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Abstract. The Artificial Neural Networks (ANNs) have been used for
solving problems in many theoretical and practical areas. Advances on
the field of ANNs have derived in Spiking Neural Networks (SNNs); which
are considered as the third generation of ANNs. SNNs receive/send the
information by timing of events (spikes) instead by the spike rate; as their
predecessors do. Although SNNs are capable to solve some functions with
fewer neurons than networks of previous generations, there aren’t rules
to set the architecture of any kind of ANN for solving a specific task;
usually the architecture is set empirically based on the designer’s experi-
ence and the neural network’s performance over the problem. Recently,
metaheuristic algorithms are being implemented to optimize some as-
pect on ANNs such as weight, connections and even the architecture.
This work proposes a generic framework for automatic construction of
Fully-Connected Feed-Forward Spiking Neural Networks through an in-
direct representation by means of Grammatical Evolution (GE) based
on Evolutionary Strategy (ES) algorithm. Two well-known benchmarks
datasets of pattern recognition were used for testing the proposal of this
paper.

1 Introduction

Artificial Neural Networks (ANNs) are mathematical models inspired in biology,
which have been successfully applied to solve problems in fields such as pattern
recognition, segmentation, regression, etc. Advances on ANNs field have derived
in Spiking Neural Networks (SNNs), which are considered as the third genera-
tion of ANNs [17]. The SNNs are formed by spiking neurons, which deal with
information encoded in timing of events (spikes), are computationally stronger
than sigmoid neural networks [16]; in fact, there is evidence that fewer spik-
ing neurons are required for solving some functions than neurons of previous
generations [17].

Several topologies have been proposed for ANNs, which are defined around
three aspects: computing nodes (neuron models), communications links (synapse
connections) and message types (coding schemes) [13]. Although the aspects for
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defining an ANN with a particular topology can be chosen, there isn’t a rule to
set how many computing nodes are required to solve an specific task, this last is
an important criteria due to the fact that they have a strong impact on ANNs’
performance [5].

Recently, methauristic algorithms have been used for dealing with the prob-
lem designing ANNs for solving some given problem [5] [22]. Metaheuristics can
design ANNs by either direct or indirect representation; with a direct represen-
tation the algorithm tries to modified some aspects of pre-set ANNs [7] in order
to improve the performance of it and with an indirect representation, aspects of
an ANN are codified, and the algorithm tries to design with that an ANN for a
given problem [3].

In this work a generic framework is presented for designing SNNs to solve
pattern recognition problems. The paper is organized as follows: section 2 gives
all the fundamentals required for this work, section 3 explains the proposal of
this work, in section 4 some experiments and their results are explained and
showed, and finally, section 5 gives the conclusions of this work and proposes
future work.

2 Backgrounds

2.1 Spiking Neural Networks

The Spiking Neural Networks (SNNs) are formed by the interconnection of spik-
ing neurons, which handle the information by timing of events (spikes). When
a SNN is applied to solve pattern recognition problems, original patterns can
not be fed into the SNN; they need to be transformed as spikes in an interval
of time by using an encoding scheme. Several encoding schemes have been pro-
posed, such as the Gaussian Receptive Fiels (GRFs); this encoding scheme has
been extensively used in [2], [1], [21]. Basically, this encoding scheme requires for
encoding a variable, m neurons (with Gaussian functions) used for covering the
whole range of the variable, γ as a coefficient for setting the width of Gaussian
functions and the encoding simulation time τ . For detailed information about
GRFs and other encoding schemes authors suggest to check [12].

After transforming original vectors into spikes in an interval of time, they
can be fed into the SNN. The architecture of the SNN can vary depending on
the kind of the problem to solve. This work focuses on SNNs with architecture
known as Fully-Connected Feed-Forward as used in [2], [1] and [11]. There are
several spiking neuron models that can be implemented in a SNN, this work use
the Spike Response Model which is detailed in next section.

