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Abstract. As a powerful tool in machine learning, support vector machine 
(SVM) suffers from expensive computational cost in the training phase due to 
the large number of original training samples. In addition, Minimal Enclosing 
Ball (MEB) has a limitation with a large dataset, and the training computational 
increases as data size becomes large. This paper presents an improved two ap-
proaches based SVMs reduced to Minimal Enclosing Ball (MEB) problems. 
These approaches find the concentric balls with minimum volume of data de-
scription to reduce the chance of accepting abnormal data that contain most of 
the training samples. Our study is experimented on speech information to 
eliminate all noise data and reducing time training. Numerical experiments on 
some real-world datasets verify the usefulness of our approaches for data  
mining. 

Keywords: Support Vector Machines (SVMs), Minimal Enclosing Ball (MEB), 
Core-set. 

1 Introduction 

The theory of Support Vector Machines was introduced by Vapnik and was devel-
oped from the theory of Structural Risk Minimization [1]. SVMs learn the boundary 
regions between samples belonging to two classes by mapping the input samples into 
a high dimensional space, and seeking a separating hyperplane in this space. The 
separating hyperplane is chosen in such a way as to maximize its distance from the 
closest training samples (a quantity referred to as the margin). 

Training a SVM involves solving a constrained quadratic programming problem, 
which requires large memory and enormous amounts of training time for large-scale 
problems. Goal is to find a separation hyperplane which implicates a ܰ ൈ ܰ matrix 
density, where ܰ is the number of points in the dataset. This needs more computa-
tional time and memory for large datasets, so the training complexity of SVM is high-
ly dependent on the size of a dataset. Then, we partition the data in several data 
sources and we train them by Support Vector Machines (SVMs) using Fuzzy C-Mean 
Clustering Algorithm. 

Here, we improve a technique cited in [2]. The improvement has based from an en-
tropy algorithm that consider both Lagrangian duality and the Jaynes’ maximum  
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entropy principle. The idea is to use information entropy and maximum entropy for-
malism in the solution of nonlinear programming problems [3]. 

Computation of such SVMs lead to find a Core-Set for the image of the data in a 
feature space. Thus, an alternative method is presented based on an equivalence be-
tween SVMs and Minimal Enclosing Ball (MEB) problems from which important 
improvements on training efficiency has been reported [4,5] for large-scale datasets. 
The study focus on multi-class problems where two methods explored to extend bi-
nary SVMs to the multi-category setting, which preserve the equivalence between the 
model and MEBs.  

Algorithms to compute SVMs based on the MEB equivalence are based on the 
greedy computation of a core-set, a typically small subset of the data which provides 
the same MEB as the full dataset. Then, we formulate new multiclass SVM problem 
using core-sets for reduce large datasets which can be considered optimally matched 
to the input demands of different background architectures of speaker verification or 
Language Identification systems. The core idea of these two approaches cited above is 
to adopt multiclass SVMs formulation and Minimal Enclosing Ball to reduce dataset 
without influence data noise. 

Along the whole paper, we define the variables as follows: 

─ ݂: Index of feature; F: number of features. 
─ ݊: Index of feature dimension; ܰ: dimensionality of feature. 
─ ݈: Index of Classe; ܮ: number of Classes. 

2 L2-Support Vector Machines (L2-SVMs) 

In [2] it is shown that for a binary classification, the L2-SVM build a separating 
hyperplane ݂ሺݖሻ by solving the following quadratic program: min௪,௕,ఘ,క ଵଶ ൫ԡݓԡଶ ൅ ܾଶ ൅ ܥ ∑ ௧ଶி௙ୀଵߦ ൯ െ ݐݏߩ ׷ ௙൯ݖ௙݂൫ݕ  ൒ ߩ െ ݂      ௙ߦ ൌ 1, … , ܨ                             (1) 

