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Abstract. Advancements in technology in the field of robotics have made it ne-
cessary to determine integration and use for these in civilian tasks and military 
missions. Currently, literature is limited on robot employment in tasks and mis-
sions, and few taxonomies exist that guide understanding of robot functionality. 
As robots acquire more capabilities and functions, they will likely be working 
more closely with humans in human-robot teams. In order to better utilize and 
design robots that enhance performance in such teams, a better understanding of 
what robots can do and the impact of these behaviors on the human opera-
tor/teammate is needed. 
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1 Introduction 

In recent years, robots have been deployed in more areas than before. Although robots 
are used for a variety of reasons ranging from being able to perform tasks that are 
impossible for humans to accomplish, undertaking tasks that endanger human lives, 
and being more cost effective to deploy, one of the most often-cited reason for their 
use is that they can enhance human performance and relieve workload.  

2 Robots in Context 

2.1 Military 

The military uses robots to carry out tasks that are too difficult or dangerous for sol-
diers. For instance, Daksh is a teleoperated military robot that clears improvised ex-
plosive devices. It can maneuver in various environments, including climbing stairs, 
and has an X-ray device on board to scan objects. The MARCbot is a military robot 
that inspects suspicious objects. It has a camera that is elevated in a post that enables 
it to look behind doors. It can operate for 6 hours on a full battery charge and soldiers 
have used it in the Iraq to detect hazardous objects. On the other hand, the Goalkeeper 
from the Netherlands helps defend military assets by tracking incoming missiles with 
its autocannon and advanced radar in its close-in weapons system. Another robot with 
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a similar defence function is the Guardium, an Israeli unmanned security robot that 
guards and attacks any trespassers with its lethal and less-lethal weaponry. The Pack-
Bot series is a set of robots that can be fitted with particular kits that allow them  
to perform various tasks ranging from identifying, disarming and disposing IEDs, to 
detecting snipers through localizing gunshots from azimuth, elevation and range, to 
collecting air samples in order to detect chemical and radiological agents. PackBots 
were the first robots deployed to the Fukushima nuclear disaster site. Likewise, the 
TALON robots are used for a variety of tasks depending on the sensor or weapon 
modules that they are fitted with. They were used in Bosnia to safely remove and 
dispose of live grenades, and deployed in search and recovery missions, such as that 
in Ground Zero after the September 11 attack on the World Trade Center (“Current 
Use of Military Robots,” 2014).  

2.2 Healthcare 

Robots have also been used in the medical field. With the da Vinci surgical assistant 
robot, surgeons have performed minimally invasive delicate surgeries with the help of 
its high-definition 3D vision system and robot arms with “wrists” that are able to 
make smaller, more precise movements because they bend and rotate far more than 
the human wrist. To date, the da Vinci has helped with approximately 1.5 million 
various surgical procedures worldwide (da Vinci Surgery, 2013). On the other hand, 
other robots make surgeries unnecessary. The Magnetic Microbots, developed in 
Switzerland, are each about the width of a strand of human hair. They are maneuvered 
and controlled with great precision by a series of electromagnetic coils, and have been 
used to treat a type of blindness that traditionally requires surgery (Liszewski, 2013). 
Magnetic Microbots have also been used to remove plaque from patients’ arteries, as 
well as in disease screening, and in the treatment of cancer (Martel, 2012). Another 
robot that is used directly in therapy is the Walk Training Assist robot developed by 
Toyota. Attached to the patient’s paralyzed leg, it helps patients walk and balance 
through a number of motion detectors and supports the patient as he moves to walk. 
On the contrary, other robots in healthcare are “service robots” that perform tasks of 
caregivers. For example, the Bestic Arm robot is fitted with a spoon on the end and 
helps patients who are unable to move their arms or hands to eat without requiring 
help, and the Aethon TUG and RobotCourier are both robots that move through hos-
pital corridors, elevators and wards to deliver medication on schedule, or lab results 
and bed linen. There are claims that they are able to do the work of three full-time 
hospital staff, and yet cost less than one. Other robots like the Vasteras Giraff are 
equipped with a camera, a monitor, and a two-way video call system that enable doc-
tors in hospitals to monitor and communicate with their elderly patients at home. In 
contrast, the CosmoBot, is used in therapy for developmentally disabled children. 
CosmoBot’s cartoon-like appearance helps the child patient to warm up to it so that it 
is able to collect data on the child’s performance, allowing the therapist to evaluate 
progress. (McNickle, 2013).  
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2.3 Manufacturing/Domestic Applications 

