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Abstract. Entity coreference is important to Linked Data integration.
User involvement is considered as a valuable source of human knowl-
edge that helps identify coreferent entities. However, the quality of user
involvement is not always satisfying, which significantly diminishes the
coreference accuracy. In this paper, we propose a new approach called
coCoref, which leverages distributed human computation and consensus
partition for entity coreference. Consensus partition is used to aggregate
all distributed user-judged coreference results and resolve their disagree-
ments. To alleviate user involvement, ensemble learning is performed on
the consensus partition to automatically identify coreferent entities that
users have not judged. We integrate coCoref into an online Linked Data
browsing system, so that users can participate in entity coreference with
their daily Web activities. Our empirical evaluation shows that coCoref
largely improves the accuracy of user-judged coreference results, and re-
duces user involvement by automatically identifying a large number of
coreferent entities.

Keywords: #eswc2014Gong.

1 Introduction

Entity coreference is to identify entities from diverse data sources that refer to
the same real-world object. It is important to the reuse, integration and appli-
cation of Linked Data. Many entity coreference approaches have been proposed
in literature, which can be divided to two main categories: fully-automatic and
semi-automatic. Although automatic methods have been continuously improved
using various sophisticated algorithms, e.g., taking advantages of OWL seman-
tics [10], computing similarities among entities [20], machine learning [11,16],
they still remain far from perfect.

On the other hand, semi-automatic approaches bring user involvement into the
entity coreference process and gain benefits from human knowledge. To acquire
human contributions, a number of existing semi-automatic methods introduced
micro-task crowdsourcing [3], some of which also dedicated to minimizing user
involvement while preserving certain coreference accuracy, based on techniques
like active learning [19]. In addition to use the modern crowdsourcing platform
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like Amazon Mechanical Turk and CrowdFlower, there are also other distributed
human computation systems that can be used for entity coreference, e.g., [25],
which hold promises for using computers and humans together to scale up the
kind of tasks that only humans do well. To this end, in this paper we try to
attract users to participate in entity coreference with their daily Web browsing
activities. A typical scenario is that a user identifies several coreferent entities
denoting the same real-world object as the current entity that she is browsing.
The behind incentives for users to do so are that they like to view more data
about some real-world objects across different sources in Linked Data.

For entity coreference with distributed human computation, a central problem
is the quality control of users’ coreference results, which draws attentions in
many works [3,12]. The quality of user-judged results is not always satisfying;
mistakes and outliers frequently happen due to various reasons. For example, the
ambiguity of candidate entities, caused by lacking enough domain knowledge,
data evolvement and so on, may lead to incorrect user judgement. Additionally,
user involvement is expensive and usually slow. A user can only complete a small
number of coreference tasks with limited time and energy, leading to omissions
in her coreference result. Therefore, it is important to leverage all distributed
user-judged results and minimize the disagreements among them.

In this paper, we propose a new approach coCoref to leveraging distributed
human computation and consensus partition for entity coreference. coCoref im-
proves the quality of user-judged results by aggregating users’ individual results
into a more robust and comprehensive consensus partition with better accu-
racy [22]. Furthermore, coCoref adopts the consensus partition as labelled data
and proposes an ensemble learning algorithm to alleviate user involvement by
automatically identifying coreferent entities that have not been judged by users.
We develop coCoref as an important component in a Linked Data browsing sys-
tem called SView.1 We also believe that coCoref is applicable to various entity
coreference scenarios involving users. We empirically evaluate the performance of
coCoref based on real users’ browsing logs from SView. We also compare coCoref
with several existing systems on an OAEI test and show that coCoref automat-
ically identifies a large amount of coreferent entities using a small portion of
consensus partition.

The rest of this paper is structured as follows. Section 2 gives an overview
of our approach. Section 3 introduces consensus partition. Section 4 describes
ensemble learning. Our evaluation is reported in Section 5, while related work is
discussed in Section 6. We conclude this paper in Section 7.