And for a given training task having ܮ classes, these label vectors are chosen out of 
the definite set of vectors ሼݕଵ, ,ଶݕ … ,  ிሽ. Hence, we can define the primal for theݕ
learning problem for the L2-SVM Multi-class classification as min௪,௕,ఘ,క ଵଶ ൫ԡܹԡଶ ൅ ԡܾԡଶ ൅ ܥ ∑ ௙ଶி௙ୀଵߦ ൯ െ ௙்ݕ :ݐݏߩ ൫்ܹݖ௙ ൅ ܾ൯ ൒ ߩ െ ௙ଶߦ ൒ 0    ݂ ൌ 1, … ,  (2)                     ܨ

where ݖ௙ ൌ ߶ሺݔ௙ሻ 
After introducing Lagrange multipliers, for the both problem, we conduct to solve minఈ ∑ ∑ :ݐݏ௙௙ᇲி௙ᇲி௙ୀଵܭ௙ᇲߙ௙ߙ ௙ߙ ൒ 0, ∑ ௙ி௙ୀଵߙ ൌ 1                                         (3) 
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where ܭ௙௙ᇲ ൌ ,௙ݔ௙ᇲ݇൫ݕ௙ݕ ௙ᇲ൯ݔ ൅ ௙ᇲݕ௙ݕ ൅ ఋ೑೑ᇲ஼  for binary classification and ܭ௙௙ᇲ ൌݕ௙் ,௙ݔ௙ᇲ݇൫ݕ ௙ᇲ൯ݔ ൅ ௙்ݕ ௙ᇲݕ ൅ ఋ೑೑ᇲ஼  for multi-class classification. ߜ௙௙ᇲ is the Kronecker 

delta function ൫ߜ௙௙ᇲ ൌ 1 ݂݅ ݂ ൌ ݂ᇱ 0 ݁ݏ݅ݓݎ݄݁ݐ݋൯ and ݇൫ݔ௙, -௙ᇲ൯ implements the dotݔ
product ݖ௙்  .௙ᇲݖ

We note that there are two types of extensions to build Multi-Class SVMs [6,7]. 
The first is One-Versus-One approach (OVO) that use several binary classifiers, sepa-
rately trained and joined into a multi-category decision function. The second is One-
Versus-All approach (OVA), where a different binary SVM is used to separate each 
class from the All. 

3 Minimal Enclosing Balls (MEB) 

MEB has originally introduced to estimate the support of a high dimensional distribu-
tion [8]. Suppose we have a set of ܨ independent and identically distributed observa-

tions ൛ݔ௙ൟ௙ୀଵி
 from an unknown distribution function ܲ. The MEB algorithm seeks to 

find a minimal region ܴ, which surrounds almost all the data points. This approx-
imated region lead to enclose with high probability the test examples presuming that 
they are drawn from the same probability distribution ܲ.  

Denoting training data set as ܵ ൌ ൛̃ݖ௙ ൌ ߶൫ݔ௙൯ൟ௙ୀଵி
. Let ෨ܼ a space equipped with a 

dot product ̃ݖ௙் ԡଶݖ௙ᇲ that corresponding to norm ԡ̃ݖ̃ ൌ ,We define the ball ࣜሺܿ .ݖ்̃ݖ̃ ܴሻ 
of center ܿ א ෨ܼ and radius ܴ in Թ as the subset of points ̃ݖ א ෨ܼ for which ԡ̃ݖ െ ܿԡଶ ൑ܴଶ. The minimal-enclosing ball of a set of points ܵ ൌ ൛̃ݖ௙ൟ௙ୀଵி

 in ෨ܼ is in turn the ball ࣜכሺܵ, ,כܿ  ሻ of smallest radius that contains ܵ, that is, the solution to the followingכܴ
optimization problem. minோ,௖ ܴଶݐݏ: ԡ̃ݖ െ ܿԡଶ ൑ ܴଶ    ݖ̃ ׊ א  ܵ                                     (4) 