Spike Response Model
The Spike Response Model (SRM) [8] [9] is an approximation of the dynamics of
the integrate-and-fire neuron. For this work, the spiking neurons use the time-to-
first-spike as coding scheme for sending/receiving messages. Due to the coding
scheme being used, a reduced version of the SRM is implemented, which has
been used in [2], [1] and [21].
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The reduced SRM is defined according [1] as follows. Let us consider that
a neuron j has a set Γj of immediate predecessors called presynaptic neurons
and recives a set of spikes with firing times ti, i ∈ Γj . Neurons fire when their
state variable x(t), called membrane potential, reaches a certain threshold θ. The
internal state of a neurons is determined by eq. (1), where wji is the synaptic
weight to modulate yi(t), which is the unweighted postsynaptic potential of a
single spike coming from neuron i and impinging on neuron j.

xj(t) =
∑

i∈Γj

wjiyi(t) (1)

The unweighted contribution yi(t) is given by eq. (2), this uses a function ε(t);
which describes the form of the postsynaptic potential and its input parameter
are formed by the next three values: t is the current time, ti is the firing time of
the presynaptic neuron i and dji is the associated synaptic delay.

yi(t) = ε(t− ti − dji) (2)

The form of the postsynaptic potential ε(t) is given by eq. (3), the function
has a τ parameter, that is the membrane potential time constant defining the
decay time of the postsynaptic potential.

ε(t) =

{
t
τ e

1− t
τ if t > 0

0 else
(3)

Each neuron fires once at most, the firing time tj of neuron j is determined
as the first time the state variable crosses the threshold from below.

2.2 Evolutionary Strategy

The Evolutionary Strategies (ES) [19], deal natively with problems in real do-
main. In [1] was designed a Self-Adaptive ES originally for training SNNs, but
it could be used to solve other optimization problems. In this ES each popu-
lation member consists of n-dimensional vectors. The population at any given
generation g is denoted as P (g). Each individual is taken as a pair of real-valued
vectors, (xi, ηi), where xi’s are objective variables which depend of the optimiza-
tion problem, and ηi’s are standard deviations for mutations. Each individual
generates a single offspring (x′

i, η
′
i), where each variable x′

i(j) of the offspring can
be randomly defined by either eq. (4) (local search) or eq. (5) (global search)
and the standard deviation for mutation of the offspring is defined by eq. (6).

x′
i(j) = xi(j) + ηi(j)Nj(0, 1) (4)

x′
i(j) = xi(j) + ηi(j)δj (5)

η′i(j) = ηi(j)exp(τ
′N(0, 1) + τNj(0, 1)) (6)
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Algorithm 1. Self-adaptive ES

1: Generate the initial population of μ individuals.
2: Evaluate the fitness score for each individual(xi, ηi), i = 1, . . . , μ of the population

based on the fitness function.
3: while the maximum iteration is not reached do
4: Each parent (xi, ηi) generates a single offspring (x′

i, η
′
i)

5: Calculate the fitness of each offspring (x′
i, η

′
i), i = 1, . . . , μ.

6: Generate a new population P (g) using tournament selection and elitism to keep
track of the best individual at each generation

7: end while

where:

– N(0, 1) denotes a normally distributed one dimensional random number with
μ = 0 and σ = 1.

– Nj(0, 1) indicates that the random number is generated anew for each value
of j.

– δj is a Cauchy random variable, and it is generated anew for each value of j
(Scale = 1).

– Factor τ = 1√
2
√
n

– Factor τ ′ = 1√
2n

The Self-adaptive ES is presented in the algorithm 1.

2.3 Grammatical Evolution

Grammatical Evolution (GE) [20] is a grammar-base form of Genetic Program-
ming (GP) [15]. GE joins the principles from molecular biology, which are used
by the GP, and the power of formal grammars. Unlike GP, the GE adopts a
population of lineal genotypic integer strings, or binary strings, which are trans-
formed into functional phenotypic through a genotype-to-phenotype mapping
process, this process is also know as Indirect Representation [6]. This transfor-
mation is governed through a Backus Naur Form grammar (BNF). Genotype
strings are evolved with no knowledge of their phenotypic equivalent, only use
the fitness measure.

Eventhough the GE uses the Genetic Algorithm (GA) [4, 10, 20] as search
strategy it is possible to use another search strategy like the Particle Swarm
Optimization, called Grammatical Swarm (GS) [18]. In the GE each individual
is mapped into a program using the BNF.

Mapping Process
When approaching a problem using GE, initially a BNF grammar must be de-
fined. This grammar specifies the syntax of desired phenotypic programs to be
produced by GE. The development of a BNF grammar also affords the researcher
the ability to incorporate domain biases or domain-specific functions.