2 Overview of the Approach

We show the overview of our approach in Figure 1, where users perform coref-
erence on a set of entities in distributed data sources. Let E = {e1, e2, . . . , en}
be the set of all entities. In this paper, an entity ei ∈ E is denoted by a URI

1 http://ws.nju.edu.cn/sview/

http://ws.nju.edu.cn/sview/


Leveraging Distributed Human Computation and Consensus Partition 413

user 1 user 2

Ensemble learning

individual partition 1

coreferent entities

consensus partition

candidate entities

user m

individual partition m

coreferent entities coreferent entities coreferent entities

User
labeling

Aggregation

Classifier for entity coreference A
utom

atically
identify

coreferententities

Fig. 1. Overview of coCoref

and described by a set of property-value pairs, which can be extracted by deref-
erencing the URI of ei. We define the extraction of ei’s involved properties by
Prop(ei), and the extraction of ei’s values w.r.t. property pl by V alue(ei, pl).

Individual partition. Let U = {u1, u2, . . . , um} be the set of all users participated
in entity coreference on E. For a user uj ∈ U, when she browses some entities,
she may help identify some coreferent entities. However, with her limited time
and energy, uj can only view and judge a small set of entities. Let Xj ⊆ E be the
subset of entities judged by uj. The entity coreference on Xj w.r.t. uj is defined
to find a partition π on Xj , which consists of a set of pairwise disjoint nonempty
subsets of Xj . For sa, sb ∈ π, a �= b, sa ∩ sb = ∅, and ⋃

a=1,...,|π| sa = Xj . In fact,
for any sa ∈ π, the entities in sa denote the same real-world object and form
an equivalence class, where the equivalence relation holds between the entities
in sa. sa will be updated if the user uj links other entities to some elements in
sa (essentially, to merge two equivalence classes), or she removes some elements
from sa as she believes that they are no longer coreferent with others in sa.
Therefore, the partition π can be considered as uj’s individual partition about
entity coreference on Xj .

Consensus partition. Different users perform entity coreference on different en-
tities and their coreference results may also have differences. For two individual
partitions πi, πj judged by users ui, uj respectively, πi, πj can be equal, totally
disjoint or have overlaps. In order to aggregate users’ individual partitions and
resolve their disagreements, we use consensus partition [22] to establish a more
robust and comprehensive result with better overall accuracy. To formalize, let
T = {π1, π2, . . . , πm} be a set of individual partitions. Each πj ∈ T is judged
by user uj on a set of entities Xj ⊆ E. The entity coreference with distributed
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human computation is defined to find a partition τ on X =
⋃

j=1,...,|T| Xj that

minimizes
∑

πj∈TDist(τ, πj), where Dist is a distance function between any two
partitions. We refer to the equivalence class in τ as consensus equivalence class.

Ensemble learning. Although many users can participate in entity coreference,
there are still a large number of entities that have not been judged by any users,
that is, X ⊆ E. In order to alleviate user involvement, we make use of the con-
sensus partition as training data and build classifiers based on ensemble learning.
Each base learner is trained on a random sample of consensus equivalence classes
in the consensus partition; different base learners are combined to generalize a
global classifier. The classifier is applied to automatically identify coreferent en-
tities that have not been judged by enough users. For a new entity, coCoref uses
the classifier to classify other coreferent entities and forms a new equivalence
class. The classifier will be updated offline when more users’ coreference results
are collected and aggregated. Currently, coCoref does not modify users’ individ-
ual partitions. The reconciliation of users’ coreference results and the result from
ensemble learning will be our future work.

Example 1. To help understanding, we show a running example here. Assuming
that Alice browses some entity NewYorkCity and helps identify its coreferent
entities NY and TheBigApple. She also browses another entity Manhattan and
finds its coreferent entity NewYorkCounty. Therefore, Alice’s individual partition
is { {NewYorkCity, NY, TheBigApple}, {Manhattan, NewYorkCounty} }.

