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Abstract. Recently, Wee (EUROCRYPT"12) introduced the notion of
dual projective hashing as an extension of the Cramer-Shoup projective
hashing, with a simple construction of lossy trapdoor functions, and a
simple construction of deterministic encryption schemes which is chosen-
plaintext-attack secure with respect to hard-to-invert auxiliary input. In
this work, we further extend it to the all-but-one setting by introducing
the notion of all-but-one dual projective hashing.

— We provide a simple construction of all-but-one lossy trapdoor func-
tions. Our construction encompasses many known constructions of
all-but-one lossy trapdoor functions, as presented by Peikert and
Waters (STOC’08), and Freeman et al. (JoC’13). Particularly, we
present a new construction of all-but-one lossy trapdoor functions
based on the DLIN assumption, which can be viewed as an extension
of Freeman et al.’s DDH-based construction to the DLIN setting, and
therefore solves an open problem left by Freeman et al.

— We also provide a general construction of chosen-ciphertext-attack
(CCA) secure deterministic encryption schemes in the standard model,
under an additional assumption about the projective map. This ex-
tends the general approach of designing CCA secure deterministic
encryption schemes by Boldyreva, Fehr and O’Neill (CRYPTO’08).
In addition, we present a new construction of CCA secure determin-
istic encryption schemes based on the DLIN assumption.

Keywords: Smooth projective hashing, ABO lossy trapdoor function,
deterministic encryption, CCA security.

1 Introduction

In 1998, Cramer and Shoup [9] presented the first efficient public key encryption
scheme which is chosen-ciphertext-attack (CCA) secure in the standard model,
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under the decisional Diffie-Hellman assumption. Towards a general paradigm of
constructing CCA secure public key encryption schemes, they [10] abstracted
the above work to hash proof system (HPS). At the heart of HPS lies a prim-
itive dubbed “smooth projective hashing”. Thereafter, the smooth projective
hashing and its variants have found numerous applications beyond CCA secu-
rity, including password-based authenticated key exchange [15,19], extractable
commitment [1], lossy encryption [5], leakage-resilient public key encryption [21],
privacy-preserving interactive protocols [6], oblivious transfer [17], etc.

Informally, a smooth projective hashing is a family of keyed hash functions
{Hx} whose input u is from some hard language (consisting of YES instances
and NO instances). There are two ways to compute the function. First, know-
ing the hashing key k, one can compute the hash function on every instances
in its domain. Second, knowing a projective key a(k) where « is a projective
map, one can compute the hash function for each YES instance as long as it
additionally knows the associated “witness”. This means that the hash value
Hy(u) is completely determined by (k) and w, and this is therefore called the
projective property. The other property, smoothness, means that the projective
key a(k) gives (almost) no information about the value of the hash function on
NO instance, i.e., the value of the hash function is completely undetermined.

Regarding evaluation on NO instances, instead of smoothness, Wee [25] con-
sidered invertibility that, for any NO instance u, one can compute the hashing
key k given the projective key a(k) and the hash value Hy(u) together with an
inversion trapdoor of w. This alternative introduced the notion of dual projective
hashing (DPH), where “dual” means that roles of u and k are exchanged. This
is why it is more convenient to write the function as A, (k) := Hy(u). Moreover,
in typical applications of smooth projective hashing, YES instances are used
for functionality /correctness and NO instances are used to establish security. In
contrast, in applications of dual projective hashing, YES instances are used to
establish security, and NO instances are used for functionality /correctness.

Wee [25] showed a simple construction of lossy trapdoor functions via dual
projective hashing and presented instantiations of dual projective hashing from
Diffie-Hellman assumptions like Decisional Diffie-Hellman (DDH) and and Deci-
sional Linear (DLIN), number-theoretic assumptions like Quadratic Residuosity
(QR) and Decisional Composite Residuosity (DCR), and lattice-based assump-
tions like Learning-with-Error (LWE). It unifies (with slight changes) almost all
known constructions of lossy trapdoor functions in [22,13]. When considering
chosen-ciphertext security for encryption, many constructions based on lossy-
trapdoor function rely on a more generalized all-but-one (ABO) lossy trapdoor
functions [22]. It is natural to ask whether we can find an abstraction framework
to unify existing ABO lossy trapdoor functions.

Dual projective hashing also leads to a simple construction of deterministic
encryption scheme (with respect to hard-to-invert auxiliary input) [25]. Since
it only achieves chosen-plaintext security, it is natural to ask whether we can
achieve CCA security using dual projective hashing, or if we can get another
general framework for CCA secure deterministic encryption schemes.
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1.1 Overview of Our Results

We introduce the notion of ABO dual projective hashing. We consider a fam-
ily of projective hash functions {Hj} indexed by a hashing key k and whose
inputs are (tag,u). Here, we do not consider YES or NO instances. For any
initial parameter tag* € TAG, and any u generated by some efficient algorithm
together with tag*, if tag = tag*, we require projective property that the hash
value Hy(tag,u) is completely determined by u and a(k); otherwise we require
invertibility that there is some inversion trapdoor allowing us to efficiently re-
cover k given (a(k),Hy(tag,u)) along with w. In addition, we require the hidden
projective tag property that a randomly chosen input u under any tag € TAG is
computationally indistinguishable from a randomly chosen input «’ under an-
other different tag tag’ € TAG. When TAG = {0,1}, an ABO dual projective
hashing degrades to a dual projective hashing (refer to Section 3.1 for details).
We proceed to answer the above two problems using ABO dual projective hash-
ing. Our applications treat v as an index and (tag, k) as an input to some hash
function. It is thus more convenient to denote an ABO dual projective hashing
by Ay(tag, k). For clarity, we replace k with « and use A,(tag, z) instead.

