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Abstract. In Crypto’03, Blömer and May provided several partial key
exposure attacks on CRT-RSA. In their attacks, they suppose that an at-
tacker can either succeed to obtain the most significant bits (MSBs) or the
least significant bits (LSBs) of dp = d mod (p− 1) in consecutive order.
For the case of known LSBs of dp, their algorithm is polynomial-time only
for small public exponents e (i.e. e = poly(logN)). However, in some prac-
tical applications, we prefer to use large e (Like e ≈ dp, to let the public
and private operations with the same computational effort). In this pa-
per, we propose some lattice-based attacks for this extended setting. For

known LSBs case, we introduce two approaches that work up to e < N
3
8 .

Similar results (though not as strong) are obtained for MSBs case. We also
provide detailed experimental results to justify our claims.

Keywords: lattices, RSA, Coppersmith’s method.

1 Introduction

Let N = pq be an RSA modulus where p, q are of the same bitsize. The public
exponent e and private exponent d satisfy ed− 1 ≡ 0 mod (p− 1)(q− 1). Since
the decryption/signing in RSA require taking heavy exponential multiplication
modulus of N , low efficiency became a bottleneck of using RSA cryptosystem.

Perhaps the most straightforward solution to speed up RSA decryp-
tion/signing process is to choose small d. However, in 1991, Wiener [24] showed
that if d < N0.25 then the factorization of N can be found in polynomial-time.
Later, Boneh and Durfee [2] improved Wiener’s bound to d < N0.292, in their
attack, the proof of the final bound is complicated. Recently, a simple and ele-
mentary proof is given to achieve Boneh-Durfee’s bound [9,14].

Another sophisticated approach, proposed by Quisquater and Couvreur [18],
is to use the Chinese Remainder Theorem (CRT) for decryption/signing. In this
case, the public exponent e and private CRT-exponents dp and dq satisfy

edp ≡ 1 mod (p− 1)

edq ≡ 1 mod (q − 1)
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In [24], Wiener stated that decryption/signing time can be further reduced if we
use small private CRT-exponents. However, there are several attacks that can
break CRT-RSA if the CRT-exponents are sufficiently small. In Crypto’02, May
[16] described two attacks when the smaller prime factor is less than N0.382.
Later, in PKC’06, Bleichenbacher and May [1] improved May’s bound to N0.468.
These two attacks focus on the special case where p and q are unbalanced. In
Crypto’07, Jochemsz and May [12] presented an attack on the case of p and q
are balanced and e is full size (i.e. e ≈ N), they showed that CRT-RSA can be
broken when dp and dq are smaller than N0.073.

Partial Key Exposure Attacks on RSA. Even if we choose to use large
private exponents, in implementations, it may leaks some bits of the private
key, we can still recover the entire private key from this knowledge. This is
known as partial key exposure attack. Actually small private key attacks can
be seen as partial key exposure attacks where MSBs of the private exponent
are known to be equal to zero. In Asiacrypt’98, Boneh, Durfee and Frankel [3]
presented several attacks on RSA where the attacker gains knowledge of MSBs
or LSBs of d. In their attacks, the public exponent e must be relatively small.
In Crypto’03, Blömer and May [11] described several attacks for larger values
of public exponent e. Further in Eurocrypt’05, Ernst et al. [5] extended these
attacks to work up to full size e. As a follow-up work of [5], recently, Joye
and Lepoint [13] provided several attacks on the practical setting of a private
exponent d larger than the modulus N .

Partial Key Exposure Attacks on CRT-RSA. In Crypto’03, Blömer and
May [11] provided some partial key exposure attacks on CRT-RSA. Suppose
dp ≈ p, they showed that for small public exponents e (i.e. e = poly(logN)),
known half of the LSBs of dp are sufficient to factorize N .

Later in PKC’04, May [17] generalized Blömer-May’s results [11] to the multi-
power RSA [20] (Takagi’s scheme: Modulus N = prq (r ≥ 2)). Using Boneh,
Durfee and Howgrave-Graham’s result [4], May presented polynomial-time at-
tacks that need only a fraction of 1

r+1 of the MSBs or LSBs of dp(dp ≈ p) to
factor N when the public exponent e is small.

In ACNS’09, Sarkar and Maitra [19] provided another partial key exposure
attack on CRT-RSA. In their attack, they assume that certain amounts of MSBs
of dp and dq are exposed. Actually their attack can be regard as an extension of
Jochemsz-May’s attack [12].

