
Trusty URIs: Verifiable, Immutable, and

Permanent Digital Artifacts for Linked Data

Tobias Kuhn1 and Michel Dumontier2

1 Department of Humanities, Social and Political Sciences, ETH Zurich, Switzerland
2 Stanford Center for Biomedical Informatics Research, Stanford University, USA

tokuhn@ethz.ch, michel.dumontier@stanford.edu

Abstract. To make digital resources on the web verifiable, immutable,
and permanent, we propose a technique to include cryptographic hash
values in URIs. We call them trusty URIs and we show how they can
be used for approaches like nanopublications to make not only specific
resources but their entire reference trees verifiable. Digital artifacts can
be identified not only on the byte level but on more abstract levels such
as RDF graphs, which means that resources keep their hash values even
when presented in a different format. Our approach sticks to the core
principles of the web, namely openness and decentralized architecture, is
fully compatible with existing standards and protocols, and can therefore
be used right away. Evaluation of our reference implementations shows
that these desired properties are indeed accomplished by our approach,
and that it remains practical even for very large files.

Keywords: #eswc2014Kuhn.

1 Introduction

The vision of the semantic web is to make the content of the web machine-
interpretable, allowing, among other things, for automated aggregation and so-
phisticated search procedures over large amounts of linked data. As even human
users are sometimes easy to trick by spam and fraudulent content that can
be found on the web, we should be even more concerned in the case of au-
tomated algorithms that autonomously analyze semantic web content. Without
appropriate counter-measures, malicious actors can sabotage or manipulate such
algorithms by adding just a few carefully manipulated items to large sets of in-
put data. To solve this problem, we propose an approach to make items on the
(semantic) web verifiable, immutable, and permanent. This approach includes
cryptographic hash values in Uniform Resource Identifiers (URIs) and adheres to
the core principles of the web, namely openness and decentralized architecture.

A cryptographic hash value (sometimes called cryptographic digest) is a short
random-looking sequence of bytes (or, equivalently, bits) that are calculated in
a complicated yet perfectly predictable manner from a digital artifact such as a
file. The same input always leads to exactly the same hash value, whereas just a
minimally modified input leads to a completely different value. While there is an

V. Presutti et al. (Eds.): ESWC 2014, LNCS 8465, pp. 395–410, 2014.
c© Springer International Publishing Switzerland 2014



396 T. Kuhn and M. Dumontier

infinity of possible inputs that lead to a specific given hash value, it is impossible
in practice (for strong state-of-the-art hash algorithms) to reconstruct any of
the possible inputs just from the hash value. This means that if you are given
some input and a matching hash value, you can be sure that the hash value
was obtained from exactly that input. On this basis, our proposed approach
boils down to the idea that references can be made completely unambiguous
and verifiable if they contain a hash value of the referenced digital artifact. Our
method does not apply to all URIs, of course, but only to those that are meant
to represent a specific and immutable digital artifact.

Let us have a look at a concrete example: Nanopublications have been pro-
posed as a new way of scientific publishing [10]. The underlying idea is that
scientific results should be published not just as narrative articles but in terms
of minimal pieces of computer-interpretable results in a formal semantic no-
tation (i.e. RDF). Nanopublications can cite other nanopublications via their
URIs, thereby creating complex citation networks. Published nanopublications
are supposed to be immutable, but the current web has no mechanism to enforce
this: It is well-known that even artifacts that are supposed to be immutable tend
to change over time, while often keeping the same URI reference. For approaches
like nanopublications, however, it is important to specify exactly what version of
what resource they are based on, and nobody should be given the opportunity
to silently modify his or her already published contributions.

With the approach outlined below, nanopublications can be identified with
trusty URIs that include cryptographic hash values calculated on the RDF con-
tent. For example, let us assume that you have a nanopublication with identifier
I1 that cites another nanopublication with identifier I2. If you want to find the
content of I2, you can simply search for it on the web, not worrying whether the
source is trustworthy or not, and once you have found an artifact that claims
to be I2, you only have to check whether the hash value actually matches the
content. If it does, you got the right nanopublication, and if not you have to keep
searching (this can of course be automated). A trusty URI like I1 does not only
allow you to retrieve its nanopublication in a verifiable way, but in the next step
also all nanopublications it cites (such as I2) and all nanopublications they cite
and so on. Any trusty URI in a way “contains” the complete backwards history.
In this sense, the “range of verifiability” of a resource with a trusty URI is not
just the resource itself, but the complete reference tree obtained by recursively
following all contained trusty URIs. This is illustrated in Figure 1.