After introducing Lagrange multipliers, we obtain from the optimality conditions the 
following dual problem minఈ ∑ ∑ ௙்ݖ௙ᇲ̃ߙ௙ߙ ௙ᇲி௙ᇲୀଵ௙்ୀଵݖ̃ െ ∑ ௙்ݖ௙̃ߙ :ݐݏ௙ி௙ୀଵݖ̃ ௙ߙ ൒ 0, ∑ ௙ி௙ୀଵߙ ൌ 1                             (5) 

if we consider that ∑ ௙்ݖ௙̃ߙ ௙ி௙ୀଵݖ̃ ൌ  .a, we can drop it from the dual objective in Eq ߢ
(1), we obtain a simpler QP problem minఈ ∑ ∑ ௙்ݖ௙ᇲ̃ߙ௙ߙ ௙ᇲி௙ᇲୀଵி௙ୀଵݖ̃ ൌ minఈ ∑ ∑ :ݐݏ෩௙௙ᇲி௙ᇲୀଵி௙ୀଵܭ௙ᇲߙ௙ߙ ௙ߙ ൒ 0, ∑ ௙ி௙ୀଵߙ ൌ 1                (6) 
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In [9] it is shown that the primal variables ܿ and ܴ can be recovered from the op-

timal ߙ as ܿ ൌ ∑ ௙ி௙ୀଵݖ௙̃ߙ ,  ܴ ൌ ට∑ ∑ ௙்ݖ௙ᇲ̃ߙ௙ߙ ௙ᇲி௙ᇲୀଵி௙ୀଵݖ̃  and the main appeal of the 

L2-SVM implementation Eq. (3) is that it supports a convenient equivalence to a 
Minimal Enclosing Ball (MEB) problem Eq. (6) when the kernel used in the SVM is 
normalized, that is ݇ሺݔ, ሻݔ ൌ ݔ ׊  ߢ א ܺ, where ߢ is a constant. The advantage of this 
equivalence is that the Bãdoiu and Clarkson algorithm [10] can efficiently approx-
imate the solution of a MEB problem with any degree of accuracy. 

Core-Set 

Bãdoiu and Clarkson [10] define the Core-Set of ܵ as a set ܥௌ ؿ ܵ if the Minimal 
Enclosing Ball computed over ܥௌ is equivalent to the Minimal Enclosing Ball consi-
dering all the points in ܵ. A ball ࣜሺܿ, ܴሻ is said an ߳-approximation to the Minimal 
Enclosing Ball ࣜכሺܵ, ,כܿ ܴ ሻ of ܵ ifכܴ ൑ ܵ and it contains ܵ up to precision ߳, that is כܴ ؿ ࣜሺܿ, ሺ1 ൅ ߳ሻܴሻ. Consequently, a set ܥௌ,ఢ is called a ߳-core-set if the Minimal 
Enclosing Ball of ܥௌ,ఢ is a ߳-approximation to ࣜכሺܵ, ,כܿ   .ሻכܴ

In [10] the most usual version of the algorithm is presented. 

4 Improved MEB/L2-SVM Equivalence Algorithm 

Calculating the Lagrange multipliers leads to a simpler QP problem Eq. (3) or Eq. (6) 
with non-negative constraints and one normality condition, which is one of the 
difficulties in the original MEB algorithm. The improved MEB algorithm present a 
simple and efficient algorithm, which takes advantage of the features of problem Eq. 
(6). We derive an entropy-based algorithm for the considered problem by means of 
Lagrangian duality and the Jaynes’ maximum entropy principle. The idea is to use the 
information entropy and maximum entropy formalism in the solution of nonlinear 
programming problems [3]. 

