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Abstract. We present a proof assistant designed to help learning formal
proof, particularly in the system of Natural Deduction for First-Order
Logic. The assistant handles formulas and derivations containing meta-
variables and allows to maintain a library of instanciable lemmas. It
possesses a graphical interface presenting proofs as trees and handles
multiple simultaneous derivations that can be dragged and dropped into
one another.

1 Introduction

This paper is about technology that helps learning formal proof. Proof is the
main constituent of the practice of Mathematics, but it is certainly also per-
formed in other disciplines. Particularly, it is, as we argue below, of utmost
importance in software construction, despite being therein generally neglected.
Formal proof, on the other hand, is proof framed within a formal language, or
as it is traditionally called, a formal system of inference rules. The use of these
systems in practice has been awakened, precisely by the needs of the software
construction activity of acquiring certainty about the behaviour of computing
systems. Out of this situation a field of research within Computing Science has
begun to thrive, namely that of the design and development of proof assistants.

Learning proof, and especially formal proof, is therefore acquiring increasing
importance, especially within the software community. Learning proof, generally,
is of course of great interest for students in several disciplines and also, at least
in some countries, for those at High School. In this paper we make the claim
that certain systems of formal proof, most notably Natural Deduction, are useful
also for learning proof in the widest sense, i.e. for developing organized manners
of approaching their understanding and construction. Therefore there is some
interest too in investigating the technology helping to learn formal proof through
practice, i.e. that of the didactic proof assistants.

In [1] we presented a novel didactic proof assistant, here to be named Andy
0, for the system of Natural Deduction of Propositional Logic. One of its most
interesting features was the handling of a library of lemmas that could be reused
by instantiating them within other proofs. As pointed out in the paper, the nat-
ural continuation of that work was to extend the system to First-Order Logic,
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which is a standard formal language for Mathematics. However, to correspond-
ingly extend the capacity of instantiating lemmas was far from trivial, a fact
which is reflected in the abscence of such feature in existent proof assistants for
the mentioned language.

In this paper we present a solution to this problem, embodied in Andy 1 ;, the
successor to Andy 0. It keeps the general outlook of the latter, being based on a
graphical interface that displays formal proofs as trees, allowing for any number
of draft proofs that can be dragged and dropped into others, and admitting
combined strategies of proof development. Its main advance is the ability to work
at the level of schematic formulas, i.e. ones that are actual patterns containing
meta-variables that stand for arbitrary formulas and terms. It is a fact that the
actual practice of First-Order Logic is carried out at this level, as witnessed by
any textbook on the matter. It is also this feature that allows to properly handle
reusable general lemmas. To our knowledge, Andy 1% is the first proof assistant
to allow for this level of abstraction in the formal language. Its name derives from
the fact that it is actually an assistant for (an adaptation of) One-and-a-Halfth
Logic, as presented in [2].

The structure of this paper is the following: In section 2 we extend ourselves
on the relevance of learning proof and formal proof, which justifies our interest
in the related technology. We also try to present the relevant features of First-
Order Logic Natural Deduction in a manner accesible to the general reader.
In section 3 we describe the features that are in our opinion to be required of
a didactic proof assistant. In particular, we try to give a detailed account of
the technical problem involved in handling schematic formulas and proofs in
the context of First-Order Logic. Having given the preceding motivation, we
describe in section 4 the design of Andy 1%, focusing on its most prominent
feature as explained above. Finally, the last section comments on the use that
we have been able to make of the assistant, as well as on forthcoming work. In
comparison to [1], the present paper is more detailed in motivations and of course
on the technical aspects concerning the novel extension to schematic First-Order
Logic. We enumerate the features common to the predecessor tool Andy 0, giving
only summarized descriptions.

2 Learning (Formal) Proof

Proof is the activity of arriving at knowledge deductively, i.e. starting off from
self-evident, postulated or simply supposed principles and performing succes-
sive inferences, each of which extracts a conclusion out of previously arrived at
premises. It constitutes the identifying feature of Mathematics, but is of course
also of central importance in other disciplines, like Philosophy and Science gen-
erally. Students of all these branches of knowledge surely will benefit from en-
deavours directed to ease their path towards an increased understanding and
mastery of the practice of proof. This should include students not only at col-
lege or university level, but also those in high school.

