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Abstract. Difficulties in social interaction, verbal and non-verbal communica-
tions as well as repetitive and atypical patterns of behavior, are typical characte-
ristics of Autism spectrum disorders (ASD). Advances in computer and robotic
technology are enabling assistive technologies for intervention in psychiatric
disorders such as autism spectrum disorders (ASD) and schizophrenia (SZ). A
number of research studies indicate that many children with ASD prefer tech-
nology and this preference can be explored to develop systems that may alle-
viate several challenges of traditional treatment and intervention. The current
work presents development of an adaptive virtual reality-based social interac-
tion platform for children with ASD. It is hypothesized that endowing a tech-
nological system that can detect the feeling and mental state of the child and
adapt its interaction accordingly is of great importance in assisting and indivi-
dualizing traditional intervention approaches. The proposed system employs
sensors such as eye trackers and physiological signal monitors and models the
context relevant psychological state of the child from combination of these sen-
sors. Preliminary affect recognition results indicate that psychological states
could be determined from peripheral physiological signals and together with
other modalities including gaze and performance of the participant, it is viable
to adapt and individualize VR-based intervention paradigms.

Keywords: Social interaction, virtual reality, autism intervention, multimodal sys-
tem, adaptive interaction, eye tracking, physiological processing, sensor fusion.

1 Introduction

Recent advances in human machine interaction enabled the use of computer technolo-
gy [1], robot-mediated systems [2,3], and virtual reality (VR) based systems [4,5] for
use in social interaction for autism spectrum disorders (ASD) intervention. ASD is
characterized by a spectrum of developmental disorders that are associated with
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social, communicative and language deficits [6], generally poor social skills [7], defi-
cits in facial and vocal affect recognition, social judgment, problem solving and social
functioning skills [8] and deficits in the ability to use appropriate language in a social
context [9]. Hence a deficit in social interaction is core deficit of ASD. Although,
these common social and communicational deficits are observed in most children with
ASD, the manifestation of these deficits is quite different from one individual to
another [10]. These individual differences call for approaches to individualize the
therapy as opposed to one-therapy-fits-all strategies.

Traditional intervention requiring intensive behavioral sessions results in excessive
life time costs and inaccessibility of the therapy for the larger population [11]. Recent
assistive technologies have shown the potential to at least lessen the burden of human
therapists, increase effectiveness of the traditional intervention, and provide objective
measures. Literature suggests that children with ASD are highly motivated by com-
puter-based intervention tasks [12]. Predictability, objectivity, lack of judgmental
behavior, consistency of clearly defined task and the ability to direct focus of atten-
tion due to reduced distractions from unnecessary sensor stimuli are among the bene-
fits of technology-enabled therapy [9].

Virtual reality (VR) [13,5] have been proposed for ASD intervention. VR platforms
are shown to have the capacity to improve social skills, cognition and overall social func-
tioning in autism [14]. Explicit modalities such as audio visual for natural multimodal
interaction [15] and peripheral physiological signals [16,5] and eye tracking [17] to iden-
tify the psychological states of the user and hence adapt the interaction accordingly is
crucial in social interactions in general and VR in particular [18,19]. Despite this poten-
tial to automatically detect and adapt to the social interaction in VR systems, most
existing VR systems as applied to ASD therapy focus on performance and explicit user
feedback as primary means of interaction with the participant [20]. Therefore, adaptive
interaction is limited in these systems. Adaptive social interaction using implicit cues
from sensors such as peripheral physiological signals [14] and eye tracking [21] are of
particular importance. For such a system to simulate some semblance of naturalistic
social interaction, several components are required including conversational dialog man-
agement, body language (gesture), facial emotional expressions and eye contact in addi-
tion to the implicit user state understanding components. Conversational dialog is an
important part of social interaction. Recently spoken conversational modules have been
incorporated into VR systems to achieve more natural interaction instead of menu driven
dialog management. Instead of large vocabulary, domain independent natural language
understanding, limited vocabulary question-response dialog management, which is fo-
cused on the specific domain, has been shown to be effective [22,23]. Such multimodal
interactions help in individualization of the therapy and in cases of inaccessibility of
trained therapists, it may serve as a self-contained therapeutic system.

