
Requirements Refinement and Exploration

of Architecture for Security and Other NFRs

Takao Okubo1, Nobukazu Yoshioka2, and Haruhiko Kaiya3

1 Institute of Information Security, 2-14-1 Tsuruyamachi,
Kanagawa-ku, Yokohama, Japan

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
3 Kanagawa University, 2946 Tsuchiya, Hiratsuka-shi, Kanagawa-ken, Japan

Abstract. Earlier software architecture design is essential particularly
when it comes to security concerns, since security risks, requirements
and architectures are all closely interrelated and interacting. We have
proposed the security driven twin peaks method with a mutual refine-
ment of the requirements, and architectures. However, there are multiple
alternatives to an architecture design for initial requirements, and their
choices depend on non-functional requirements (NFRs), such as secu-
rity, performance, and costs which have a big impact on the quality of
the software. We propose a new method called TPM-SA2 to avoid any
back-track in refinement. Each architectural alternative in TPM-SA2 is
refined so that it aligns with the requirements. For each refinement, the
requirements can be updated vice versa. TPM-SA2 enables us to pre-
dict the impacts on the NFRs by each candidate for the architecture,
and choose the most appropriate one with respect to the impact. As a
result, we can define the requirements and architectures, and estimated
the development costs earlier than ever.

1 Introduction

Security requirements analyses are often caught in a dilemma. Although precise
and comprehensive threat analysis needs architectural design in detail, it is hard
to obtain decomposed architectural design specification in the early requirement
analysis stage. The pure water fall model of software development is not enough,
so that we need to elaborate on the security requirements and the architecture
simultaneously. The twin peaks model [12] is a promising alternative for such
development styles involved in security requirements analysis.

In addition, it is also difficult to simultaneously consider several kinds of non-
functional requirements for selecting an appropriate software architecture. There
is a trade-off among different non-functional requirements, e.g., security may
affect the performance and usability, and the performance is generally related to
the scalability. We need to find suitable architectures to meet such non-functional
requirements with priority.

We have proposed a concept of security oriented twin peaks model, called
the Twin Peaks Model application for Security Analysis (TPM-SA) [14].

L. Iliadis,M. Papazoglou, andK.Pohl (Eds.): CAiSE 2014Workshops, LNBIP 178, pp. 286–298, 2014.
c© Springer International Publishing Switzerland 2014

Requirements Refinement and Exploration of Architecture 287

Although we evaluated our method using some examples in our previous work,
the evaluation revealed the following practical issues:

1. The boundary between the requirements and the design is unclear;
2. Although there are generally two or more architectural alternatives, it is

hard to select the best architecture without conducting a detailed design
analysis;

3. There is no criterion for evaluating the architectural alternatives; and
4. We need a method for considering other non-functional requirements such

as the performance requirements.

Thus we proposed a new requirements analysis method called TPM-SA2
(Twin-Peaks Model application for Security Analysis, Square) [15]. We can an-
alyze two or more non-functional requirements and the architecture with a twin
peaks model using this method. We can, then, select the best architecture based
on an estimation of the impact on the non-functional requirements. In other
words, our major contributions are an elicitation process for two or more require-
ments, and the evaluation framework for the architectural alternatives from the
multi-requirements points of views.

In this paper we do detailed analysis and evaluation of our TPM-SA2 with
an example of software on a geolocation service.

This paper is organized as follows. Section 2 discusses techniques including
our previous work. Section 3 describes our new method based on the Twin Peaks
model, and Section 4 illustrates an example to which we applied our method.
Section 5 discusses the results from using our method, and Section 6 reviews the
related works. Finally, we summarize the paper and discuss our future work.

2 Related Work

This section describes related works on analysis of security requirements and
architecture. At first, we introduce our recemt work called TPM-SA, and then
compare with other works.

2.1 TPM-SA: Twin Peaks Model for Security Analysis

We proposed mutual refinement process between security requirements and ar-
chitecture called TPM-SA [14]. TPM-SA is based on the Twin Peaks Model
(TPM) [12].

The TPM-SA offers a developing framework for two-level structures for adopt-
ing TPM for the security. The first level defines the entire process in the form
of a spiral that achieves mutual and stepwise refinement of the security require-
ments and architecture. The second level defines each cycle of the spiral that
requires the detailed steps for the security analysis. The term “architecture” in
this paper includes the system structure, software structure, design specifica-
tions, infrastructure, middleware, and the programming language.