Formal Logic, on the other hand, is the theory of the activity of proving.
As such it has, since the very beginning, striven to put forward the rules that



Novel Didactic Proof Assistant for First-Order Logic Natural Deduction 443

govern such activity, i.e. the rules of correct reasoning. In its contemporary
mathematical variety, it has formulated several artificial languages into which to
formulate the (deductive) practice of Mathematics. According to such scientific
programme, there should be a language for expressing every conceivable mathe-
matical proposition and also a language (or, as it has been called, proof system)
for expressing proofs —of the true propositions.

It was Frege who first formulated such a device, in 1879 [3]. His intent was to
complete the work of the foundational movement that had taken over Mathe-
matics since the early XIX century. This movement was firstly directed towards
providing a firm basis to the differential and integral calculus. Frege, in turn,
intended to reach the most fundamental level by axiomatizing the very concept
of proof. It is worhtwhile to spend some effort trying to understand the implica-
tions of such endeavour, for they are remarkable. Systems of axioms were already
a established practice in Mathematics, e.g. in Geometry, and their accomplish-
ment was to make explicit the starting points of the deductive activity. But of
course each proof had still to be understood, individually. That is to say, the
logic validating such proof was left implicit, as something that any mathemati-
cian (any human being with adequate training) would certainly possess. Now
what Frege was pursuing was a manner of making such logic explicit. Hence,
and this is the important consequence, no logic ought to be necessary to vali-
date a proof as arranged in his system. That is to say, validation or rejection of
purported proofs would be immediate by just reading them, i.e. what we now
call a purely formal procedure. Frege could not put it in these terms, but his
ideal amounted to providing a language for Mathematics whose correct use could
be checked by an automaton. Moreover, such a system ought also to ensure that
syntactic validity entailed logical validity, for a correctly written proof should be
also logically correct. Hence such a language could be characterized in current
computational jargon as one satisfying the lemma if it compiles, it works!.

Formal proof systems are of course of prime importance to logicians, be they
of the mathematical or the philosophical extraction. However, these scholars
take towards them a stand that is generally external or “from above”, i.e. they
are mainly interested in the properties of the formal machinery as a whole,
not in its actual use. They need only a basic dexterity and certainly not an
efficient method for their exploitation. Now, on the other hand, it is a readily
perceived fact that the use of formal proof in reasoning about the correctness of
computer programs brings about the possibility of having verifying compilers,
i.e. of programming systems in which syntactic correctness entails functional or
behavioural correctness, and that thus realize for software the seemingly utopic
motto if it compiles, it works. Several such systems have already been developed
and constitute a toolkit for practitioners of the branch of Software Engineering
called Formal Methods. The approach certainly requires to develop not just
executable code, but also mathematical code, i.e. formally verifiable evidence of

! Unfortunately, Frege’s system did not satisfy this property, as its logical principles
were actually defective. But of course many other sound proof systems have been
devised since then.
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the correctness of the former. The cost of development is thus increased, but
there is still certainly a pay off in many important cases, mainly as the cost of
failure approaches infinity.

Thus Computing Science and Software Engineering do already provide an
increasingly ample field of demand for adequate systems of formal proof together
with appropriate technology for their efficient use. A useful tool for composing
formal proofs should of course verify their correctness, but also offer appropriate
assistance in their construction. It could be asked whether such assistance could
get as far as to just the fully automatic proof of the desired theorems, but this
is generally impossible already for the most basic branches of Mathematics that
bear some interest. And, moreover, it is arguable not desirable in many cases,
for proving is but understanding and therefore essential to the activity of the
practitioner, be her a mathematician, a scientist or an engineer. Nevertheless,
certainly not all proofs are equally interesting and one would expect effective
technology to efficiently take care of the more clerical obligations, among other
services. All this has then given rise to the interesting research field of proof
assistants within Computing Science.