Consider that the MEB QP problem Eq. (6) written as the following form: minఈ ሻߙሺܮ ൌ ∑ ∑ ௙ᇲߙ :ݐݏ෩௙௙ᇲி௙ᇲୀଵி௙ୀଵܭ௙ᇲߙ௙ߙ ൒ 0, ∑ ௙ᇲி௙ᇲୀଵߙ ൌ 1  and  ̃ݖ௙் ௙ᇲݖ̃ ൌ  ෩௙௙ᇲ                             (7)ܭ

From the constraints of optimization problem Eq. (7), we know that the dual va-
riables go into the range [0, 1] and sum to one, so they meet the definition of probabil-
ity. Our approach to the solution of Eq. (7) based on a probabilistic interpretation 
show that the center of the ball represents the mean vector of the images of all data 
points and the Lagrange multiplier ߙ௙ represents the probability that ݔ௙ is a support 
vector SV. Hence, we may consider searching for the MEB as a procedure of proba-
bility assignments, which should follow the Jaynes’ maximum entropy principle [3]. 
Thus instead of QP problem Eq. (7), we construct a composite minimization problem: 
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min ࣪ܮሺߙሻ ൌ ሻߙሺܮ ൅ :ݐݏ࣪/ሻߙሺܪ ௙ᇲߙ ൒ 0, ∑ ௙ᇲߙ ൌ 1ி௙ᇲୀଵ                                     (8) 

Where ࣪ is a non-negative parameter, and  ܪሺߙሻ ൌ ∑ ௙ᇲߙ ln ௙ᇲி௙ᇲୀଵߙ                                           (9) 

From information theory perspectives, ܪሺߙሻ represents an information entropy of the 
multipliers ߙ௙ᇲ. The additional term ܪሺߙሻ/࣪ is commensurate with the application of 
an extra criterion of minimizing the multipliers entropy to the original MEB QP prob-
lem Eq. (7). It is intuitively obvious that the entropy term on the solution of Eq. (8) 
will diminish as ݌ approaches infinity. 
To solve this problem we introduce the Lagrangian ࣪ܮሺߙ, ሻߚ ൌ ሻߙሺܮ ൅ ுሺఈሻ࣪ ൅ ∑൫ߚ ௙ᇲி௙ᇲୀଵߙ െ 1൯                           (10) 

where ߚ is a Lagrange multiplier. Setting to zero the derivative of ࣪ܮሺߙ, -ሻ with reߚ
spect to ߙ and ߚ, respectively, leads to డ௅డఈ೑ᇲ െ ଵ࣪ ൫1 ൅ ln ௙ᇲ൯ߙ ൅ ߚ ൌ 0                                 (11) 

and ∑ ௙ᇲߙ ൌ 1ி௙ᇲୀଵ                                                  (12) 

Solving Eq. (11) for ߙ௙ᇲ, ݂ᇱ ൌ 1,2, … ,   ܨ

௙ᇲߙ ൌ ݁ቆ࣪ቆ ങಽങഀ೑ᇲାఉቇିଵቇ
                                        (13) 

Substituting ߙ from Eq. (13) into Eq. (12), we obtain 

݁ሺ࣪ఉିଵሻ ∑ ݁ቆ࣪ ങಽങഀ೑ᇲቇி௙ᇲୀଵ ൌ 1                                      (14) 

Between Eq. (13) and Eq. (12), we eliminate the term ݁ሺ࣪ఉିଵሻ to give 

௙ᇲߙ ൌ ௘൭࣪ ങಽങഀ೑ᇲ൱
∑ ௘൭࣪ ങಽങഀ೑ᇲ൱ಷ೑ᇲసభ

                                             (15) 

By optimization problem Eq. (7), we have ܮఈ೑ᇲ ሺߙሻ ؠ డ௅డఈ೑ᇲ ൌ 2 ∑ ௙௙ᇲி௙ୀଵܭ௙ߙ                                 (16) 

Thus, we obtain the iterative formula 
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௙ᇲሺ௞ାଵሻߙ ൌ ௘൭࣪ሺೖሻಽഀ೑ᇲ ቀഀሺೖሻቁ൱
∑ ௘൭࣪ሺೖሻಽഀ೑ᇲ ቀഀሺೖሻቁ൱ಷ೑ᇲసభ

