

C. Stephanidis and M. Antona (Eds.): UAHCI/HCII 2014, Part II, LNCS 8514, pp. 400–409, 2014.
© Springer International Publishing Switzerland 2014

Skill Development Framework for Micro-Tasking

Shin Saito

1, Toshihiro Watanabe

2, Masatomo Kobayashi

1, and Hironobu Takagi

1

1 IBM Research – Tokyo, 5-6-52 Toyosu, Koto, Tokyo 135-8511, Japan
{shinsa,mstm,takagih}@jp.ibm.com

2 The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
toshihiro_watanabe@mist.i.u-tokyo.ac.jp

Abstract. We propose a framework of micro-tasking that intrinsically supports
the development of workers’ skills. It aims to help developers of micro-tasking
systems add skill development capabilities to their systems with minimal devel-
opment costs. This will allow micro-tasking of skill-intensive work and im-
prove the sustainability of micro-tasking systems. Based on the results of the
micro-tasking projects we have carried out, our framework has three core mod-
ules: tutorial producer, task dispatcher, and feedback visualizer, which are sup-
ported by a back-end skill assessment engine. In closing, we discuss ways to
apply the proposed framework to realistic micro-tasking situations.

Keywords: Crowdsourcing, Micro-Tasks, Skill Assessment, Skill Develop-
ment, Gamification, Senior Workforce.

1 Introduction

Crowdsourcing provides an emerging type of labor market. There are two major
types: macro-tasking and micro-tasking. Macro-tasks involve freelancers who work
on complex tasks in projects or contests. Micro-tasks split a job into small pieces of
work distributed to a number of workers via the Internet. Although both types of
crowdsourcing call for skillful workers who can produce high-quality outcomes, par-
ticularly for micro-tasking there has been little attention to developing the skills of the
workers, so the scope has generally been limited to lightweight tasks that need rela-
tively less skill. The quality of the outcomes is controlled by filtering for workers who
have higher skills, without considering the development of the individual workers’
skills. However, if micro-tasking systems support skill development, they can produce
outcomes of higher-quality and make their use more sustainable. This could expand
the new labor market in two ways. First, it can provide younger workers with voca-
tional training to learn job skills. Second, it can allow senior workers, who have
advanced vocational knowledge but limited skills in information-communication
technologies (ICT), to learn ICT skills so that they can do online work. The skill de-
velopment support will make micro-tasking more suitable for more advanced tasks
that call for expert skills.

This paper proposes a micro-tasking framework that develops the skills of the
workers. First we review the literature as well as two of our own micro-tasking

 Skill Development Framework for Micro-Tasking 401

projects, leading us to three capabilities the framework needs to have: tutorial produc-
er, task dispatcher, and feedback visualizer. The tutorial producer generates learning
materials based on task examples. The task dispatcher assigns a series of tasks to each
worker based on the worker’s learning curve. The feedback visualizer provides each
worker with feedback about their efforts, their contributions, and the results of their
skill development. The three functions require a back-end analytics module to analyze
the results produced by each worker to assess the profiles of each worker, e.g., work
accuracy, and the characteristics of each task, e.g., difficulty. Since the modules are
encapsulated and connected with abstract interfaces, implementations of each module
can be reused among different types of micro-tasking. This allows the developers to
build micro-tasking systems that support skill development, by simply implementing
task-specific operations.

This paper is organized as follows. In the next section, we review related work.
Section 3 reviews our micro-tasking projects and discusses some implications. Sec-
tion 4 describes the proposed framework. Then we discuss the applications of our
framework in Section 5 and conclude the paper.