Now, a further interesting side of formal proof systems to which we would
like to call attention is their potential to contribute to the understanding and
mastery of proof, generally. As said in the beginning this could be of interest to a
large audience of students, from high school to college, spanning a diverse range
of disciplines. Certainly included among the latter is software construction, since
it is a fact that understanding of program code and therefore certainty about its
behavior amounts to nothing less than proof. Particularly useful in connection
to this educational aspect of formal proof systems is the Calculus of Natural
Deduction [4], devised with the aim of closely mimicking common practice in
informal, natural proof. We proceed now to give a summary description of its
most important features.

First, we shall take First-Order Logic as the formal language for expressing
propositions. This is just standard, in the sense that any mathematician, when
urged about the ultimate foundations of her activity may, and generally will,
safely lean on Set Theory and its formalisation (encoding) in First-Order Logic.
It is also quite natural, as its symbolism has permeated normal mathematical
practice. For instance, (Vz)P(z) means “all individuals satisfy the property P”
and @ — [ means “the proposition « entails (implies) the proposition 8”. Tt is
the fact that V can only refer to the universe of individuals, and not to collections
of propositions or properties, that is responsible for the “First-Order” part of
the name of this language. V is the universal quantifier, whereas — is a connec-
tive (specifically, the implication). Quantifiers and connectives are collectively
named the logical constants. The letters P, Q,... used to represent properties
form a vocabulary for a particular application, together with symbols for specific
individuals and functions defined over the latter. The expressions representing
propositions are the formulas, whereas those representing individuals are the
terms of the language.
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Now, as to the language or system of proofs, the system of Natural Deduction
presents as characteristic feature the existence of rules that allow the use of
temporary additional assumptions. For instance, to prove a formula that states
an implication o — [ it is possible to use a rule that allows to assume « in order
to prove S from it, just as in common practice. Specifically, this rule states that
if one possesses a proof of 8 which depends on the assumption of «, then one can
infer that a — [, thereby obtaining a proof which does not anymore depend on
the aforementioned assumption. This assumption is said to be discharged, i.e.
dispensed with in the newly formed proof.

Further, the rules of inference are organized around the logical constants and
are of one of two classes in each case, i.e. a rule is either:

— An introduction rule stating how a formula having the logical constant in
question as principal operator can be derived in a direct, canonical manner,
or

— An elimination rule, stating how such a formula can be employed to derive
further consequences from it.

For example, the rule described just above is the introduction rule for the im-
plication —. The elimination rule for this connective is:

a— g e
B

which states that from o — (8 one can infer 8 provided « is also proven. An-
other interesting rule is that of introduction of V: To conclude (Vz)a, where the
formula o will in general depend on the variable z, it is enough to prove just «,
provided that no assumption used in this latter proof depends on x. The proviso
ensures that x represents an indeed arbitrary individual, i.e. one about which no
particular property has been assumed. The elimination rule for V makes use of
the (meta-)operation of substitution:

Voo
ve alx =t

Here Ve is just the name of the rule, included for later reference. The conclusion
of the rule says that the (universally) quantified variable can be just instantiated
at any term (representing some individual). This is of course evidently correct,
since we have just proven that the proposition « holds for any such individual.
The instantiation is realized by the operation of substitution. The intent here is
that this operation is defined outside the proof system and performed “silently”.
That is to say, it is assumed that the user knows how to perform it (because
the explanation is given at some place during the setting up of the language of
formulas) and, therefore, she just needs to execute it for applying this inference
rule.

Rules have in general several premises and always one conclusion and therefore
the formal proofs (technically called derivations) are naturally arranged as trees.
It is natural to read inference as proceeding from the premises above to the
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conclusion below, and therefore the trees are written with the root, which is
the conclusion of the theorem, at the bottom, and the initial assumptions at
the leaves on the top. Generally, the derivations prove judgements of the form
a1,...,a, B« where the formulas to the left of F are the assumptions (or
hypotheses) of the theorem and « its conclusion (thesis). The use of the rules
inside a tree follows a quite characteristic pattern: Reading the tree from the top,
one first applies elimination rules to obtain information from the given premises
in a phase that could be called of analysis. At some level during the derivation one
starts a synthesis forming new conclusions from the data obtained, by employing
the introduction rules. The full system is well explained in [5].