ABO Lossy Trapdoor Functions. A collection of ABO lossy trapdoor functions
is associated with a set, whose members are called branches. The generator of
the collection takes an additional parameter b* € B, and outputs a description
of a function f(-,-) together with a trapdoor 7. The function f has the property
that for any branch b # b* the function f(b,-) is injective and can be inverted
using 7, while f(b*,-) is lossy, which means each function statistically loses a
significant amount of information about its input. Moreover, the hidden lossy
branch property requires that a description of a random function f; generated
with a parameter b; should be indistinguishable from a description of a random
function fo generated with a distinct parameter bs.

Starting from ABO dual projective hashing, we can build a collection of ABO
lossy trapdoor functions as F, teq : ¢ — a(x)||Ay(tag, ). The parameter u is
generated by a key generation algorithm whose inputs are the projective tag tag*
together with some trapdoor information. For the injective branch tag # tag*,
invertibility guarantees that, x can be efficiently recovered from the output of
the hash function. For the lossy branch tag*, the projective property guarantees
that the output is fully determined by «a(z) (and ), and therefore preserves
at most log |a(x)| bits information of x. The hidden lossy branch property is
implied by the hidden projective tag property of ABO dual projective hashing.

Deterministic Encryption. Deterministic public key encryption, first introduced
by Bellare, Boldyreva and O’Neill [2], is proposed as an alternative in scenarios
where traditional randomized encryptions exhibit inherent drawbacks, such as
failure in supporting efficient search on encrypted data by simple equality test.
The only known general construction of CCA secure deterministic encryption
schemes was presented by Boldyreva, Fehr and O’Neill [7]. We give a new one
follow their approach. The differences are, they used (ABO) lossy trapdoor func-
tions in place of (ABO) dual projective hashing and the lossy mode acts as an
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universal hash function (called universal hash mode). With a family of universal
hash function A which is universal one-way, a dual projective hashing A, and an
ABO dual projective hashing A’, our construction is roughly as follows.

— The key generator chooses a random NO instance u of A together with a
trapdoor 7, and generates a random instance u’ of A’ together with trapdoor
7/ under a default projective tag. The public key is pk = (u,u’, H) where h
is a hash function chosen at random from H. The secret key is (1, 7/, pk).

— The encryption algorithm encrypts a message m as follows: H(m)||a(m)]|
Ay (m)||e/ (m)]| AL, (H(m), m). Note that A!, uses H(m) as tag.

— The decryption algorithm attempts to decrypt a ciphertext c=hl|c1||cz||cs||ca
as follows: It computes m’ from ¢y, ¢y using the trapdoor 7. Since A is in-
vertible on NO instance u, this can be done efficiently. It outputs m’ if the
ciphertext is well-formed, that means it can be reconstructed from m’.

We show that if both «(-) and o/(-) are strong average-case extractors (where
the seed is provided by the public parameter) for high min-entropy sources, then
we obtain a CCA secure deterministic encryption scheme for high min-entropy
message distributions. With these requirements on « and o’, dual and ABO
dual projective hashing imply lossy and ABO lossy trapdoor functions with
universal hash mode, respectively, so our construction in general follows from
their framework. The additional requirements on «(-) and o'(-) are sometimes
satisfied under the cost of efficiency (i.e., the sizes of the keys and hash value).
We further present an extended general construction with improved efficiency,
which eliminates the extra requirement on the (ABO) dual projective hashing,
similar to existing technique [7]. In particular, we use an invertible, pairwise-
independent hash functions, and then show this extension suffices to provide
CCA security by applying a generalized crooked leftover hash lemma [7].

Instantiations. We present instantiations of ABO dual projective hashing from
three major classes of cryptographic assumptions, consisting of Diffie-Hellman
assumptions like DDH and DLIN, number-theoretic assumptions like DCR, and
lattice-based assumptions like LWE. Following similar technique of [25], we rely
on hashing keys to be vectors and/or matrices over {0,1}* (except one of the
DCR-based constructions) in order to achieve the invertibility.

Our results also give a unified treatment of all known constructions of ABO
lossy trapdoor functions [22,13], since they can be obtained (with slight changes)
by applying our generic transformations from ABO dual projective hash to ABO
lossy trapdoor functions on these instantiations. In addition, we present a new
construction of ABO lossy trapdoor function based on the DLIN assumption,
which can be viewed as an extension of Freeman et al.’s [13] DDH-based scheme
to the DLIN setting, and therefore solves an open problem left by them?.

We then discuss instantiations of CCA secure deterministic encryption. Due
to the invertibility requirement, hashing keys k are vectors and /or matrices over

! As explained later, DLIN-based ABO lossy trapdoor functions can be constructed
from DLIN-based lossy trapdoor functions by the parallel execution technique [22].
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{0,1}*. Regarding the general construction, in order to instantiate «(-) and
o/(-) as average-case extractors, we resort to random linear functions where the
input k are vectors and/or matrices over {0,1}* [21,25]. For the above reasons,
our DCR-based construction and the LWE-based construction are less efficient
compared with those of Boldyreva, Fehr and O’Neill [7]2. However, our DDH-
based construction achieves almost the same efficiency as theirs. In addition, we
present a new construction of CCA secure deterministic encryption based on the
DLIN assumption. Regarding the extended general construction, our DCR-based
and LWE-based instantiations are as efficient as those in [7].

1.2 Related Work

ABO Lossy Trapdoor Functions. Peikert and Waters [22] presented general con-
structions of ABO lossy trapdoor functions from lossy trapdoor function using
the “parallel execution” technique. As the sizes of the public key and hash value
are linear to the length of the branch, this approach yields inefficient construc-
tions. They also presented direct matrix-based constructions based on DDH and
LWE assumptions. Freeman et. al. [13] then proposed new and improved instan-
tiations of ABO lossy trapdoor functions based on DDH and DCR assumptions.
Recently, Joye and Libert [18] gave a new construction of ABO lossy trapdoor
function based on both the k-Quadratic Residuosity and the DDH assumptions,
which achieves much shorter outputs and keys than previous DDH-based ones.