Another important property of nanopublications is that they are self-con-
tained in the sense that they consist not only of the actual scientific assertions
but also of their provenance information and meta-data. This means that nano-
publications contain self-references in the form of their own identifying URIs.
The calculation of a trusty URI must therefore allow for the resulting URI to
be part of the digital artifact it is calculated on (this might sound impossible at
first, but we show below how it can be achieved). This leads us to the formulation
of the following requirements for our approach:



Trusty URIs 397

http://...RAcbjcRI...

http://...RAQozo2w...

http://...RABMq4Wc...

http://...RAcbjcRI...

http://...RAQozo2w...

http://.../resource23

http://.../resource23
...

http://...RAUx3Pqu...

http://.../resource55

http://...RABMq4Wc...

http://.../resource55
http://...RARz0AX-...

...

http://...RAUx3Pqu...
...

http://...RARz0AX...
...

range of 
verifiability

Fig. 1. Schematic illustration of the range of verifiability for the trusty URI on the top
left. The green area shows its range of verifiability that covers all artifacts that can be
reached by following trusty URI links (green arrows).

1. To allow for verification of not only the given digital artifact but its entire
reference tree, the hash should be part of the URI of the artifact.

2. To allow for the inclusion of meta-data, digital artifacts should be allowed
to contain self-references (i.e. their own URIs).

3. The verification should be performed on a more abstract level than just
the bytes of a file, with modules for different types of content. It should be
possible to verify a digital artifact even if it is presented in a different format.

4. The complete approach should be decentralized and open: Everybody should
be allowed to make verifiable URIs without a central authority.

5. The approach should be based on current established standards and be com-
patible with current tools and formats, so that it can be used right away.

Though there are a number of related approaches, we are not aware of any
general approach that complies with all these requirements. In particular, re-
quirements 2 and 3 are not addressed by existing approaches. The main benefits
of artifacts with a trusty URI are that they are (1) verifiable, (2) immutable,
and (3) permanent. Let us briefly explain what we mean by these properties.

Trusty URI artifacts are verifiable in the sense that a retrieved artifact for
a given URI can be checked to contain the content the URI is supposed to
represent. It can be detected if the artifact got corrupted or manipulated on
the way, assuming that the trusty URI for the required artifact is known, e.g.
because another artifact contains it as a link. (Of course, somebody can give you
a manipulated artifact with a different trusty URI.)

It directly follows that trusty URI artifacts are immutable, as any change in
the content also changes its URI, thereby making it a new artifact. Again, you
can of course change your artifact and its URI and claim that it has always
been like this. You can get away with that if the trusty URI has not yet been
picked up by third parties, i.e. linked by other resources. Once this is the case,
you cannot change it anymore, because all these links will still point to the old
trusty URI and everybody will notice that your new artifact is a different one.



398 T. Kuhn and M. Dumontier

Third, trusty URI artifacts are permanent if we assume that there are search
engines and web archives crawling the artifacts on the web and caching them.
In this situation, any artifact that is available on the web for a sufficiently long
time will remain available forever. If an artifact is no longer available in its
original location (e.g. the one its URI resolves to), one can still retrieve it from
the cache of search engines or web archives. The trusty URI guarantees that it
is the artifact you are looking for, even if the location of the cached artifact is
not trustworthy or it was cached from an untrustworthy source.

2 Background

There are a number of related approaches based on cryptographic hash values.
The Git version control system (git-scm.com), for example, uses hash values
to identify commits of distributed repositories. An important difference to our
approach is that hash values (called checksums in Git) are used to identify the
respective artifacts (commits in Git) only within a given repository and not on
the web scale. A second important difference is that the hash represents the
byte content of files, whereas our approach allows for digital content at different
levels of abstraction. On the technical side, Git uses the SHA-1 algorithm, which
is no longer considered secure (which is not a serious problem for Git, because
typically only trusted parties have write access to a repository).

The proposed standard for Named Information (ni) URIs [9] is another im-
portant related approach. It introduces a new URI protocol ni to refer to digital
artifacts with hash values in a uniform way. These are two examples of ni-URIs:

ni:///sha-256;UyaQV-Ev4rdLoHyJJWCi11OHfrYv9E1aGQAlMO2X -Q

ni://example.org/sha-256;5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70

The ni-URI approach allows for different hash algorithms, such as SHA-256
(which is, in contrast to SHA-1, considered secure) and optional specification of
an authority, such as example.org, where the artifact can be found. It misses,
however, some of the features of our requirements list. As with Git, ni-URIs
do not define how digital artifacts can be represented at a more abstract level
than their sequence of bytes, and self-references are not supported. Furthermore,
current browsers do not recognize the ni protocol, and administrator access to a
server is needed to make these URIs resolvable. The latter two points are not a
real problem in the long run, but they might hinder the adoption of the standard
in the first place. The approach presented in this paper is complementary and
compatible. We propose trusty URIs, which can be mapped to ni-URIs but are
more flexible and provide additional features.