Similarly, Tom participates in entity coreference and delivers his individual
partition { {NewYorkCity, TheBigApple, NewYorkCounty}, {NY, Manhattan} }.
Mike forms his partition { {NewYorkCity, TheBigApple}, {NY, Manhattan} }.

coCoref aggregates the three individual partitions to build a consensus par-
tition { {NewYorkCity, TheBigApple}, {NY, Manhattan}, {NewYorkCounty} }.
Furthermore, coCoref trains an ensemble of classifiers on this consensus partition
and uses the classifier to identify entity coreference, e.g., a new entity Nanjing.

3 Consensus Partition

As described in Section 2, the problem of improving the quality of user-judged
coreference results is transformed to the problem of achieving a consensus par-
tition in terms of users’ individual partitions. In this section, we firstly provide
a formal definition of the consensus partition problem, and then introduce an
approximation algorithm for obtaining a sub-optimal solution to the problem.

3.1 Formalization

The goal of computing consensus partition is to aggregate individual partitions
such that the disagreements among them are minimized. Disagreements can be
caused by mistakes, omissions and so on. There are two reasons that consensus
partition can improve the quality of individual partitions. Firstly, by minimizing
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disagreements in the consensus partition, mistakes and outliers made by a few
users can be filtered out because there is no agreement on how they should be
aggregated [7]. In other words, consensus partition is more robust to mistakes
and outliers. Secondly, the consensus partition is naturally more comprehensive
than any individuals since it comprises more coreferent entities from individual
partitions to avoid omissions by individual users.

Next, we provide a formalization of consensus partition. The disagreements
between two partitions can be measured with a distance function, and various
distance functions have been proposed [22]. In this paper, we use the symmetric
difference distance [9] for our purpose. Specifically, let T be a set of individual
partitions, each individual partition πj is generated from user uj on a subset of
entities Xj ⊆ E. Computing a consensus partition in our approach is to find a
partition τ on X =

⋃
j=1,...,|T|Xj that minimizes the following distance:

DistT(τ) =
∑

πj∈T

Dist(τ, πj)

=
∑

πj∈T

∑

v<w

(δτ (ev, ew)ψπj (ev, ew) + (1− δτ (ev, ew))δπj (ev, ew)), (1)

where, for two entities ev, ew and a partition π,

δπ(ev, ew) =

{
1, if ∃sl ∈ π, ev ∈ sl, ew ∈ sl

0, otherwise
, (2)

ψπ(ev, ew) =

{
1, if ∃sa, sb ∈ π, a �= b, ev ∈ sa, ew ∈ sb

0, otherwise
. (3)

LetNvw be the number of partitions of which ev, ew are in different equivalence
classes, i.e., Nvw = |{π ∈ T | ∃sa, sb ∈ π, a �= b, ev ∈ sa, ew ∈ sb}|, and Mvw be
the number of partitions of which ev, ew are in the same equivalence class, i.e.,
Mvw = |{π ∈ T | ∃sa ∈ π, ev ∈ sa, ew ∈ sa}|. We rewrite Eq. (1) as:

DistT(τ) =
∑

v<w

(δτ (ev, ew)
∑

πj∈T

ψπj (ev, ew) + (1− δτ (ev, ew))
∑

πj∈T

δπj (ev, ew))

=
∑

v<w

(δτ (ev, ew)Nvw + (1 − δτ (ev, ew))Mvw)

=
∑

v<w

Mvw −
∑

v<w

δτ (ev, ew)(Mvw −Nvw) . (4)

Note that
∑

v<w Mvw is independent to τ , so minimizing DistT(τ) is equivalent
to maximize

∑
v<w δτ (ev, ew)(Mvw −Nvw). Let Qvw = Mvw +Nvw, where 0 ≤

Qvw ≤ |T|. We have
∑

v<w δτ (ev, ew)(Mvw − Nvw) = 2
∑

v<w δτ (ev, ew)φvw ,

where φvw = Mvw − Qvw

2 .

