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Abstract. Deterioration in mechanical parts of a motor causes faults that 
generate vibrations. Those vibrations can be related with a different type of 
motor fault. In this work, we propose a new computational model for 
identifying rotor unbalance problems in electrical induction motors. Measured 
vibrations are preprocessed in order to create orbits which represent 
characteristic patterns. Those patterns are used in a recognition process using an 
artificial neural network. Experimental results using vibration signals extracted 
from real situations show a good performance and effectiveness of the proposed 
model, providing a new way for recognizing unbalance problems in induction 
motors.  
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1 Introduction 

Electrical induction motor is the most common engine used worldwide in industry. 
The normal usage of the engine generates deterioration in its physical parts over time, 
representing a problem when mechanical faults appear as a natural consequence. 
Induction motor fault detection is an important research field that uses different 
techniques for analyzing behaviors of the different conditions of the engine such as 
motor acoustic [1], electrical behaviors [2], orbital electromagnetic analysis [3] or 
motor vibrations [4]. In the literature, several technics for identifying some types of 
motor faults have been proposed using different mathematical theories such as 
spectral analyses, wavelet analysis, time warping, time frequency analysis, Wigner-
Ville distribution, etc. [5–9]. On the other hand, artificial intelligence has been 
proposed as an alternative way for recognizing some specific motor faults using 
technics such as artificial neural networks, Bayesian networks, support vector 
machine and fuzzy logic [10–15]. Thus, the importance of detecting and preventing 
motor faults before they appear is a challenge clearly recognized and some works are 
currently focused in this problem. 
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Motor vibrations are generated by the normal operation of the engine; however, 
when some faults appear, those vibrations increase significantly their levels and can 
generate some characteristic vibrations that can be studied. The most common 
induction motor fault presented is the rotor unbalance, and it is represented by an 
increment in vibration amplitudes. In this sense, we hypothesized that unbalance 
motor fault can be modeled using orbital analysis, where the amplitude of measured 
vibrations surely will modified a characteristic orbit; this behavior is used for 
recognizing the motor fault using a defined classifier. Although some works has been 
focused on using several learning models for motor fault recognizing, our main 
contribution is based on the pattern building, designing a new way for representing a 
motor fault. Hence, the core of this work is based on the feature extraction of 
vibration signals for building orbital patterns. 

This work proposes a new computational model for identifying rotor unbalance 
faults in induction motors in three stages. First, some preprocessing steps are used in 
order to clean and prepare measured signals. Then, orbital patterns are generated 
indicating some features of a normal or a rotor unbalance operation. Finally, an 
artificial neural network is used for classifying those patterns with the mentioned 
problem.     

2 Rotor Unbalance Fault  

Failures in electrical induction motors can be classified in two types: mechanical or 
electrical fault. Those failures may occur frequently in the three main motor 
components: rotor, stator and bearings [10, 16–18]. In this work, we are mainly 
interested on studying the unbalance rotor fault due to it is most commonly presented 
fault. Therefore, rotor unbalance can be defined as the unequal mass distribution on 
the motor rotation center and in most of the cases; it is the main cause of vibration 
problems in induction motors (Fig. 1a). Unbalance occurs at a 1×rpm frequency of the 
selected rotary member and the main harmonic presents amplitudes higher than 
normal [17]. Rotor unbalance can be classified as static or coupled unbalance (Fig. 1). 

         

Fig. 1. Rotor unbalance representations: a) static unbalance and b) couple unbalance 

           a)                                                              b) 
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3 Signal Acquisition  

Mechanical motor faults can be detected if vibrations are monitored and measured 
continuously. A piezoelectric accelerometer sensor is used for measuring vibrations in 
the motor chassis. This device employs the piezoelectric effect of certain materials to 
measure dynamic changes in mechanical variables (e.g., acceleration, vibration, and 
mechanical shock). A piezoelectric accelerometer converts vibrations into an 
electrical signal which can be measured using an analog to digital converter [19]. As 
each motor have a different rotation speed, standards as ISO 10816 (1995) [20] and 
VDI 2056 (1964) [21] have established sampling frequency rates for motor 
measuring. According to them, the sampling frequency established was 50 kHz, being 
large enough to obtain a good quality signal over tested induction motors. 

