

S. Yamamoto (Ed.): HIMI 2014, Part II, LNCS 8522, pp. 12–19, 2014.
© Springer International Publishing Switzerland 2014

Development of a Learning Support System
for Source Code Reading Comprehension

Tatsuya Arai1, Haruki Kanamori1, Takahito Tomoto2,
Yusuke Kometani1, and Takako Akakura2

1 Graduate School of Engineering, Tokyo University of Science,
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

{arai_tatsuya,kanamori_haruki,kometani}@ms.kagu.tus.ac.jp
2 Faculty of Engineering, Tokyo University of Science,
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
{tomoto,akakura}@ms.kagu.tus.ac.jp

Abstract. In this paper, we describe the development of a support system that
facilitates the process of learning computer programming through the reading of
computer program source code. Reading code consists of two steps: reading
comprehension and meaning deduction. In this study, we developed a tool that
supports the comprehension of a program’s reading. The tool is equipped with
an error visualization function that illustrates a learner’s mistakes and makes
them aware of their errors. We conducted experiments using the learning
support tool and confirmed that the system is effective.

Keywords: Programming Learning, Problem Posing, Reading Program, ICT.

1 Introduction

This paper describes the development of a support system that facilitates the process
of learning to write computer programs by reading computer program source code. In
this study, we define reading source code as working backward from the code to de-
termine the original requirement that led to the program. The process of reading code
consists of two steps: reading comprehension and meaning deduction (see Fig. 1).

Information technology has spread throughout society, but there is a shortage of in-
formation engineers, and so it is necessary to train many more. There has been exten-
sive research on how computer programming can be learned through the construction
of computer programs [1]. However, obtaining deep understanding of programming
requires learners to read source code in addition writing programs [2].

Programming experts are highly skilled at reading code because this skill is essen-
tial for debugging programs and inferring their purpose [3]. Reading code is an also
important activity for gaining a deeper understanding of programming. Furthermore,
posing problems is often useful in understanding the scope of a computer program
[4]. Accordingly, we developed a support system that facilitates the process of
learning to program by reading source code. The target learners are programming
beginners.

 Development of a Learning Su

2 The Process of P

In previous research, the p
two steps: algorithm design
tures, such as flow diagram
gram’s requirements. This
language. In contrast, codin
source code, which necessa
program, learners are often
write the appropriate source

Our research group cons
process of programming. W
consists of two steps: readi
Reading comprehension is
verse of algorithm design. I
source code into an equival
ers are required to deduce a
oped a learning support
comprehension was still no
port system to foster readi
the system.

F

3 Learning by Usi

During the reading compr
pieces of source code. A fl
requirement) more likely to
the process of constructing
and populates each block w
late each empty rectangula
blocks with lines. By redu
convey the intent of the pro

upport System for Source Code Reading Comprehension

Programming

process of programming has been considered to consist
n and coding. Algorithm design is the step in which str

ms, are used to construct the abstract process from the p
s processing flow is independent of the programm
ng is the step in which the abstract flow is converted i
arily depends on the programming language. In learning
n given problems in the form of requirements and asked
e code by first considering the abstract processing flow.
siders reading code to be an important skill that adds to
We previously proposed that the process of reading c
ng comprehension and meaning deduction [6] (see Fig.
the inverse of coding, and meaning deduction is the

In reading comprehension, learners are required to conv
lent abstract processing flow. In meaning deduction, lea
a requirement from the abstract processing flow. We dev

system for meaning deduction [6]. However, read
ot supported. Thus, in this study, we design a learning s
ing comprehension, and we evaluate the effectiveness

Fig. 1. The process of programming

ing a Flowchart

rehension step, learners construct flowcharts from gi
flowchart has the advantage of making a problem (here
o be discovered by representing it visually. Figure 2 sho
a flowchart. A learner chooses a series of flowchart blo

with one of several available statements. Next, they po
ar box with concepts. Finally, they connect the flowch
cing the degrees of freedom in the answer, it is easier

ogram.