2 Related Work

Regarding worker education, macro-tasking services such as oDesk [29] and
CrowdFlower [30] provide various training material and the learning history of each
worker is used by requesters to choose workers. In contrast, skill development in mi-
cro-tasking receives a weaker focus. Amazon Mechanical Turk [31] and other micro-
tasking platforms are interested in how to use inexpensive workers to produce more
accurate results in less time. Although some studies have proposed frameworks to
solve complex tasks via micro-tasking [1, 2], they paid little attention to skill devel-
opment. One of the few exceptions is the work of Satzger et al. [3], which used the
“tandem task assignment” approach to improve the skills of low-confidence workers.
Kittur et al. [4] pointed out the potential of “crowd work-based education”. Weld et
al. [5] discussed personalized online education in crowdsourcing. They suggested
maximizing learners’ skills, whereas the typical goal in crowdsourcing is minimizing
the costs to obtain high quality results. RABJ [6] tried to educate workers by selecting
managers from the workers. These managers are responsible for creating task-specific
guidelines and validating workers’ output. Duolingo [32] allows users to learn foreign
languages while contributing to crowdsourced translation work.

The assessment of workers’ skills is essential for skill development. Several me-
thods have been proposed with probabilistic models to simultaneously estimate both
the skill of the workers and the difficulty of tasks [7-9]. There are also some studies
that addressed task assignment based on the estimated skills [10, 11]. Tracking skill
improvement over time is also essential. Donmez et al. [12] worked on the modeling
of skills that are changing over time. However their system only handled short-term
changes caused by fatigue. The changes were related to the time spent working, and
were not affected by the properties of the tasks.

402 S. Saito et al.

Fig. 1. Screenshots of (a) video captioning and (b) proofreading interfaces

3 Implications of Micro-Tasking Projects

We now describe two micro-tasking projects conducted by the authors and analyze
them to clarify the requirements for our framework. In both cases the workers were
unpaid volunteers and certain skills were required to complete the tasks. The two
projects have similar implications for the skill development of the workers. These
implications span many of the issues discussed in existing crowdsourcing research.

3.1 Crowdsourced Video Captioning

CapCap [13] provides video captions while also developing the linguistic skills of
non-native workers (Fig. 1(a)). It is a gamified version of Collaborative Caption Edit-
ing System (CCES) [14], where each micro-task transcribes a short video segment
(typically less than 10 seconds). A CapCap task is a game based on a similar concept
to the ESP game [15], where workers iteratively caption the same segment, earning
points in proportion to the degree of similarity between the outputs. CapCap has addi-
tional motivating features: levels, ranks, and teams. The level goes up as the worker’s
accumulated points increase. The system shows the team ranking and the level distri-
bution within the worker’s team. We introduced teams to motivate novices who could
not earn high scores by themselves. CapCap was tested for three weeks in the authors’
institution. See [13] for details of this experiment.

Findings. In the pilot period, 713 video segments with English narrations were distri-
buted to 105 volunteer workers. A total of 60 segments were completed, with an aver-
age word error rate (WER) of 4.0%. The workers consisted of 15 native English
speakers and 81 native Japanese speakers. The skill of each worker, which we defined
as the average WER of the captions created by the worker, varied widely from 13.2%
to 67.2% (among those who played more than 5 rounds). Due to the short pilot period,
we could not verify its actual educational effect, though we will study this in the fu-
ture. The workers generally rated the game design positively. However a novice who
does not use English on a daily basis found “the content was too difficult for me”,
which suggests that the skill gaps could demotivate workers. Some novice workers

OCR
Result

Original Character Images

(a) (b)

 Skill Development Framework for Micro-Tasking 403

criticized the motivational system, saying that it was too hard to get to higher levels.
Such comments indicate that slightly different incentives are needed for skill-focused
workers versus task-oriented workers versus the most skilled workers who produced
the highest quality results. We want to maximize overall participation by recognizing
and responding to the motivational differences among these three groups of workers.
Other comments included “I did not know how to play the game” and “I wanted to
know the scoring rules”, even though CapCap included instructions. Since it was a
real-time game, the simple static instructions were inadequate.

3.2 Crowdsourced Proofreading

EBIS (E-Book Improvement System) [16, 17] crowdsources proofreading, with the
workers correcting OCR (Optical Character Recognition) errors (Fig. 1(b)). The sys-
tem has multiple types of proofreading tasks and an online forum where workers can
communicate with each other and ask questions about the tasks. The system allows
workers to work on their preferred types of tasks. Each worker received visual feed-
back about their task history, such as the number of contributed books and the worker
ranking based on the amount of completed work. Prior to the project launch, we held
a full-day introductory session for the initial workers. We also provided them with
printed manuals. The project started in October 2013, with an open participation poli-
cy. We analyzed the data for approximately the first three months of operations. See
[18] for details of the experiment.