This paper describes details of an innovative adaptive VR-based multimodal social
interaction platform. The platform integrates peripheral psychophysiological signal
monitoring for affective state modeling, eye tracking and gaze metrics for engage-
ment modeling and spoken question-answer-based dialog management for a more
naturalistic interaction.

The remainder of the paper is organized as follows. Section 2 details individual
components of the system. Section 3 presents preliminary physiology-based affective
state modeling results. Finally, Section 4 concludes the discussion by highlighting
future direction and extensions of the system.
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1.1 VR System Details

The social task presentation VR system is composed of four major components: (1)
an adaptive social task presentation VR module, (2) a spoken conversation manage-
ment module (Q/A-based natural language processing, NLP module), (3) a synchron-
ous physiological signal monitoring and physiological affect recognition module, and
(4) a synchronous eye tracking and engagement detection module. Each component
runs independently in parallel, while sharing data via light-weight network sockets
message passing in a highly distributed architecture. The VR task presentation engine
is built on top of the popular game engine Unity (www.unity3d.com) by Unity Tech-
nologies. The peripheral psychophysiological monitoring application was built using
the software development kit (SDK) of the wireless BioNomadix physiological
signals acquisition device by Biopac Inc. (www.biopac.com). The eye tracker applica-
tion was built using the Tobii X120 remote desktop eye tracker SDK by Tobii Tech-
nologies (www.tobii.com).

1.2 The VR Social Task Engine

The VR environment is mainly built on and rendered in Unity game engine. However,
various 3D software such as online animation and rigging service, Mixamo
(www.mixamo.com), and Autodesk Maya were employed for character customiza-
tion, rigging and animation. The venue for the social interaction task is a virtual
school cafeteria (Fig. 1). The cafeteria was built using a combination of Google Sket-
chup and Autodesk Maya. A pack of 12 fully rigged virtual characters (10 teenagers
and 2 adults) with 20 facial bones for emotional expressions and several body bones
for various gestural animations were used as templates to instantiate most of the cha-
racters in the environment. Details of the VR development can be found in [24].

Fig. 1. The VR cafeteria environment for social task training. Dining area (top) and food dis-
pensary area (bottom). The two areas are constructed in separate rooms.
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Fig. 1. (Continued.)

1.3  Spoken Dialog Management

The verbal conversation component of the VR system creates context for social inte-
raction and emotion recognition in a social setting and is managed by a spoken dialog
management module. The dialog manager was developed using the Microsoft speech
recognizer from the speech API (SAPI) with domain specific grammar and semantics.
The conversation module is based on question-answer dialog and it contained conver-
sational threads for easy (level 1, L1), medium (level 2, L2) and hard (level 3, L3)
social tasks with each level having 4 conversational task blocks called missions that
the participant is expected to accomplish. Each mission has further components called
turns representing back and forth between the participant and the system. L1 missions
have one turn, L2 missions have two turns and L3 missions have 3 turns (Fig 2). Each
turn was represented by a tree of dialog with nodes representing each option and a
particular branch in the tree representing the dialog alternative paths from the initial
question to the final correct answer. Failure and success is measured in each conver-
sational turn and there is a hierarchical scoring mechanism that keeps track of perfor-
mance in conversation turn level as well as mission level. Options in each turn are
presented to the participant using a list of items and the participant speaks out their
choice through a microphone. Kinect is employed for this purpose as its microphones
have superior sound directional localization and background noise cancellation
features.

Overall performance, i.e., success/failure (S/F) is used to switch across missions
(levels) as shown in Fig. 2 in the “performance only” version of the system. In the
adaptive system, physiological affect recognition as well as eye tracking-based en-
gagement detection are combined to adapt the level of difficulty of the interaction in
addition to the overall performance of the participant.
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Fig. 2. Finite state diagram showing a level switching logic

1.4  Physiology-Based Affective State Modeling

The physiological monitoring application collects 8 channels of physiological data
and was developed using the Biopac software development kit (SDK) and BioNo-
madix wireless physiological acquisition modules with a sampling rate of 1000 Hz.
The physiological signals that were monitored were: electrocardiogram (ECG), pulse
plethesymogram (PPG), skin temperature (SKT), galvanic skin response (GSR), 3
electromyograms (EMG), and respiration (RSP). Various features extracted out of
these signals are used for supervised training of a machine learning algorithm for later
affective state classification in the actual interaction. Training data was collected
separately using a study designed to elicit target affective states such as liking, en-
gagement, boredom, and stress. We developed and used computer-based pong and
anagram solving cognitive games with trials carefully designed to elicit the states.
Details of the cognitive tasks are presented in Table 1.