13

t of
ruc-
pro-

ming
into
g to
d to

the
ode
. 1).

in-
vert
arn-
vel-
ding
sup-
s of

iven
e, a
ows
ocks
opu-
hart
r to

14 T. Arai et al.

Fig. 2. How to write a flowchart

4 Error Visualization

Error visualization is the process of illustrating error [5]. The use of feedback allows
teaching the correct answer and pointing out errors, but the learner stops thinking
about the problem if simply shown the correct answer. If a learner is only shown their
own mistakes, they are not able to understand how and why they erred. In contrast,
illustrating errors can make the learner aware of their own errors. On this basis, we
developed a learning support system that includes an error visualization function.

5 Experiments

We conducted two experiments with two different objectives: the objective of Expe-
riment 1 was to examine the reading skill level of learners; the objective of Experi-
ment 2 was to examine the influence of reducing the degrees of freedom of an answer.

5.1 Experiment 1

In Experiment 1, we spent 10 minutes explaining the principles of writing a flowchart
to 62 second-year university students who were attending a programming course. The
students were asked to solve 4 reading comprehension problems in 20 min, 4 algo-
rithm design problems in another 20 min, and 4 coding problems in a final 20 min.
Problems were given in a free-response format, and the maximum possible score for
each problem was 2 points.

Table 1 shows the results of Experiment 1. The average score on individual prob-
lems was 1.20 for the reading comprehension exercise, 1.21 for the algorithm design
exercise, and 1.69 for the coding exercise. From these results, we can conclude that

START

END

Define □ □

Input an □ to □

□ is □ than □

□

integer

a

greater

0

1

START

END

Define integer a

Input an integer to a

0

a is
greater
than 0

1

Flowchart
blocks

Statements Concepts Answer

 Development of a Learning Support System for Source Code Reading Comprehension 15

reading comprehension and algorithm design were difficult. Although algorithm de-
sign is often considered to be more difficult than coding, reading comprehension was
found to be as difficult as algorithm design.

Table 1. Experiment 1 Results

Average score per

problem
Standard deviation

Algorithm design 1.21 0.52
Coding 1.69 0.39

Reading comprehension 1.20 0.38

5.2 Experiment 2

In Experiment 2, we explained the principles of writing a flowchart to 12 fourth-year
university students for 10 min. After the explanation, the students were asked to solve
6 reading comprehension problems in 30 min, followed by 6 meaning deduction prob-
lems in 15 min. The types of answers permitted are shown in Sections 3 and 4. The
maximum score for each problem was 2 points.

Table 2 shows the results of Experiment 2. The average score on individual prob-
lems was 1.21 for the reading comprehension exercise and 0.64 for the meaning de-
duction exercise. From these results, we can conclude that the effect of reducing the
degrees of freedom of the answer was small, and that the meaning deduction exercise
was a difficult task. From Experiments 1 and 2, we confirmed the need to develop a
support system that facilitates the process of learning to program by reading code.

Table 2. Experiment 2 Results

Average score per

problem
Standard deviation

Reading comprehension 1.21 0.55
Meaning deduction 0.64 0.21

6 Learning Support System

6.1 Learning Screen

Figure 4 shows the learning screen of the learning support system. The learner uses
flowchart blocks, statements, and concepts to construct a flowchart. First, a learner
presses a flowchart block button, which makes that flowchart block appear in the
center panel of screen. Next, the learner presses a statement button, which brings that
statement (with blanks) to the answer column of the selected flowchart block. Next,
the learner presses a concept button and selects a blank entry in a statement, which

16 T. Arai et al.

inserts the selected concept into the selected blank space. When the learner has com-
pleted an answer, he or she presses the answer button. If the answer is correct, a mes-
sage of "Correct answer" is displayed; if the answer is incorrect, the system shows the
feedback screen (see next section).

Fig. 3. Learning screen

Fig. 4. Feedback screen

integer

9

x

mkj

ba

i

c d

8

even

not equalequalreal

7654

32

not greater

decreaseIncrease

*
10

odd

greater less not less

Problem

Problem 1

Please convert the following source code to flowchart.