In the manufacturing industry, robots boost productivity, as they are able to manipu-
late materials and objects in assembly lines with great precision and speed. Australia’s 
Drake Trailers saw a 60% increase in productivity due to the inclusion of a welding 
robot (ABB Australia, 2010), and the Unimate robot, that is used to pour liquid metal 
into die casts and weld auto bodies, has improved processes in the manufacture of 
automobiles at General Motors (Lamb, 2010). Another robot that performs mechani-
cal tasks with high precision and speed is the Selective Compliance Assembly Robot 
Arm or Selective Compliance Articulated Robot Arm (SCARA), which has “arm” 
joints that enable it to move deftly in and out of confined spaces to install delicate and 
tiny components (Kuka, 2013). More recently, in addition to performing different 
repetitive tasks, industrial robots have developed to work more closely with humans. 
For instance, Baxter the robot is a human sized, two-armed robot with an animated 
face. Unlike its predecessors, it does not come pre-loaded with programs that direct it 
to operate. Instead, through a series of prompts, the robot can be “taught” to perform 
certain tasks by moving its arms in the desired motion and having it “memorize” the 
movements. Equipped with a range of cameras and sensors, Baxter also has a degree 
of “behavior-based common sense” and is capable of sensing and adapting to its task 
and environment (Guizzo & Ackerman, 2012). 

Robots are also used as domestic help both indoors and outdoors. The Roomba,  
vacuums the carpet, while the iRobot Scooba 230 washes the floor. Both are able  
to navigate around the house and are relatively small in size, allowing them to clean 
in tight spaces and under furniture. Outdoor robots like the LawnBott LB3510 and 
Husqvarna Automower 230 ACX are able to mow uneven lawns and at an incline, and 
the latter is also equipped with an antitheft alarm (Swan Robotics, 2014). Others, like 
Jazz Security, are security robots that are outfitted with night-vision capable wide-
angle cameras that shoot videos and sensors that detect motion on the grounds.  
The robots would also alert the house owner of activities on the suspicious activity on 
the property. This concept of patrolling has been extended to telepresence. The Jazz 
Connect is a robot that can be stationed at home while its operator is away. It allows 
the operator to move around the house and communicate with the people present as 
though he/she were at home. This application permits caregivers to check on their 
stay-in patients or parents to check on their children while at work (Aki, 2012). 

2.4 Entertainment 

Robots have also been developed for recreational purposes. They may take the form 
of a pet, like a dog (e.g. Poo-Chi or Aibo), or guinea pig (e.g. Gupi). Some are inter-
active and can perform various tasks and tricks on command like Teksta, the robot 
dog that does backflips and wags its tail when its name is called, expresses emotions 
through its eyes, and responds to touch. Other robots serve as art pieces and installa-
tions (Bubblews, 2013). For instance, Paparazzi Bots were developed as a statement 
against modern culture’s obsession with images of ourselves and celebrities. The 
robots, which are about the height of a human and move at human speed, are outfitted 
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with a range of cameras, actuators and sensors, and behave like paparazzi, moving 
among people capturing photographs of people and making them accessible to the 
world (Rinaldo, n.d.). Furthermore, there is ARTI, an interactive robot driven by  
artificial intelligence that functions like a museum curator as well as exhibit. It is 
capable of recognizing faces and understanding speech, and teaches museum guests 
about the history and exhibits of the Intel Museum (West, 2008). 

In all these applications, robots display a variety of behaviors, befitting of their in-
tended function. However, it is important to understand how these behaviors affect 
the human, particularly in enhancing performance and reducing workload and stress. 
This calls for an understanding of the stages involved in information processing and 
performing tasks.  

3 Relating Robot Behaviors to Human Information Processing 

In the attempt to understand how automation may help enhance performance and 
reduce workload, Parasuraman, Sheridan and Wickens (2000), proposed that automa-
tion can support the human in four primary areas: (i) information acquisition, (ii) 
information analysis, (iii) decision selection, and (iv) action implementation. This 
classification of tasks was based on a simple four-stage model of human information 
processing (Parasuraman et al., 2000). 
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Fig. 1. Simple four-stage model of human information processing and types of automation. 
Adapted from Parasuraman, Sheridan, and Wickens (2000). 

