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Abstract. In the field of data mining, predictive modeling refers to the usage of 
a statistical model built on a training data set in order to make predictions about 
new prospects contained in the scoring data set. A model should not be used to 
predict when it encounters unseen data in the scoring set because such predic-
tions would be a guess or a speculation. This paper proposes an algorithm that 
will produce two simple images and a “level of guessing” (LOG) pie chart.  
These images will tell the analyst whether or not it is appropriate to use a statis-
tical predictive model to make predictions on a particular scoring set.  The pro-
posed algorithm will offer a solution to the scoring adequacy problem based on 
subsets of the original data. The algorithm will be implemented with a user in-
terface built with MATLAB code, which acts on MySQL databases that contain 
the data.  

Keywords: predictive modeling, data mining, scoring set, supervised learning, 
MATLAB, MATLAB GUI, MySQL. 

1 Introduction 

To my knowledge, there is no automated process or algorithm available that uses 
images to determine the adequacy of a statistical model to predict given new data. 
Even if a model shows very strong performance in the training data, this does not 
guarantee its applicability towards scoring new data since the scoring data might have 
values absent in the training data.  The process presented here seeks to find differ-
ences between training and scoring data because such differences will impact the 
ability to make accurate predictions.  The outcome of the process will send a message 
to the analyst highlighting these differences in the form of two simple images and a 
LOG pie chart.    

It is often found in real world applications that a model built on a training data fails 
to produce accurate predictions in the scoring data.  There are two reasons for that 
outcome:  

i. The training set observations present different characteristics than those in 
the scoring set, hence a predictive model “speculates” when it classifies 
based on unseen data (for example, imagine that one of the important  
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explanatory variables of the training set is OCCUPATION and its distinct 
values are A,B,C,D but in the scoring set OCCUPATION has the following 
values A,B,C,D,E,F,G,H,I,J; classifications based on F,G,H,I, J will be spec-
ulative and the analyst must know this caveat before making predictions in 
the scoring set). 

ii. The training set observations look like those in the scoring set, but prospects 
with similar characteristics behave differently in the scoring set (for exam-
ple, imagine that one of the important explanatory variables of the training 
set is OCCUPATION and its distinct values are A,B,C,D and in the scoring 
data OCCUPATION also has the values A,B,C,D but in the training set A 
and B responded to a marketing mailing campaign at a 30% rate, yet in the 
scoring set, once the outcome is known, A and B only respond to a mailing 
campaign at a 3% rate).  

For situation (i) above, scoring should not be performed if the degree of “specula-
tion” is considerable. The magnitude of “considerable” depends on the application or 
in the risk preference of the analyst given the implications of the decision. For situa-
tion (ii) scoring should occur because it is meant to predict a “similar” universe of 
prospects. There is no way around situation (ii) simply because patterns in old data 
did not hold in new data; given past information it is unrealistic to avoid this error. 

Analysts cannot control the outcome of the target in the scoring set, but they can 
decide on the adequacy of a statistical predictive model to score new data. The pro-
posed algorithm will produce two simple images plus a LOG pie chart that will in-
form the analyst about differences between the training set and the scoring set.   

When predictions do not conform to the actual outcomes analysts are often not sure 
what caused the model to underperform.  In order to reach an explanation, analysts 
may spend considerable amount of time trying to determine why their predictions 
were off. The images produced by this algorithm will answer that question quickly, 
indicating if the problem was different data between training and scoring universes 
(like situation (i)) or different individuals with similar data (like situation (ii)). Ideally 
the images produced by the proposed algorithm should be used before scoring in  
order to avoid speculation in the scoring process.  

2 Proposed Algorithm for Determining Differences between 
Training Set and Scoring Set 

The algorithm that follows will produce two images and a LOG pie chart that will 
provide information about the applicability of a statistical model M, built on a training 
set T, and used to make predictions on a scoring set S. The adequacy between training 
T and scoring S will be analyzed only for those variables found in T that are also 
found in S. In other words, if there is a missing explanatory variable in S, the algo-
rithm will still find the adequacy of the remaining variables.  Any model created in T 
will not work on S due to the missing variables required in S; any data modeling 
software will make you aware of this issue right away.  
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Let T be a n x (k+1) array representing a training dataset for which a statistical 
model M has been built. T can be broken as a dependent variable array Ynx1 and an 
array of k final explanatory variables Xnxk.  Array Xnxk can have numeric, date and 
class variables. M explains Ynx1 as a function of Xnxk. M will be used to predict Y෡rx1 
given a new array of explanatory variables ෠ܺrxk, where r is the number of records or 
rows in the scoring set.  The algorithm treats class variables differently than it treats 
numeric and date variables.  