Deterministic Encryptions. Bellare et al. [2] first introduced deterministic public
key encryption, formalized several notions of security, and gave a construction
in the random oracle model. Later, Bellare et al. [4] and Boldyreva, Fehr and
O’Neill [7] refined and extended the security notions, and presented construc-
tions in the standard model. Especially, the latter gave general constructions
of CPA/CCA secure deterministic encryption schemes, as well as efficient in-
stantiations under number-theoretic assumptions. After that, there are several
follow-up works, focusing on hard-to-invert auxiliary inputs [8,25], incrementatl-
ity [20] (i.e., small changes in the plaintext translate into small changes in the
corresponding ciphertext), multi-shot adversaries [3] (i.e., adversaries that inter-
actively challenge the scheme with plaintext distributions depending on previous
ciphertexts), bounded multi-message security [14] (i.e., the number of messages
are bounded before the setup of the system but messages may be arbitrarily
correlated), and impossibility for unbounded multi-message security [26].

There are two main limitations in the above work. One is plaintext unpre-
dictability, which means security can be satisfied when plaintext are distributed
over a large set. This limitation is inherent and essential for deterministic en-
cryption. The other limitation is key-independent plaintext distributions, which
means plaintext distributions are independent on the public key. It was consid-
ered to be inherent, until Raghunathan, Segev and Vadhan [23] showed that this

2 The DDH-based construction in [7] follows the general framework, while the DCR-
based and the LWE-based constructions follow the extended general framework.
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limitation can be removed, with meaningful security guarantee, by relying on a
randomness extraction from seed-dependent distributions. They also presented
CCA secure schemes based on lossy trapdoor functions.

2 Preliminaries

Notation. If A is a deterministic algorithm, then y := A(z) denotes the assign-
ment to y of the output of A on input x. If A is a probabilistic algorithm, then
y+gA(z) denotes the assignment to y of the output of A on input = with a set
of uniformly random coins. We write y := A(x;r) to denote the assignment to
y of the output of A on input z and random coins r. A function p(-), where
w2 N — [0,1] is called negligible if for every positive polynomial p(-), for all
sufficiently large x € N, u(k) < 1/p(x). We use negl(-) to denote an unspecified
negligible function.

Let {0,1}™ be the set of n-bit strings. For a string = € {0, 1}*, |z| denotes the
length of z. For a random variable X, we use notation z <— X to denote that a
value x is sampled according to X. For a finite set X', we write z<—gX to denote
the assignment to x of a uniformly randomly chosen element of X. We use | X|
to denote the cardinality of the set X.

The min-entropy of a random variable X, denoted as Hoo (X), is Hoo(X) :=
—log(max, Pr[X = z]). A k-source is a random variable X with Hoo(X) > k.
A family of hash functions is a pair H := (K, H) where the key generation
algorithm /C(1%) returns a key K, and the deterministic hash function H takes
K and an input z to return a hash value y. Let ¢ := ¢(x) be a polynomial-
time computable function. For simplicity, {0,1}* and R denote the domain and
image of H(K,-), respectively. We call H an ¢-bit hash function. We say that
an £-bit hash function H with image R is universal if for all x; # xo € {0,1}%,
PrH(K,z1) = H(K,z3) : K<¢K(17)] < 1/|R|. If we have an upper bound
of € < 1 on the collision probability, we say that H is e-almost universal. We
say that H is pairwise-independent if for all z; # x5 € {0,1} and y1,y2 € R,
Pr[H(K,x1) =1 A H(K,22) = y2 : K+K(17)] < 1/|R|?.

We say that H is universal one-way (UOW) if for every PPT adversary A :=
(A1, Az), the UOW-advantage Advy, ") (k) = Pr[H (K, z1)=H (K, z2) : (21, st) <
A1 (17), K<—gKC(17),z2 < A2(K, st)] of A is negligible in k. We say that H is
collision-resistant (CR) if for every PPT adversary A, the advantage Advs; 4 (k) :=
PriH(K,z1) = H(K,x2) ANy # x2 1, K<—sK(17), 21, 22 < As(K)] of A is negli-
gible in k. UOW is implied by CR.

Definition 1 (Dual Projective Hashing). A dual projective hashing P con-
sists of the following polynomial-time algorithms: Setup, Pub, Priv, Tdinv.

— Setup(1®): takes as input a security parameter k expressed in the unary
representation, and generates parameterized instances of the form para :=
(hp, msk, X, Y, P,U = IIy N, W, I H,a), where hp contains global pub-
lic parameters®, msk is a master trapdoor related to hp (e.g., the randomness

3 Throughout the paper, we assume that all algorithms get hp as an input, and some-
times omit hp from the input for brevity.
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used to generate hp), Iy and Iy are disjoint sets and correspond to YES
and NO instances, respectively, H := {A,, : X — Y}uecu is a family of hash
functions indexed by u € U, and o : X — P is a projective map (that we
will explain later). In addition, we require that there exists a pair of efficient
sampling algorithms SampYes and SampNo.

e YES instance sampling algorithm: SampYes(hp) outputs a random pair
of values (u,w) where u is uniformly distributed over ITy and w is the
corresponding witness in W;

e NO instance sampling algorithm: SampNo(hp) outputs a random pairs of
values (u, T) where u is uniformly distributed over Iy and 7 is the corre-
sponding trapdoor in I'. Note that for some instantiations, SampNo(hp)
requires as input the master trapdoor msk in order to compute the in-
version trapdoor T.

— Priv(u,x): is a deterministic private evaluation algorithm. It takes as input
a public parameter u € U and an input x € X, outputs y € V.

— Pub(u, a(x),w): is a deterministic public evaluation algorithm. It takes as
input a public parameter u € Iy, a projective value a(z) € P, and a witness
w for u, outputs y € Y.