                                    (17) 

Based on formulas Eq(s) (8) – (11), we obtain the entropy-based iterative algorithm 
for the solution of optimization problem Eq. (7) as follows: 
 
Algorithm 1 Entropy-based iterative algorithm 

1: Let ࣪ሺ଴ሻ ൌ 0; from Eq. (15) we get ߙ௙ᇲሺ଴ሻ ൌ 1 ⁄ܨ ; 

    ݂ᇱ ൌ 1,2, … ,   ;ܨ
    let ∆࣪ א ሺ0, ൅∞ሻ  and set ݇ ൌ 0 
2: Based on formulas Eq. (16) and Eq. (17), 

   compute ߙ௙ᇲሺ௞ାଵሻ
, ݂ᇱ ൌ 1,2, … , let ࣪ሺ௞ାଵሻ ;ܨ ൌ ࣪ሺ௞ሻ ൅ ∆࣪  

3: if Stop criteria satisfied, the stop; otherwise, 
   we set ݇ ൌ ݇ ൅ 1, then return to step 2 

In short, we start with rough estimates of Lagrange multipliers, calculate improved 
estimates by iterative formula Eq. (17), and repeat until some convergence criterion 
has met. 

Here, we note an important deduction that through the improved estimation of La-
grange multipliers, the Bãdoiu and Clarkson algorithm [10] is improved.  

5 Reduced Data Approaches 

The key idea of our method is to cast a L2-SVM as a MEB problem reduced in a 
Core-Set by using a feature space ෨ܼ ൌ ߶ሺܺሻ where the training examples are embed-
ded via a mapping ߶. Hence, we first formulate an algorithm to compute the MEB of 
the images ሚܵ of ܵ in ෨ܼ when ܵ is decomposed in a collection of subsets ܵ௣. Then we 
will instantiate the solution for classifiers supporting the reduction to MEB problems. 
The algorithm is based on the idea of computing Core-Sets ࣝ௣ for each set ሚܵ௣ ൌ߶൫ܵ௣൯ and taking its union ࣝ ൌ׫௣ ࣝ௣ as an approximation to a Core-Set for ሚܵ ൌ׫௣ ܵ௣. In a first step the algorithm extracts a Core-Set for each subset ܵ௣. In the sec-
ond step, the MEB of the union of the Core-Sets is computed. 

The decomposition of ܵ in a collection of subsets ܵ௣ by Fuzzy C-Means (FCM) 
method clustering which allows one piece of data to belong to two or more clusters 
[11,12].  

From the section 2 the kernel ෨݇൫ݔ௙, ௙ᇲ൯ݔ ൌ ,௙ݔ௙ᇲ݇൫ݕ௙ݕ ௙ᇲ൯ݔ ൅ ௙ᇲݕ௙ݕ ൅ ఋ೑೑ᇲ஼  for the 

binary case (OVO approach) and the kernel ෨݇൫ݔ௙, ௙ᇲ൯ݔ ൌ ௙்ݕ ,௙ݔ௙ᇲ݇൫ݕ ௙ᇲ൯ݔ ൅ ௙்ݕ ௙ᇲݕ ൅ఋ೑೑ᇲ஼  in the multi-category case (OVA approach). In addition, for the both binary 

(OVO) and multi-category (OVA) Multi-Class case, we depict algorithm 2 and algo-
rithm 3 respectively. 
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Algorithm 2 Computation of the MEB using OVO approach 