Findings. As of January 2014, 178 workers had registered, with 112 who did at least
one task. They contributed more than 1,200 hours of work and completed 182 books.
The attendees of the introductory session liked the session and the manuals, confirm-
ing the findings in [19, 20]. Those instructions were designed mainly for older work-
ers who had no prior experience with crowdsourcing. However they should also be
useful for other workers, since the micro-tasks in EBIS involve a number of editorial
rules that workers had to learn. A total of 60 questions about the editorial rules and
other topics were posted in the forum. Some of them had been addressed in manuals,
but others were undocumented. The already addressed questions were asked mostly
due to difficulties in understanding the rules, while the new topics were mostly related
to the difficulty of the tasks. The preferences for task types varied among the workers.
With regard to the visual feedback, Itoko et al. [18] reported that the visualization of
their contributions was preferred by the workers of all ages, while the younger work-
ers liked the ranking scores more than the seniors did. A worker commented that she
strongly wanted feedback on the accuracy of her work rather than rankings, which
indicates the potential for personalized feedback.

3.3 Implications

Here are three similarities among the two projects: importance of instructions, need
for appropriate task assignment, and effectiveness of feedback to workers. These find-
ings lead to the following requirements for a skill development framework that allows

404 S. Saito et al.

gamified learning: (1) support for tutorial generation, (2) task assignment for gradual
learning, (3) motivating feedback by visualization, and (4) back-end skill assessment
engine that provides these three components with estimated skill information by ana-
lytics.

Support for Tutorial Generation. Although interactive lectures and printed instruc-
tions are effective, it is expensive to prepare them. While automatic manual genera-
tion techniques like GraphScript [21] may reduce the costs, human work is still
needed. One alternative approach is RABJ [6], which selects managers from the
workers, and these managers create guidelines for the tasks. As an alternative to inter-
active lectures, online interactive tutorials [22] may work well. Many modern com-
puter games have interactive tutorials using the same user interface as the game itself.
Such tutorials are provided in chunks of gradually increasing complexity and users
naturally learn how to play the game [23]. Since authoring such tutorials is costly
work, systems to help create tutorials from example tasks and from workers’ beha-
viors are needed to reduce the costs.

Task Assignment for Gradual Learning. In our experiment with CapCap, the range
of skills among workers varied widely, ranging from native English speakers to non-
native beginners. The task difficulty also varied from studio-recorded content to a
conversation among four people in a noisy environment. As pointed out by the novice
worker in the experiment, the difficulty of the tasks assigned to a worker should be
suitable for the worker’s skills. After a task is completed, the worker may try a
slightly more difficult task. This idea matches the evolving-skill model discussed in
[3] as well as the gamenics theory [23]. Gamenics is a design principle for video
games, which has two objectives: intuitive operability and gradual learning.

Motivating Feedback by Visualization. The visual feedback is effective motivation
for workers (e.g., [24]). Motivation is divided into intrinsic and extrinsic motivation
[25]. For example, progress visualization and content personalization improve intrin-
sic motivation, while social mechanisms such as competition work for extrinsic moti-
vation. In the EBIS project, which aimed to benefit from both types of motivation, the
young workers tended to prefer feedback for extrinsic motivation while the seniors
had the opposite preference. Since there are a number of design choices for visualiza-
tion, it is desirable that the administrator of the system be able to easily choose and
change those settings.

Skill Assessment. Accurate assessment of workers’ skills plays a crucial role in all of
these three requirements. The estimated skills can be used to select appropriate tutori-
al content and micro-tasks for each worker as well as to present feedback for their
progress in skill development. Various skill models can be used. For example, if we
use the multi-dimensional skill model of Welinder et al. [8] for CapCap, the skills will

 Skill Development Framework for Micro-Tasking 405

Fig. 2. Component diagram of the proposed framework

be represented as a combination of listening, writing, and keyboard typing skills. In
EBIS, the skills consist of a sub-skill for each task type and each sub-skill is further
divided into latent skills (ICT skills, visual acuity, etc.). Since a number of skill mod-
els have been proposed (see Related Work) and it is difficult to determine the best
model in advance, the framework should allow easily switching skill models to find
the most appropriate model through a tailoring approach.