So Natural Deduction actually consists in an orderly arrangement of rules
of inference, where the organizing concept is the collection of logical constants.
Indeed, with basis on the understanding of the meaning of each logical constant
one can easily reconstruct the logical system of rules. That is to say that there
is really no need of going through a painful recollection of an at first sight long
list of inference rules when using the system. It is rather more convenient to
think about the meaning of the formula at hand, and specifically about that
of its principal logical constant. Further, the general structure of the proofs as
explained earlier reflects the existence of a well founded strategy for selecting
introduction or elimination rules at each step: At first, one goes backwards from
conclusion to new conclusions-to-be-proven, generally by selecting appropriate
introduction rules. This is carried out until no further rules of this kind can be
applied or they would lead to conclusions which are not sensible to try. At such
point one starts combining the available hypotheses in a forward manner, i.e.
going from known premises to further inferred conclusions, trying to obtain the
pending results. This is done by applying elimination rules. Hence the tree is
generally constructed first from the root and upwards, until some point which
roughly corresponds to the completion of the synthetic part of the proof as
depicted above in the description of the general strcture of derivations. Then one
proceeds from the assumptions and downwards, constructing the analytic part of
the proof. Such order of proceeding looks somehow opposite to the one suggested
by the analytic-synthetic structure of the proofs that has been mentioned earlier.
But then one must keep in mind that the way a proof is presented or read is
generally different from the way it is conceived. And also that the strategy just
explained is not claimed to be the only one appropriate to employ but just a
generally useful one, especially to start finding one’s way about carrying out this
kind of constructions.

We believe that all these features bear a favourable effect not only as to the
mastery of the formal system, but also as to the understanding of mathematical
propositions generally, especially as to what concerns the comprehension and
development of their proofs.

3 Technology for Learning Formal Proof

What a student should learn about the use of Natural Deduction is not just to
be able to come out with syntactically well formed derivations, but also to endow



Novel Didactic Proof Assistant for First-Order Logic Natural Deduction 447

each of the rules with meaning, which is to say that they carry out the proofs
according to a well determined intent. Teaching, i.e. helping to learn, such mas-
tery, conveniently begins with a detailed explanation of the system of rules, since
it is important that the student gets to see the entire structure of the system,
identifying the organizing principle. But it must quickly follow on promoting
extensive practice. Such practice has to be, to the greatest possible extent, au-
tonomous, because the students should not depend on the teacher’s judgement
for achieving certainty about the correctness of their constructions. Needless to
say, this kind of practice is greatly favoured by the use of a computerized tool,
which has given rise to the investigation of didactic proof assistants.

Clearly, the requirements on didactic proof assistants are different from those
on those destined to professional use. Generally, it could be said that a student
ought to be plainly in command of the proof process and only get help at those
points where it does not stand in the place of understanding. More specifically,
a number of tasks that are a nuisance for a professional constitute significant
learning items for a student. A didactic assistant should first of all provide mo-
tivation. In this respect, a good deal is already achieved by the mere possibility
of having the derivations constructed and checked. But there are also a number
of other desired features that rapidly turn out to be necessary: The assistant
should significantly improve over the paper-and-pencil experience, which means
that it should allow:

1. Draft derivations to be initiated, discarded and connected at any moment.
2. Alternating backwards and forward derivation at will.

3. To manipulate the formalism at the right abstraction level.

4. Proof reuse, i.e. storage and instantiation of lemmas.

A detailed explanation of all these points has been given by the authors in
[1]. However, the third point needs now some expansion, since the work cited
reports on an assistant for the much simpler system of Natural Deduction for
Propositional Logic. The point is that the right level of abstraction in using
First-Order Logic is that of schematic formulas and theorems. The idea can
be easily explained by the following claim: The theorems that one proves when
teaching and learning First-Order Logic are not of the form Vz(P(x) A Q(z)) F
VaP(x) A\VzQ(z), but of the form Va(aAB) F YraAVxp, i.e. they are formulated
schematically (that is to say, generically) on formulas (and terms). This is due to
the simple fact that the interesting results in First-Order Logic are independent
of the particular predicate or function symbols employed, i.e. independent of any
specific vocabulary. So one is naturally led to reason generically on formulas and
terms, i.e. to work at the schematic level. It is important to remark that this
s the normal practice, as witnessed by direct experience or by the contents of
textbooks.

