
From Image Inpainting to Diminished Reality

Norihiko Kawai, Tomokazu Sato, and Naokazu Yokoya

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{norihi-k,tomoka-s,yokoya}@is.naist.jp

Abstract. Image inpainting, which removes undesired objects in a static
image and fills in the missing regions with plausible textures, has been
developed in the research fields of image processing. On the other hand,
Diminished Reality (DR), which visually removes real objects from video
images by filling in the missing regions with background textures in real
time, is one of the growing topics in Virtual/Mixed Reality, and consid-
ered as the opposite of Augmented Reality. In this paper, we introduce
the state-of-the-art of image inpainting methods and how to apply the
image inpainting to diminished reality.
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1 Introduction

Image inpainting, which removes undesired objects in a static image and fills
in the missing regions with plausible textures, has been developed in the re-
search fields of image processing. On the other hand, Diminished Reality (DR),
which visually removes real objects from video images by filling in the missing
regions with background textures in real time, is one of the growing topics in
Virtual/Mixed Reality, and considered as the opposite of Augmented Reality. Di-
minished reality can be used for various applications. For example, some pieces of
furniture may be removed to simulate different arrangements (Fig. 1(a)), sign-
boards can be removed for landscape simulations (Fig. 1(b)), and augmented
reality (AR) markers can be hidden to achieve seamless fusion between virtual
objects and the real world [1–3]. Diminished reality methods can be classified
into two categories: One uses actual background images by capturing them in ad-
vance or with multiple cameras, and the other generates a plausible background
by applying an image inpainting technique. For scenes in which the actual back-
ground of a target object cannot be observed, or for cases where it is burdensome
for users to capture the background, we can employ the latter method. In this
paper, we focus on the image inpainting-based diminished reality approach, and
introduce the state-of-the-art of image inpainting methods and how to apply
the image inpainting to diminished reality. In addition, we briefly introduce our
recent diminished reality method and its results [4].
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(a) Furniture removal (b) Signboard removal

Fig. 1. Example applications of diminished reality. Images on the left are inputs, and
those on the right are our results.

2 Image Inpainting for Removing Objects

In this section, we introduce the state-of-the-art image inpainting methods. We
then introduce searching methods for speeding up image inpainting.

2.1 Image Inpainting Methods

Image inpainting (also referred to as image completion) methods can be largely
classified into two categories: One uses information only around the target region,
and the other uses the similarity of textures. The former approach fills in the
missing regions by calculating pixel values considering the continuity of pixel
intensity from the boundary of the missing region assuming thet neighbor pixels
have similar pixel values. As the representative method, Bertalmio et al. [5]
propagate colors along edges by using partial differential equations. This type of
method is effective for small image gaps like scratches in a photograph. However,
the resultant images easily become unclear when the missing regions are large
because the methods cannot generate complex textures in principle. Therefore,
the latter approach has been intensively developed these days.

This approach uses textures in an image as exemplars based on the assump-
tion that textures appropriate for missing regions are similar to those in the
remainder of the image. The methods in this approach can be classified into
two categories. One is based on successive texture copy and the other on global
optimization. In the former approach, the application of texture synthesis tech-
nique to image completion was originated by Efros et al. [6]. In this method,
texture is successively copied to the boundary of the missing regions. Although
this method can generate complex textures in the missing regions, the quality
of synthesized texture largely depends on the order of copy. For this problem,
in order to maker more plausible textures, the order of texture copy has been
determined with some criteria (e.g., the number of fixed pixels in a patch and
strength of an edge in [7]). Nevertheless, these methods still have the problem
that a discontinuous texture tends to be generated by the greedy fill-in order.

In order to settle this, global optimization-based methods have been pro-
posed. As the representative method in this approach, Wexler et al. [8] generate
optimal textures in missing regions by minimizing an objective function based
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Fig. 2. Results of our image inpainting method [10]

on pattern similarity between the missing region and the reminder of the im-
age. Specifically, the objective function is minimized by iterating two processes:
searching for a similar pattern in the reminder of the image, and updating pixel
values in the missing regions. Although this method can generate complex and
good textures for many images, unnatural textures are still generated due to the
paucity of available samples in the image. To increase available samples, there
have already been some attempts in terms of photometric and geometric expan-
sion of patterns. For example, our previous methods in [9, 10] allow brightness
transformation of texture patterns to utilize patterns with the same geometry
but different brightness, and use symmetric patterns. Fig. 2 shows example re-
sults of our method. Darabi et al. [11] use screened poisson to adjust color and
symmetric, rotating, scaling patterns. However, it is difficult to automatically
and appropriately estimate parameters of geometric transformation because var-
ious changes in texture patterns exist in ordinary photographs. Therefore, some
methods are proposed for dealing with various changes in geometric patterns
with manual interactions [12, 13].