— Tdinv(T, a(z), Ay (z)): takes as input a trapdoor information T € I', a pro-
jective value a(x) € P for any x € X, and a hash value A, (z) € Y, outputs
e X.

Correctness. We require that for all k € N, all para generated by Setup(17), all
uw € Iy |JIIy and all x € X, Priv(u, ) = Ay(x).

Projectiveness. P is almost projective if for all k € N, all para generated by
Setup(17), all z € X, Pr[Pub(u, a(z),w) = Ay,(z) : (u,w)<gSampYes(hp)] >
1 —negl(k). If this holds with probability 1, we say that P is perfectly projective.

Invertibility. P is almost invertible if for all k € N, all para generated by
Setup(1%), all z € X, Pr[Tdinv(r, a(z), Ay(z)) = = : (u,7)s—5SampNo(hp)] >
1 — negl(x). If this holds with probability 1, we say that P is perfectly invertible.
Subset Membership Assumption. This assumption states that the uniform distri-
butions over IIy and ITy are computationally indistinguishable, even given hp.
This is formally captured by the advantage function Advpl, 4(k):

Advipy a(k) := Pr[A(hp,u) = 1 : us—glly] — Pr[A(hp,u) = 1 : us—glIN]

where hp is generated by Setup(1”). The subset membership assumption states
that for all PPT adversary A, Advpyy, 4(x) is a negligible function in k.

3 ABO Dual Projective Hashing

Definition 2 (ABO Dual Projective Hashing). An all-but-one dual pro-
jective hashing P consists of the following polynomial-time algorithms: Setup,
Keygen, Pub, Priv, Tdinv.
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— Setup(1%): takes as input a security parameter k expressed in the unary
representation, and generates parameterized instances of the form para :=
(hp, msk, TAG, X, YV, P,UW, T H,«), where hp contains global public pa-
rameters, msk is a master trapdoor related to hp (e.g., the randomness used
to generate hp), H := {A, : TAG X X — Y}ueu s a family of hash functions
indexed by u € U, and o : X — P is a projective map.

— Keygen(msk,tag*): takes as input a master trapdoor msk and a tag tag* €
TAG, and outputs (u,w,T) consisting of a public parameter uw € U, a witness
w €W, and an inversion trapdoor T € I'. If no tag input is specified, it is
assumed to be a fixed “default” tag.

— Priv(u,tag, z): is the deterministic private evaluation algorithm. It takes as
input a public parameter u € U, a tag tag € TAG and an input x € X, and
outputs y € ).

— Pub(u, tag, a(x), w): is the deterministic public evaluation algorithm. It takes
as input a public parameter v € U, a tag tag € TAG, a projective value
a(z) € P and a witness w, and outputs y € Y if tag = tag*.

— Tdinv(T, tag, a(z), Ay (tag, x)): takes as input a trapdoor information 7 € I,
a tag tag € TAG, a projective value a(x) € P for any x € X, and a hash
value Ay(tag,x) for some tag tag € TAG, and outputs ' € X if tag # tag*.

Correctness. We require that for all k € N all para generated by Setup(1*),
all tag* € TAG, all (u,w,7) generated by Keygen(msk,tag*), and all x € X,
Priv(u, tag, z) = Ay, (tag, x).

Projectiveness. We say P is almost projective if for all k € N, all para generated
by Setup(17), all tag* € TAG, all x € X, Pr[Pub(u, tag*, a(x),w) = A, (tag*, ) :
(u, w, 7)+gKeygen(msk,tag*)] > 1 — negl(x). If the projective property holds
with probability 1 then we say that P is perfectly projective.

Invertibility. We say P is almost invertible if for all k € N, all para < Setup(17),
all tag*, tag € TAG where tag* # tag, allz € X, Pr[Tdinv(7, tag, a(x), A, (tag, ©))
=z : (u,w, 7)gKeygen(msk, tag*)] > 1 —negl(x). If the invertibility holds with
probability 1 then we say that P is perfectly invertible.

Hidden Projective Tag. For every para generated by Setup(1*) and for any PPT
algorithm A := (Aj, As), the advantage Advll;,pi‘(m) of A is negligible in the
security parameter k: 7

hpt o — . ((tagﬂv tagl)v St) <~ Al(h’p)a b<;${03 1} _
Advp y (k) :=2Pr |b=10": (u, w, 7)<—sKeygen(msk, tag,),b + A2 (hp,u, st) 1
Dual projective hashing (DPH) and ABO dual projective hashing are equivalent
for appropriate choices of parameters. We show their relationship in Section 3.1.

3.1 Relationship between DPH and ABO DPH

From ABO DPH to DPH. Starting from an ABO dual projective hashing
P := (Setup, Keygen, Pub, Priv, Tdinv) with tag set TaAG = {0, 1}, we may derive
a dual projective hashing as follows.
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— Setup’(1%): runs (hp,msk,{0,1}, X, Y, P,U,W, T, H, a)+gSetup(1%), then
run (ug, wo, 7o)<gKeygen(msk,0), and (u1,ws, 71)+gKeygen(msk,1). De-
note by ITy and Il the set of possible value of ug and u;, respectively. The
family of functions H' := {A!, : X — V},ecw is defined as A} (z) := A,(0, z).
Return (hp, msk, X, Y, P, WU .= IIy JIIn, [ H' «).

e SampYes(hp): runs (u,w, 7)< gKeygen(msk, 0) and outputs (u,w).
e SampNo(hp): runs (u,w, 7)gKeygen(msk, 1) and outputs (u, 7).

— Priv/(u, ): outputs Priv(u, 0, x).

— Pub’(u, a(z),w): outputs Pub(u, 0, a(z), w).

— TdinV/(7, a(x),y): outputs x « Tdinv(7, 0, a(x),y).