Orbital analysis are made using two signals plotted in a (x, y) axis. Those signals 
are measured using two piezoelectric accelerometers placed orthogonally in the motor 
chassis. Fig. 2 shows the correctly accelerometers position. 
 

 

Fig. 2. Accelerometer placement at 90° over the engine 

Vibration signals obtained from induction motors contains several harmonics that 
can be considered as spurious information. In order to avoid those harmonics a 
previous signal treatment is needed in order to obtain good quality orbits. The 
following section explains this important process. 

4 Orbital Pattern Building 

In the literature, some works have focused their efforts on studying the induction 
motor behaviors using the orbital analysis across mechanical vibrations and 
electromagnetic forces [22, 3]. Generally, motor unbalance analyses has been made 
using spectral technics such as Fourier analysis. In this section, we propose an 
alternative way for transforming vibration input signals into characteristic patterns 
without using any type of spectral analysis (frequency domain). One advantage of the 
proposed model is that all processing steps are made in time domain, since no 
frequency transformations are needed. According to this, orbital analyses are used to 
create shapes using the time stamp of measured signals that remarks particular 
behaviors of an unbalance rotor problem.  
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Preprocessing 
 

In order to create an orbital pattern, some preprocessing steps are required in order to 
have a good quality orbit. First, each signal is preprocessed separately in order to 
preserve their particular features. An accelerometer measures signals in acceleration 
units. Fault orbits are plotted using different signal factors such as vibration 
amplitudes and distance between phases; hence, it is important to convert the current 
signal domain (acceleration) into a displacement domain; this unit conversion is 
computed by integrating the acceleration signal in time domain using the following 
definition [19]: ݒሺݐሻ ൌ න ܽሺݐሻ݀ݐ௧

଴ ൅  ଴ (1)ݒ

  ݀ሺݐሻ ൌ න ௧ݐሻ݀ݐሺݒ
଴ ൅ ݀଴ (2) 

where a(t), v(t) and d(t) are the acceleration, velocity and displacement signals; vo and 
do are the initial velocity and displacement values respectively.  

An induction motor generates several types of vibrations, but we are interested 
only in those produced by rotor unbalances. Undesirable vibrations considerably 
distort the shape of an orbit and they must be removed (Fig. 3). In this sense, signals 
must be filtered using a Butterworth passband filter. There is not a specific rule for 
using a digital filter; however, the Butterworth filter algorithm simplifies the 
implementation of this process. Therefore, signal filtering can be computed according 
to the following magnitude response [23, 24]: |ܪሺ߱ሻ|ଶ ൌ 11 ൅ ቀܿ െ cos ωΩ଴ sin ω ቁଶN (3) 

where ω ൌ 2πf fୱ⁄ , fୱ is the sampling frequency,  Ω଴ ൌ tan ሺω଴ 2⁄ ሻ and c can be 
expressed as follows: ܿ ൌ sin ൫߱௣௔ ൅ ߱௣௕൯sin ߱௣௔ ൅ sin ߱௣௕ (4) 

where  ߱௣௔ ൌ ߨ2 ௣݂௔ ௦݂⁄ ,  ߱௣௕ ൌ ߨ2 ௣݂௕ ௦݂⁄  and ൣ ௣݂௔, ௣݂௕൧ is the passband. 
In this work, we used a bandpass frequency of 10 Hz, this value provided a good 

quality in the orbit shape, removing undesirable harmonics. 
Vibration signals generate continuously orbits with the same symmetry. However, 

for practical purposes, only one orbit is needed for detecting an unbalance in the rotor. 
In this sense, orbit isolation is made determining the Euclidian distance between the 
starting and ending points according with a low tolerance (T) according with the 
following equation [23]: ݀ ൌ ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ  ଵሻଶ (5)ݕ
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where d is the distance between points, and (x, y) are the orbit points coordinates 
respectively. There is not a specific rule for establishing the tolerance value. In this 
case, we used the median between point distances as follows: 

ܶ ൌ 1݊ ෍ ݀௜௡
௜ୀଵ  (6) 

Where n is the number of distances used. Finally, the extracted orbit is normalized 
into a [0, 1] range using the following expression: ݏଵ,ଶሺ݊ሻ ൌ ݀ଵ,ଶሺ݊ሻ݉ܽݔሼ|݀ଵሺ݊ሻ|, |݀ଶሺ݊ሻ|ሽ, ׊ ݊ ൌ 0, 1, 2, … , ܰ െ 1 (7) 

where N is the number of points in the signal.  