1.1 Our Contribution

In this paper, we present two extended polynomial-time attacks that even works
for all e < N

3
8 when certain amounts of LSBs of dp are exposed. Moreover, in our

attacks, the upper bound of e can be further improved if one uses a small secret
CRT-exponent dp. As an immediate application, we can utilize our approach to
analyze Tunable Balancing of RSA which was introduced by Galbraith et al. [6]
in ACISP’05. Moreover, for known MSBs of dp, we can extend the results of [11]
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to any small secret exponents dp. We also point out that there are close relations
between our technique and the algorithm of Blömer and May [11].

Additionally, our technique can be easily extended to improve May’s attack
[17] on Takagi’s scheme. However, Takagi’s scheme requires the public exponent
e extremely small to make the decryption efficient (In the Hensel lifting Step in
Decryption, r − 1 modular exponentiations with exponent e need to be done).
Therefore, we do not discuss these extensions in this paper.

Experimental Results. For all these attacks, we carry out experiments to
verify the effectiveness of our algorithms, which are depicted in Sec. 5 in detail.
These experimental results demonstrate that our attacks are effective.

2 Preliminaries

2.1 Lattices

Our attacks are based on the techniques that rely on lattice basis reduction. In
this section, we review some basic background information about lattices and
lattice basis reduction.

A lattice is a discrete additive subgroup of Rn. For our purpose, given m ≤ n
linearly independent vectors b1, . . . , bm ∈ R

n, the set

L = L(b1, . . . , bm) = {
m∑

i=1

αibi|αi ∈ Z}

is a lattice. The bi are called the basis vectors of L and B = {bi, . . . , bm} is called a

lattice basis for L. The determinant of a lattice is defined as det(L) = det(BBt)
1
2 .

When the lattice is full-rank (m = n), the formula simplifies to det(L) = | detB|.
An important class of reduced basis, are LLL-algorithm, named after Lenstra,

Lenstra and Lovász [15]. The following lemma gives bounds on LLL-reduced
basis vectors.

Lemma 1 (LLL [15]). Let L be a lattice of dimension w. Within polynomial-
time, LLL-algorithm outputs a set of reduced basis vectors vi, 1 � i � w that
satisfies

||v1|| � ||v2|| � · · · � ||vi|| � 2
w(w−1)

4(w+1−i) det(L) 1
w+1−i

We also state a useful lemma from Howgrave-Graham [10]. Let g(x1, · · · , xk) =∑
i1,··· ,ik ai1,··· ,ikx

i1
1 · · ·xik

k . We define the norm of g by the Euclidean norm of

its coefficient vector: ||g||2 =
∑

i1,··· ,ik a
2
i1,··· ,ik .

Lemma 2 (Howgrave-Graham [10]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be
an integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and

2. ||g(x1X1, · · · , xkXk)|| < pm

√
w
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Then g(y1, · · · , yk) = 0 holds over integers.

Our attacks rely on a well-known assumption which was widely used in the
literature [5,2,8].

Assumption 1. The lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
using the Gröbner basis technique.

2.2 Blömer-May’s Partial Key Exposure Attacks on CRT-RSA

In [11], Blömer and May proposed two partial key exposure attacks on CRT-
RSA. Following we list their results.

Theorem 1 (LSBs). Let (N, e) be an RSA public key with N = pq and secret
key d. Let dp = d mod (p− 1). Given d0,M with d0 = dp mod M and

M > N
1
4

Then the factorization of N can be found in time e · poly(logN).

Theorem 2 (MSBs). Let (N, e) be an RSA public key with N = pq and secret
key d and e = Nα for some α ∈ [0, 14 ]. Furthermore, let dp = d mod (p − 1).

Given d̃ with
|dp − d̃| ≤ N

1
4−α

Then N can be factored in polynomial-time.

2.3 Finding Small Root of Bivariate Linear Equations

In Asiacrypt’08, Herrmann and May [8] gave an upper bound on the solutions
of a bivariate linear equations modulo an unknown divisor of a known com-
posite, which can also be extended to multivariate linear equations. Recently
in ACISP’13 [21], Takayasu and Kunihiro improved Herrman-May’s results by
taking into account the sizes of the root bound. In this paper we used their
approach to find small root of our attack polynomial.