The framework provides a way to classify factors and dimensions that impact per-
formance and workload in both human-computer and human-robot systems For  
example, researchers have identified taxonomic elements that contribute to usability 
and user satisfaction in human-computer systems that include interface design,  
input/output devices, learnability, perceptual factors, memory load required, and per-
ceived usefulness (e.g. Çalişir & Çalişir, 2004). Likewise, from reviewing multiple 
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studies, Prewett et al. (2010) proposed several guiding principles and propositions for 
reducing operator workload in human-robot interaction. These include the type of 
visual display, number of multimodal displays/cues, amount of system delay, and 
environmental complexity, and can be traced to the cognitive processes they affect, 
attesting to the value of such a framework. In addition, a taxonomy of  human-robot 
interaction  proposed by Yanco and Drury (2002; 2004) included factors that relate 
more to the task at hand, as well as factors that drive the human-robot interaction. 
Their list comprised task type, task criticality, robot form/morphology, ratio of hu-
mans to robot, composition of robot teams, level of shared interaction among teams, 
interaction roles, type of physical interaction between human and robot, decision sup-
port for operators, time/space relationship between human and robot, and level of 
autonomy of robot. 

These factors and taxonomic dimensions can be mapped onto the information 
processing stages that they impact. For instance, number of displays, camera type, 
lags in system visual image processing mostly affects information acquisition, while 
the number of robots controlled and ratio of humans to robots impact more informa-
tion processing stages, and potentially have more influence on workload, performance 
and stress. Such an approach to understanding robot behaviors would enable develop-
ers of automation to understand the human cognitive processes that their automation 
supports, and how the automation affects performance and workload. This would 
facilitate development of robots that work and collaborate better with humans, there-
by increasing the possibility that robots would be able to team effectively with  
humans in the near future. 

4 Next Generation Robots: Robots That Team with Humans 

In 2013, the Defense Advances Research Projects Agency (DARPA) acknowledged 
that presently, robots operate mostly in controlled and well-defined environments, 
doing simple, repetitive tasks as they require too many step-by-step commands. To be 
effective in the unpredictable real world, the robots of the future should operate in 
novel situations without requiring extensive reprogramming and should still be able to 
operate even when communications with the human are delayed or interrupted. This 
entails robots having “task-level” autonomy, as opposed to being teleoperated (DRC, 
2013). Such capabilities would also render robots more able to work more closely and 
team with humans. This vision of robots was also echoed in a recent announcement 
that the National Science Foundation (NSF), in partnership with the National Insti-
tutes of Health (NIH), U.S. Department of Agriculture (USDA) and the National 
Aeronautics and Space Administration (NASA), has made new investments totaling 
approximately $38 million for the development and use of robots that are able to work 
collaboratively with humans to enhance human capabilities, performance, and safety 
(R&D, 2013). 

If human-robot teaming is to be the goal in the coming decades, then understanding 
the influence of robots on humans is imperative. In developing a framework for robot 
behaviors in human-robot teams, we draw upon theories from team research, includ-
ing theories of team roles and social support.  
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5 Review of Related Team Research 

5.1 Team Roles and Functions/Behavior 

A team differs from a social group in that all teams are formed to achieve certain 
goals or to perform a task. Belbin (2013) proposed that teams can be more productive, 
high-performing, and team members can be more self-aware and personally effective 
when there is an understanding of the strengths and weaknesses of each member. He 
proposed that there are nine team roles, and each fall into one of three categories; (i) 
action-oriented roles, (ii) people-oriented roles, and (iii) thought-oriented roles. Under 
the action-oriented roles, there is the Shaper, who challenges the team to improve and 
move forward, the Implementer, who puts ideas into action and is well-organized, and 
the Completer/Finisher, who works to ensure that the team completes the task in a 
thorough, timely manner. The people-oriented roles include the Coordinator, who 
acts as a chairperson, delegating and clarifying goals, and promoting decision-
making, the Team Worker, who, being a good listener, works to resolve social prob-
lems and encourages cooperation, and the Resource Investigator, who explores  
outside opportunities and develops contacts that can help the project. Under  
the thought-oriented roles, there is the Plant, who presents new ideas and approaches, 
the Monitor-Evaluator, who analyzes the options, and the Specialist, who provides 
specialized skills (Belbin, 1981; 2013). 

Some team roles (i.e. action-oriented roles) serve to move the team towards achiev-
ing its goals, while other roles are more focused on fostering relationships and com-
munication that facilitates goal-attainment (i.e. people-oriented roles). On the other 
hand, some team roles that encourage the team to generate new ideas, self-evaluate, 
and examine its strategy and approach in reaching the goals (i.e. thought-oriented 
roles). 