There are a number of existing approaches to include hash values in URIs
for verifiability purposes, e.g. for legal documents [11]. The downside of such
custom-made solutions is that custom-made software is required to generate,
resolve, and check the hash references. Standards have been proposed for the
verification of quantitative datasets [1] and XML documents [2], but they are
not general enough to cover RDF content (at least not in a convenient way)



Trusty URIs 399

and keep the hash value separate from the URI reference, which means that the
range of verifiability does not directly extend to referenced artifacts.

To calculate hash values on content that is more abstract than just a fixed
sequence of bytes, common approaches require the normalization (also called
canonicalization) of the respective data structures such as RDF graphs. In the
general case, RDF graph normalization is known to be a very hard problem, pos-
sibly unsolvable in polynomial time [8]. This stems from the difficulty of handling
blank nodes, i.e. identifiers that are only unique in a local scope and can be lo-
cally renamed without effects on semantics. Without blank nodes, normalization
boils down to sorting of RDF triples, which can be performed in O(n logn). The
need for sorting can even be eliminated by using incremental cryptography [3],
which allows for calculating digests for RDF graphs without blank nodes in lin-
ear time [17]. Such incremental approaches, however, are not as well-studied as
mainstream cryptography methods, and open the possibility of new kinds of
attacks [16]. Efficient normalization algorithms that support blank nodes put
restrictions on the graph structure and require additional (semantically neutral)
triples to be added to some graphs before they can be processed [8,17].

Similar methods to the ones presented in this paper, i.e. calculating hash val-
ues in a format-independent manner, have been proposed to track the provenance
of data sets [14]. This has been used to define a conceptualization of multi-level
identities for digital works based on cryptographic digests and formal semantics,
covering different conceptual levels from single HTTP transactions to high-level
content identifiers [15].

3 Approach

We propose here a modular approach, where different modules handle different
kinds of content on different conceptual levels of abstraction, from byte level to
high-level formalisms. Besides that, the most important features of our approach
are self-references, the handling of blank nodes, and the mapping to ni-URIs.

General Structure. Trusty URIs end with a hash value in Base64 notation
(i.e. A–Z, a–z, 0–9, -, and representing the numbers from 0 to 63) that is
preceded by a module identifier. This is an example:

http://example.org/r1.RA5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70

Everything that comes after r1. is the part that is specific to trusty URIs, which
we call artifact code. Its first two characters RA identify the module specifying
its type (first character) and version (second character). The remaining 43 char-
acters represent the actual hash value. The modules defined so far use SHA-256
hashes, but future modules might use other hash functions. For convenience
reasons, a file extension like .nq can be added to the end of such URIs:

http://example.org/r1.RA5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70.nq



400 T. Kuhn and M. Dumontier

This is technically not a trusty URI anymore, but it is easy to strip the extension
and get the respective trusty URI from it. As the hash is located in the final
part of the URI, it is straightforward to store it in file names and to deal with
it in a local file system without worrying about the first part of the URI:

r1.RA5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70.nq

We call these trusty files. The precise specification of trusty URIs can be found
online.1 As a general side remark, it is noteworthy that our approach entails
a certain shift of authority: Once a trusty URI is established, its artifact code
defines what object it refers to, and the issuing authority has no longer the power
to change its meaning.

Self-References. To support self-references, i.e. resources that contain their
own trusty URI, the generation process involves not just to compute the hash
from a given artifact but to actually transform the artifact into a new ver-
sion that contains the newly generated trusty URI. For example, a resource
like http://example.org/r2 might have the following RDF content with a self-
reference:

<http://example.org/r2> dc:description "something" .

To transform such a resource, we first define the structure of the new trusty URI
by adding a placeholder c where the artifact code should eventually appear. In
the given example, the content would then look like this:

<http://example.org/r2. c > dc:description "something" .