From DPH to ABO DPH. We give a general construction of ABO dual pro-
jective hashing from a dual projective hashing by “parallel execution” which has
been used in previous works [12,24,22]. Starting from a dual projective hashing
P := (Setup, Pub, Priv, Tdinv), we can derive an ABO dual projective hashing
for tag set {0,1}* as follows.

— Setup/(1%): runs (hp, msk, X, Y, P,U = Iy |JIIn, W, T, H, a)«gSetup(1*).
Sets TAG := {0,1}%. Sets V' = YU = U* W = W' I = TI"
The family of functions H = {A], : TAG x X — Y'}yew is defined
as A,/ (tag,r) = (A, ,,, (7))iclg where v’ equals (u;0,ui1)icg- Returns
(hp, msk, TAG, X, V', P.U' W, I" H  «a).

— Keygen'(msk, tag*): for i = 1 to ¢, runs (Ui tagr, wi)<—gSampYes(hp) and
(Ui, 1—tagr, Ti)<—$SampNo(hp). Sets u’ := (w0, wi,1)iep, W' = (wi)ic[y, and
7' = (7i)ie[q- Outputs (v, w’, 7").

— Priv/(u/, tag, x): parses v’ as (u; o, ui1)ie[q, and outputs (Priv(u; tag,, T))ic[-
— Pub’(v/, tag, a(z),w’): if tag # tag*, outputs L. Otherwise parses u’ as
(ui,0,ui1)ic and w' as (w;)iepg, and outputs (Pub(u; tag,, (), w;i))icq-

— TdinV/(7', tag, a(x), (y1, ..., ye)): computes x; < Tdinv(7;, a(x),y;) for all i
such that tag; # tag;. Denote the common value by z if all these values
agree and if not outputs L. Checks y; = Priv(u; tq4,, ) for all ¢ such that
tag; = tag;. If all the checks pass, then outputs z; otherwise outputs L.

4 All-but-One Lossy Trapdoor Functions from ABO DPH

We construct a family of ABO lossy trapdoor functions in Fig. 1.

Theorem 1. Suppose that P := (Setup, Keygen, Pub, Priv, Tdinv) is an ABO
dual projective hashing, then the construction in Fig. 1 yields a collection of
(m,m — log |Imga|)-ABO lossy trapdoor functions, where m := log |X|.

Proof. The correctness for injective functions follows from the invertibility prop-
erty. The lossiness for the lossy branch follows from the projective property. Re-
call that if tag = tag*, then for all z € X, A,(tag, z) is determined by a(z) and
u. This means that the size of image set Imgf, taq is at most |Imga|. Thus, the
function is (m, m — log |Imga|)-lossy. The hidden lossy branch property directly
follows from the hidden projective tag property of P.
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All-but-One Lossy Trapdoor Function

1. Sampling a branch: B(1") outputs a value tag™ € TAG.

2. Sampling a function: Sapo(1%,tag™) first runs (u, w, 7)4—gKeygen(msk,tag®), and
outputs (hp||u, 7).

3. Ewvaluation: Fabo(hpl|u,tag,z) returns a(z)||Au(tag, z). Note Ay (tag,x) can be
computed using Priv(u, tag, ).

4. Inversion of injective functions: Returns Tdinv(T,tag, a(x), Ay (tag, z)) if tag #
tag®.

Note: (hp, msk, TAG, X, Y, P,U, W, ', H, a)«sSetup(1~).

Fig. 1. ABO lossy trapdoor function from ABO dual projective hashing

5 Deterministic Encryption from ABO DPH

5.1 Security Definition

Under page limit, we omit the definition of extractors and the left-over hash
lemma. Next we give the definition of deterministic encryption.

Definition 3 (Deterministic Encryption). A deterministic encryption
scheme II is specified by three polynomial-time algorithms, Gen, Enc and Dec.

— Gen(1%): on input a security parameter K expressed in the unary representa-
tion, the key generation algorithm outputs a public key pk and a secret key
sk. The pk includes a description of finite message space M and a finite
ciphertext space C.

— Enc(pk, m): on input pk and a message m € M, the deterministic encryption
algorithm outputs a ciphertext c € C.

— Dec(sk,c): on input a secret key sk and a ciphertext c, the decryption algo-
rithm outputs a message m € MU L.

Correctness. For all k € N, all message m € M, it holds that
Pr [Dec(sk, Enc(pk,m)) # m : (pk, sk)+sGen(1%)] < negl(x).

Security under chosen-ciphertezt attack. We follow the indistinguishability-based
security definition of deterministic encryption [7,4]. For simplicity, we only con-
sider security while encrypting a single message, although our proof extends to
multiple messages for block-sources. We can also rely on the existing result that
for block-sources, single message security equals to multi-message security [7].

Definition 4 (PRIV-CCA). A deterministic encryption II := (Gen, Enc, Dec)
is PRIV-CCA-secure for k-source if for any k-source Mg, M1, the advantage
Advy Y e, (8) i= 2Pr[ExpT iy (k) = 1] — 1 of any PPT adversary A is
negligible in k. The experiment EXP%ZZ:K/IC(()IyMl(H) is defined by: 1) b<¢{0,1}; 2)
my < My,(pk, sk)<gGen(1%); 3) ¢ := Enc(pk,my); 4) b < APk (pk, c)
where the oracle Decy.(sk,-) decrypts any ciphertext except c; 5) Return b =1V'.
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5.2 Our Construction

Let P := (Setup, Pub, Priv, Tdinv), P’ := (Setup’, Keygen’, Pub’, Priv’, Tdinv’) be
a dual projective hashing and an ABO dual projective hashing respectively. Let
H := (K,H) be an {-bit universal and universal one-way hash function with
image R. For consistency, R does not include the default projective tag tag* of
P’. The deterministic encryption IT is shown in Fig. 2. The message space M is
a subset of both X and X”, and the image R of the hash function H is a subset
of the set TAG'\{tag*}.