2.1 Class Explanatory Variables 

Let ݒ be the number of class variables out of the k explanatory variables. Xnxv is a  n 
x ݒ non numerical array of class variables with each class explanatory variable repre-
sented by a nx1 non numerical array called ்ݔ௖௜ , i=1 … ݒ. Each non numerical array ்ݔ௖௜  will have Li number of levels or distinct values, so Li≤n. Let τi={all levels of 
class variable i in the training set T}, i=1 … ݒ, so the set τi has Li elements. 

If ݒ class variables were used in the creation of the final statistical model in T, then 
the same ݒ class variables must be present in the scoring set S represented by ෠ܺrxk ; 
otherwise the scoring process will fail. Then the set ෨ܺrxv is the subset from the scoring 
set ෠ܺrxk that contains the class variables from ෠ܺrxk and k ≥ ݒ. Let ݔௌ௖௜  be a rx1 non 
numerical array, i=1 … ݒ, so all the  ݔௌ௖௜ arranged together next to each other make 
up array ෨ܺrxv. Each non numerical array ݔௌ௖௜  will have Pi number of levels or distinct 
values, so Pi≤r. Let ρi={all levels of class variable i in the scoring set S}, i=1 … ݒ, so 
the set ρi has Pi elements. 

For the scoring process to be completely valid the condition {ρi ϵ τi for all i,  
i=1 … ݒ } must hold because otherwise the prediction will not be completely based 
on prior knowledge leading to guessing or speculation. This is condition 1.  

In real world applications there might be small violations to condition 1. An ana-
lyst might consider that the violations are not significant and score using model M.  
By using the proposed algorithm, the decision of whether to score using model M will 
be well informed and based on calculated risks. For instance, the analyst might con-
clude that it is better to remove the unseen levels from the scoring set before scoring 
or add more records to the training data to account for the unseen levels from S. 

If condition 1 does not hold, that is, if there are elements in ρi not found τi, which is 
the same as saying that there are elements in the scoring set S not found in the training 
set T, then it is important to quantify the magnitude of the violation of condition 1. 
Such magnitude will help the analyst decide if the differences between training and 
scoring set are significant or if they are negligible for practical purposes.  

For example, if we go back to the first situation why a predictive model performs 
poorly, recall that in the example it was argued that classifications based on F,G,H,I 
and J would be speculative, because levels F,G,H,I and J were not found in the train-
ing data (i.e. {F,G,H,I,J} ϵ ρi  and {F,G,H,I,J} NOT ϵ τi ). Let  ݍ௜ be the number of 
rows out of the r rows of class array ݔௌ௖௜  for which condition 1 is violated, i=1…ݒ. In 
other words, ݍ௜ represents the number of rows from the scoring set S with a level not 
found in the training set T for class variable i, i=1 … ݒ. Then we can define 
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                                                  α= 
∑ ࢘࢜స૚࢏࢜࢏ࢗ                                                            (1)                                 

0≤ α ≤1. α is the overall percentage of violation of condition 1 for all class ex-
planatory variables. The number α provides information on the severity of violation of 
condition 1. Large values of α indicate that there is considerable difference between 
training set T and scoring set S. The larger α, the more evidence against using a statis-
tical model built on training set T to predict data found in scoring set S.  

2.2 Numeric Explanatory Variables and Date Explanatory Variables 
Converted to Numbers 

Let ݀ be the number of numerical variables out of the k explanatory variables (date 
variables can be converted to numbers using the YYYYMMDD format so they are 
considered here). Xnxd is a n x ݀ matrix with each variable represented by a nx1 vector 
called ்ݔఎ௜, i=1…݀. Xnxd is a matrix composed by the numerical variables from array 
Xnxk and arranged as vectors ்ݔఎ௜. Each ்ݔఎ௜ vector will have a maximum and mini-
mum value labeled MINTi and MAXTi. Let θi={MINTi, MAXTi}, i=1…݀, so each set 
θi has 2 elements. 