Note that it is necessary to add a non-Base64 character (in this case a dot “.”)
as a delimiter in front of c if it would otherwise be preceded by a Base64
character. On such content, we can calculate a hash value by interpreting the
placeholder c as a blank space (the result is unambiguous as URIs are not
allowed to otherwise contain blank spaces). Then we can replace the placeholder
by the calculated artifact code and we end up with a trusty URI like this:

http://example.org/r2.RAi7LA7Zlew99hdp0joN0APT4 uB3XDFwduiKXnNBja5E

For strong hashing algorithms, it is impossible in practice that this calculated
sequence of bytes was already part of the original content before the transfor-
mation. This entails that the replacing of the placeholder is reversible.

This reversibility is needed once an existing trusty URI resource containing
self-references should be verified. We can revert the transformation described
above by replacing all occurrences of the artifact code with a blank space, and
then calculate the hash in the same way as when a resource is transformed. The
content is successfully verified if and only if the resulting hash matches the one
from the trusty URI.

1 https://github.com/trustyuri/trustyuri-spec

https://github.com/trustyuri/trustyuri-spec


Trusty URIs 401

Blank Nodes. The support for self-references requires us to transform the
preliminary content of a trusty URI artifact into its final version, and we can
make use of this transformation to also solve the problem of blank nodes in RDF.
Our approach is to eliminate blank nodes during the transformation process by
converting them into URIs. Blank nodes can be seen as existentially quantified
variables, which we can turn into constants by Skolemization, i.e. by introducing
URIs that have not been used anywhere before. Using the trusty URI with a
suffix enumerating the blank nodes, we can create such URIs guaranteed to have
never been used before (the artifact code being just a placeholder at first, as
above):

http://example.org/r3.RACjKTA5dl23ed7JIpgPmS0E0dcU-XmWIBnGn6Iyk8B-U..1

http://example.org/r3.RACjKTA5dl23ed7JIpgPmS0E0dcU-XmWIBnGn6Iyk8B-U..2

The two dots “..” indicate that these were derived from blank nodes, but they
are now immutable URIs. This approach solves the problem of blank nodes for
normalization, is completely general (i.e. works on any possible input graph),
fully respects RDF semantics, and does not require auxiliary triples to be added.

ni-URIs. Our approach is compatible with ni-URIs (see above), and all trusty
URIs can be transformed into ni-URIs, with or without explicitly specifying an
authority:

ni:///sha-256;5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70

ni://example.org/sha-256;5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70

The fact that the module identifier is lost does not affect the uniqueness of the
hash, but to verify a resource all available modules have to be tried in the worst
case. To avoid this, we propose to use an optional argument module:

ni:///sha-256;5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70?module=RA

Modules. There are currently two module types available: F for representing
byte-level file content and R for RDF graphs. For both types, version A is the
only version available as of now, leading to the module identifiers FA and RA.
For module FA, a hash value is calculated using SHA-256 on the content of a
file in byte representation. The hash value is transformed to Base64 notation
(after appending two zero-bits), and the resulting 43 characters make up the
hash part of the trusty URI. Module RA works on RDF content and can cover
multiple named graphs. It supports self-references and handles blank nodes as
described above. To calculate the hash, the RDF statements are sorted, then
they are serialized in a given way (interpreting the artifact’s hash as a blank
space), and finally SHA-256 is applied in the same way as for FA.

Note that for an RDF document, either of the modules FA and RA could
be used. The right choice depends on what the URI should identify. If it should
identify a file in a particular format and containing a fixed number of bytes, then
FA should be used. If it should, however, identify RDF content independently of



402 T. Kuhn and M. Dumontier

its serialization in a particular file, then RA should be used. For modules such as
RA that operate not just on the byte level, content negotiation can be used to
return the same content in different formats (depending on the requested content
type in the HTTP request) when a trusty URI is accessed.

Even though we focus on RDF in this paper, the approach and architecture
of trusty URIs are general and we plan to provide modules for additional kinds
of content in the future. This could include tabular or matrix content (e.g. CSV
or Excel files), content with tree structure (e.g. XML), hypertext (e.g. HTML
or Markdown), bitmaps (e.g. PNG or JPEG), and vector graphics (e.g. SVG).
New modules might also become necessary if the used hash algorithms should
become vulnerable to attacks in the future.