2.2 Searching Method for Speeding Up Image Inpainting

In the exemplar-based method mentioned above, it takes much time to exhaus-
tively search for similar patterns. For this problem, an approximate nearest
neighbor search algorithm “PatchMatch” has been proposed [14]. This method
propagates pixel positions of similar patterns when we make correspondences
between pixels in the missing region and the reminder of the image pixel by
pixel by raster scan. In addition, it also gives a good correspondence seed with
random search. This method was improved for dealing with geometric changes
in texture patterns as “Generalized PatchMatch” [15]. By using these search
methods, the computational time of image inpainting is drastically improved
from several tens of minutes to a few seconds.

3 Image Inpainting-Based Diminished Reality

In this section, we introduce six methods [1–4, 16, 17] in the field of image
inpainting-based diminished reality. These methods basically assume that target
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objects are fixed in the 3D environment. A target object in research [1–3] is an
AR marker, and the others target general objects. We review these methods in
terms of four factors: (1) real-time processing, (2) the temporal coherence of
textures, (3) the quality of image inpainting, and (4) the determination of mask
regions in which foreground textures are to be replaced with background ones.

3.1 Real-Time Processing

As mentioned in Section 2, it still takes at least a few seconds for inpainting
methods to fill in missing regions. Therefore, just applying an image inpainting
method to each frame cannot remove objects in real time. To overcome the prob-
lem, three approaches have been proposed. One uses a very simple approach, and
one alters a conventional image inpainting method to reduce the computational
cost, and the other employs a semi-dynamic approach.

As regards a simple approach, Siltanen [1] mixed several specific pixel values
around the target region. Although this method can rapidly generate textures,
it is difficult to generate natural and complex textures using such a simple ap-
proach. As the second approach, Herling et al. [16] basically applied the the
combination of methods in [18] and [14] with use of grayscale and reduction of
resolution. Although the method achieved the real-time performance, the quality
of inpainting decreased compared with the original inpainting method. Herling
et al. [17] have also proposed a different diminished reality method by improving
the energy function used in [16] using spatial cost to quicken the energy conver-
gence. They also employed a parallel processing for searching process. By these,
the quality is quite improved compared with their previous method. As the third
approach, Korkalo et al. [2] and we [3, 4] proposed a semi-dynamic approach,
which conducts two processes concurrently: image inpainting for a key frame,
and the overlay of the inpainted texture with geometric and photometric adjust-
ment for every frame. In this approach, though target objects are hidden with
incomplete textures until the image inpainting finishes, advanced image inpaint-
ing methods can be applied. For example, in our paper [4], image inpainting
method [10], which considers photometric and geometric pattern changes, was
applied to diminished reality.

3.2 Temporal Coherence of Textures

For the temporal coherence of textures, the methods in [1, 16] basically generate
textures for every frame. Therefore, they tend to cause unnatural changes in ge-
ometry between frames. Although Herling et al. [16] attempt to reduce texture
flickering between frames by propagating patch correspondences in image in-
painting from frame to frame, it is insufficient to achieve geometric consistency
between frames taken with large camera motion. To overcome this problem,
Herling et al. [17] improved their original method [16] by employing a homog-
raphy, and thus determined the search areas in the next frame by assuming
the background around the target object to be almost planar. Our previous
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method [3] also used a homography to synthesize an inpainted result when hid-
ing an AR marker. These methods successfully preserve the temporal coherence
of planar scenes. In addition, in our most recent paper [4], we approximated
the background of the target objects by combining the local planes. For this,
the scene around the target object is divided into multiple planes, whose num-
ber is automatically determined, and inpainted textures are successfully overlaid
on the target object using multiple homographies by considering the estimated
planes and camera-pose given by visual-SLAM (Simultaneous Localization and
Mapping).

3.3 Quality of Image Inpainting

As mentioned above, Siltanen [1] mixed several specific pixel values for filling
in missing regions. Therefore, the quality is insufficient if the textures in sur-
rounding background are complex. To synthesize more natural textures for di-
minished reality, Herling et al. [16] applied an example-based image inpainting
method [18], and they have also improved their energy function by considering
spatial costs [17]. In their methods, the whole input image is searched for tex-
ture patterns that are similar to that around the target region, and pixel values
in the target region are determined using similar patterns. Generally, although
example-based inpainting methods yield good results, they produce unnatural
results when an image’s regular patterns have a distorted perspective.