Key Generation: Gen(1"”) computes as follows.
1. Run (hp,msk, X, Y, P, U, W, ,H, a)<sSetup(1”).
2. Run (hp',msk’,Tac’, X", Y, P, U', W', " H' a')<gSetup’ (17).
3. Run (u, 7)+gSampNo(hp), (u/,w’, 7")+sKeygen' (msk’ tag"), and K<+gk(1").
4. Output pk := hp||u||hp’||v/||K and sk := 7||7'||w’||pk.
Encryption: Enc(pk,m) takes input pk = hp||u||hp’||u'||K and message m, and com-
putes as follows.
1. h:= H(K,m).
2. ¢1 := a(hp,m) and ¢z := A, (m). Note that c2 can be computed using Priv(u,m).
3. c3 := oa'(hp’,m) and c4 = Al,(h,m). Note that cs can be computed using
Priv/(u', h, m).
4. Output hllc1||cz||es]|es.
Decryption: Dec(sk, c) computes as follows.
1. Parse sk as 7||7'||w’||pk and ¢ as h||c1||cz2||c3]|ca.
2. m' + Tdinv(r,c1,c2).
3. ¢ := Enc(pk,m’).
4. If ¢ = ¢ then return m’; otherwise return L.

Fig. 2. Deterministic encryption scheme from (ABO) dual projective hashing

Theorem 2. Suppose that (z,hp) —> «a(hp,x) is an average-case (ki,€1)-
extractor, (x,hp') — o/ (hp',x) is an average-case (ka,€2)-extractor, the sub-
set membership assumption for P holds, and H := (IC, H) is £-bit universal hash
function that is also universal one-way. For any adversary A, any k-sources
Mo, My such that k > max{k;+log|R|, ka+log|R|+log|P|,log |R|+21og(1/e3)},
there exist adversaries By, Byow, Bsm such that:

Advll){ig"ﬁ/lcg’Ml (k) <2 (Advl};p’%hm (k) +Advyp (k) +AdVLL B (K)+e1+ea+ 63) .

Furthermore, the running-time of Bppt, Byow, Bsm are roughly that of A.

5.3 Extended General Construction

Our security proofs explored the fact that the projective map « acts as an
average-case extractor. In specific instantiations, we actually design « as a uni-
versal hash function and then apply the generalized leftover hash lemma (LHL)
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to conclude it is an average-case extractor. This sometimes results in ineffi-
cient constructions. Using similar technique of [7], we present an extension of
our generic construction, where the extra universality requirement on « is elim-
inated. We use an invertible, pairwise-independent hash functions, and then
showed this extension suffices to provide CCA security by applying a general-
ized crooked LHL [7].

We say a family of pairwise-independent hash functions H,; := (KCpi, Hpi) is
invertible if there is a PPT algorithm I such that for all K,; output by K,; and all
m € {0,1}, I(Kpi, Hpi(Kpi,m)) outputs m. Let P := (Setup, Pub, Priv, Tdinv)
be a dual projective hashing. Let P’ := (Setup’, Keygen’, Pub’, Priv’, Tdinv’) be an
ABO dual projective hashing. Let H,; 1= (Kp;, Hp;) be a family of ¢-bit invertible
pairwise-independent permutations on {0,1}%. For consistency, H,; does not
map to a default projective tag tag* of P’. Let Huow := (Kuow, H) be a family
of universal one-way hash function with image Ryow. The extended generation
construction of deterministic encryption scheme II := (Enc+,Gen+, Dec™) is
shown in Fig. 3. The message space M is {0, 1}*. The image of H,; is a subset
of X, X', and the domain of Hyow.

Key Generation: Gen™(1") computes as follow.

1. Run (hp,msk, X, Y, P, U, W, I'H, a)<gSetup(1”).

2. Run (hp',msk’,tac’, X", V', P . U' W, I'", H a')<gSetup’(17).

3. Run (u, 7)¢gSampNo(hp), (u',w’, ")+ sKeygen’' (msk’, tag”™), Kuow s Kuow(1").

4. For i =1 to 3 do Kpii+—sKpi(17).

5. Output pk := hp||u||hp’ Hu HKuOWHK
Encryption: Enct (pk, m)
and message m, and computes as follows.

1. Fori=1to 3 do hl = pi(Kpi,i,m).

2. h = H(Kuow, h).

3. c1 := a(hp,h2) and c2 := Ayu(h2). Note that c2 can be computed using

Priv(u, ha).
4. c3 = o/ (hp',h3) and c4 := Al,(h,h3). Note that cs can be computed using
Priv' (v, h, hs).
5. Output hHClHCQHC:’,H&;
Decryption: Dec™ (sk, ¢) computes as follows.
. Parse sk as 7||7'||w’||pk and c as h||c1]|c2]|cs]|ca.
5 « Tdinv(7, c1, c2).
m' < I(Kpi,g, hlg)
¢ := Enc*t(pk,m’).
If ¢ = ¢’ then return m’; otherwise return L.

pi;3 and sk := 7||7’ Hw ||pk.
now || Kpi,

pi,3

—_

G W

Fig. 3. Deterministic encryption scheme from (ABO) dual projective hashing

Using the generalized crooked LHL [7], we are able to show the following.

Theorem 3. Let IT := (Enc", Gen™, Dec+) be as defined in Fig. 3. For any ad-
versary A, any k-sources Mo, My such that k > log |Ryow| + log |P| 4 log [P’| 4+
2log(1/€)—2, there exist adversaries Bhpt, Buow, Bsm such that Adv %”X ,f,fg m, () <
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2 (Advl};’%hm (K)+AdviY 5 (k)+Advpry . (k)+3¢€). Furthermore, the running-
time of Bhpt, Buow, Bsm are roughly that of A.