288 T. Okubo, N. Yoshioka, and H. Kaiya

The security requirements (countermeasure) and the architecture are refined
in the spiral flow stages with the iteration of the security analysis and design.
This process is assumed to be conducted after the functional requirements have
been elicited. Therefore, the inputs for this process are the functional require-
ments. In the first cycle of the spiral, the functional requirements are the inputs.
The first refinement level of the architecture can be assumed from the functional
requirements. A security analysis is conducted with the help of the assumed ar-
chitectural information. It helps in imagining the architecture-specific assets and
attacks. As a result, the security requirements are outputs at the first refinement
level. In the subsequent cycles, the security requirements that were outputs in
the previous cycle are the inputs, and then more refined security requirements
and architectures are the outputs. The main motivation of the “refinement” in
the TPM-SA is to add some new requirements by taking the architecture into
considerations, and adding a new architecture from these requirements. This is
the essential difference between the original TPM and Security Twin Peaks [5].
Their refinement mainly focuses on decomposing the already identified goals and
requirements, and does not focus on adding new elements.

For the steps in each cycle of the spiral, we classified the artifacts into two
groups, “Requirements” and “Architecture”. We also classified assets into two
groups: Architecture-independent Assets (AIA) and Architecture-specific Assets
(ASA).

2.2 Other Works

We use the following criteria for comparing the methods that contribute to
simultaneously refining security requirements and architecture.

(C1). A method that enables us to update the requirements and architecture
simultaneously.

(C2). A method that can be performed step by step based on the architectural
decisions.

(C3). A method that enables us to comprehensively find the security require-
ments based on the analysis of the architecture independent assets (AIA) in
addition to the architecture specific assets (ASA).

(C4). A method that enables us to maintain the traceability among the assets,
threats, and countermeasures.

(C5). A method that enables us to analyze multiple quality requirements such
as the usability, reliability, and security.

(C6). A method that helps us to decide when we may stop refining the require-
ments and architecture in the early stages of system development, i.e., the
requirements definition stage.

(C7). A method that enables us to find and compare several alternatives for
refining the requirements and architecture.

Requirements Refinement and Exploration of Architecture 289

Table 1. Comparison of methods based on criteria

method \ criteria (C1) (C2) (C3) (C4) (C5) (C6) (C7)

TPM-SA2
√ √ √ √ √ √ √

TMP-SA
√ √ √ √

GORA
√ √

KB
√ √

EXP
√

PATTERN
√

SQUARE
√ √

STP
√ √ √

LISA
√

ATAM
√ √

The acronyms in Table 1 denote the following methods.

– TPM-SA2: Method proposed in this paper.
– TMP-SA: Previous version of our method for refining simultaneously the

security requirements and architecture [14].
– GORA: Goal-oriented requirements analysis [8] [9] [11] [18].
– KB: Knowledge based approaches [17] [6].
– EXP: Exploring exceptions [9] [4].
– PATTERN: Pattern-based approaches [2] [3].
– SQUARE: System Quality Requirements Engineering [10].
– STP: Security twin peaks model [5].
– LISA: Integration of requirements and design decisions using architectural

representation [19].
– ATAM: Architecture Tradeoff Analysis Method [1] [7].

As listed in Table 1, TPM-SA2 is developed to meet the fifth, sixth and seventh
criteria above.

3 Revised TPM-SA: TPM-SA2

We have proposed a security driven refinement method for the requirements and
architecture that enables for the early and appropriate architecture selection
from multiple alternatives [15]. The reason why we mainly focused on security is
that it has greater, more unintended and unavoidable impacts on the software.
Most of the other NFRs like the usability and performance are predictable, and
if some problems are found in the later stage they may be acceptable. However,
most of the security problems found in the later stages are critical and force the
stakeholders to remedy them.

3.1 Steps in TPM-SA2

TPM-SA2 lets the developers predict the refined requirements and architectural
designs in the first refinement level. It also lets them estimate the impact on the

290 T. Okubo, N. Yoshioka, and H. Kaiya

����

������ ������ ������

������ ������ ������ ������

��	��� ������ ����	� ����
�

��
��������

�������� ��������
�� ���� ���������

���
���
������� ��� ������

��!������
������

�����������

�"� ���������

#�����$�
%�

����
���
�������

���&������
�����

�'� ��������

�����
�������()���
�

�������

�&������������
�

�*� +������
��

���&�������� �,� -����������

���&���������

�����
������
�.� /������
����

����
���
�������

Fig. 1. Prediction Process in TPM-SA2

NFRs for each alternative. This step provides a solution to the criteria (expressly
(C5)-(C7)) mentioned in Section 2.2; a reduction of redundant backtracking in
refinements and the consideration of other NFRs.

for (C5). With TPM-SA2 analysts can estimate multiple NFRs for each de-
signs.

for (C6). TPM-SA2 provides analysts rough estimate of NFR impacts for each
architecture at the requirements analysis stage.

for(C7). With TPM-SA2 analysts can compare the architecture choices with
estimating the NFRs impacts.