Theorem 3 (Herrmann-May-Takayasu-Kunihiro). Let N be a sufficiently
large composite integer (of unknown factorization) with a divisor p ≥ Nβ. Let
f(x1, x2) ∈ Z[x1, x2] be a linear polynomial in two variables. Under Assumption
1, we can find all the solutions (y1, y2) of the equation f(x1, x2) = 0 mod p with
|y1| ≤ Nγ and |y2| ≤ N δ (Suppose δ > γ) if

{
γ + δ ≤ 3β − 2 + 2(1− β)

3
2 if δ < β(1 −√

1− β)

δ(3β − γ − 2
√
δ − γ) < β3 if β2 > δ > β(1−√

1− β)

The time and space complexities of the algorithm are polynomial in logN .
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3 Key Recovery from Known LSBs

In this section, we assume that the attacker succeeded in getting the least sig-
nificant bits of dp

dp = d1M + d0

where d0 is known to the attacker, together with its higher bound M , but d1 is
unknown. (In a special case of known LSBs, M is a power of two.)

3.1 The Description of Our Attacks

In Crypto’03, Blömer and May [11] showed that if half of the lower bits of dp
(dp ≈ p) are known, one can factorize N in time e · poly(logN). Obviously their
attack is of exponential time when the public exponent e is large. However, in
some practical applications we need large e (Like e ≈ √

dp) to satisfy our specific
requirements, e.g., Galbraith et al.’s scheme [6] in ACISP’05. In such a situation,
the attack of [11] will not work.

We propose two polynomial-time attacks for the case of large e. Our attacks
are based on Coppersmith’s method for finding small roots of modular equa-
tions. The fist step of our attacks is to derive, from an CRT-RSA equation, a
multivariate polynomial in some of the unknowns of CRT-RSA parameters, like
p, dp.

Since dp = d1M + d0 and ed − 1 = kp(p − 1), we can rewrite CRT-RSA
equation as

eMd1 + ed0 − 1− kp(p− 1) = 0

Suppose that d1 ≈ N δ1 , dp ≈ N δ and e ≈ Nα, we have

kp =
edp − 1

p− 1
≈ N δ+α

N
1
2

≈ N δ+α− 1
2

For the first attack, we consider a bivariate modular polynomial

fLSB1(x, y) = eMx+ y + ed0 − 1

with the root (x0, y0) = (d1, kp) modulo p. Let X = N δ1 , Y = N δ+α− 1
2 , then

|x0| < X, |y0| < Y .
For the second attack, we use a different bivariate polynomial that modulo

eM . Specifically, we focus on the polynomial

fLSB2(x, y) = x(y − 1) + 1− ed0

with the root (x0, y0) = (kp, p) modulo eM . Using X = N δ+α− 1
2 , Y = N

1
2 , then

|x0| < X, |y0| < Y .
Next we give the details on how to find the small root of fLSB1 and fLSB2.
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3.2 Attack I: An Approach Modulo p

Theorem 4 (Attack I). Let N = pq, where p, q are primes of the same bit-size.
Let the public exponent e (e ≈ Nα) and private CRT-exponent dp (dp ≈ N δ)
satisfy edp ≡ 1 mod (p−1). Suppose that dp = d1M +d0 where d1 ≈ N δ1 . Given
d0,M , and assume that the following conditions are satisfied

⎧
⎪⎨

⎪⎩

2− δ − α− 2
√
δ1 − δ − α+ 0.5 < 0.125

δ1
if 0.5 > δ1 > 0.146 > δ + α− 0.5

1.5− δ1 − 2
√
δ + α− δ1 − 0.5 < 0.125

δ+α−0.5 if 0.5 > δ + α− 0.5 > 0.146 > δ1

δ1 + δ + α− 0.707 < 0 if 0.146 > max{δ + α− 0.5, δ1}
Then N can be factored in polynomial-time.

Proof. According to the analysis of Sec. 3.1, we try to find the small root
(x0, y0) = (d1, kp) of the polynomial

fLSB1(x, y) = eMx+ y + ed0 − 1

Applying Theorem 3 and setting β = 1
2 , then

β(1−
√
1− β) =

2−√
2

4
≈ 0.146

For the case of 0.146 > max{δ+α−0.5, δ1}, we can get δ1+δ+α−0.707 < 0. For
the case of 0.146 < max{δ+α−0.5, δ1}, we consider two subcases: δ+α−0.5 > δ1
and δ + α− 0.5 < δ1. After some calculations, we obtain the claimed result. �	

3.3 Attack II: An Approach Modulo eM

Theorem 5 (Attack II). Using the notations of Theorem 4, provided that

δ +
5

2
δ1 − 3δ21 + α− 7

8
< 0

Then N can be factored in polynomial-time.