3.2 An Approximation Algorithm for Consensus Partition

Computing consensus partition to maximize
∑

v<w δτ (ev, ew)(Mvw −Nvw) has
been proven to be a NP-complete problem [9]. Due to the hardness of the
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problem, it is intractable to exactly solve it on a large scale, e.g., entity coref-
erence in Linked Data. Various approximations or heuristics with/without per-
formance guarantees have been proposed to give a sub-optimal solution to the
problem. In our approach, we use an approximation algorithm called CC-Pivot
[1], because CC-Pivot is usually more efficient and applicable for large-scale
data than others [9]. The details of CC-Pivot applied in our method is shown in
Algorithm 1, where φ′

vw in Line 4 is defined as follows:

φ′
vw =

{
φvw, Qvw ≥ θ

−Qvw

2 , otherwise
, (5)

where Qvw and φvw are defined in Section 3.1. θ is a threshold that is used to
see whether two given entities are judged by enough users.

Algorithm 1. CC-Pivot [1]

Input: entity set X, individual partition set T
Output: consensus partition τ on X

1 Choose a pivot entity ev ∈ X uniformly at random;
2 Let C ← {ev}, X′ ← ∅;
3 foreach ew ∈ X, w �= v do
4 if φ′

vw > 0 then
5 C ← C ∪ {ew};
6 else
7 X′ ← X′ ∪ {ew};
8 return τ ← {C} ∪ CC-Pivot(X′,T);

Algorithm 1 repeatedly chooses a pivot entity ev uniformly at random from
the unpartitioned entity set. Then, the algorithm generates an equivalence class
containing ev and every entity ew holding φ′

vw > 0. The recursion continues on
the rest entities until all entities are checked. Algorithm 1 is a 3-approximation
algorithm with time complexity O(|τ | · |X| · |T|) [1], where τ denotes the final
consensus partition. By using this approximation algorithm, more robust and
comprehensive coreference results can be achieved efficiently.

Example 2. We show the running process of Algorithm 1 on Example 1. Assume
θ = 2. Initially, NewYorkCity is chosen as the pivot entity. The algorithm finds
φ′
NewYorkCity,NY = −0.5, φ′

NewYorkCity,Manhattan = −1.5, φ′
NewYorkCity,NewYorkCounty = 0

and φ′
NewYorkCity,TheBigApple = 1.5. Only φ′

NewYorkCity,TheBigApple > 0, so NewYorkCity
and TheBigApple are put together and form an equivalence class { NewYorkCity,
TheBigApple }. Algorithm 1 continues for the remaining three entities. It selects
NY as the pivot entity and finds φ′

NY,Manhattan = 0.5 and φ′
NY,NewYorkCounty = −1, so

it puts NY and Manhattan together and forms a new equivalence class { NY,
Manhattan }. Now, only NewYorkCounty is left, which forms the third equiva-
lence class { NewYorkCounty }. The final consensus partition is { {NewYorkCity,
TheBigApple}, {NY, Manhattan}, {NewYorkCounty} }.
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4 Ensemble Learning

User involvement is expensive and slow. Consequently, there are still a lot of
coreferent candidates that have not been judged by users. In this section, we
will build classifiers based on the consensus partition using ensemble learning
and use them to automatically identify coreferent entities.

4.1 Training Data

A classifier decides whether a candidate entity is coreferent with the given one.
So the training examples used in our method are entity pairs. We leverage the
consensus partition to generate training examples. Specifically, all entities in
the same consensus equivalence class pairwise compose positive examples, while
entities across different consensus equivalence classes form negative examples.We
keep the sizes of positive and negative examples at the same order of magnitude.

We follow the assumption that coreferent entities often have similar descrip-
tions [20]. Thus, we use the similarities between property-values in entity pairs
as learning features. Let P be all properties associated with the entities in the
training set. For two properties pi, pj ∈ P w.r.t. a pair of entities (ev, ew) in the
training set, V SIMpi,pj (ev, ew) is defined as follows:

V SIMpi,pj (ev, ew) = max
(o,o′)∈V Ppi,pj

(ev ,ew)
sim(o, o′), (6)

V Ppi,pj (ev, ew) = {(o, o′) | o ∈ V alue(ev, pi), o
′ ∈ V alue(ew, pj)}

⋃
{(o, o′) | o ∈ V alue(ev, pj), o

′ ∈ V alue(ew, pi)}, (7)

where 0 ≤ V SIMpi,pj (·, ·) ≤ 1 and sim(·, ·) computes the value similarities:

– If both values are entities (URIs), the similarity equals 1 if their URIs are
identical or they are in the same consensus equivalence class; otherwise 0.