1: for Each subset ܵ௣ , ݌ ൌ 1, … , ܲ do 
2:   for Each Class ݈ ൌ 1, … , ܮ െ 1 do 
3:     for Each Class ݈ᇱ ൌ ݈ ൅ 1, … ,  do ܮ
4:       Let ܵ௣௟௟ᇲ

 the subset of ܵ௣ corresponding to 
         class ݈ and ݈ᇱ. 
5:       Label ܵ௣௟௟ᇲ

 using the standard binary codes 

        ൅1 and െ1 for class ݈ and ݈ᇱ respectively 
6:      Compute a core-set ܥ௣௟௟ᇲ

 of ܵ௣௟௟ᇲ
 [10] using the 

        Kernel ෨݇൫ݔ௙, ௙ᇲ൯ݔ ൌ ,௙ݔ௙ᇲ݇൫ݕ௙ݕ ௙ᇲ൯ݔ ൅ ௙ᇲݕ௙ݕ ൅ ఋ೑೑ᇲ஼  

7:     end for 
8:   end for 
9:   Take the union of the core-set inferred for each 

     pair of classes ܥ௣ ൌ ௣௟௟ᇲܥ ׫ … ׫ ௣௟௟ᇲܥ
 

10: end for 
11: Join core-set ܥௌ ൌ ଵܥ ׫ … ׫  .௉ܥ
12: Compute the minimal enclosing ball of ܥௌ using 
    the same kernel ෨݇ 

 
Algorithm 3 Computation of the MEB using OVA approach 

1: for Each subset ܵ௣ , ݌ ൌ 1, … , ܲ do 
2:   Label each example ݔ௙ א ܵ௣ with the code ݕ௙௟ as-
signed 
     to the class of ݔ௙ and let ݕ௙ such label 
3:   Compute a core-set ܥ௣  of ܵ௣  [10] using the kernel ෨݇൫ݔ௙, ௙ᇲ൯ݔ ൌ ௙்ݕ ,௙ݔ௙ᇲ݇൫ݕ ௙ᇲ൯ݔ ൅ ௙்ݕ ௙ᇲݕ ൅ ܥ௙௙ᇲߜ  

4: end for 
5: Join the core-sets ܥௌ ൌ ଵܥ ׫ … ׫  .௉ܥ
6: Compute the minimal enclosing ball of ܥௌ using 
   the same kernel ෨݇ 

6 Experiments 

This section presents the performance of text-independent speaker verification task 
based on the Gaussian Mixture Model – Universal Background Model (GMM-UBM) 
system described in [13]. As in [2], we compare the performance of speaker verifica-
tion system with three UBMs, the first one was created directly from the Speaker 
Recognition corpus [14], consists of telephone speech. The two last later is the re-
duced first one from the application of our two algorithms developed above. The 
kernel used for the two algorithms is the Gaussian Radial Basis Function with a fixed 
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value of σ with 0.50. We have trained a 512-mixture gender-independent from each 
UBM with diagonal covariance matrices. Speaker GMMs has trained by adapting 
only the mean vectors from the UBM using a relevance factor r of 16. The experiment 
based on the improved estimation of Lagrange multipliers cited previously is com-
pared with the result in [2] where we used the same corpus. 

The two figures below shows the detection error tradeoff (DET) curves for the 
three systems. The (A) represent the result issue from our previous study for the same 
corpus in [2] and (B) represent our experiences for the improved system enounced in 
this paper. In (A) we see that the system based reduced GMM-UBM2 from One-
Versus-All multiclass L2-SVM outperforms the GMM-UBM with an equal-error-rate 
(EER) of 8.55 %, compared to 10,13 % of the GMM-UBM. The system based re-
duced GMM-UBM1 from One-Versus-One multiclass L2-SVMs exhibits the best 
performance with an EER of 7.60 %. On the other hand, in (B), the same system give 
an improved rate with an equal-error-rate (EER) of 6.15 %, compared to 10.13 % of 
the GMM-UBM. However, the system based reduced GMM-UBM2 from One-
Versus-All L2-SVMs had given an EER of 7.80 %, that is also give a performance 
from the result issued in [2] for the same approach.  

 

 
(A) 

 
(B) 

Fig. 1. Detection error tradeoff (DET) curves for the speaker verification system using three 
UBMs 
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In comparison from the two curves, we note that the best result given is for the sys-
tem based reduced GMM-UBM1 from One-Versus-One in the order of 1.45 %. 