4 Framework

 Based on the discussion in the Section 3, we propose a micro-tasking framework that
takes into account the development of each worker’s skill, which is greatly different
from the earlier micro-tasking frameworks.

4.1 Overall Architecture

The architecture of the proposed framework (Fig. 2) is inspired by OSGi [33], a Java
modularity framework based on a plug-in architecture, where loosely-coupled com-
ponents communicate with each other via standard or instance-specific APIs. It con-
sists of core components including Tutorial Producer, Task Dispatcher, Feedback
Visualizer, and Skill Assessment Engine, which correspond to the four functions
discussed. It also has a Quality Assurance Engine, which tries to produce the best
aggregate result for each requester considering the assessed skills, as well as shared
libraries that help developers reuse frequently used functions among each instance.
For example, the skill estimation algorithms used in the Skill Assessment Engine, the
output merging algorithms used in the Quality Assurance Engine, and some user in-
terface components, including the logging-in/out features, are shared. The workflow
defines the instance-specific data and control flows, as described in Section 4.2.

Worker Interface

Skill Development Framework

Task
Assignment

Tutorial
Generation

Visualization

Requester

Micro-tasks

Output

Micro-task

Output

Workflow for Other
Instance

Visual
Feedback

Interactive
TutorialTutorial

Generator

Task
Dispatcher

Feedback
Visualizer

Workers

Workflow for Other
Instance

Workflow for Other
Instances

Skill
Assessment

Quality
Assurance

Re
qu

es
te

r I
nt

er
fa

ce

Skill
Assessment

Skill
Assessment

Quality
Assurance

Quality
Assurance

IWorkflow interface

Workflow for
Each Micro-Tasking Instance

406 S. Saito et al.

4.2 Workflow

The developer of a micro-tasking instance needs to implement its own workflow class
that implements an IWorkflow interface for each instance. Workflow class implements
callback methods which will be called from the system runtime with an execution
context. For example, the framework handles the log-in process and after logging-in,
the callback will be invoked to show the top page for each worker.

Here are the typical data and control flows. First, the micro-tasks are submitted by
a task requester with requirements, which can include the desired speed, cost, or qual-
ity. Then their difficulty (and possibly the skill of the workers) is estimated by the
Skill Assessment Engine. When a worker wants to do a task, the Task Dispatcher
assigns the most relevant task and the worker creates the output for the task. A task
can be assigned to more than one worker to generate higher confidence results. If
enough output is collected, all of the outputs for that task is collected by the Quality
Assurance Engine and merged using the estimated quality. The result is returned to
the requester with such properties as the confidence of estimation.

4.3 Core Components

Here we consider CapCap and skill assessment by Welinder et al. [8] as examples,
where the workers are denoted by ݑ௜ א ܷ and each CapCap task, i.e., a video seg-
ment, is denoted by ݐ௝ א ܶ, whose skill is expressed as a d-dimensional vector, ࢝௜ א ሾ0,1ሿௗ.

Skill Assessment Engine. Skill Assessment Engine plays a crucial role in the frame-
work. We define a work element as a triplet of a user, a task, and its output, denoted
by ൫ݑ௜, ,௝ݐ ݈௜௝൯ א ܷ ൈ ܶ ൈ ܮ ൌ ܹ, where ݈௜௝ is an output for task ݐ௝ by a worker ݑ௜.
This engine maintains a work history, which stores all of the work information, using ܪ ൌ ोሺܹሻ. Then the engine computes or estimates the current skill of each worker,
based on the history. It can also estimate the skill improvements by dividing H into
time segments. These estimates are used by the other core components to make deci-
sions on the workflow.