 

Fig. 3. Differences between filtered and unfiltered orbits, where the spurious harmonics has 
been removed 

Finally, rotor unbalance problems can be directly seen in the shape of the orbit, 
where a perfect circular shape represents a good condition motor and elliptical shapes 
correspond to unbalanced rotor fault. Fig. 4 shows these concepts. 

Pattern Building 

According with the orbital signal analysis, orbit shapes where used for creating motor 
fault patterns. However, resulting signal orbits are not practical to be used in a neural 
network due to they have different lengths. In order to have uniform patterns, all 
orbits signals were resampled for having 100 points of length, where each one is a 
bidimensional pattern (x, y). A training database with 324 patterns was created to be 
used in the learning phase of the ANN. Orbit shapes of this database were measured 
from different induction motors, which had 314 unbalance patterns and 10 patterns 
from good condition motors. 
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Fig. 4. Examples of orbit shapes that correspond to different motor faults 

5 Pattern Recognition and Experimental Results 

There are several technics for pattern recognition that can be used for orbits shape 
identification [1–11]. In this work, Artificial Neural Networks (ANN) are used as 
classifiers, because they have proved being a very effective learning model with high 
rates of effectiveness. The ANN architecture that better fitted to the problem context 
was of [200 – 150 – 2]. In this case, the inputs were fixed at 200 neurons, where the 
first half is for x-axis and the other half for y-axis. 1000 epochs where used for 
training the ANN having a MSE of 1⨉10-10. The hidden layer was initialized between 
2 and 200 neurons sequentially, where 150 neurons was the configuration with better 
results. It was used three sets to evaluate the performance of the ANN (dividing the 
training database for different purposes on the training process); one inside set for the 
training algorithm (484 partners from the available data to train), one validation set 
(97 patterns from the available data) and one final testing set to evaluate the final 
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performance of the algorithm (64 partners from the available data), with correlation 
coefficients (r) of 0.998, 0.989 and 0.995 respectively. The training process used by 
the ANN learning was the Levenberg-Marquardt algorithm. 

Additionally, an experimental database was built and used for validating the 
performance of the proposed system as part of a recovering process. This database 
was built using different kind of motors and with different levels of unbalance. It is 
important to remark that this database was compounded by different motor 
measurements than those used in the database of the learning process. In this case, the 
size of the database was of 645 motor fault patterns as follows: 635 rotor unbalance 
patterns and 10 patterns of good condition motors. 

The neural network was created using the training database and was tested with the 
experimental database with patterns of different unbalance and intensities. In the 
evaluation were extracted signals from real motors with history of failure. Table 1 
shows the results of the recovering process using the proposed database. A second 
experiment was using the experimental database contaminated with Gaussian noise 
and a SNR of 10, having interesting results and where a low percentage of patterns 
were misclassified.  

Table 1. Orbital pattern recognition results with the original experimental database and the 
Gaussian noise contaminated database 

        ANN 

Experimental database 
 Number of 

Patterns 
Recalled
patterns

Efficiency Error 

Original patterns  645 642 99.53% 0.47% 

Patterns contaminated 
with Gaussian noise 

 
645 597 92.55% 7.45% 

6 Discussion and Conclusions 

In this work, we propose a new computational model for detecting rotor unbalance 
problems in electrical induction motors. This model was implemented using the 
orbital analysis for creating pattern shapes that have characteristic features of the 
fault. Although several methodologies for detecting mechanical faults in induction 
motor have been developed, the proposed model represents a feasible and alternative 
way for motor misalignment fault detection. In this model, some preprocessing steps 
implemented before the ANN classification phase are needed for extracting the main 
features of signal patterns. One advantage of this work is that no spectral analyses 
were made, having low computational burden rates against conventional models.  As 
an unbalance distorts considerably an orbit, a characteristic shape is built and it can be 
perfectly identified by a classifier such as an ANNs, reducing the complexity of the 
modeling step. It is important to remark that this paper provides a preliminary study 
of unbalance identification in induction motors using orbital pattern analysis, and 
future works are needed such as detection of more type of failures or model  
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effectiveness increasing. Anyhow, this model can be used as an important tool for 
preliminaries motor analysis, when the good functioning of the machine is essential in 
critical time production. 
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