Moreover, we want the schematic theorems to be used directly in inference
steps in other proofs. Specifically, each schematic theorem stands for an infinite
family of theorems (its instances). We naturally wish to justify any of these by
direct appeal to a schematic theorem of which it is an instance. This is equivalent
to saying that (schematic) theorems can be used as rules of inference.
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These latter considerations bring about a considerable technical problem,
whose solution is explained below and turns our tool into a significant inno-
vation in the field of assistants for First-Order Logic. The point is that the
logical language is being modified, as can be inferred after consideration of the
following examples (V is the symbol for disjunction):

Ve(aV B) FaVvVzl (anot depending on x)
Ve(a — B),alz =t F plz = 1t].

The two preceding judgements are actual theorems that we wish to be able to
derive using the assistant. They present:

1. Meta-variables (o and § ranging on formulas, ¢ ranging on terms).

2. Side-conditions (restricting dependence on variables of certain formulas, that
generally are or contain meta-variables).

3. Explicit substitution (since meta-variables are symbols standing for yet un-
known formulas the substitution can no longer just silently operate on for-
mulas or terms).

Already these observations lead to the necessity of formulating another language
and proof system. In addition, a rule of equality of formulee has to be available
for explicit use, as in:

Notice that one cannot skip the intermediate judgement oz := x| because the
substitution cannot be “silently” performed at the meta-level. Therefore the last
step is necessary, in which the rule eq is applied. This allows to infer a formula
from another if it can be checked that they are in fact equal modulo a theory
that embodies the properties of the substitution together with the interchange
of bound names. This rule is mostly left implicit in ordinary practice, i.e. it is
used “silently”, performing the necessary conversions “on the fly”. But to do
this correctly requires mastery of the properties of the language, so we think it
advantageous that the rule has to emerge explicit in the new formal system.

The problem of formulating this new logic has been solved in [2] where One-
and-a-Halfth Order Logic is introduced. It is precisely the logic of the schematic
theorems of First-Order Logic as described above. One-and-a-Halfth Order Logic
is founded in turn upon the syntax of Nominal Terms [6] which is a framework for
languages with binding operators (e.g. the logical quantifiers) that incorporates
meta-variables with explicit substitutions.

From a strictly technical point of view, the problem of handling schematic
theorems could have been solved by stepping up to Second-Order Logic, for then
a meta-variable ranging over formulae can be represented as an object variable
ranging over propositional functions. But this approach conducts to modifying
the logic itself, i.e. we would be teaching Second-Order instead of First-Order
Logic. We would rather stay at First-Order Logic or, as we should say, at the
normal practice with First-Order Logic, which is actually the intermediate One-
and-a-Halfth level.
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4 The Design.

The design of Andy 1% rests upon the preceding considerations. Most of its
features are similar to those of its ancestor Andy 0 and so we just summarize
them here, giving also a comment about their presence in other proof assistants.
We give some more detail on the new significant feature, which is the ability to
deal with schematic First-Order logic.

1. Tree-like display of derivations. This is preferred because it is the notation
that corresponds to writing rules of inference in the most natural way, i.e.
with the premises on top of a bar which represents the act of inference of the
conclusion appearing below. It is rather uncommon in elsewhere available
systems.

2. Main proof and draft proofs. There exists a main proof together with draft
subsidiary proofs which can be as many as desired. Draft proofs can be
adjoined to the main proof by doing just drag-and-drop. Not known to be
present in other proof assistants.

3. Backwards and forward reasoning. These have already been explained and
can be alternated without restriction. They are pretty common in other proof
assistants.