To solve this problem, using the idea of perspective correction in image in-
painting [12, 13], our previous method [3] corrected the perspective distortion
using an AR marker, meaning that the size of regular texture patterns could
be unified. Unlike the methods [12, 13] that requires manual interactions, we
calculated a homography based on the assumption that an AR marker exists on
a plane. In our most recent method [4], we have extended this idea for 3D scenes
using 3D geometry to deal with perspective correction in 3D scenes. Specifically,
we have generated multiple rectified images, one for each of the estimated planes.
In addition to this, we have added a constraint to automatically limit the search
region using structures around a target object, thus increasing the quality of
inpainted textures.

3.4 Determination of Mask Region

Mask regions (those that include target objects) have to be found in every frame
to ensure that the objects are removed from the image. Objects such as AR
markers [1–3] can easily be tracked using software libraries (e.g., ARToolkit
[19]), allowing the mask regions to be determined in real time. In other cases,
various approaches are used to track the target objects and find the mask regions.
For example, an active contour algorithm has been applied to detect and track
objects [16], but this method is not robust for textured backgrounds. For this
problem, several feature points that store the appearance of the image are set
around the target objects, and the image is segmented into the mask and other
regions in every frame by tracking the feature points [17]. Although this method
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Fig. 3. Pipeline of our diminished reality technique

works well for scenes with textured backgrounds, it has the limitation that the
entire object must always be in the video frame. In our method [4], we robustly
determine the mask regions in all frames by tracking the 3D volume that includes
target objects in 3D space using camera pose, rather than by tracking the object
in 2D space. In this approach, the target objects do not always have to be in the
video frame.

4 Diminished Reality Considering Background Structures

In this section, we briefly introduce our method [4], which achieve real-time
diminished reality for 3D scenes by approximating the background by multiple
local planes, and show experimental results of the method.

4.1 Pipeline of Our Diminished Reality Technique

Figure 3 shows the pipeline of our diminished reality technique. Our method first
analyzes the target scene (A). Diminished reality is then achieved by a semi-
dynamic approach that conducts two processes concurrently: example-based im-
age inpainting for a key frame (B), and the overlay of the inpainted texture
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(a) Enclosing (b) Labeling (c) Segmentation

Fig. 4. Scene analysis

for every frame (C). Although process (B) is not performed in real-time, users
can start applications immediately by performing processes (B) and (C) concur-
rently. Within several seconds of starting process (B), we can experience dimin-
ished reality with a completely inpainted result. In the following, we describe
processes (A), (B), and (C) in detail.

4.2 Scene Analysis

As pre-processing for diminished reality, the target scene is analyzed and the im-
age is divided into multiple images to improve the quality of image inpainting.
Specifically, the camera pose and 3D coordinates of feature points are first esti-
mated by initializing visual-SLAM (a-1). A user then manually selects a region
that includes target objects by enclosing the region, as shown in Fig. 4(a) (a-2).
The frame when the user finishes enclosing the region is set as a key frame and is
used for image inpainting in process (B). Next, feature points around the target
region are picked up, and normal vectors of the feature points are calculated
using the 3D coordinates of feature points. Each feature point is then classified
into multiple groups based on mean-shift clustering using the normal vectors as
shown in Fig. 4(b), and a plane is fitted to the feature points of each group using
LMedS (Least Median of Squares) (a-3). All the fitted planes are projected onto
the image plane, and each pixel is assigned to the plane that is nearest to the
camera. According to this assignment, the whole image, including the missing
region, is segmented as shown in Fig. 4(c). In addition, the 3D target region is
generated from the 2D selected region using the fitted planes and feature points
on the target object, so the 3D region must include the target object (a-4). Next,
as shown in Fig. 5, the perspective distortion of the key frame is corrected by
calculating a homography matrix for each plane as if each plane was captured
by a camera in front of it, and the information for rectifying subsequent frames
is stored (a-5). Finally, we limit the search region in which textures can be used
as exemplars for inpainting in process (B) based on the segmented image (a-6).