Delete

Answer START

END

Integer a
declaration

Integer a input

modulo
2 a is 0

oddeven

"C" is modulo "B" to "A” and
"C" is modulo "B" to "A"

Substitute to

inputdeclaration

modulo is

Substitute the quotient
the "B" and "C" to "A"

“O” "B" is "A"

Only "B" to "A" ”C"

Substitute the sum
"B" and "C" to "A"

"B" and "C" is "A"
"B" "C is A and

"B" "C is" A “

Delete

Answer START

END

Integer a
declaration

Integer a input

modulo
2 a is 0

odd
even

Problem

Problem 1

When it is your flowchart

Please compare the source code of the problem

Source code corresponding to the flowchart you
created is displayed.

even

odd

Flowchart Panel Flowchart blocks

Statements

Concepts

Problem / Feedback

Correct
Source code

Incorrect
Source code

 Development of a Learning Support System for Source Code Reading Comprehension 17

6.2 Feedback Screen

Figure 4 shows the feedback screen. If a learner reads the source code incorrectly, the
system generates incorrect source code from the incorrect flowchart data, and the
learner then looks for mistakes by comparing the incorrect source code to the correct
source code.

7 Assessment Experiment

To ascertain the usefulness of the learning support system, we conducted an assess-
ment experiment. In the assessment experiment, we administered a pre-test and a
post-test to all participants (6 second-year university students). They are programming
beginners. The pre-test and the post-test are identical. There are no feedback of test
results to participants.

In the pre-test, after explaining the principles of writing a flowchart for 10 minutes,
the participants were asked to solve 6 reading comprehension problems in 15 min.
Next, the participants were divided into two groups: an experimental group (4 stu-
dents) and control group (4 students). We spent 5 min explaining to the experimental
group how to use the system.

The experimental group learned by solving 10 reading comprehension problems
within 60 min using our system. In the control group, the participants were asked to
solve the same problems as the experimental group by pen and paper in 60 min. The
control group was allowed to view the correct answer. After this, participants of both
groups were asked to take a post-test.

The 6 questions used in the pre-test and the post-test are as follows.
Q1: Flowchart with condition blocks. Basic if-else is included.
Q2: Flowchart with iteration blocks. A normal while loop is included.
Q3: Flowchart with condition blocks and iteration blocks. Both blocks from Q1

and Q2 are included.
Q4, Q5, Q6: Flowchart with nested structures combining condition blocks and ite-

ration blocks.
Table 3 shows the coincidence between participant's answers and correct source

codes. Although differences can be seen by comparing pre-test results and post-test
results, there was no significant difference between control group and experimental
group. Thus, we confirm the contents of the answers.

Table 3. Coincidence between participant's answers and correct answers

pre-test post-test pre-post difference pre-test post-test pre-post difference
A 3 4 1 0.56 0.80 0.24
B 1 3 2 0.31 0.75 0.44
C 0 0 0 0.26 0.58 0.32
D 3 4 1 0.46 0.67 0.21
E 0 3 3 0.38 0.72 0.34
F 1 1 0 0.43 0.50 0.08

wholly coincident partially coincident (%)

Control

Experimental

Group participants

18 T. Arai et al.

Subjects A, B (control group) and D (experimental group) gave correct answers
with regard to the questions that they can answer within the time limit both in pre-test
and in post-test, except for caress mistakes. Therefore, it is assumed that the im-
provements in test scores of A, B, D depended on their improvements in answer
speed.

Subject C, in the pre-test, was not able to use the appropriate flowchart block for
the while statement or if statement. In addition, C was not able to describe the appro-
priate sentence in the flowchart block. For example, when describing "Output an
integer" or "Input an integer", C did not describe the variable name specifically. In
addition, C was not able to describe the nested structure combining if statements and
while statements. In post-test, C became possible to write more specifically the con-
tent of the block except for formulas. Furthermore, C was able to use the appropriate
flowchart block with respect to the while statement. But still, C was not using the
conditional branch block and didn't describe the structure of the conditional branch.

Subject E, in the pre-test, was not able to accurately describe the structure of if
statements and while statements. For example, E wrote only one arrows from if block,
and didn't write junction blocks. As for while statements, E described pre-determined
condition as a post-judgment of iterations. In addition, E didn't describe formulas
with natural languages. However, in the post-test, after conducting learning using the
learning support system, E became able to write accurate structure of the conditional
branch. In addition, E was aware of the structure of the while statement. Furthermore,
E was able to explain properly the contents of the formula with natural languages.