– If both values are numerics like xsd:double or xsd:integer, their similarity
equals 1 if their difference is less than a threshold (0.1); otherwise 0.

– If both values are boolean, their similarity equals 1 iff they are equal.
– For other cases, we normalize and split the value strings, and compute their

Jaccard similarity.

For a pair of entities (ev, ew) in the training set, its feature vector of d-
dimension is denoted by F = [f1, f2, . . . , fd]

′, where fl = V SIMpi,pj (ev, ew),

1 ≤ l ≤ d, pi, pj ∈ P and d ≤ |P|(|P|−1)
2 . In our approach, we use the subset of

property pairs {(pi, pj) | ∃(ev, ew) ∈ X×X, V SIMpi,pj (ev, ew) > 0} to construct
the feature vector. More sophisticated strategies may be developed to select a
better subset of property pairs for learning, but it is out of scope of this paper.

4.2 Ensemble Learning Model

Ensemble learning is a popular learning paradigm, which employs multiple base
learners and combines their predictions. The predictive performance of an en-
semble is usually much better than that of base learners. As aforementioned,
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the size of training set is relatively small because users can only accomplish a
small number of coreference tasks. The reason for using ensemble learning in our
approach is that, even the training examples are insufficient or the features used
for training are not strong enough, ensemble learning may still find a good clas-
sifier [4], which is very suitable to our application scenario. Various methods for
constructing ensembles have been developed using different base learning algo-
rithms, manipulating input features and so on. We choose manipulating training
examples to train base learners as this kind of methods is more suitable when
the number of training examples is relatively small [4]. We choose decision tree
as our base learner. Bagging and Boosting are two common ways to manipulate
training examples and Bagging may be more robust to noises in the training
examples than Boosting [17]. Because there are still a small amount of mistakes
or outliers in the consensus partition, we choose Bagging and build base learners
on random samples of training data.

Certain property pairs with their values are important for identifying coref-
erent entities. Unfortunately, when the training set is not representative, some
potentially important property pairs cannot be characterized by the training
data. As a result, they may not be chosen to split nodes in the construction
of decision trees. To address this problem, we combine our base learners using
Random Forests [2]. Random Forests is an ensemble classifier that combines a
collection of decision trees. When splitting each node of a decision tree, Ran-
dom Forests firstly randomly selects a subset of variables (property pairs in our
context) and then leverages the most important variable in the subset based
on information gain to split the node. In this way, the potentially important
pairs that are not characterized by the training data can also be used to identify
coreferent entities. Furthermore, Random Forests can handle training examples
with thousands or even tens of thousands of features. This is also very suitable
to our approach as P can be very large. For implementation, we use Weka 3 to
realize our algorithm and adopt the default value setting for the parameter of
the number of features when splitting a tree node. We set the parameter of the
number of trees to 30 in our experiments.

Example 3. In Example 1, two positive examples from the consensus par-
tition are (NewYorkCity, TheBigApple) and (NY, Manhattan). Other en-
tity pairs are negative examples such as (NewYorkCity, Manhattan) and
(NewYorkCity, NewYorkCounty). Using Random Forests, an ensemble of three
decision trees is learnt based on the training data. A decision tree uses differ-
ent property pairs to find coreferent entities , e.g., (homepage, homepage) and
(geometry,geometry). By using the classifier, we will identify Nanking coref-
erent with Nanjing.

5 Evaluation

We integrated coCoref in an online Linked Data browsing system called SView.
When a user browses an entity using SView, she can check candidate coref-
erent entities provided by SView if she wants to browse more relevant data.
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The candidates are founded by SView using owl:sameAs links and web services
like sameas.org2. The user just needs to accept or reject some candidates. All
the accepted ones are then added into the equivalence class of the current entity
being browsed in the user’s individual partition, and their data will be integrated
with that of the current entity immediately for browsing. In addition, the user
can also remove some previous accepted entities from the equivalence class listed
by SView if she believes they are no longer coreferent with others.