Table 1. Number of trials and trial durations for the games

Games Sub-sessions Number of Trials Trial Duration
sub-session 1 3 90 s
Anagram sub-session 2 3 180 s
sub-session 3 6 180 s
sub-session 1 3 120 s
Pong sub-session 2 3 120 s
sub-session 3 9 120 s

The data were passed through various successive signal processing stages. First,
the data was passed through very large signal uncorrelated outlier rejection block.
Then, every channel was subsampled to lower frequency to keep most of the signal
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content while reducing computational burden. Signals such as EMG were subsampled
at higher frequency whereas slow moving signals such as SKT, GSR, and RSP were
down sampled at much lower frequency. The data were then filtered to remove high
frequency uncorrelated noise, motion artifacts, very low frequency trending and DC
bias, power line noise, and inter-channel interference (e.g.: ECG artifact on EMG).
Finally, features were extracted from the channels for supervised training. For this
preliminary comparative study, we choose four channels (which are prominent in
capturing the autonomic system response), i.e., ECG, PPG, GSR, and SKT, and out of
them 16 features were extracted.

Generally, people recognize emotions in speeches with an average 60% and from
facial expressions with 70-98% [25]. Emotion recognition using peripheral physiolog-
ical signals and machine learning techniques such as artificial neural networks (ANN)
and support vector machines (SVM) under controlled experiments achieved a compa-
rable recognition rates [26-29]. We comparatively studied the performance of SVM
and ANN with three separate learning methods each. The most popular learning algo-
rithm to solve the error minimization problem in ANN is the back propagation (BP)
algorithm [30]. However due to its slow convergence and other issues such as con-
vergence to local minima, a variety of methods have been proposed to improve time-
space and error of performance BP. These methods range from adhoc methods with
adaptive learning rate and momentum (GDX) [31] to using numerical approximations
including Newton’s secant method by Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) [32] and non-linear least squares called Levenberg-Marquardt (LM) [30]. To
optimize the error margins of SVM, the performance of the quadratic programming
(QP) [33], sequential minimal optimization (SMO) method that decomposes the larger
QP problem in to a series of smaller QP problems [34], and the least square (LS)
solver [33] were explored in this study.

1.5 Eye Gaze Based Engagement Modeling

The main eye tracker application computed eye physiological indices (PI) such as
pupil diameter (PD) and blink rate (BR) and behavioral indices (BI) [21] such as fixa-
tion duration (FD) from raw gaze data. For each data point, gaze coordinates (X, Y),
PD, BR, and FD were computed and logged together with the whole raw data, trial
markers and timestamps in addition to being used as features for the rule-based en-
gagement detection mechanism. The fixation duration computation was based on the
velocity threshold identification (I-VT) algorithm [35].

A rule-based system for engagement detection is developed to infer engagement
using the behavioral as well as physiological indices from the tracking data as fea-
tures. The rules use adaptive thresholds and these thresholds are standardized using
baseline data recorded before interaction.

1.6 Multimodal Decision Fusion

At this stage a decision tree based decision fusion for the multimodal interfaces is
developed. The decision tree combines the outputs of the physiological affective state
model, the engagement model, and performance of the participant as variables to
come up with overall system difficulty level adjustment. This module will be used in
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the main pilot study of the overall system to illustrate its performance. In the results
section, we present only the physiological-based affect modeling study that was brief-
ly described in Section 2.3.

1.7  Experimental Procedures

With the designed distributed emotion modelling system based on computer games
(Section 2.3), a total of 10 children with ASD participated in the study. Each partici-
pant went through all the Pong and Anagram sub-sessions as shown in Table 1. In
each trial we monitored all the physiological signals described in section 2.3 and ex-
tracted 16 features out of each trial to obtain a total of 192 data points. These include
147 positive valence (liking and engagement/enjoyment) and 45 negative valence
points (frustration/Boredom and anxiety). A trained therapist rated each trial on a
Likert scale of 1-9 for each of the 4 perceived psychological states and the result was
normalized and classified into positive and negative valence classes. All the data was
trained to the three training methods of MLP and the three learning methods of SVM
described in section 2.3.