Proof. According to the analysis of Section 3.1, we try to find the small root
(x0, y0) = (kp, p) of the polynomial

fLSB2(x, y) = x(y − 1) + 1− ed0

Note that the desired small solution contains the prime factor p, but p is already
determined by modulus N . Based on this observation, we apply the technique of
Bleichenbacher and May [1]. Define two integers m and t. Then we introduce a
new variable z for the prime factor q, and multiply the polynomial fLSB2(x, y)
by a power zs for some s that has to be optimized. Let us look at the following
collection of trivariate polynomials that all have the root (x0, y0) modulo (eM)m.

gi,j(x, y, z) = (eM)m−ixjzsf i
LSB2(x, y) for i = 0, . . . ,m; j = 0, . . . ,m− i
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hi,j(x, y, z) = (eM)m−iyjzsf i
LSB2(x, y) for i = 0, . . . ,m; j = 1, . . . , t.

For gi,j(x, y, z), hi,j(x, y, z), we replace every occurrence of the monomial yz by
N because N = pq. Therefore, compared to the unchanged collection, every
monomial xiyjzs(j ≥ s) with coefficient ai,j is transformation into a monomial
xiyj−s with coefficient ai,jN

s. And every monomial xiyjzs(j < s) with coeffi-
cient ai,j is transformation into a monomial xizs−j with coefficient ai,jN

j .
To keep the lattice determinant as small as possible, we try to eliminate the

factor of N j in the coefficient of diagonal entry. Since GCD(eM,N) = 1, we only
need multiplying the corresponding polynomial with the inverse of N j modulo
(eM)m 1.

We have to find two short vectors in lattice L. Suppose that these two vec-
tors are the coefficient vectors of two trivariate polynomial f1(xX, yY, zZ) and
f2(xX, yY, zZ). There two polynomials have the root (kp, p, q) over the integers.
Then we can eliminate the variable z from these polynomials by setting z = N

y .

Finally, we can extract the desired root (kp, p) from the new two polynomials if
these polynomials are algebraically independent. Therefore, our attack relies on
Assumption 1.

Now we give the details of the condition which we can find two sufficiently
short vectors in the lattice L. Let t = τm, s = σm, the determinate of the lattice
L is

det(L) = (eM)seMXsXY sY ZsZ

where

seM =

m∑

i=0

m−i∑

j=0

(m− i) +

m∑

i=0

t∑

j=1

(m− i) = (2 + 3τ) · 1
6
m3 + o(m3)

sX =

m∑

i=0

m−i∑

j=0

(i+ j) +

m∑

i=0

t∑

j=1

i = (2 + 3τ) · 1
6
m3 + o(m3)

sY =
m∑

i=s

m−i∑

j=0

(i− s) +
m∑

i=0

t∑

j=max{1,s−i}
(j + i− s)

= (1 + 3(τ − σ)(1 + τ − σ)) · 1
6
m3 + o(m3)

sZ =

s∑

i=0

m−i∑

j=0

(s− i) +

s∑

i=0

s−i∑

j=1

(s− i− j) = 3τ2 · 1
6
m3 + o(m3)

And X,Y, Z are the upper bounds of kp, p, q. An easy calculation shows the
dimension of the lattice is

n = dim(L) = 1

6
(3 + 6τ)m2 + o(m2)

1 In Sec. 4 of [1], the authors eliminated the factor N j by multiplying the inverse of
N j modulo e, in fact it should be em to satisfy the first condition of Lemma 2.
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Fig. 1. The Case of Known LSBs of dp (dp ≈ p)

To get two polynomials which sharing the root (kp, p, q), we get the condition
det(L) ≤ (eM)m dim(L). Substituting the values of the dim(L) and neglecting
low-order term, we obtain the new condition

(2+3τ)(α+ δ− 1

2
)+

1

2
(1+3(τ −σ)(1+ τ −σ))+

3

2
τ2− (1+3τ)(α+ δ− δ1) < 0

The optimized values of parameters τ and σ were given by

σ =
1

2
+ δ1 τ =

1

2
− 2δ1

Plugging in this values, we finally end up with the condition

δ +
5

2
δ1 − 3δ21 + α− 7

8
< 0

�	
3.4 Comparison of the Attacks

We give the comparison of our attacks when the private exponent is full sized
i.e. dp ≈ p. Fig. 1 illustrates our results on known LSBs of dp when δ = 1

2 . The
maximal size of unknown d1 (d1 ≈ N δ1) for an attack is plotted as a function of
the size of e (e ≈ Nα). Notice that the bounds for Attack I and Attack II match
when α ≈ 0.04, thus Attack II is stronger than Attack I for α > 0.04. Besides
our attacks works up to α = 3

8 = 0.375.

4 Key Recovery from Known MSBs

In this section we consider the case when some MSBs of dp are known.