4 Implementation

There are currently three trusty URI implementations in the form of code li-
braries in Java, Perl, and Python.2 The Java implementation uses the Sesame
library [5] for RDF processing and the nanopub-java library3 for dealing with
nanopublications. The Perl implementation makes use of the Trine package for
processing RDF, and the Python implementation uses the RDFLib package.4

These implementations provide a number of common functions for the differ-
ent modules and formats. Currently, the following functions are available:

CheckFile takes a file and validates its hash by applying the respective module.
ProcessFile takes a file, calculates its hash using module FA, and renames it

to make it a trusty file.
TransformRdf takes an RDF file and a base URI, and transforms the file into

a trusty file using module RA.
TransformLargeRdf is the same as above but using temporary files instead

of loading the entire content into memory.
TransformNanopub takes a nanopublication file and calls TransformRdf to

transform it.
CheckLargeRdf checks an RDF file using module RA without loading the whole

content into memory but using temporary files instead.
CheckSortedRdf checks an RDF file assuming that it is already sorted (and

raises an error otherwise). The current implementations generate such sorted
files by default, but this is not required by the specification.

CheckNanopubViaSparql takes a SPARQL endpoint URL and a trusty URI
representing a nanopublication, retrieves the nanopublication from the repos-
itory, and tries to validate it.

RunBatch reads commands (any of the above) from a file and executes them
one after the other.

2 https://github.com/trustyuri/trustyuri-java,
https://github.com/trustyuri/trustyuri-perl,
https://github.com/trustyuri/trustyuri-python

3 https://github.com/Nanopublication/nanopub-java
4 http://search.cpan.org/dist/RDF-Trine/ , https://github.com/RDFLib/rdflib

https://github.com/trustyuri/trustyuri-java
https://github.com/trustyuri/trustyuri-perl
https://github.com/trustyuri/trustyuri-python
https://github.com/Nanopublication/nanopub-java
http://search.cpan.org/dist/RDF-Trine/
https://github.com/RDFLib/rdflib


Trusty URIs 403

Table 1. Comparison of the different trusty URI libraries (‘�’ = implemented features;
‘–’ = cases where the necessary features are not available in the used RDF libraries)

module function format Java Perl Python

(general) RunBatch � � �

File
CheckFile � � �
ProcessFile � � �

RDF

CheckFile

RDF/XML � � �
Turtle � � �
N-Triples � � �
TriX � – �
TriG � � –
N-Quads � � �

CheckLargeRdf (all of the above) �
CheckSortedRdf (all of the above) �

TransformRdf

RDF/XML � �
Turtle � �
N-Triples � �
TriX � – �
TriG � – –
N-Quads � �

TransformLargeRdf (all of the above) �

TransformNanopub
TriX � –
TriG � – –
N-Quads �

CheckNanopubViaSparql �

Not all these functions are currently supported by all implementations, as
shown in Table 1.

5 Application

Below, we describe two applications of the trusty URI approach: one involving
nanopublications (nanobrowser) and one involving a dataset in RDF format with
a large variation in file size (Bio2RDF).

5.1 Nanobrowser

Nanobrowser [13] is a prototype of a web application via which nanopublica-
tions can be searched, browsed, published, and commented. Figure 2 shows a
screenshot. Nanobrowser applies a number of extensions to the nanopublication
approach, such as support for semi-formal and informal statements (represented
by atomic and independent English sentences, i.e. a kind of controlled natu-
ral language [12]) and support for meta-nanopublications, e.g. nanopublications
containing opinions on other nanopublications.



404 T. Kuhn and M. Dumontier

1

2

Fig. 2. Screenshot of the nanobrowser interface. A green jigsaw puzzle icon (1) indi-
cates successful verification of nanopublications, which can be downloaded (and verified
locally) in different formats (2).

All nanopublications created via the nanobrowser interface are identified by
trusty URIs. If a user requests a nanopublication with a given trusty URI, it
is retrieved from the internal triple store and verified before it is shown to the
user. A green jigsaw puzzle icon indicates that the verification was successful (see
Figure 2). A particular nanopublication can be downloaded in different formats
and its trusty URI can be checked locally and independently of the format.

5.2 Bio2RDF

Bio2RDF (bio2rdf.org) is an open-source project focused on the provision of
linked data for the life sciences [6,4]. Bio2RDF scripts convert heterogeneously
formatted data (e.g. flat files, tab-delimited files, dataset-specific formats, SQL,
and XML) into a common format — RDF. Bio2RDF entities are identified using
URIs that are resolvable using the Bio2RDF Web Application, a servlet that an-
swers HTTP requests by formulating SPARQL queries against the appropriate
SPARQL endpoints. Over 1 billion triples for 19 resources were made available
in the second coordinated release of Bio2RDF [6], and mappings to the Seman-
ticscience Integrated Ontology [7] have been established. Together, these serve
to provide ontology-based access to data on the emerging semantic web.

