting future system behavior. Later, Yau and Liu have presented a Situation-
Aware Access Control (SA-AC) based privacy-preserving service matchmaking
approach [10]. SA-AC model incorporates situation-aware constraints into RBAC
model, such that the states of service providers, requesters and environments,
which can affect the access control decisions. These approaches only consider
the states of the relevant entities as the policy constraints. In open and dynamic
environments, however, the states of the relevant relationships between different
entities are also important consideration in access control decision making. In
our PO-SAAC approach, a situation not only involves the states of the specific
types of context entities but also the states of the relevant relationships between
different relevant entities. Moreover, in our approach, the purpose or user’s in-
tention in accessing the services is also considered for modeling situation.
Previous works on ontology-based context/situation-awareness also provide
valuable insights for modeling a fine-grained ontology-based SAAC framework.

A Purpose-Oriented SAAC Framework for Software Services 73

The CONtext ONtology (CONON) [6], situation theory ontology (STO) [7] and
situation-awareness (SAW) ontology [8] research describe ‘situation’ as the states
of the specific kind of entities (e.g., attributes of users or other relevant entities).
However, this research are highly domain-specific and they do not consider sev-
eral important concepts which are important consideration for situation mod-
eling in today’s dynamic environments: the states of the relevant relationships
between entities, and the purpose or user’s intention in accessing the services.
Byun and Li [3] have proposed a privacy preserving access control model for
relational databases where purpose information associated with a given data el-
ement specifies the intended use of the data element. Their access control policy
normally states that the particular resources can be accessed only for the specific
purpose; and a purpose describes the reason for data access and data collection.
In [17], the authors presented a purpose-based access control model (usage access
control and purpose extension) for medical information system, where ‘usage’
means usage of rights on digital objects, and ‘purpose’ dictates how access to
data items should be controlled. A major difference of our approach with respect
to these purpose-based access control approaches is that, we not only consider
the purpose information but also consider the different granularity levels of pur-
pose information. In addition, different from these approaches, our approach can
dynamically identify the appropriate purpose or user’s intention in accessing the
requested services based on the currently available context information.

7 Conclusion and Future Work

In this paper, we have presented a new Purpose-Oriented Situation-Aware Access
Control framework for software services. One of the main contributions of this
paper is the PO-SAAC model for specifying the purpose-oriented situations and
the corresponding situation-specific access control policies. Another contribu-
tion of this paper is an ontology-based development platform, in order to formal-
ize PO-SAAC model using OWL and SWRL. The practical applicability of our
framework is demonstrated through the implementation of a software prototype.
In addition, we have developed a SAAC application in the healthcare domain
and presented a case study. The case study shows that our framework captures
relevant situations at runtime and invokes software services in a situation-aware
manner. The experimental results have shown that our framework has satisfac-
tory performance. Future work focus on the scalability of our framework in the
mobile platform will be an important issue to be addressed.

Acknowledgment. Jun Han is partly supported by the Qatar National Re-
search Fund (QNRF) under Grant No. NPRP 09-069-1-009. The statements
made herein are solely the responsibility of the authors.

74

A.S.M. Kayes, J. Han, and A. Colman

References

10.

11.

12.

13.

14.

15.
16.

17.

Dey, A.K.: Understanding and using context. Personal Ubiquitous Computing 5(1),
4-7 (2001)

Weiser, M.: Some computer science issues in ubiquitous computing. Commun.
ACM 36(7), 75-84 (1993)

Byun, J.-W., Li, N.: Purpose based access control for privacy protection in rela-
tional database systems. The VLDB Journal 17(4), 603-619 (2008)
Dimitropoulos, L.L.: Privacy and security solutions for interoperable health infor-
mation exchange: nationwide summary. AHRQ Publication (2007)

Endsley, M.R.: Design and evaluation for situation awareness enhancement. In:
Proceedings of the Human Factors Society 32nd Annual Meeting, Santa Monica,
CA, USA, pp. 97-101 (1988)

Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context model-
ing and reasoning using owl. In: Proceedings of the Second PerCom Workshops,
pp. 18-22 (2004)

Kokar, M.M., Endsley, M.R.: Situation awareness and cognitive modeling. IEEE
Intelligent Systems 27(3), 91-96 (2012)

Yau, S.S., Huang, D.: Development of situation-aware applications in services and
cloud computing environments. International Journal of Software and Informat-
ics 7(1), 21-39 (2013)

Kim, Y.G., Lim, J.: Dynamic activation of role on rbac for ubiquitous applications.
In: Proceedings of the 2007 International Conference on Convergence Information
Technology, pp. 1148-1153 (2007)

Yau, S.S., Liu, J.: A situation-aware access control based privacy-preserving service
matchmaking approach for service-oriented architecture. In: ICWS, pp. 1056-1063
(2007)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29, 38-47 (1996)

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,
A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
and Mobile Computing 6, 161-180 (2010)

Riboni, D., Bettini, C.: Owl 2 modeling and reasoning with complex human activ-
ities. Pervasive and Mobile Computing 7, 379-395 (2011)

Kayes, A.S.M., Han, J., Colman, A.: An ontology-based approach to context-aware
access control for software services. In: Lin, X., Manolopoulos, Y., Srivastava, D.,
Huang, G. (eds.) WISE 2013, Part I. LNCS, vol. 8180, pp. 410-420. Springer,
Heidelberg (2013)

ASCO: Health professionals (Jul 2013), http://www.abs.gov.au/

Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable context-
sensitive middleware for pervasive computing. IEEE Pervasive Computing 1(3),
33-40 (2002)

Sun, L., Wang, H., Soar, J., Rong, C.: Purpose based access control for privacy
protection in e-healthcare services. JSW 7(11), 2443-2449 (2012)

http://www.abs.gov.au/

	PO-SAAC: A Purpose-Oriented Situation-Aware
Access Control Framework for Software Services

	1 Introduction
	2 Research Motivation and General Requirements
	3 Purpose-Oriented Situation-Aware Access Control
	3.1 Purpose-Oriented Situation Model
	3.2 Software Services
	3.3 The SAAC Policy Model for Software Service

	4 Ontology-Based PO-SAAC Framework
	5 Prototype Implementation and Evaluation
	5.1 Prototype Architecture
	5.2 Developing a SAAC Application for Healthcare
	5.3 Performance Evaluation

	6 Related Work and Discussion
	7 Conclusion and Future Work
	References