The inputs and outputs of TPM-SA2 are as follows:

– Inputs: functional requirements and non-functional requirements (NFRs).
The NFRs consist of the quality requirements, design and architectural con-
straints.

– Outputs: refined requirements and intended architecture.

Figure 1 indicates the process for predicting in the architecture assumption
steps of TPM-SA2. The process can provide analysts a rough estimate of the
effect of architectural choices on security, NFRs and costs in advance.

Step 1). Obtain the requirements from the first refinement level 0 (r(0)). The
inputs above are these requirements.

Step 2). Assume the architectural alternatives a(0, 0), a(0, 1),.. a(0, n) which
meet r(0). Steps 1) and 2) are the preparation steps of the prediction process.

Step 3). Apply the mutual refinement in TPM-SA to each alternative. TMP-
SA is explained in 2.1. Since each alternative can cause refinement and/or
modification of r(0, 0), each alternative is related to different requirements.

Requirements Refinement and Exploration of Architecture 291

Step 4). Evaluate each architectural alternative in the final level x with respect
to the NFRs for the requirements corresponding to the alternative. The eval-
uation criteria such as the metrics should be prepared for each NFR. Choose
the best one after the evaluation. The developer will follow the branch path
that contains the leaf with the best NFR value in the following refinement
steps.

Step 5). Determine the architecture that includes the best leaf chosen in Step
4) within its branch path.

Each path from r(0) to r(x, i) in Figure 1 corresponds to the mutual refine-
ment of the requirements and architectural alternative. Our previous method
TPM-SA [14] can be used for this refinement.

3.2 Prioritizing Alternatives with Respect to NFRs

As to the steps in Section 3.1, several different architectural alternatives are
obtained. For each architectural alternative, initial requirements are respectively
refined and/or updated. We then prioritize these alternatives with respect to the
NFRs specified in the initial version of the requirements. If we cannot prioritize
the alternatives with respect to one NFR, we have to continue the refinement of
the architecture and requirements according to the steps in Section 3.1. We may
stop the refinement when we can perform the prioritization.

Since each NFR has different criteria for the prioritization, we first prioritize
the alternatives with respect to each NFR. The experts for each NFR have to
provide its criteria. For example, a criterion about the learnability can be defined
based on the expected scenarios for system usage, and the characteristics of an
architecture that partially provides the effects to such scenarios. The usability
experts have to give such criterion based on their expertise. When this method is
applied to the improvement of existing systems and the costs for the development
is crucial, we can use the impact analysis [13] as a criterion for the costs. A
prioritization with respect to a NFR normally differs from a prioritization with
respect to another. For example, architecture X is preferred to architecture Y
with respect to the usability. However, Y is preferred to X with respect to the
performance.

If a NFR is more important than the others, we can simply use its criteria
for prioritizing the architectural alternatives. If several NFRs are important, we
have to combine the results of their prioritizations so that we can simultaneously
take them into account. We can use AHP technique [16] for the combination of
several different prioritizations.

4 Illustrative Example: Geolocation Service

In this section we illustrate the application of TPM-SA2 to a system to clarify
how it works and how effective it is.

292 T. Okubo, N. Yoshioka, and H. Kaiya

4.1 First-Level Requirements

We focus on a context-aware system that provides services to users according to
their context, e.g., geolocation. Some examples of the services are recommending
good restaurants that are close to users or finding vacant car parks. The first-
level requirements for the system are as follows:

– Functional requirements (FRs)
• F1: Users can search the services provided according to the location and
time, and several services are recommended.

• F2: Users can rank the recommended services according to their prefer-
ences.

• F3: Users can rank the services according to the current trend.
• F4: Users can select some of the services.