In this section, we will firstly present the evaluation on real users’ browsing
logs from SView. Then, we will report the experimental results on the OAEI
New-York Times (NYT) test. All the experiments were carried out on an 2.5GHz
Intel Core i5 CPU, Windows 7 and 1GB Java virtual memory.

5.1 Test on SView Dataset

Dataset. The target of this experiment is to evaluate how coCoref improves
the quality of user-judged results using consensus partition. We collected 36
registered users’ individual partitions in SView from Oct. 2013 to Dec. 2013 and
used them in this test. This dataset contains 1,489 entities from 76 distributed
data sources in terms of their URI namespaces. In average, a user viewed 41
entities. An entity was viewed by 2.6 users in average. To identify which entities
are truly coreferent, we invited three master students in our group with good
experience on entity coreference to manually build a reference partition for the
1,489 entities. For this reference partition, an entity is coreferent with 1.6 other
entities in average (the maximal size is 51), and 40.3% (704 in 1,489) entities
are coreferent with at least one other. This means that the entities in the SView
dataset have diverse numbers of coreferent entities.

Experiment setup. Using the reference partition as golden standard, we evaluated
the consensus partition and individual partitions generated from the 36 users in
terms of the following five measures: Precision, Recall, F-measure, Rand Index
and Normalized Mutual Information (NMI). These measures are well-known cri-
teria showing how well a partition matches the golden standard. For a partition
π, S(π) counts the total number of entity pairs in the same equivalence class:

S(π) = {(ev, ew) | ∃sa ∈ π, ev ∈ sa, ew ∈ sa, v < w}. (8)

Let πref denote the golden standard partition. The Precision, Recall and F-
measure for a partition π w.r.t. πref are calculated as follows:

Precision =
S(π)

⋂
S(πref )

S(π)
, Recall =

S(π)
⋂
S(πref )

S(πref )
,

F-measure =
2 ∗ Precision ∗ Recall
Precision + Recall

. (9)

Rand Index penalizes both false positive and false negative decisions in par-
tition, while NMI can be information-theoretically interpreted. Their values are

2 http://sameas.org/

http://sameas.org/
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Table 1. Performance comparison on the SView dataset

Precision Recall F-measure Rand Index NMI

Baseline 0.665 0.071 0.120 0.012 0.105
Best-of-K with highest F-measure 0.773 0.201 0.319 0.021 0.208
Best-of-K with highest Rand Index 0.863 0.186 0.306 0.090 0.439
Best-of-K with highest NMI 0.708 0.107 0.186 0.088 0.446
coCoref 0.807 0.297 0.434 0.997 0.951

both rational numbers in range [0, 1]; a higher value indicates a better partition.
Their detailed calculation methods can be found in [23].

In order to determine the threshold θ used for computing consensus partition
(see Eq. (5) in Section 3.2), we evaluated different values for θ and computed a
consensus partition using Algorithm 1 on each value. The Precision and Recall
of the resulting partitions w.r.t. various θ are shown in Fig. 2. According to
the figure, we set θ = 3 for our experiment since it led to very high precision
while keeping good recall (we prefer the precision larger than 0.8). This setting
distinguishes whether each entity pair is judged by at least three users. We ran
Algorithm 1 ten times and computed the average values of the five measures on
the consensus partition, respectively. The average running time was 1.02 seconds.
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Fig. 2. Precision and Recall versus different thresholds