The release numbers of Bio2RDF provide a way to refer to a specific version
of a dataset, e.g. for citing it in a scientific article or a nanopublication. How-
ever this assumes trust in the Bio2RDF developers that they do not silently
change the data of a particular release. Furthermore, an intruder might be able
to change parts of the data without being noticed, the data might get corrupted



Trusty URIs 405

or manipulated when transferred or downloaded, and there might be no other
trusted parties providing the dataset if the Bio2RDF website should become
temporarily or permanently inaccessible. The use of trusty URIs would solve all
these problems. Below we show an evaluation on release 2 of Bio2RDF, and we
plan to provide trusty URIs for the datasets of its upcoming next release.

6 Evaluation

Below we present some experiments on the trusty URI concept and its imple-
mentations, based on two collections of RDF files.

6.1 Hash Generation and Checking on Nanopublications

To test our approach and to evaluate its implementations, we first took a col-
lection of 156,026 nanopublications in TriG format that we had produced in
previous work [13]. We transformed these nanopublications into the formats N-
Quads and TriX using existing off-the-shelf converters. Then, we transformed
these into trusty URI nanopublications using the function TransformNanopub
of the Java implementation. To be able to check not only positive cases (where
checking succeeds) but also negative ones (where checking fails), we made copies
of the resulting files where we changed a random single byte in each of them
(only considering letters and numbers, and never replacing an upper-case letter
by its lower-case version or vice versa, as some keywords are not case-sensitive).
The resulting six sets of 156,026 files each (three formats, each in two versions:
valid and corrupted) were the basis for our evaluation.

The first important result is that all original nanopublications ended up with
the same trusty URI, no matter which format was used. This shows that our
implementations are successful in handling the content on a more abstract level
(i.e. RDF graphs in this case) leading to identical hash values for files that
contain the same content but are quite different on the byte level.

Next, we checked the trusty URI of each nanopublication file with the function
CheckFile of all implementations that support the respective format. The three
right-most columns of Table 2 show the results. For all valid files (i.e. those we
did not corrupt), all implementations correctly verified their trusty URIs. For
the corrupted ones, where we randomly changed one byte, the checks almost
always failed (by either calculating a different hash value than the one of the
trusty URI, or by raising an error that the respective file was not well-formed).

The only corrupted files that were successfully validated were 1,290 TriX files
(0.83%) when running the Java implementation and 181 TriX files (0.12%) when
running the Python implementation. Looking at these concrete cases reveals that
they are all harmless. In these cases, the randomly changed byte was not part of
the RDF content, but of the meta-information. Due to minor bugs in the used
RDF libraries, this meta-information is not sufficiently checked, which leads to
accepting the valid content instead of failing because of violated well-formedness.
All our TriX files start with the following two lines:



406 T. Kuhn and M. Dumontier

Table 2. Performance and results of the different implementations for checking trusty
URI nanopublications in normal mode (top) and batch mode (bottom) on valid and
corrupted files