6 Instantiations

6.1 Instantiations from DDH and DLIN

Let G be a finite cyclic group of prime order ¢ specified by a randomly chosen

generator g. The d-LIN assumption asserts that ggﬁ”""” is pseudorandom given
gi,--- agd+1ag7101a e ag:[d where g1, .- ,gd+1%$G; T1y... ,Td%$Zq-

Here we present the DLIN-based ABO dual projective hashing. When instan-
tiated with our generic transformations, this yields a new DLIN-based (m,m —
dlog q)-ABO lossy trapdoor functions. It also yields a similar DDH-based ABO
lossy trapdoor functions as given in [13]. As the projective map « is a universal
hash function, it is also an average-case extractor by applying the generalized
LHL [7]. Combining the DLIN-based dual projective hashing [25] and discrete-
logarithm based hash function [7] which is universal and collision-resistant, we
get a new DLIN-based PRIV-CCA secure deterministic encryption scheme.

— Setup(1*): choose G,q,g as above and Pe$ngm. Set hp = (G,q,9%),
msk =P, X = {0,1}", Y := G™, P = G4, U := G W = zy,
TAG := Z,. The map « is defined by a(g¥,x) := ¢¥* with x € {0,1}™ .

— Keygen(msk, b*): choose W+—¢Z"*? and compute U := gWP—In The wit-
ness is W. The inversion trapdoor is (P, W, b*). Output (U, W, (P, W, b*)).

— Priv(U, b,x): Compute Ay (b, x) := U*xg"*, where * indicates the component-
wise product of elements of G™.

— Pub(U, b*, g¥*, W)): Compute gV Fx),

— Tdinv((P, W,b*),b, g¥*, Ay (b,x)) : first compute A := WP + (b — b*)L,,.
The trapdoor is A~!. Note that Ay(b,x) = U* x ¢** = ¢A*. Given A1,
Af5(b, x), we can compute g* and thus x.

Projectiveness: When U = gWP=t"Im and b = b*, let (UX); := EJQIU‘?,
we have Priv(U,b*,x) = UX x g = g(WP=0Ln)x o gbx — (W(Px) —

Pub(U, b*, g¥*, W).

6.2 Instantiations from DCR

Fix a Blum integer N := PQ for safe primes P, = 3 (mod 4) (such that
P :=2p+1and Q := 2g+1 for sufficiently large primes p, q), where N is a x-bit
string. Let s € ZT be an integer. The multiplicative group L4 s isomorphic
to Zns X Z3. The decisional composite residuosity (DCR) assumption states
that any PPT algorithm that receives an input a k-bit N (generated as above)
cannot distinguish a random element in Z%,;, from a random N®-th power in
Z};s+1 with non-negligible probability of .
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First Construction. We present the DCR-based ABO dual projective hashing,
extended to the Damgard-Jurik scheme [11]. When instantiated with our generic
transformation, this yields the DCR-based (slog N, slog N — log |¢(N)|)-ABO
lossy trapdoor functions given in [13] (with slight modifications). As the projec-
tive map « is not an average-case extractor, we have to rely on the extended
general framework in Section 5.3 to construct PRIV-CCA secure determinis-
tic encryptions. By combining the dual projective hash from DCR [25] and the
collision resistant hash function from DCR [7], we get a PRIV-CCA secure de-
terministic encryption which is as efficient as the DCR-based construction in [7].

— Setup(1”): choose a Blum integer N := PQ as above. Pick g«g¢Z}.... Set
hp == (N,gN"), msk := (9, P,Q), X := Zys, YV := Lyeirs P C Loy (P
is isomorphic to Zy), U := Zy.i1, W := Zns, TAG := {0, .. .,2%/2=11 The
projective map « is defined by a(gV", x) := g™V where x € Zy-.

— Keygen(msk, b*): choose w<g¢Zys, compute public parameter u := (1 4+
N)=t" . gN"® The witness is w. The inversion trapdoor is (P, Q,b*).

— Priv(u, b, z): compute A, (b, z) := (1 + N)° - u)?.

— Pub(u, b*, ¢V"* w): compute (gV *)v.

— Tdinv((P,Q,b*),b,gN"*, Ay(b,x)) : observe that A, (b, ) = ((1+ N)°-u)® =
(1 + N)P=b" . gN"w)2 Given the inversion trapdoor (i.e., the factorization
of N and the projective tag b*), we can efficiently compute (b — b*)z. In
addition, the restriction b,b* € {0,...,2%/2 — 1} implies that (b — b*) is
smaller than both P and @ and is therefore relatively prime to N. Thus, we
can recover x by computing (b — b*)z - (b — b*)~! mod N°®.

Projectiveness: When u = (1 + N)~%" . ¢V and b = b*, we have

Priv(u,b,2) = (1 4+ N)" )" = (14 N)Y - (14 V)~ - Vv
= gV = (gN'Tyw = Pub(u, b*, gV, w).

The uniform distributions over {(1 4+ N)=°- ¢V : w € Zy-} and {gN™™ :
w € Zps} are computationally indistinguishable following from the DCR as-
sumption [11], which implies the hidden projective tag property.

Second Construction. This is a second DCR-based ABO dual projective hash-
ing which follows the matrix approach [22]. When instantiated with our generic
transformation, this yields a DCR-based (m, m—log |¢p(N)])-ABO lossy trapdoor
functions, which is less efficient than [13]. In order to construct a DCR-based
deterministic encryption scheme, we still need a universal hash function that
is also universal one-way. The projective map in the following construction al-
ready satisfies this, and we will discuss more about it after the construction.
Combining the instantiation of DCR~based dual projective hashing [25, Second
Construction] with the above instantiation and our generic transformation, this
yields a new DCR-based PRIV-CCA secure deterministic encryption, which is
less efficient than [7].
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— Setup(1%): choose a Blum integer N := PQ as above. Pick
p<—$ZK}’g<_$Z*Ns+1- Set hp = (N, (gNs)p)v msk = (g,p,P,Q), X o=
{0,1}m, Y = (Z*Ns+1)m7 P C Z*Ns+17 U = (Z*N5+1)m><m7 W .= ZK}SJA’
TAG := {0,...,2%/27 1}, The projective map « is defined by

al(gN )P, x) == (gNS)pTx € Zys+1 where x € {0,1}™,p € Z}.