We used the average values of the five measures on the 36 users’ individual
partitions as baseline. We compared coCoref with Best-of-K [9], which is a 2-
approximation algorithm to compute consensus partition. The idea of Best-of-K
is to select the best individual partition as consensus partition. To this end, we
selected the individual partitions with highest value of F-measure, Rand Index
and NMI respectively and compared the three results of Best-of-K with that of
coCoref. The comparison results are listed in Table 1.
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Result analysis. From Table 1, we can observe that the consensus partition com-
puted by coCoref has very high score of Rand Index and NMI as compared with
others. Thus, coCoref’s consensus partition matched the golden standard better
than others. coCoref also has the highest Recall and F-measure. All of these
means the coreference results from coCoref’s consensus partition are more com-
prehensive since it aggregated more coreferent entities. From the value of Pre-
cision on baseline, we can see the average accuracy of the 36 users’ coreference
results is low. There were not a few mistakes and outliers in many users’ corefer-
ence results. Compared with the Precision of baseline, the Precision of coCoref’s
consensus partition improved very largely by 21%. Furthermore, though many
users’ individual coreference results are noisy, coCoref’s consensus partition still
achieves close precision 0.807 to the best user’s result (0.863). This indicates that
coCoref is robust and can largely improve the accuracy of coreference results.

5.2 Test on OAEI NYT

Dataset. The target of this experiment is to evaluate the effectiveness of consen-
sus partition and ensemble learning algorithm on a large scale. We leveraged the
results of several tools participated in the OAEI NYT test to conduct this ex-
periment. The NYT test is to rebuild the linkages between the New-York Times
dataset and three external large-scale datasets: DBpedia, Freebase and Geon-
ames on the domains of locations, organizations and people. The tools that we
used were ObjectCoref [11], Zhishi.links [16] and Knofuss [15]. Zhishi.links and
Knofuss offered the download links of their coreference results in their papers.
We used the three tools’ results to simulate the coreference results of three users,
which contain 33,914 entities in all. We set θ = 2 in this experiment because
there are only three systems. Besides, the NYT test offers the golden standard
that can be used to evaluate the performance of coreference algorithms. The
golden standard is provided in random segments for cross-validation of learning
systems that use training data.

Experiment setup. We firstly built a consensus partition for the total 33,914
entities based on the results of the three tools. The original coreference results
of each tool are entity pairs. To form a partition, we assumed that transitivity
holds on each dataset, i.e., if a tool identifies two coreferent entity pairs (ei, ej)
and (ej , ek), then (ei, ek) is assumed to be also coreferent. Based on this assump-
tion, we clustered coreferent entities for each tool’s dataset and constructed its
partition. With the partitions for the three tools’ results, we applied coCoref to
build consensus partition. The running time for computing consensus partition
was 211.5 seconds. The F-measure of the consensus partition compared with the
coreference results of ObjectCoref, Zhishi.links and Knofuss that we collected
are listed in Table 2. As shown in the table, we can find that the consensus
partition of coCoref generally performed better than ObjectCoref, Zhishi.links
and Knofuss in terms of F-measure, which is in accordance with the results in
the previous experiment.
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Table 2. F-measure comparison on the OAEI NYT test

Consensus partition ObjectCoref Zhishi.links Knofuss

NYT–DBpedia loc. 0.948 0.859 0.910 0.891
NYT–DBpedia org. 0.939 0.882 0.900 0.916
NYT–DBpedia peop. 0.985 0.958 0.970 0.960
NYT–Freebase loc. 0.951 0.938 0.882 0.913
NYT–Freebase org. 0.959 0.901 0.870 0.889
NYT–Freebase peop. 0.988 0.973 0.926 0.942
NYT–Geonames loc. 0.937 0.938 0.910 0.878

We can obtain positive training examples from the consensus partition, which
are entity pairs within the same equivalence classes. We divided these positive
examples into 10 folds according to the division of the NYT golden standard.
The training examples out of the golden standard, which were false positive
coreference results of the consensus partition, were randomly assigned to the 10
folds as positive examples. Therefore, the number of positive examples is different
from that of the golden standard. For each fold, we randomly generated a set of
negative training examples holding the similar size of positives. Table 3 shows the
statistical data of the training set. We adopted 10-fold cross validation, each time
we learnt on each fold of training data, and validated the classifier’s Precision
and Recall on the combination of the remaining 9 folds. Then, we averaged the
Precision and Recall, and computed the average F-Measure. The learning results
compared with those of the consensus partition are shown in Fig. 3.