Normal Mode

method time in seconds result

impl. format mean stdev min max histogram valid invalid error

va
li
d
fi
le
s

Java N-Quads 0.5229 0.0591 0.3750 5.5420

0 0.5 1 1.5

100% 0% 0%

Java TriG 0.5113 0.0569 0.3650 5.5340 100% 0% 0%

Java TriX 0.5383 0.0648 0.3900 5.5240 100% 0% 0%

Perl N-Quads 0.7843 0.1713 0.5990 5.7960 100% 0% 0%

Perl TriG 0.7901 0.1734 0.6030 5.7840 100% 0% 0%

Python N-Quads 0.1935 0.0164 0.1150 0.3050 100% 0% 0%

Python TriX 0.1912 0.0162 0.1190 0.3460 100% 0% 0%

co
rr
u
p
te
d
fi
le
s

Java N-Quads 0.5227 0.0591 0.3450 5.5420 0% 99.72% 0.28%

Java TriG 0.5003 0.0621 0.3200 5.4250 0% 83.37% 16.63%

Java TriX 0.5322 0.0655 0.3360 5.5230 0.83% 84.15% 15.03%

Perl N-Quads 0.7842 0.1712 0.6000 5.8880 0% 100% 0%

Perl TriG 0.7872 0.1727 0.5700 5.8230 0% 84.49% 15.51%

Python N-Quads 0.1934 0.0165 0.1200 0.3080 0% 100% 0%

Python TriX 0.1884 0.0176 0.1070 0.2760 0.12% 84.46% 15.42%

Batch Mode

method time in seconds result

impl. format mean stdev min max histogram valid invalid error

va
li
d
fi
le
s

Java N-Quads 0.0019 0.0062 0.0013 1.7202

0 0.01 0.02

100% 0% 0%

Java TriG 0.0009 0.0050 0.0008 1.7412 100% 0% 0%

Java TriX 0.0011 0.0050 0.0009 1.5656 100% 0% 0%

Perl N-Quads 0.0172 0.0006 0.0171 0.0679 100% 0% 0%

Perl TriG 0.0214 0.0016 0.0211 0.0872 100% 0% 0%

Python N-Quads 0.0070 0.0011 0.0065 0.0644 100% 0% 0%

Python TriX 0.0070 0.0009 0.0066 0.0578 100% 0% 0%

co
rr
u
p
te
d
fi
le
s

Java N-Quads 0.0012 0.0062 0.0006 1.6559 0% 99.72% 0.28%

Java TriG 0.0010 0.0049 0.0003 1.6335 0% 83.37% 16.63%

Java TriX 0.0011 0.0044 0.0005 1.3451 0.83% 84.15% 15.03%

Perl N-Quads 0.0171 0.0005 0.0169 0.0732 0% 100% 0%

Perl TriG 0.0195 0.0055 0.0007 0.0841 0% 84.49% 15.51%

Python N-Quads 0.0069 0.0011 0.0065 0.1716 0% 100% 0%

Python TriX 0.0063 0.0021 0.0006 0.1325 0.12% 84.46% 15.42%



Trusty URIs 407

<?xml version=’1.0’ encoding=’UTF-8’?>

<TriX xmlns=’http://www.w3.org/2004/03/trix/trix-1/’>

The RDF implementations in Java and Python (or the respective system utilities
to load XML files) do not properly check these two lines containing meta-data.
Both libraries raise no error if a file starts with something like <?Aml instead
of <?xml (106 files); the Python library accepts invalid XML version numbers
such as 1.a (73 files); and the Java library does not check the TriX namespace
argument, raising no error if the argument name is changed to something like
xmlnZ (175 files) or the URI is wrong, such as .../Prix-1/ (1007 files). In
addition, both libraries correctly accept the rare cases (2 files) where the XML
version was changed from 1.0 to 1.1, which is the only other valid XML version
as of now (though much less common).

6.2 Performance Tests on Nanopublications

Next, we used the same set of nanopublication files to test the performance of the
different modules for checking trusty URI artifacts in different formats. There
are two scenarios of how to run such checks: One can run one after the other,
as when a small number of nanopublications are manually checked, or one can
execute such checks in the form of a batch job in a single program run, which
is the preferred procedure to run a large number of checks without supervision.
The time required per file is typically much lower in batch mode, as the runtime
environment has to start and finalize only once. Therefore it makes sense to have
a look at both scenarios.

Table 2 shows the results of these performance checks for the normal mode
(top) and batch mode (bottom). These results and the ones presented below
were obtained on a Linux server (Debian) with 16 Intel Xeon CPUs of 2.27GHz
and 24GB of memory. As expected, the times are much lower in batch mode, but
checking is reasonably fast also in normal mode. The average values are always
below 0.2 seconds. Using Java in batch mode even requires only 0.1ms per file.
Apart from the runtimes, the two modes had no effect on the results.

6.3 Performance Tests on Bio2RDF

The tests above cover only very small RDF files, but our approach should also
work for larger files. For that reason, we performed a second evaluation on
Bio2RDF, which includes much larger files. Release 2 of this dataset contains
874 RDF files in N-Triples format, but 16 of them lead to well-formedness errors
when loaded with the current version of the Sesame library. (These problems
might be related to the transition to the new RDF 1.1 standard, and they will
be fixed for the next release of Bio2RDF.) This leaves us with 858 files of sizes
ranging from 1.4kB to 177GB.

Figure 3 shows the results of these performance tests. There is a lot of ran-
dom variation on the lower end, where files are smaller than 10MB and require
less than three seconds to be processed. For the upper part, time values nicely



408 T. Kuhn and M. Dumontier

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

se
co

nd
s 

pe
r 

fil
e

 

TransformLargeRdf
TransformRdf

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

file size in bytes

se
co

nd
s 

pe
r 

fil
e

 

 

CheckLargeRdf
CheckFile
CheckSortedRdf

Fig. 3. Time required for transforming (top) and checking (bottom) files versus file
size for the Bio2RDF dataset. The dotted line shows the available memory.

follow near-linear trajectories (for the functions that do not load the whole con-
tent into memory). When hash calculation involves statement sorting, there is a
strict theoretical limit on its performance due to the computational complexity
ofO(n log n). TransformLargeRdf and CheckLargeRdf are superior to their coun-
terparts only for very large files, and CheckSortedRdf is, as expected, faster than
the other checking procedures. A large file of 2GB requires about five minutes to
be transformed and about two minutes to be checked. Files larger than available
memory take more time, but even the largest file of the dataset of 177GB was
successfully transformed in 29 hours and checked in about three hours.