– Non-functional requirements (NFRs)
• Q1: The entire FRs must be securely performed. (security)
• Q2: The entire FRs must be quickly performed. (performance)
• Q3: The development costs of entire FRs should be low. (cost)
• Q4: The system will be in operation as soon as possible. (time of delivery)
• Q5: Users can easily use the FRs. (usability)

Even for the first-level requirements above, there are several assets to be threat-
ened as follows:

– A1: Recommended services.
– A2: Ranking based on personal preferences, time and location.
– A3: Ranking based on the trend.
– A4: Chosen services.

These assets can be regarded as architecture-independent assets (AIAs) in TPM-
SA. However, privacy information such as the person’s name, age, and gender
are not always an asset based on the first-level requirements because the trace-
ability between the person and his/her private information is not always required
in these requirements. They are actually candidates for the architecture-specific
assets (ASAs) because some architectural types involve them in the refined re-
quirements.

4.2 Exploring Alternatives

By the threat analysis for the first-level requirements, the following threats can
be identified.

– Tampering of the service choices
– Tampering of the service ranking information
– Tampering of the services that a user selected

On the other hand, there are two major choices at architecture level 0 for the
first-level requirements.

Requirements Refinement and Exploration of Architecture 293

Table 2. Architectural alternatives

level 0 1 2 3

mobile

anonymous (a1)

user identification

by user ID, password
rich client (a2)

cloud (a3)

by terminal id
rich client (a4)

cloud (a5)

ubiquitous
setting new terminals and sensors

anonymous (a6)

user identification
by id cards, passwords (a7)

by biometrics (a8)
using existing terminals

(such as vending machines) anonymous (a9)

1. Mobile devices and their network infrastructure Many people today have
their own smartphones, which provide a powerful functionality for storing
data, communicating with servers, identifying the current location and time,
and so on. Most of the requirements can be mainly implemented on the
smartphones using various sensors.

2. Ubiquitous infrastructure like in Oulu city1 In contrast to the mobile devices
infrastructures, public devices are pre-located all over the city within this
infrastructure. The users thus do not have to bring their own devices, but
can use the system based on the requirements above. In this case, most of
the requirements are implemented on the servers.

The requirements may need to be modified, added, or even deleted accord-
ing to the architectural choice. Architectural designs may also be affected by
the change in requirements. For example, the first requirements do not require
the identification of the users. However, some architecture such as smartphones
might bring about new requirements for user identification because they are
closely linked to their owners and their personal information. If the architectural
alternatives containing user identification and authorization ((a2)-(a5)) are cho-
sen, the software has to be able to protect the new assets: the user credentials
and privacy data. The following threats arise according to the assets.

– The leakage of the users’ private sensor data such as the time and geolocation
– The leakage of the selected services that might cause a violation of the users’

privacy

Therefore, most cost is needed for implementing the protection of these assets
in the alternatives because of the potential threats. More cost is needed for the
authentication with user IDs and passwords ((a2), (a3)), while authentication
based on a terminal id needs less cost ((a4), (a5)), but contains higher security
risks.

1 http://www.ubioulu.fi/en/home

294 T. Okubo, N. Yoshioka, and H. Kaiya

There are other architectural choices: rich client type ((a2), (a4)) or server
type (a3), (a5)). The former mainly needs implementation on clients systems,
and the latter mainly on servers. Although the rich client type usually provides
better usability than the server type, it brings about other assets from the client
environments and other protection costs as well.

4.3 TMP-SA in an Alternative

Since each alternative is derived based on the TMP-SA, we will explain how to
concretely derive one alternative. We focus on alternative (a3) in Table 2 because
it is threatened more often than the others.

Based on the infrastructure for mobile devices, the location information be-
comes ASA because it could be tampered with while being sent. We don’t have
to worry about the time because the system will have its own clock. In addi-
tion, the communication paths also become ASA because all the information is
sent and received via wireless communications. As a result, we find the following
ASAs at level 0 in the mobile infrastructure listed in Table 2.

– A5: Location information
– A6: Communication paths

To protect these new assets, we need the following functional and non-functional
security requirements as countermeasures.

– F5: Location will be identified.
– F6: Devices will communicate with the system.
– Q6: F5 will be accurately achieved.
– Q7: F6 will be achieved in integrity.

User identification is useful for F2 because the users’ preferences can be registered
in advance. It is also useful for F3 because the system can accurately identify the
trend. Without the user identification, some malicious users may intentionally
and repeatedly select some specific services to make them more popular than
the facts. The following asset is thus added at level 1 (a3) in Table 2.

– A7: User identification

Of course, others must not reuse A7. Based on this asset, the following require-
ments are elicited.

– F7: The system will accept the user identification, and authorize the user.
– Q8: F7 is confidentially achieved.