4.3 Image Inpainting for Multiple Rectified Images

We apply an example-based image inpainting method to each rectified and lim-
ited image of the key frame. Our framework can adopt arbitrary example-based
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Limiting searching region

Inpainting

Rectification

Fig. 5. Rectification and region limitation for inpainting

methods that use global optimization. After initializing parameters of the miss-
ing regions, e.g., the average value of boundary pixels, the inpainting method
iterates two processes in order to minimize an energy function based on the sim-
ilarity between missing regions and the remainder of the image. The first process
searches for similar patterns (b-2), and the second updates pixel values in the
missing regions (b-3). In each iteration, process (B) stores the tentative inpainted
result in the memory shared with process (C). After the energy converges, the
completely inpainted result is stored and used in process (C).

4.4 Real-Time Overlay of Inpainted Textures

In process (C), after capturing an image (c-1) and calculating a camera pose
using visual-SLAM (c-2), a rectified image is generated for every plane using the
current camera pose and information for rectification (c-3). On each rectified
image, a mask region is then determined by projecting the 3D target region from
the optical center of the current frame’s camera onto each plane (c-4). Next, the
mask regions are filled in using the texture in the rectified images of the key
frame in which the object regions are inpainted. Because there is usually some
difference in the luminance of the key frame and the current frame, we adjust the
luminance of the key frame’s texture (c-5). Here, we estimate luminance changes
in the mask region from the changes in the surrounding region using rectified
images between the key frame and the current frame. Finally, the texture of each
rectified image of the key frame is overlaid on the mask region of each rectified
image of the current frame. The rectified images are transformed to the original
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(a) Key frame (b) (c) (d)
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Fig. 6. Experiment for the scene with three textured planes: (a) key frame, (b)–(e)
subsequent frames

appearance of the current frame using homographies (c-6), and these are then
combined to produce the final output (c-7).

4.5 Experimental Results

We show experimental results in three environments. In the experiment, we used
a PC with Windows 7, Core i7-3820QM 2.7 GHz CPU, 8 GB of memory, and a
GeForce GT 650M GPU for input images of resolution 640 × 480 captured by
a USB camera (Logicool Qcam Pro 9000). The GPU was used for image rectifi-
cation in process (C). We used PTAM [20] for the visual-SLAM and inpainting
methods [10]. In Figs. 6 to 8, Fig. (a) shows the key frame, with the top row
showing the input image, the middle row showing the segmented mask region,
and the bottom row showing the inpainted results of rectified images. Figs. (b)
to (d) show subsequent frames captured from various viewpoints; the top row
shows input images, the middle row shows the mask regions, and the bottom
row shows output images.

First, we show the results of the indoor scene in Figs. 6. In this scene, textures
are successfully generated in the target region, and the temporal coherence is
preserved. Second, we show the results for the outdoor scene in Fig. 7, in which
the optical parameter of the camera automatically changes with camera motion
because of the large difference in luminance between sunny and shady areas and
the low dynamic range of the camera. In this scene, the mask region of the key
frame is inpainted when the camera’s optical parameter adjusts to a shady area,
as shown in Fig. (a). The optical parameter is adjusted according to this shady
area in Figs. (b) and (d), and to sunny areas in Fig. (c).
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Fig. 7. Experiment for a scene with the camera’s optical parameter changed: (a) key
frame, (b) to (e) subsequent frames
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Fig. 8. Experiment for a scene in which the target object is distant from the background
objects: (a) key frame, (b) to (e) subsequent frames
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Finally, we show the results for the outdoor scene in Fig. 8, in which the target
object is distant from the background objects. In this scene, the mask region is
larger, as the camera position is farther from the key frame position, as shown
in the middle images of Fig. (c). Nevertheless, plausible textures are overlaid on
the mask region, as shown in the bottom images of Fig. (c). However, when the
target object overlaps the background tree, as in Fig. (d), the tree texture is
distorted in the mask region. This is because our method assumes that objects
in each rectified image, such as the bottom image of Fig. (a), exist on each plane,
and the textures of the current frame are generated by transforming the texture
in each rectified image of the key frame using the relevant homography.

The computational time for scene analysis is less than 100 milliseconds, and
the frame rate of diminished reality is about 20 to 30 fps. The frame rate de-
creases as more planes are estimated.

5 Conclusion

This paper introduced image inpainting methods and their application to dimin-
ished reality. In addition, we introduced our image inpainting-based diminished
reality method, which conducts image inpainting and overlay processes concur-
rently, and showed experimental results for various environments.

Currently, in the field of image inpainting-based diminished reality, there are
still only a few methods, and the applicable situation is limited to some extent.
In future, we should deal with various situations. For example, target objects
are moving, the structure and texture of background are complex, illumination
variously changes. To achieve this, diminished reality techniques will be devel-
oped with techniques of Computer Vision, Augmented Reality, and Computer
Graphics.
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