Developing Architectures of Spiking Neural Networks 75

A BNF grammar is made up of the tuple N, T, P, S; where N is the set of all
non-terminal symbols, T is the set of terminals, P is the set of production rules
that map N → T , and S is the initial start symbol where S ∈ N . Where there
are a number of production rules that can be applied to a non-terminal, a “|”
(or) symbol separates the options.

Using the grammar as the GE input, eq. (7) is used to choose the next pro-
duction based-on the non-terminal symbol.

Rule = c%r (7)

where c is the codon value and r is the number of production rules available for
the current non-terminal.

An example of the mapping process employed by GE is shown in Figure 1.

Fig. 1. An example a transformation from genotype to phenotype using a BNF Gram-
mar. It begins with the start symbol, if the production rule from this symbol is only
one rule, then the production rule gets instead of the start symbol, and the process
begins to choose the productions rules base on the current genotype. It is taking each
genotype and the non-terminal symbol from the left to realize the next production
using eq. (7) until all the genotypes are mapped or there aren’t more non-terminals in
the phenotype.

3 Proposal

This paper proposes a generic framework for designing architectures of SNNs to
solve pattern recognition problems. The proposed framework (see fig. 2) requires
as inputs: training and testing sets from the pattern recognition problem to solve,
a BNF grammar as indirect representation of the architectures of SNN and the
output firing times for each class in the dataset. The indirect representation is
defined by Grammar 1.1, which can specify a Fully-Connected Feed-Forward
SNN. The specified SNN architecture will be defined by the number of GRFs
for encoding patterns, one or several hidden layers with their respective number
of neurons and a single output neuron in the output layer.
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Fig. 2. Generic Framework Diagram for designing SNNs architectures

〈network〉 |= 〈receptiveFields〉 − 〈layers〉
〈receptiveFields〉 |= 〈digit〉

〈layers〉 |= 〈layer〉 | 〈layer〉, 〈layers〉
〈layer〉 |= 〈digit〉
〈digit〉 |= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Grammar 1.1. BNF grammar for SNN design based on the first approach proposed
in [3]

The design process is carried out by the GE based on ES (the used ES is that
proposed in [1]), which basically by means of the BNF grammar and the mapping
process creates architectures of SNNs candidates. The GE evaluates the quality
of its candidates by using a fitness function and evolves them trying to improve
the candidates by minimizing their fitness values.The eq. (8) is proposed as a
fitness function for looking over the search space of SNNs architectures.

This fitness function of design requires of three stages to be calculated. The
first stage consists in training 2K + 1 (with K ≥ 1) times the candidate ar-
chitecture using the input training set, the desired firing output times and the
supervised-learning based on ES for training SNNs used in [1]. The second stage
consist in assigning to the candidate architecture, the median training process
from the training set generated in the first stage. Finally, the third stage consist
in obtaining the performance of the candidate architecture of SNN (trained) over
unseen patterns using the input testing set.

f =
#feat ∗#GRFs

9 ∗#feat
+

#nhli∑

i=1

i ∗ #nhli
9

+ ((1− perfT est) ∗ 100) (8)

where:

– #feat is the number of original features.
– #GRFs is the number of GRFs selected by the GE.
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– #nhli is the number of neurons in the i− th hidden layer set by the GE.
– perfT est is the performance of the trained SNN with the candidate archi-

tecture over the input testing set.

The fitness function of design showed in eq. (8) was designed for trying to find
compact SNNs architectures with a high classification performance over unseen
patterns in the search space of architectures.

4 Experiments and Results

The proposed framework for developing architectures of SNNs was tested over
two well-known benchmark datasets form the UCI Machine Learning Repository:

Iris plant: The iris plant dataset contains 3 classes (Iris Setosa, Iris Versicolour
and Iris Virginica). One class is linearly separable from the other 2; the latter
are not linearly separable. There are 50 instance patterns for each class. Each
pattern is described by 4 attributes.

Wine: The wine dataset contains 3 classes. There are 59, 41 and 48 instance
patterns for classes 1, 2 and 3 respectively. Each patter is described by 13
attributes.

Usually in the pattern recognition area, a classifier is tested by using some
accuracy estimation method such as K -folds cross validation [14]. In this work
is used the leave-one-out version of this method, not to test a classifer but to
obtain a test instances set for each benchmark dataset; each benchmark dataset
was splitted with K = 10, giving a set of 10 test instance. For each test instance
was designed a SNN using the proposed framework.