In the same way, the following assets and requirements are identified and elicited
at level 2 (a3).

– A7’: Issuable user identification.
– F8: The system will issue the user identification.
– Q9: F8 will be identifiably achieved.

Requirements Refinement and Exploration of Architecture 295

Table 3. Criteria weight

security 0.140

performance 0.047

usability 0.196

cost / time of delivery 0.616

Table 4. Estimation results using AHP

id security performance usability cost / time of delivery total

(a1) 0.0617 0.0245 0.0075 0.2553 0.3491

(a2) 0.0122 0.0101 0.0400 0.0523 0.1146

(a3) 0.0457 0.0026 0.0115 0.0761 0.1359

(a4) 0.0048 0.0081 0.1076 0.0630 0.1835

(a5) 0.0159 0.0022 0.0294 0.1694 0.2169

Finally, we have the following at level 3 (a3).

– A8: Personal preferences registered in advance.

– F8: Personal preferences will be registered and updated.

– Q10: F8 will be achieved in integrity.

We have three assets, four functional requirements and five non-functional re-
quirements in addition to the first-level requirements. In the other alternatives
listed in Table 2, some of them do not have to be taken into account. For exam-
ple, A7’, F8, and Q9 are out of the scope in (a4) and (a5) because the terminal
ID cannot be issued by the system.

4.4 Prioritization

With our prediction method, nine architectural alternatives listed in Table 2
can be assumed. We prioritized the NFRs based on an assumption of a certain
development project in which the priority order is the cost, security, usability
and performance. Then, we estimated the alternatives (a1)-(a9) using analytic
hierarchy process (AHP) [16]. AHP is a method for decision making based on
mathematics and psychology. With AHP, analysts determine weights for every
decisions and its factors. The criteria weights computed are listed in Table 3.

We eliminated (a6)-(a9) because they require the social ubiquitous infrastruc-
ture, which the system cannot solve by itself. The evaluation results for the other
five alternatives is described in Table 4. Unless the system needs the user iden-
tification, (a1) is the most appropriate decision. If it requires user identification,
(a4) is the best choice.

296 T. Okubo, N. Yoshioka, and H. Kaiya

5 Discussion

As shown in Section 4, one of the advantages of TPM-SA2 is that the developers
can estimate and compare the impact of multiple architectural alternatives and
decide on the best one in the very early levels of refinement. Another advantage
over TPM-SA is that with TPM-SA2 developers consider not only the security
but also other NFRs such as the performance, cost, and usability. As the “se-
curity” column of Table 4 indicates, if the developers evaluate only the security
using TPM-SA, the second order of priority is (a3). But it may not meet other
NFRs such as the cost. With TPM-SA2, the second order is (a5) using evaluation
of multiple NFRs according to the stakeholders’ preference.

Our TPM-SA with prediction has some drawbacks. One of them is that the
prediction step in the first level is heavy and time-consuming since it requires
the traversal of all the branches through all the refinement levels. However, the
following information might reduce the deeper traversal from some nodes.

– Past estimation results
This knowledge is particularly useful for the enhancement of existing soft-
ware. If there is an architectural design that is the same as that that the
design developers are assuming through the prediction process, and the NFR
values have already been estimated, and the developers can use these values
instead of proceeding into the deeper levels.

– NFR patterns
Patterns that contain sets of NFR values related to certain architectural
designs are also useful. If the assumed architectural alternative matches one
of the NFR patterns, the developers can use the values of the pattern such
as the past estimation results.

6 Conclusion

We proposed a new method called TPM-SA2 that elicits non-functional require-
ments and an architecture based on the Twin Peaks Model. In detail, we at
first specify the concerns about not only the security requirements but also
the other non-functional requirements with the architectural alternatives. We
can, then, select the best architecture based on estimation of the impact on the
non-functional requirements. TPM-SA2 enables us to explore the non-functional
requirements step by step to make adequate architectural decisions from the
multi-non-functional requirements’ points of view. We applied our method to
an application to evaluate it. The results of the evaluations illustrated that our
method is especially effective for the iterative development.