Table 3. Statistics of training data

Locations Organizations People

Positive examples in NYT–DBpedia 1,788 1,851 4,902
Negative examples in NYT–DBpedia 2,752 2,730 1,803
Positive examples in NYT–Freebase 1,773 2,812 4,868
Negative examples in NYT–Freebase 1,986 3,937 9,864
Positive examples in NYT–Geonames 1,692
Negative examples in NYT–Geonames 3,688

Result analysis. From Fig. 3 and Table 2, we observe that our ensemble learn-
ing algorithm achieved higher F-measure than ObjectCoref, Zhishi.links and
Knofuss, and is comparable to (sometimes better than) the consensus partition.
This indicates that, by using only a small subset (10%) of training data from the
consensus partition, our ensemble learning algorithm successfully found a similar
size of correct coreferent entities as consensus partition. Many coreferent entities
can be automatically identified by ensemble learning, therefore user involvement
can be significantly reduced in real-world scenarios. Also, we can observe that
the original F-measure of the consensus partition is already very good.
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Fig. 3. Performance of ensemble learning

6 Related Work

In the Semantic Web area, traditional works address entity coreference mainly
from two directions: fully-automatic and semi-automatic. One kind of automatic
methods is by equivalence reasoning in terms of standard OWL semantics, e.g.,
owl:sameAs [8] and inverse functional properties [10]; the other is by similarity
computation, with the assumption that instances denote the same object if they
share similar property-values [14,20]. Recent works also used machine learning
techniques to learn complex similarity combination rules [11,16]. We refer the
reader to the report of the OAEI instance matching track for more details [6].

While the automatic methods can suggest coreferent entities, for many ap-
plications they must still be manually verified by humans. Entity coreference is
recognized as the AI-complete problem, which is hard to be solved by computers
but easy for humans [25]. To leverage user involvement, the works in [3,18] used
crowdsourcing platforms for entity coreference, which differ from our deploy-
ment. Sig.ma [21] developed a Web-based user interface to view Linked Data,
which allowed users to give judgement by filtering property-values and data
sources. iamResearcher [25] addressed the scientific publication author identity
coreference problem for integrating distributed bibliographic datasets. Currently
they do not present any mechanism to learn from user-judged results.

To resolve disagreements among user-judged results, dedicated algorithms
were proposed to estimate the quality of users, allowing for the rejection and
blocking of the unreliable users [3,12]. After that, different user-judged results
can be aggregated using machine learning or other customizable methods [5].
Different from them, our approach uses consensus partition to minimize the
disagreements among all users, because even reliable users can make mistakes.
Furthermore, various theoretical results on consensus partition are provided in-
cluding the performance guarantee [9].

Some methods also focused on how to make the best use of human contribu-
tions, e.g., by machine learning to minimize user involvement while preserving
certain coreference accuracy [13,24], which implicitly assumed that a user can
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certainly give truth about coreference result, and there is only one single right
answer for each pair of coreferent entities, but both of the two assumptions do
not conform to the real world. In this paper, we ground our learning algorithm
on the consensus partition, which can accommodate inconsistencies and errors.
Moreover, we integrate the entity coreference tasks in users’ browsing activities,
which gives users incentives for active participation.

7 Conclusions and Future Work

Distributed human computation for entity coreference is important to improve
its accuracy, however, user involvement is often expensive, slow and error-prone.
In this paper, we proposed coCoref to leverage distributed human computation
and consensus partition for entity coreference. The main contributions of this
paper are as follows:

– All distributed users’ individual partitions are collected and aggregated to
build a consensus partition, which increases the scale of coreferent entities
and resolves the disagreements simultaneously.

– Ensemble learning is performed on the consensus partition to alleviate user
involvement, which automatically identifies a large number of coreferent en-
tities that users have not judged.

– We integrated coCoref with the Web browsing activities, which is different
from many approaches that use crowdsourcing platforms. We also conducted
experiments to demonstrate the good accuracy of consensus partition and
the considerable reduction of user involvement.

In future work, we look forward to studying other sophisticatedmethods to con-
sensus partition and ensemble learning with the consideration of user preference.
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