The main concept behind the various team roles is that there are different sets of 
behaviors found in an effective team (Belbin, 1981; 2013). Behaviors may pertain 
directly to the task/goal (e.g. clarifying goals or generating new ideas) or indirectly to 
the task/goal (e.g. communicative and self-evaluate behaviors).  

5.2 Types of Support 

Apart from team roles, there are theories that address various types of help or support 
behaviors. House (1981) postulates that there are four basic types of support that 
members of a social network may offer each other: (i) informational support, (ii) in-
strumental support, (iii) emotional support, and (iv) appraisal support. Informational 
support refers to the provision of suggestions and information that the individual in 
need can use to address the problem faced, while instrumental support involves the 
giving of tangible aid and services that directly help the individual in need. On  
the other hand, emotional support refers to the sharing of emotions and provision of 
empathy, love and caring, while appraisal support refers to the provision of construc-
tive feedback and affirmation for the individual's self-evaluation. These four types of 
support may broadly be classified as (i) direct, and (ii) indirect support. Informational 
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and instrumental support pertain directly to need or problem encountered, while emo-
tional and appraisal support may help the individual cope of the problem better, but 
do not address the problem directly.  

Applying this notion to a human-robot team, it is then possible to conceptualize  
potential robot behaviors as being directly or indirectly aiding the human.  

5.3 Structure in Teams 

Drawing on the language of management and industrial psychology, automation and 
HCI researchers have proposed theories that incorporate the relationships and roles of 
supervisor, peer and subordinate. In his work on automation, Sheridan (1992) describes 
five generic supervisory functions that comprise planning the task, programming the 
computer, monitoring the automation’s actions to detect failure, intervening with a new 
goal or taking over control in the event of failure, and learning from experience.  
Furthermore, a theory of human-robot interaction proposed by Scholtz (2003) outlines 
several relationship and roles that may be found in human-robot teams. These roles, 
based on Norman’s stages of HCI interaction (Norman, 1986), include the (i) supervi-
sor, (ii) operator, (iii) mechanic, (iv) peer, and (v) bystander, and differ in terms of  
the level of involvement of the human and the autonomy of the robot. The theory  
acknowledges that the different roles are associated with various levels of autonomy, 
for instance, the supervisor has more autonomy and operates at a higher goal level than 
the peer role. This is similar to that in human teams, where the supervisor typically has 
more autonomy than the peer, who has more autonomy than a subordinate does.  

5.4 Gradations of Autonomy 

Despite their benefits, there are some detrimental effects of automation on human 
performance. These include problems such as complacency, decreased vigilance and 
loss of situation awareness (Endsley, 1987; Carmody & Gluckman 1993; Parasura-
man et al., 1993; Endsley & Kiris, 1995; Parasuraman & Riley, 1997). Researchers 
describe the underlying problem as having the human out-of-the-loop (OOTL) 
(Young 1969; Kessel & Wickens, 1982). To address this, strategies to manage the use 
of automation have been suggested. These broadly fall under the levels of automation 
approach and the adaptive automation approach. Billings (1997) proposed two ap-
proaches to automation, while Sheridan and Verplank (1978) described more explicit 
levels of automation. Adaptive automation, on the other hand, has been studied by 
researchers such as Rouse (1977; 1988), Parasuraman, Mouloua and Molloy (e.g. 
1996), among others. 

 
Management-by-Exception and Management-By-Consent. Billings (1997) pro-
posed two approaches to use automation in aviation: management-by-consent and 
management-by-exception. Management-by-consent occurs when automation only 
takes action when explicit consent has been obtained by the operator to do so, whe-
reas when the management-by-exception strategy is adopted, automation is able to 
initiate and execute actions without explicit consent from the operator, who retains the 
option to override or reverse the actions taken or initiated. 
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Levels of Automation. Another theory incorporating the similar idea of gradations of 
automation is Sheridan and Verplank’s (1978) levels of automation (LOA). The 
theory involves a scale with ten degrees or levels at which automation can aid with 
decision and action. Higher LOA represent increased machine autonomy while lower 
LOA denote greater human involvement and diminished automation (Parasuraman et 
al., 2000). For instance, operating at high LOA in the information acquisition stage 
may provide the operator “decluttered” and filtered information already categorized 
according to certain criteria such that the “raw” data is unavailable to the operator 
(Yeh & Wickens, 2001). On the other hand, medium LOA in the same stage only 
tentatively classifies incoming data, allowing the operator to see the “raw” data (Para-
suraman et al., 2000). In the information analysis stage, lower LOA merely provide  
a simple trend lines, providing only minimal support with regard to the evaluation  
of the information. The main concept of LOA is to automate the system only to a 
moderate degree to minimize the problems associated with excessive automation. 