4. Library of Lemmas. This has also already been explained. Lemmas are gen-
erally schematic theorems and proper instantiation is carried out by the as-
sistant, resting on the algorithms to be described below for the manipulation
of the schematic formulas. This feature is rare in other assistants. At most
they allow recovering lemmas but instantiation has to be done manually.

As already said, the main contribution of the present work consists in al-
lowing to construct and check schematic derivations. For accomplishing this we
have based ourselves on the already mentioned One-and-a-Halfth Order Logic.
The formal system in [2] is a so-called Sequent Calculus, rather than a Natural
Deduction system. We therefore have given it the latter formulation, proving it
equivalent to the original one. As a consequence of this result, the logical sound-
ness proven in [2] for the original system is inherited by ours. We also proved
two basic properties of our system, which altogether justify the use of lemmas
as inference rules. These are a so-called Generalized Cut and an Instantiation
result that proves inference closed under substitution of formulas and terms for
corresponding meta-variables.

Checking validity of rule application requires to check:

1. Side-conditions concerning the non-dependence of formulas on variables.
2. Equality of formulas, under laws that characterize (explicit) substitution and
renaming of bound variables.

These checks are decidable and therefore performed by the assistant. Now, on
didactic considerations, we have chosen not to do so silently, i.e. to force the stu-
dent to explicitly command the assistant to perform the checks. In that way, she
is permanently in command of the proof process. The corresponding algorithms
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pertain to a module dealing with nominal abstract syntax which, as already
mentioned, is the framework within which the present language is formulated.

Further, in order to implement the instantiation of lemmas it is necessary
to match a schematic formula (the one to be proven) against another one (the
conclusion of the chosen lemma, officiating as a pattern). Matching requires
defining a criterion of identity of formulas, which within this language can be
formulated in the following three manners:

1. Up to the laws of explicit substitution and renaming of bound variables.
2. Up to renaming of bound variables only.
3. Just as plain syntactic identity.

Our choice is for the latter, again based on didactic considerations: We want
the student to explicitly indicate the need of renaming bound variables or using
a susbtitution law. If the matching employed by the assistant were more pow-
erful we would be saving the student from applications of the eq rule, already
commented on. This is an example of an arguably clerical task, certainly un-
interesting in professional practice, that bears some significance in educational
terms. It is also worthwhile to mention that matching algorithms for the most
powerful notion of formula equality above (number 1) are yet not known.

5 Conclusions

Andy 1; is then, to our knowledge, the first proof assistant to allow handling
of schematic First-Order Logic, particularly within the calculus of Natural De-
duction. It is also quite novel in offering the possibility of developing a library
of reusable, instantiable lemmas, and maintains from its predecessor Andy 0, a
graphical interface with proofs as trees, and several draft proofs that can be
dragged and dropped into one another.

Currently it is being tested in seminars with advanced students. This experi-
ence is being used to adjust a number of details concerning especially the graph-
ical interface. The system will be fully operating next semester in the course
on Logic pertaining to the Software Engineering programme of our university.
This is a standard course comprising Propositional and First-Order Logic. As re-
ported in [1] the experience with Andy 0 is quite satisfactory as can be concluded
from several interviews with the students involved. In particular, they were coin-
cident in highlighting the motivating potential of the assistant, as it makes proof
development and experimentation much more comfortable. We expect therefore
a still better outcome from the experience with Andy 1;, especially since it can
be used in both parts of the course. Practice with actual formal proof takes two
weeks within the 16 weeks of the entire course, but the students go back to it
at the time of preparing the final tests. Our main concern is the permanent risk
that the tool becomes the theory, in the sense that they take logical validity to be
“Andy” validity. This is another manifestation of the purely formalistic attitude
of composing proofs by just fitting trees into one another and missing the sense
of the rules. We are also in the search for methodologies for properly assessing
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the effect of this practice on the general understanding and handling of proofs
by the students. Finally, we are currecntly planning to introduce programming
practice into the course, posing the students problems of manipulation of formu-
las and proofs. It will be interesting to study the effect of this activity in their
understanding of proof in the widest sense.
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