New Partial Key Exposure Attacks on CRT-RSA 159

Fig. 2. Known MSBs: δ = 0.5 Fig. 3. Known MSBs: δ = 0.4

Theorem 6 (Known MSBs). Let N = pq, where p, q are primes of the same
bit-size. Let the public exponent e (e ≈ Nα) and the private CRT-exponent dp
(dp ≈ N δ) satisfying edp ≡ 1 mod (p − 1). Given d̃ where |dp − d̃| < N δ1 , and
assume that the following conditions are satisfied

⎧
⎪⎨

⎪⎩

2− δ − α− 2
√
δ1 − δ − α+ 0.5 < 0.125

δ1
if 0.5 > δ1 > 0.146 > δ + α− 0.5

1.5− δ1 − 2
√
δ + α− δ1 − 0.5 < 0.125

δ+α−0.5 if 0.5 > δ + α− 0.5 > 0.146 > δ1

δ1 + δ + α− 0.707 < 0 if 0.146 > max{δ + α− 0.5, δ1}
Then N can be factored in polynomial-time.

Proof. We have that edp − 1 = kp(p − 1) for some k ∈ N. We can rewrite our
equation as

e(dp − d̃) + kp + ed̃− 1 ≡ 0 mod p

Now we try to find the small root (y1, y2) = (dp − d̃, kp) of the polynomial

fMSB(x1, x2) = ex1 + x2 + ed̃− 1

Since dp − d̃ ≈ N δ1 , dp ≈ N δ and e ≈ Nα, we have

kp =
edp − 1

p− 1
≈ N δ+α

N0.5
≈ N δ+α−0.5

Applying Theorem 3 and setting β = 0.5, we obtain the claimed result. �	

4.1 Comparison with Blömer-May’s [11] Results

Fig. 2 and Fig. 3 compare the results on known MSBs of dp. We focus on two
cases: δ = 0.5 and δ = 0.4. In Fig. 2, note that Blömer-May’s [11] result is better
than ours. However, for the case δ = 0.4, our result is better (Fig. 3). Actually
our result is better than Theorem 2 if δ < 0.457.
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Table 1. Experimental Results for Partial Key Exposure Attacks (LSBs)

(a) LSBs Case: Attack I

e d d1 (m, t) dim(L) time(sec)

30 512 150 (10, 3) 66 172.241

60 512 110 (10, 3) 66 191.304

100 512 60 (10, 3) 66 250.397

150 512 20 (10, 3) 66 272.378

85 512 85 (13, 4) 105 4012.299

(b) LSBs Case: Attack II

e d d1 (m, t, u) dim(L) time(sec)

30 512 130 (7, 4, 2) 68 95.176

60 512 100 (7, 4, 2) 68 152.295

80 512 100 (10, 6, 3) 132 5642.342

100 512 70 (7, 4, 3) 68 391.281

150 512 35 (7, 4, 3) 68 605.471

200 512 10 (8, 4, 4) 81 3096.707

In fact, we can apply the linearization method on the equation of Theorem 6:

e(dp − d̃) + kp︸ ︷︷ ︸
x

+ed̃− 1 ≡ 0 mod p

This can be stated as finding the root of the linear monic polynomial f(x) =

x+ ed̃− 1 mod p where p = N
1
2 . Using Herrmann-May’s method [8], we can get

the same bound as [11]. In [8], Herrmann and May observed that their algorithm
gives much better bounds for a smaller number of unknown variables (From two
to one). That is the reason why [11]’s result is better than ours when δ = 0.5.
However, as the size of e(dp−d̃) and kp increasingly unbalanced, this linearization
method can not exploit the relation between the coefficients of the polynomial
fMSB. Therefore, our method is more appropriate for this scenario (δ is small).
Actually, in [22,7], the authors used the similar technique to improve the bound
for solving the Multi-Prime Φ-Hiding Problem.

5 Experimental Results

To verify the effectiveness of our lattice-based approaches, we carry out some
experiments2. We have implemented our attacks using Magma [23] on a laptop
with Intel c© CoreTM i5-2430M CPU 2.40 GHz, 2 GB RAM. For all the listed-up
parameters, we can recover the factorization of N .

In Table 13 we illustrate partial known LSBs attacks for 1024-bit RSA mod-
ulus N with 512-bit primes p, q. From the data of the table, it is clear that for
large e, Attack II works better than Attack I for recovering the whole key, which
was already shown in Sec. 3.4.

2 Since the attack of Sec. 4 is similar to the attack of Sec. 3.2, we omit experiments
for the MSBs case here.

3 In Table 1(a), we did not exploit Takayasu-Kunihiro’s technique [21] that consider
the sizes of the root bound. Because we believe that it is enough to show the efficiency
comparison of our two attacks.
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