7 Conclusions

We have presented a proposal for unambiguous URI references to make dig-
ital artifacts on the (semantic) web verifiable, immutable, and permanent. If
adopted, it could have a considerable impact on the structure and functioning of
the web, could improve the efficiency and reliability of tools using web resources,
and could become an important technical pillar for the semantic web, in particu-
lar for scientific data, where provenance and verifiability are crucial. To improve



Trusty URIs 409

reproducibility, for example, scientific data analyses might be conducted in the
future within “data projects” analogous to today’s software projects. The de-
pendencies in the form of datasets could be automatically fetched from the web,
similar to what Apache Maven (maven.apache.org) does for software projects
but decentralized and verifiable. In general, trusty URIs might contribute in a
significant way to shape the future of publishing on the web.

References

1. Altman, M., King, G.: A proposed standard for the scholarly citation of quantita-
tive data. D-Lib Magazine 13(3), 5 (2007)

2. Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML signature syntax
and processing. Recommendation, W3C (June 2008)

3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

4. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards
a mashup to build bioinformatics knowledge systems. Journal of Biomedical Infor-
matics 41(5), 706–716 (2008)

5. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A generic architecture
for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

6. Callahan, A., Cruz-Toledo, J., Ansell, P., Dumontier, M.: Bio2RDF release 2: Im-
proved coverage, interoperability and provenance of life science linked data. In:
Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013.
LNCS, vol. 7882, pp. 200–212. Springer, Heidelberg (2013)

7. Callahan, A., Cruz-Toledo, J., Dumontier, M.: Ontology-based querying with
Bio2RDF’s linked open data. Journal of Biomedical Semantics 4(suppl. 1), S1
(2013)

8. Carroll, J.J.: Signing RDF graphs. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, pp. 369–384. Springer, Heidelberg (2003)

9. Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B., Keranen, A., Hallam-Baker,
P.: Naming things with hashes. Standards Track RFC 6920, Internet Engineering
Task Force (IETF) (April 2013)

10. Groth, P., Gibson, A., Velterop, J.: The anatomy of a nano-publication. Information
Services and Use 30(1), 51–56 (2010)

11. Hoekstra, R.: The MetaLex document server. In: Aroyo, L., Welty, C., Alani, H.,
Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part
II. LNCS, vol. 7032, pp. 128–143. Springer, Heidelberg (2011)

12. Kuhn, T.: A survey and classification of controlled natural languages. Computa-
tional Linguistics 40(1), 121–170 (2014)

13. Kuhn, T., Barbano, P.E., Nagy, M.L., Krauthammer, M.: Broadening the scope of
nanopublications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph,
S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 487–501. Springer, Heidelberg (2013)

14. McCusker, J.P., Lebo, T., Chang, C., McGuinness, D.L., da Silva, P.P.: Parallel
identities for managing open government data. IEEE Intelligent Systems 27(3), 55
(2012)



410 T. Kuhn and M. Dumontier

15. McCusker, J.P., Lebo, T., Graves, A., Difranzo, D., Pinheiro, P., McGuinness,
D.L.: Functional requirements for information resource provenance on the web.
In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 52–66. Springer,
Heidelberg (2012)

16. Phan, R.C.W., Wagner, D.: Security considerations for incremental hash functions
based on pair block chaining. Computers & Security 25(2), 131–136 (2006)

17. Sayers, C., Karp, A.H.: Computing the digest of an RDF graph. Technical Report
HPL-2003-235(R.1), Mobile and Media Systems Laboratory, HP Laboratories, Palo
Alto, USA (2004)


	Trusty URIs: Verifiable, Immutable, and
Permanent Digital Artifacts for Linked Data

	1 Introduction
	2 Background
	3 Approach
	4 Implementation
	5 Application
	5.1 Nanobrowser
	5.2 Bio2RDF

	6 Evaluation
	6.1 Hash Generation and Checking on Nanopublications
	6.2 Performance Tests on Nanopublications
	6.3 Performance Tests on Bio2RDF

	7 Conclusions
	References