2 Results

As described in Section 2, this system development is an ongoing effort which is
tested for usability incrementally. The first phase was developing the virtual environ-
ment, the characters and endowing facial emotional expressions to the characters.
This stage was evaluated with 10 children with ASD and 10 typically developing
children in a separate study [19]. After that, this current study, develops more capabil-
ities such as various animations, the cafeteria environment, the speech-based dialog
management, affective modeling with supervised training methods and eye tracking
based engagement modeling. The system development of the social task VR envi-
ronment was presented in [24]. This paper presents the current status by adding re-
sults of the preliminary physiological-based affect modeling component.

2.1  Preliminary Physiological Modeling Results

We have conducted a separate study to collect training physiological data for affect
modeling as described in Section 2.3.

Model Fitting. We performed model selection to get the best parameters for each
learning algorithm. For multilayer perceptron (MLP) ANN, we fixed the number of
epochs at 10,000, the error requirement at O, minimum gradient at le-5, and the num-
ber of validation checks to 1,000 across all the model selection process. For SVM, we
selected radial basis function (rbf) as the kernel and the variance of the rbf as 1.0.

We used minimum validation error as criteria to choose the best model (Fig. 3).
However, whenever the testing error is not closer or at a local minimum when the
validation is at global minima, we chose the next minimum validation error point.
Table 2 shows the best model parameters.



Multimodal Interfaces and Sensory Fusion in VR for Social Interactions

GDXMLP

QP SVM

Normalized Error

o L L L L

overall

10 15 20 25 30

3 40 45 50 55

Number of hidden layer neurons

BFG MLP

Normalized Error

Normalized Error

Normalized Error

—— owrall
—wl

test

train |

0 02 04 06 08 1 121
Box constraint (Inverse of regularization)

SMO sVM

4 16 1

8

006, . . . . . . . . . . .
10 15 20 25 30 35 40 45 50 55 0 02 04 06 08 1 12 14 16
Number of hidden layer neurons Box constraint (Inverse of regularization)
LM MLP LS SVM
0.35
overall

03 T wal i

train

A test

Nomalized Error

Normalized Error

10 15 20

25 30
Number of hidden layer neurons

o 02 o4 1
Box constraint (Inverse of regularization)

14 16

21

Fig. 3. Normalized Error vs. number of hidden layer neurons (MLP ANN) and vs. inverse of
regularization parameter for SVM. Best validation parameters indicated by dark blue point on

the green validation line.

Table 2. Selected Best Model Parameters

Classifier Training Algorithm Best Model Parameters
GDX 29.00
BFG 20.00
MLP ANN LM 48.00
QP 0.21
SMO 0.55
SVM LS 0.04
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Performance Comparisons. Using the best parameters found in the model selection
stage, we performed performance of all the six learning algorithms and two classifiers
described in section 2.3.

Table 3. Performance Comparisons

Classifier Training Algorithm Accuracy AUC F,-score
GDX 89.09% 85.16% 92.85%

BFG 94.80% 93.51% 96.58%

MLP ANN LM 91.70% 89.24% 94.54%
QP 91.67% 93.02% 94.33%

SMO 90.62% 88.47% 93.79%

SVM LS 90.63% 93.11% 93.53%

Table 3 shows the accuracy, area under the curve (AUC) of the receiver operating
characteristics curve (ROC), and F1-score. The AUC is basically the average of sensi-
tivity and specificity, whereas F1-score is the harmonic mean of precision with equal
weights. The results indicated that both SVM and ANN were able to classify with
high accuracy with the BFG algorithm achieving the highest performance for this
particular physiological dataset.

3 Conclusion and Future Direction

The main contribution of this work is to present the development of a realistic multimod-
al VR-based social interaction platform that can be used for ASD intervention. The uni-
queness of this platform relies on its ability to gather objective eye gaze and physiology
data while a participant is engaged in a closed-loop VR-based adaptive social interaction.
This paper presents the preliminary physiological modeling results that seem to indicate
the viability of such multimodal social interaction environment as an intervention plat-
form for ASD therapy. Future extensions of this system would add a more advanced
multimodal sensory fusion and major pilot study to evaluate the whole system as an in-
tervention platform specifically for its efficacy in ASD intervention.
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