Incorporating this concept of levels of automation, Save & Feuerberg (2012) fur-
ther developed the four-stage model of information processing to include gradations 
within each stage that reflect the degree to which automation was involved. For in-
stance within the decision selection stage, the level of automation  can range from 
being fully human-driven (“human decision making”) to fully automated (“automatic 
decision-making”), with intermediate levels such as “artifact-supported decision mak-
ing”, “automated decision support”, “rigid automated decision support”, “low-level 
automatic decision-making”, and “high-level automatic decision making”. 
 
Adaptive Automation. In addition to having multiple levels of automation, or, in the 
case of a human-robot teams, multiple levels of robot autonomy, there can also be a 
customization of the robot’s level of autonomy to the changing needs of the human 
teammate. In automation research, this is the concept of adaptive automation (AA) 
(Rouse, 1988). While LOA identifies the degree to which automation is implemented, 
AA pertains to when the different levels of automation are invoked (Taylor, Reiner-
man-Jones, Szalma, Mouloua, & Hancock, 2013). 

The effectiveness of the AA strategy has been observed empirically (Rouse, 1977). 
For instance the adaptive automation scheme where the automated tool was only used 
during high traffic conditions, resulted in the smallest increase in mental workload 
among Air Traffic Controllers compared to the constant automation and constant 
manual schemes (Hilburn, Jorna, Byrne & Parasuraman, 1997). Parasuraman et al. 
(1996; 1993) found that adaptive automation improved detection of system failures in 
a multitask flight simulation. In addition, adaptive automation was found to improve 
performance especially when the type of automation was matched to the type of task 
demand (Taylor et al., 2013).  

Incorporating these theories and ideas in a human-robot team, it is proposed that 
the level of autonomy of the robot can be managed in terms of the roles that it as-
sumes. In most situations, the robot would be a subordinate, having limited autonomy, 
as reflected by the set of behaviors that it can exhibit. These behaviors are likely to be 
“passive” and are responses to explicit commands. However, applying the AA idea, 
under certain circumstances, it may assume a role with greater autonomy, such as that 
of a peer, which entails a set of more “active” behaviors that are associated with 
greater autonomy and initiative. 
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6 Dimensions of Robot Behaviors 

Drawing from the various related theories and literature, robot behaviors can then be 
(i) active or passive, corresponding to different levels of autonomy, as well as (ii) 
impacting performance, workload and stress directly or indirectly. Table 1 shows 
some examples of behaviors in each category: 

Table 1. Taxonomy of robot behaviors 

 DIRECT INDIRECT 

A
C

T
IV

E
 

Robot shows affirmative behaviors 
that aid with operator’s main task. 
Example behaviors: 

• Takes over operator’s task entirely. 
• Aids operator with his task by taking 

over parts of the main task. 
• Aids by preventing others’ inputs 

from hindering operator from main 
task. 

 

Robot shows affirmative behaviors 
that aid with operator’s secondary 
tasks or indirectly helps with the 
main task. 
Example behaviors: 

• Aids operator with his main task by 
reminding him (indirect help) of cer-
tain aspects of the task. 

• Aids operator by relieving him of 
secondary tasks. 

• Aids by preventing others’ inputs 
from hindering operator from sec-
ondary tasks. 

P
A

SS
IV

E
 

Robot helps by withdrawing its own
inputs from hindering the operator
from his main task.  
Example behaviors: 

• Stops feeding inputs that may dis-
rupt operator from main task. 

Robot helps by withdrawing its own 
inputs from hindering the operator 
from his secondary tasks.  
Example behaviors: 

• Stops feeding inputs that may dis-
rupt operator from secondary tasks. 

 

 
Hence, with a human-robot team, in line with the levels of automation/autonomy 

notion, there should be different roles and correspondingly, different sets of behavior 
that the robot can exhibit. This will help minimize issues associated with having  
the human out-of-the-loop. Additionally, applying the idea of adaptive automa-
tion/autonomy, the robot should be able to assume different roles and the associated 
behavior sets depending on the workload and stress experienced by its human  
teammate.  
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7 Conclusion 

The field of human-robot teaming is a relative new but a promising one. Although 
development of robots and programming of their behaviors are usually first driven  
by functional specifications, the resultant product may or may not meet intended  
functions because in human-robot teams, it is the interface and interactions that are 
key. Hence, much research and a multi-disciplinary approach is required to develop 
robots that can be shown to enhance human performance while mitigating workload 
and stress.  
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