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Abstract. Using gestures to control Ambient Intelligence environments can re-
sult in mismatches between the user’s intention and the perception of the ges-
ture by the system. One way to cope with this problem is to provide the user 
with an instant feedback on what the system has perceived. In this work, we 
present an approach for providing visual feedback to users of Ambient Intelli-
gence systems that rely on gestures to control individual devices within their 
environments. This paper extends our previous work on this topic [1] and intro-
duces several enhancements to the system. 
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1 Introduction 

Since Mark Weiser formulated the vision of ubiquitous computing systems embedded 
pervasively in our everyday environments [2] back in 1991, the amount of intelligent 
networked-devices has grown significantly. They are present in the form of smart 
entertainment systems such as TVs and HiFi sets, embedded in home automation 
systems and white ware, or part of communication devices such as tablet computers 
and smartphones. Every single of these devices provides its own, specific user inter-
face and this can make it difficult for the user to keep track of the wide variety of 
functionalities provided. Consequently, there is a growing interest for more compre-
hensive interaction methods [3]. In the past couple of years, scientists invented and 
examined different approaches to provide a more natural and unified way of  
interacting with smart environments [4], and a very convenient way of selecting and 
interacting with devices within smart environments are gestures [5]. 

Because gestures are often used in interactions between humans and usually cor-
rectly interpreted by a human counterpart, interacting with smart environments via 
gestures feels natural and intuitive. However, there can be a significant mismatch 
between the understanding of a gesture when performed by a person and the interpre-
tation of the same gesture by a computer system. This mismatch results from a variety 
of reasons: 
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• An incorrect positioning of the gesture tracking sensors 
• An insufficient tracking precision 
• A wrong interpretation of the gathered tracking data by the computer system 
• The user’s misleading self-assessment when performing unambiguous gestures 
• The user’s erroneous believe in an unlimited adaptivity of the computer system 

The creation of failsafe gesture recognition systems that are capable of covering 
large areas (such as the entire living room) is an enormous challenge as these systems 
have a high implementation complexity. An interim solution on the way towards this 
goal might be to develop systems that can provide users with instant, sophisticated 
feedback on what the system has perceived, thus enabling them to better adapt their 
behavior to the system’s capabilities. To this end, we have developed an optical guid-
ing device that acts like an omnipresent environmental cursor. This laser-based device 
visualizes the current interpretation of the user’s gesture to her, thus allowing her to 
adapt accordingly. Furthermore, we implemented a highly customizable and flexible 
software solution that connects multiple economy-priced gesture and position tracking 
devices such as Microsoft’s Kinect, the Leap Motion Tracking bar, and the CapFloor 
system for the provision of reliable multi-resolution user localization and gesture 
tracking. 

2 Related Work 

The research on whole-body gestures can be traced back to at least the early 1960s  
[6, 7]. The current efforts in this area concentrate mainly on virtual reality and enter-
tainment applications [8, 9]. To perform gestural interaction, a human body pose rec-
ognition system is needed and since the release of Microsoft’s Kinect sensor, 3D 
cameras that sell at a reasonable price have become widely available. 

This text is an addition to our earlier work [1]. For this, we have found inspiration 
mainly in the research of Wilson et al [8], who first introduced the dedicated XWand 
input device based on inertial measurement units and infrared LEDs. These allow for 
the determination of the XWand’s position and orientation in order to calculate the 
location that it is currently being pointed at by the user. Although not being a marker 
free whole-body interaction method in its own right, it led to Wilson’s later work, the 
WorldCursor [1]. This laser-pointing device highlights the location currently selected 
by the XWand in the environment, thus improving the selection process. 

The Beamatron project of Wilson et al. [2], published by Microsoft Research in 
2012, shows a marker free interaction approach using several Kinect cameras, a mi-
crophone array setup, as well as a high definition projector mounted on a stage-light 
robot arm. Although being heavily related to our works with respect to the character 
of the utilized input and output devices, the Beamatron project is not a feasible solu-
tion for everyday home setups. The stage-light robot arm makes it a costly product, 
and it is too voluminous for the average ceiling height. Furthermore, although it relies 
on complex algorithms to identify and follow the user’s location, it is relatively static 
and inflexible. Figure 1 shows pictures of both the WorldCursor (to the left) and the 
Beamatron (to the right). 
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using and will not point the laser beam to any of such locations. Different to static 
objects like furniture, users tend to move through the room and as such, there position 
needs to be constantly updated. However, camera-based tracking approaches such as 
ones based on the Kinect are only of limited use for this, as the can move out of sight 
of their tracking area. To this end, we rely on the CapFloor sensor to reliable inform 
our system of the user’s position. More specifically, we use the classification of the 
detected objects to make body size estimation. If the CapFloor software classifies the 
detected person as standing, we use a cylindrical bounding box and set its height to 
200 cm. This height dimensions accords to the door’s height in our environmental 
model. The width is set to the significantly detected floor proximity area’s long side 
of the detected person, but not less than 50 cm in diameter to ensure the head cover-
age even if the person bends its head sideways. If the CapFloor software classifies the 
detected person as lying, we use a rectangular bounding box and set its height to 50 
cm. The width and depth dimensions are determined by the side length sum of the 
active antenna cells. These bounding boxes are updated in real-time in our environ-
mental model and ensure the dynamic creation of forbidden areas not to be  
highlighted by the visual feedback robot. 

 

    

Fig. 7. Forbidden area determination 

5.5 Selective Device Activation 

If a system is supposed to cover a larger with visual pointing feedback, it requires 
multiple cameras and projectors. Leaving all those devices active and just waiting for 
the user to enter the camera’s field of view is certainly not a satisfying situation. 
Based on the user location detection with CapFloor, our approach allows the activa-
tion of cameras and projectors only when the user is close enough to benefit from the 
functionalities that they can provide. 

6 Conclusion and Future Work 

In this contribution we have introduced three important additions to our visual feed-
back system that compensate the limitations of the low detail skeleton reconstruction 
of the Kinect camera, made possible through the development of a highly flexible 



162 M. Majewski, T. Dutz, and R. Wichert 

 

visual feedback framework. Furthermore, we have increased the security and usability 
aspect of the system by providing static and dynamic forbidden areas that avoid un-
wanted cue projection. 

To measure the benefits of our current work, we intend to perform an extensive us-
er evaluation of our system in the near future. The users’ feedback will then be used 
to improve the system further. We also plan to investigate a richer cue provision with 
portable multimedia projectors, as well as more complex laser setups where we focus 
on affordability and suitability for daily use.  
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