Our future work includes developing a tool that supports our methods. Since
TPM-SA2 uses domain knowledge concerning the non-functional requirements
and expected architectural decisions, such issues can be automatically aligned
with the currently elicited security requirements using the domain ontology.
Mining architecture patterns which can help estimating security and costs and

Requirements Refinement and Exploration of Architecture 297

pruning, is also the future work In addition, non-functional requirements elicita-
tion process can be automatically managed according to the obstacles. The non-
functional requirements sometimes conflict with other kinds of non-functional
requirements. Therefore, we have to improve our TPM-SA2 to detect such con-
flicts to resolve them (semi-)automatically. We also need to apply TPM-SA2 to
realistic projects to clarity its advantages and limitations.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley (2003)

2. Fernandez, E.B.: Security patterns and secure systems design. In: Bondavalli, A.,
Brasileiro, F., Rajsbaum, S. (eds.) LADC 2007. LNCS, vol. 4746, pp. 233–234.
Springer, Heidelberg (2007)

3. Ferraz, F.S., Assad, R.E., de Lemos Meira, S.R.: Relating security requirements
and design patterns: Reducing security requirements implementation impacts with
design patterns. In: ICSEA, pp. 9–14 (2009)

4. Guo, Z., Zeckzer, D., Liggesmeyer, P., Mackel, O.: Identification of security-safety
requirements for the outdoor robot ravon using safety analysis techniques. In: In-
ternational Conference on Software Engineering Advances, pp. 508–513 (2010)

5. Heyman, T., Yskout, K., Scandariato, R., Schmidt, H., Yu, Y.: The security twin
peaks. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS,
vol. 6542, pp. 167–180. Springer, Heidelberg (2011)

6. Houmb, S.H., Islam, S., Knauss, E., Jürjens, J., Schneider, K.: Eliciting security
requirements and tracing them to design: An integration of common criteria, heuris-
tics, and umlsec. Requir. Eng. 15(1), 63–93 (2010)

7. Kazman, R., Klein, M.H., Barbacci, M., Longstaff, T.A., Lipson, H.F., Carrière,
S.J.: The architecture tradeoff analysis method. In: ICECCS, pp. 68–78 (1998)

8. van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: ICSE, pp. 148–157 (2004)

9. Liu, L., Yu, E.S.K., Mylopoulos, J.: Secure-i*: Engineering secure software systems
through social analysis. Int. J. Software and Informatics 3(1), 89–120 (2009)

10. Mead, N.R., Hough, E., Stehney, T.: Security quality requirements engineering
(square) methodology. Tech. Rep. CMU/SEI-2005-TR-009, Software Engineering
Institute, Carnegie Mellon University (2005)

11. Mouratidis, H., Giorgini, P.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17(2), 285–309 (2007)

12. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Com-
puter 34(3), 115–117 (2001)

13. Okubo, T., Kaiya, H., Yoshioka, N.: Analyzing impacts on software enhancement
caused by security design alternatives with patterns. IJSSE 3(1), 37–61 (2012)

14. Okubo, T., Kaiya, H., Yoshioka, N.: Mutual refinement of security requirements
and architecture using twin peaks model. In: COMPSAC Workshops, pp. 367–372
(2012)

15. Okubo, T., Yoshioka, N., Kaiya, H.: Security driven requirements refinement and
exploration of architecture with multiple nfr points of view. In: IEEE International
Symposium on High Assurance on Software Engineering (HASE) (to be appeared,
2014)

298 T. Okubo, N. Yoshioka, and H. Kaiya

16. Saaty, T.L.: The analytic hierarchy process: planning, priority setting, resource
allocation, 2nd edn. RWS, Pittsburgh (1990)

17. Saeki, M., Kaiya, H.: Security requirements elicitation using method weaving and
common criteria. In: MoDELS Workshops, pp. 185–196 (2008)

18. Tanabe, D., Uno, K., Akemine, K., Yoshikawa, T., Kaiya, H., Saeki, M.: Supporting
requirements change management in goal oriented analysis. In: RE, pp. 3–12 (2008)

19. Weinreich, R., Buchgeher, G.: Integrating requirements and design decisions in
architecture representation. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 86–101. Springer, Heidelberg (2010)

	Requirements Refinement and Exploration
of Architecture for Security and Other NFRs

	1 Introduction
	2 Related Work
	2.1 TPM-SA: Twin Peaks Model for Security Analysis
	2.2 Other Works

	3 Revised TPM-SA: TPM-SA2
	3.1 Steps in TPM-SA2
	3.2 Prioritizing Alternatives with Respect to NFRs

	4 Illustrative Example: Geolocation Service
	4.1 First-Level Requirements
	4.2 Exploring Alternatives
	4.3 TMP-SA in an Alternative
	4.4 Prioritization

	5 Discussion
	6 Conclusion
	References