Each numeric variable from the scoring array ෠ܺrxk is represented by a rx1 vector 
called ݔௌఎ௜  i=1…݀. Each vector ݔௌఎ௜  will have a maximum and minimum value la-
beled MINSi and MAXSi. Let λi={MINSi, MAXSi}, i=1…݀, so each set λi has 2  
elements. 

For the scoring process to be valid the condition { MINTi ≤MINSi ≤MAXTi and 
MINTi ≤MAXSi ≤MAXTi } must hold because otherwise the predictions will be 
based on extrapolation at least one time. Equivalently MINSi ϵ [MINTi,MAXTi] and 
MAXSi ϵ [MINTi,MAXTi], i=1…݀. This is condition 2.  

Let ܾ௜ be the number of rows out of the r rows of vector ݔௌఎ௜  for which a value of is 
not in the interval [MINTi,MAXTi], i=1…݀. In other words ܾ௜ represents the number 
of rows where extrapolation will be needed. Then we can define  

β= 
∑ ࢘ࢊస૚࢏ࢊ࢏࢈                                                          (2) 

0≤β≤1. β is the percentage of violation of condition 2 for all numerical (and date 
converted to numerical) explanatory variables. Large values of β indicate that there is 
considerable difference between training set T and scoring set S. The larger β, the 
more evidence against using the statistical model built on training set T to predict data 
from the scoring set S. 

Initially, the proposed algorithm will indicate the violation of either condition in 
the form of two images. The images will be a reflection of the capacity of the model 
to predict new data. Before defining the rationale for the generation of the images, at 
this point there is already enough information on α and β to reach an answer to the 
main question: should I use this model?  If α and β are close to 0 then the model built 
on T is adequate to make predictions in the scoring set S. Large values of α or β is a 
signal that making predictions using model M involves a considerable degree of  
speculation or guessing.  
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Fig. 9. MATLAB 
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7 Conclusion 

This paper presents a algorithm to determine, by using two images and a “level of 
guessing” (LOG) pie chart, the adequacy of a statistical predictive model M created on a 
training set T to predict new data from a scoring set S. Often in practice we observe that 
predictive models do not perform as expected and this can happen because of two rea-
sons: the first one, we train on certain characteristics in T and the individuals to be pre-
dicted in S have different set of characteristics; the second one, individuals with same 
characteristics behaved differently in T than they do in S. In the second reason we just 
have to accept the errors as previous patterns in the data did not hold true in new data. 
The proposed algorithm addresses situations where data in T does not contain values 
and levels found in S. Making predictions when scoring data S has values not found in 
training data T is a guess or a speculation because model M has never seen such values, 
hence does not really know how to classify or predict based on them.  

The first image is the αβ binary spectrum and it presents two rectangles, the left 
one represents the inadequacy coming from class data and the right one represents the 
inadequacy coming from numerical and date data. The more these rectangles ap-
proach the color black, the better, meaning that levels found in the scoring set S were 
also found in the training set T. The further away these rectangles are from black, the 
worst the adequacy of models built on T to score S.  The second image is called De-
tailed Metadata Chart (DMC) and it shows the percentage of inadequacy for each 
explanatory variable. DMC summarizes the percentage of records with levels or val-
ues found in the scoring set S that were not found in the training set T. If both rectan-
gles of the αβ binary spectrum are black, there is no need to focus on DMC but if any 
of the rectangles depart from color black, the DMC will detail where the inadequacy 
is coming from. Finally, the LOG pie chart summarizes the findings.   

The user interface and sample MATLAB output were provided. The only inputs 
required by the algorithm are the training and scoring sets plus the sensitivity factor. 
The algorithm offers a solution to the scoring adequacy problem by breaking the orig-
inal scoring set S in two subsets, “OK” and “ALT”, where “OK” will be scored with 
the original models built in the original training set T and “ALT” will be scored with 
new models built in new training set “ALT”, that contains only those variables that 
guarantee full scoring adequacy in the problematic records.   
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