Tutorial Producer. This component provides helper functions for generating the
graded-difficulty learning tutorial. For example, it provides sample task lists ordered
by estimated difficulties, or it can identify the difficult tasks for which many workers
produced wrong answers with the support of the Skill Assessment Engine. The devel-
oper needs to provide a tutorial user interface. Typically this is almost the same as the
actual task UI, but runs when the tutorial flag is set to true.

Task Dispatcher. This component dispatches the most relevant micro-task to a speci-
fied worker with the help of the Skill Assessment Engine. Based on how the skills of
each worker improve over time, it assigns the appropriate task to the worker. For
example, if a worker is a novice, then easier tasks are assigned, while if the system (or
the requester) wants a worker with intermediate skills to improve, then it dispatches
challenging tasks to that worker.

 Skill Development Framework for Micro-Tasking 407

Feedback Visualizer. This component provides visual feedback to motivate workers.
Visualization includes showing the worker’s skill set that changes over time, a work
history including accuracy, and recommended tasks, as well as social-network-related
visualizations such as competitive or collaborative features, with the help of the Skill
Assessment Engine.

5 Discussion

5.1 Implementation Patterns Using the Framework

We describe several implementation patterns with this framework using EBIS and
CapCap as examples. First, implementing EBIS from scratch using this framework
would be straightforward. The developers would only need to implement EBIS-
specific features such as task decomposition, which breaks down a single book into
micro-tasks, output merging, and the user interface. They can benefit from the shared
libraries including the worker account management, task assignment, and skill man-
agement. Starting from an EBIS implementation, CapCap could be easily imple-
mented using this same framework. The developers would need to implement the
CapCap task decomposition, the other components including the output merging and
user interface can be reused from shared library or from EBIS. As a third case, if
EBIS has already been implemented without using the framework, then the frame-
work could be used to enhance EBIS to support skill development, but additional
work would be needed. The current implementation would need to be refactored to
match the framework APIs. In the first and second cases, the developments cost
would be greatly reduced by using the framework. In the third case, though the costs
would be higher than in the first and second cases, the code would be better and future
modifications of the system would be much easier.

5.2 Applicability of the Framework

We believe the proposed framework will be applicable to a wide variety of micro-
tasking applications. Our framework easily incorporates micro-tasking frameworks
that focus on the quality of the output. For example, Dai et al. [26] and Lin et al. [9]
use decision theoretic algorithms to assign tasks, where they compute a utility U to
decide whether to dispatch a task to one of the workers or to generate final result. We
can define and add new utility by considering the skill development of the workers,
for example, by defining a utility based on improvement of skill when a task ݐ௝
would be assigned to a worker ݑ௜.

We introduced the visualization as a motivational mechanism. What about other
motivating mechanisms or incentives? It has been reported that extrinsically motivat-
ing factors like monetary incentives work for improved speed, but do not improve the
quality, while intrinsic motivations improve accuracy [27, 28]. From the perspective
of social learning, the framework could incorporate techniques that Weld et al. intro-
duced [5] for more effective learning by the workers.

408 S. Saito et al.

6 Conclusion

This paper proposed a micro-tasking framework that supports skill development of
individual workers. We designed the framework based on the review of two micro-
tasking projects we have conducted. It consists of four key components, a tutorial
generator, a task dispatcher, a feedback visualizer, and a skill assessment engine. The
framework will help developers create sustainable micro-tasking systems. Also, it will
expand the scope of micro-tasking, by supporting new types of tasks, such as skill-
intensive work, and new types of workers, such as senior citizens. Our future work
will includes more investigations of practical problems that must be addressed when
using the proposed framework in realistic systems. We hope this will leads to the
development of a reference implementation.

Acknowledgements. We appreciate the help of Kaoru Shinkawa in analyzing the data
from CapCap. This research was partially supported by the Japan Science and Tech-
nology Agency (JST) under the Strategic Promotion of Innovative Research and De-
velopment Program.