7 Conclusion 

In this paper, we proposed two algorithms that compute an approximation to the min-
imum enclosing ball of a given finite set of vectors based Core-Set for reducing huge 
dataset. Both algorithms is especially well-suited for large-scale instances of the Mi-
nimal Enclosing Ball (MEB) problem and can compute a small core set whose size 
depends only on the approximation parameter.  

We have explored two improved methods based on the computation of Core-Sets 
to train multi-category SVM models when the set of examples is fragmented. The 
main contribution has been shown through our experiments, that the improved me-
thods proposed give the best performance with a reproduction of high solution accu-
racy where the noisy sample in huge data set are eliminated, without complex and 
costly computation. SVMs based on Core-Sets have shown however important advan-
tages in large-scale applications, which can hence be extended to distributed  
data-mining problems. A real contribution of this work has been an improved direct 
implementation of multi-category SVMs based Core-Sets supporting a reduction to a 
Minimal-Enclosing Ball (MEB) problem. Although the Core-Sets method exhibits 
always better prediction accuracy used with the OVO scheme, the direct implementa-
tion shows a lower complexity and it is better than the previous direct implementation 
proposed for MEB based SVMs. 

References 

1. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge (2001) 

2. Nour-Eddine, L., Abdelkader, A.: Reduced universal background model for speech recog-
nition and identification system. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera 
López, J.A., Boyer, K.L. (eds.) MCPR 2012. LNCS, vol. 7329, pp. 303–312. Springer, 
Heidelberg (2012) 

3. Templeman, A.B., Li, X.S.: A maximum entropy approach to constrained nonlinear pro-
gramming. Engineering Optimization 12, 191–205 (1987) 

4. Kocsor, A., Kwork, J., Tsang, I.: Simpler core vector machines with enclosing balls. In: 
ICML 2007, pp. 911–918. ACM (2007) 

5. Cheung, P.M., Kwok, J., Tsang, I.: Core vector machines: Fast SVM training on very large 
datasets. Journal of Machine Learning Research (6), 363–392 (2005) 

6. Nour-Eddine, L., Abdelkader, A.: Multi-class Support Vector Machines Methodology.  
In: 1er Congrès International sur les Modèles, Optimisation et Sécurité des Systèmes, 
ICMOSS 2010, Tiaret, Algérie, pp. 325–329 (2010) 

7. Hsu, C., Lin, C.: A comparison of methods for multiclass support vector machines. IEEE 
Transactions on Neural Networks 13(2), 415–425 (2002) 

8. Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the 
support of a high-dimensional distribution. Neural Computation 13, 1443–1471 (2001) 



10 L. Nour-Eddine and A. Abdelkader 

 

9. Tsang, I., Kwok, J., Cheung, P.M.: Core vector machines: Fast SVM training on very large 
data sets. Journal of Machine Learning Research 6, 363–392 (2005) 

10. Bãdoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Computer Geometry Theory Ap-
plication 40(1), 14–22 (2008) 

11. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact 
Well-Separated Clusters. Journal of Cybernetics 3(3), 32–57 (1973) 

12. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum 
Press, New York (1981) 

13. Alkanhal, M., Alghamdi, M., Muzaffar, Z.: Speaker Verification based on Saudi Acceted 
Arabic Database. In: 9th International Symposium on Signal Processing and its Applica-
tions, ISSPA 2007, Sharjah, United Arab Emirate, pp. 1–4 (February 2007) 

14. Speaker corpus in, 
http://www.ll.mit.edu/mission/communication/ist/corpora/ 
SpeechCorpora.html 

 
 


	Reduced Data Based Improved MEB/L2-SVM Equivalence
	1 Introduction
	2 L2-Support Vector Machines (L2-SVMs)
	3 Minimal Enclosing Balls (MEB)
	4 Improved MEB/L2-SVM Equivalence Algorithm
	5 Reduced Data Approaches
	6 Experiments
	7 Conclusion
	References