In the pre-test, subject C and subject E was not able to adequately describe the flow
chart of if and while statements. In the post-test, C was able to correct the error of the
while statement for simple problems such as Q2. However, C did not adequately de-
scribe the while statement in a complex nested structures such as Q4. Furthermore C
did not correct the error on the flow chart of if statements. In contrast with C, subject
E who had used the system was accurately describe both if and while statements.

Table 4 shows the percentage of partially coincidence between correct source code
and the source code corresponding to flowchart created by subjects. In Q4, the flow-
chart included both if statements and while statements and had nested structures. The
score of Q4 by subject C decreased from 0.36 to 0.29, and the score of Q4 by subject
E was improved from 0.64 to 0.86. This result shows the visualization of error using
the learning support system are useful for learners in understanding to the flow of
processing, such as conditional branches and iterations.

Table 4. Results of partially coincidence

Q1 Q2 Q3 Q4 Q5 Q6 avg. Q1 Q2 Q3 Q4 Q5 Q6 avg.
A 1.00 1.00 1.00 0.36 0.00 0.00 0.56 1.00 1.00 1.00 1.00 0.78 0.00 0.80
B 1.00 0.60 0.29 0.00 0.00 0.00 0.31 1.00 1.00 1.00 0.86 0.65 0.00 0.75
C 0.38 0.40 0.29 0.36 0.09 0.04 0.26 0.88 0.90 0.57 0.29 0.78 0.08 0.58
D 1.00 1.00 0.50 0.29 0.00 0.00 0.46 1.00 1.00 1.00 1.00 0.04 0.00 0.67
E 0.38 0.50 0.50 0.64 0.26 0.00 0.38 1.00 1.00 1.00 0.86 0.43 0.00 0.72
F 1.00 0.70 0.50 0.36 0.00 0.00 0.43 1.00 0.80 0.71 0.50 0.00 0.00 0.50

pre-test post-test

Control

Group participants

Experimental

 Development of a Learning Support System for Source Code Reading Comprehension 19

8 Conclusions and Future Work

In this study, we developed a learning support system to provide guidance on reading
comprehension, and evaluated the effectiveness of our system. From the results of the
assesment experiment, we confirmed that it is necessary to support learning of reading
comprehension, and that our system is effective for doing so. However, the assess-
ment experiment did not include many participants, and the number of participants
should be increased in future experiments. Additionally, we did not develop a learn-
ing support system for guidance on both reading comprehension and the meaning
deduction process, but we believe such a system should be developed in the future.

References

1. Matsuda, N., Kashihara, A., Fukukawa, K., Toyoda, J.: An instructional system for con-
structing algorithms in recursive programming. In: Proc. of the Sixth International Confe-
rence on Human-Computer Interaction, Tokyo, Japan, pp. 889–894 (1995)

2. Corbi, T.A.: Program understanding challenge for the 1990s. IBM Syst. J. 28(2), 294–306
(1989)

3. Uchida, S., Kudo, H., Monden, A.: An experiment and an Analysis of debugging process
with periodic interviews. In: Proceedings of Software Symposium, Japanese, vol. 98, pp.
53–58 (1998)

4. Lyn, D.: Children’s Problem Posing within Formal and Informal Contexts. Journal of Re-
search in Mathematics Education 29(1), 83–106 (1998)

5. Hirashima, T.: Error-based simulation for error-visualization and its management. Int. J. of
Artificial Intelligence in Education 9(1-2), 17–31 (1998)

6. Kanamori, H., Tomoto, T., Akakura, T.: Development of a Computer Programming Learn-
ing Support System Based on Reading Computer Program. In: Yamamoto, S. (ed.) HCI
2013, Part III. LNCS, vol. 8018, pp. 63–69. Springer, Heidelberg (2013)

	Development of a Learning Support System for Source Code Reading Comprehension
	1 Introduction
	2 The Process of P Programming
	3 Learning by Using a Flowchart

	4 Error Visualization
	5 Experiments
	5.1 Experiment 1
	5.2 Experiment 2

	6 Learning Support System
	6.1 Learning Screen
	6.2 Feedback Screen

	7 Assessment Experiment
	8 Conclusions and Future Work
	References