As both benchmark datasets have three classes, the same configuration was
used through all their test instances; some parameters were chosen empirically,
others were taken from the checked works for this paper and others parameters
were defined by the framework. The configuration of the experiments is presented
next.

GE based on ES. The parameters size of population = 30, function calls =
600 and boundaries ∈ [0, 255].

Supervised-learning based on ES. The parameters size of population =
30, function calls = 15000, weights ∈ [−1000, 1000] and delays ∈ [0.1, 16].

GRFs. m could be from 1 to 9, which is defined by the framework. The
parameters τ = 4 ms and γ = 1.5.

SRM. The parameters θ = 1.0 mV, τ = 9.0 ms, simulation start time = 5
ms and simulation end time = 19 ms.

Output firing times for the classes 1,2 and 3 where 6.0 ms, 10.0 ms, 14 ms
respectively.

The tables 1 and 2 show for each test instance the designed architectures and
the performance of the trained SNN over the training and testing patterns. The
last row shows an accuracy value of the obtained performance over training and
testing patterns through all tests.
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Table 1. Classification performance of the designed SNNs over training and testing
patterns through 10 tests for Iris Plant Dataset

# test Architecture Performance training Performance testing

1 4(5) − 3− 1 0.8740 1.0

2 4(4) − 7− 1 0.9481 1.0

3 4(5) − 2− 1 0.8592 1.0

4 4(3) − 7− 1 0.9111 1.0

5 4(9) − 6− 1 0.9185 1.0

6 4(6) − 6− 1 0.8666 1.0

7 4(7) − 6− 1 0.9407 1.0

8 4(5) − 3− 1 0.9777 1.0

9 4(5) − 5− 1 0.9333 1.0

10 4(7) − 4− 1 0.9333 1.0

Accuracy 0.91625 1.0

Table 2. Classification performance of the designed SNNs over training and testing
patterns through 10 tests for Wine Dataset

# test Architecture Performance training Performance testing

1 13(7) − 3− 1 0.6037 0.6842

2 13(4) − 8− 1 0.8187 0.9444

3 13(8) − 6− 1 0.8000 0.8333

4 13(7) − 7− 1 0.7687 0.9444

5 13(7) − 9− 1 0.7750 0.8333

6 13(5) − 7− 1 0.7937 0.9444

7 13(8) − 3− 1 0.8062 0.8888

8 13(4) − 8− 1 0.7625 0.8333

9 13(7) − 8− 1 0.8757 0.8823

10 13(4) − 6− 1 0.9012 1.0

Accuracy 0.79054 0.87884

The proposal was compared against an ANNs trained by means of Backprop-
agation algorithm only for the Iris Plant dataset. The ANN has an architecture
of 4 neurons in the input layer, 7 neurons in the hidden layer and 3 neurons
in the output layer; this ANN was trained for each test instance. The accuracy
achieved for the SNN over the tests for known patterns was 0.91625 and 1.0
for unknown patterns, againts the accuracy achieved for the ANN for known
patterns was 0.99407 and for unkown patterns was 0.96. This comparison shows
that the proposal can design SNN with better generalization than an ANN with
empirical design.
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5 Conclusions

This work presents a generic framework for designing Fully-Connected Feed-
Forward SNNs to solve pattern recognition problems no matter how many
features represent the patterns in the dataset. The framework requires few pa-
rameters (population size for the GE based on ES and BNF grammar) to do the
design process due that uses an ES, which is self-adaptive; the other parameters
are dependant of the characteristics for the SNNs to be designed and they aren’t
cosider to be part of the framework.

Analyzing the BNF grammar, it was possible to define a fitness function for
the GE based on ES. The fitness function looks for SNNs with compact ar-
chitectures over the search space, which have acceptable performance for both
known and unknown patterns. The resulting SNNs have a good generalization
performance due that the fitness function besides that it tries to looks for com-
pact architectures, it chooses architectures which have maximum performance
for unknown patterns.

A remarkable advantage of the proposed framework is that it can handle dif-
ferent grammars as indirect representation for designing architectures of SNNs.

As future work, authors propose to define a grammar, which integrates ad-
ditional inherent aspects of SNNs for their design. Besides to implement other
metaheuristics for the optimization process and compare them.

Acknowledgments. The authors thank to Consejo Nacional de Ciencia y Tec-
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