— Keygen(msk, b*): choose w<—¢Z..,, compute public parameter U := (1 +
N)=b T (gNS)WPT. The witness is w. The inversion trapdoor is (P, Q, b*)

— Priv(U, b,x): compute Ay(b,x) := ((1+ N)" = . U)*.

— Pub(U, b*, (gNS)pTx,w): compute ((gNS)pTX)W.

— Tdinv((P, Q,b*),b, (gNS)pTx, Ay (b, x)) : observe that Ay (b,x) = ((1+N)bm.
U)x — (1 + ]\/')(b—b*)xIm 3 (gNS)prx — (1 + N)(b—b*)x . (gNS)prx.
Given the inversion trapdoor (i.e., the factorization of N and the projective
tag b*), we can efficiently compute (b — b*)x. In addition, the restriction
b,b* € {0,...,2%/2 — 1} implies that (b — b*) is smaller than both P and Q
and is therefore relatively prime to N. Thus, we can recover x by computing
(b—b*)x(b—b*)"! mod N*.

Projectiveness: When U = (1 4 N)="In . (gNs)WpT and b = b*, we have

s

Priv(U,b%,2) = (1 + N)" T . UY* = (1 + N)P T - (14 N) 0T (gN7)wP ')
= (V)P ) = (¢ )P )™ = Pub(U,b*, (V)P X, w).

The hidden projective tag property follows from the DCR assumption.

Remark 1. The above projective map « satisfies the universal one-way property
and almost universal property. The universal one-way property follows from a
similar analysis as that in [7]. Next we show it is almost universal. For any
x # x' € {0,1}™ such that o((¢™")P,x) = a((¢™)P,x'), we get S.ir, pix; =
S pix, mod A(N), where A(N) is the least common multiple of P — 1 and
@ — 1. Without loss of generality, we assume that z; — 27 # 0, then p; =
Yty pi(z} — x;) mod A(N). This happens with probability [N/A(N)]/N <
2/A=1/pq.

6.3 Instantiations from LWE

We present the LWE-based construction, which is based on lossy trapdoor func-
tions in [22]. For a real parameter 0 < 8 < 1, we denote by ¥z the distribution
over R/Z of a normal variable with means 0 and standard deviation 3/+/27 then
reduced modulo 1. Denote by ¥g the discrete distribution over Z, of the random
variable |¢X| mod ¢ where the random variable X has distribution ¥s. In the
following, we consider the standard LWE parameters m, n, ¢ as well as additional
parameters 72, p such that

m=0O(nlogq), B=6(1/q), 7 =m/logp, and  p < q/16mn.
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In particular, let v < 1 be a constant. We will set ¢ = O(n'*t/7) and
p = O(n'/7). When instantiated with our generic transformations, this yields the
LWE-based ABO lossy trapdoor functions in [22]. The projective map « in the
following is in fact a universal hash function which is collision-resistance [16] (un-
der small integer solution assumption which is implied by LWE). Since collision-
resistance implies universal one-way, « is also universal one-way. When combin-
ing the LWE-based dual projective hashing in [25] with our generic transforma-
tions, we get a PRIV-CCA-secure deterministic encryption based on LWE, which
is less efficient than that in [7]. In addition, we can give another construction
following from the extended general framework which is similar to [7].

Let 7 : {0,1}" — Z;”Xﬁ be a function mapping a branch value to its encoded
matrix over Z, (see [22, Section 6.4]).

— Setup(1%): pick A«—¢Zy*™. Set hp := (A), msk =1, & := {0,1}™, YV :=
Ly, P =17, U = Z7*" W = L7, TAG := {0,1}". The projective map
« is defined by a(A, x) := Ax € Z} with x € {0,1}™.

— Keygen(msk, v*): choose S<—$Z2Xﬁ,E<—$(@5)mXﬁ. Compute public param-
eter U := ATS + E — r(v*). The witness is S. The inversion trapdoor is
(S,v*).

— Priv(U, v, x): compute Ay(v,x) :=x'U+x"r(v) € Z}.

— Pub(U, v*, Ax,S): compute (Ax)'S.

— Tdinv((S,v*), v, a(A,x), Ay(v,x)) : observe that

Ap(v,x) =x"U+x"7r(v) = (Ax) 'S+ x"E+x (r(v —v*)).

Given the inversion trapdoor (S, v*), we can recover x' E+x ' (r(v)—r(v*)).
The quantity x " E has small norm, so we can compute z using the bounded-
error decoding to recover x ' (r(v) — r(v*)) and then x.

Projectiveness: The projective property is approximate, that is when U :=
ATS+E —r(v*) and v = v*, we have

Priv(U,v*,x) =x"U + x ' r(v")
=x"(ATS+E —r(v*)) +x"r(v")
=(Ax)'S+x'E~ (Ax)'S = Pub(U,v*, Ax,S).

In fact, for all x € {0,1}™, with overwhelming probability over E, we have
x"E C [¢/p]®. That is, the projective property holds up to an addictive error
term in [q/p]™.

The hidden projective tag property follows from the LWE assumption.

ABO Lossy Trapdoor Function. In the lossy mode, we bound the size of the
image by |Img,| - (¢/p)", where (¢/p)™ accounts for the error incurred by the

approximate projective property, then, the lossiness is given by m — (nlogq +
m

logp 108(3)) = (1 —)m — nlogg.
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