References

1. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: Crowdforge: Crowdsourcing complex
work. In: Proc. UIST 2011, pp. 43–52. ACM (2011)

2. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows with tur-
komatic. In: Proc. CSCW 2012, pp. 1003–1012. ACM (2012)

3. Satzger, B., Psaier, H., Schall, D., Dustdar, S.: Auction-based crowdsourcing supporting
skill management. Information Systems 38(4), 547–560 (2013)

4. Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease,
M., Horton, J.: The future of crowd work. In: Proc. CSCW 2013, pp. 1301–1318. ACM
(2013)

5. Weld, D.S., Adar, E., Chilton, L., Hoffmann, R., Horvitz, E., Koch, M., Landay, J., Lin,
C.H., Mausam, M.: Personalized online educationa crowdsourcing challenge. In: Proc.
HCOMP 2012 (2012)

6. Kochhar, S., Mazzocchi, S., Paritosh, P.: The anatomy of a large-scale human computation
engine. In: Proc. HCOMP 2010, pp. 10–17. ACM (2010)

7. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.R.: Whose vote should count
more: Optimal integration of labels from labelers of unknown expertise. In: Proc. NIPS
2009, pp. 2035–2043 (2009)

8. Welinder, P., Branson, S., Belongie, S., Perona, P.: The multidimensional wisdom of
crowds. In: Proc. NIPS 2010, pp. 2424–2432 (2010)

9. Lin, C.H., Mausam, M., Weld, D.S.: Crowdsourcing control: Moving beyond multiple
choice. In; Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence
(2012)

10. Yan, Y., Fung, G.M., Rosales, R., Dy, J.G.: Active learning from crowds. In: Proc. ICML
2011, pp. 1161–1168 (2011)

11. Wauthier, F.L., Jordan, M.I.: Bayesian bias mitigation for crowdsourcing. In: Proc. NIPS
2011, pp. 1800–1808 (2011)

 Skill Development Framework for Micro-Tasking 409

12. Donmez, P., Carbonell, J., Schneider, J.: A probabilistic framework to learn from multiple
annotators with time-varying accuracy. In: Proc. SD 2010, pp. 826–837 (2010)

13. Kacorri, H., Shinkawa, K., Saito, S.: Introducing game elements in crowdsourced video
captioning by non-experts. In: Proc. W4A 20114. ACM (2014) (in press)

14. Sobhi, A., Nagatsuma, R., Saitoh, T.: Collaborative caption editing system—enhancing the
quality of caption editing system. In: CSUN 2012 (2012)

15. von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Proc. CHI 2004, pp.
319–326. ACM (2004)

16. Ishihara, T., Itoko, T., Sato, D., Tzadok, A., Takagi, H.: Transforming Japanese archives
into accessible digital books. In: Proc. JCDL 2012, pp. 91–100. ACM (2012)

17. Kobayashi, M., Ishihara, T., Itoko, T., Takagi, H., Asakawa, C.: Age-based Task Speciali-
zation for Crowdsourced Proofreading. In: Stephanidis, C., Antona, M. (eds.) UAHCI
2013, Part II. LNCS, vol. 8010, pp. 104–112. Springer, Heidelberg (2013)

18. Itoko, T., Arita, S., Kobayashi, M., Takagi, H.: Involving senior workers in crowdsourced
proofreading. In: Stephanidis, C., Antona, M. (eds.) UAHCI/HCII 2014, Part III. LNCS,
vol. 8515, pp. 106–117. Springer, Heidelberg (2014)

19. Leung, R., Tang, C., Haddad, S., McGrenere, J., Graf, P., Ingriany, V.: How Older Adults
Learn to Use Mobile Devices: Survey and Field Investigations. ACM Trans. Access.
Comput. 4(3), Article 11 (2012)

20. Kobayashi, M., Ishihara, T., Kosugi, A., Takagi, H., Asakawa, C.: Question-Answer Cards
for an Inclusive Micro-Tasking Framework for the Elderly. In: Kotzé, P., Marsden, G.,
Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part III. LNCS,
vol. 8119, pp. 590–607. Springer, Heidelberg (2013)

21. Huang, J., Twidale, M.B.: Graphstract: Minimal graphical help for computers. In: Proc.
UIST 200707, pp. 203–212. ACM (2007)

22. Rowe, S.C., Cohen, C.J., Tang, K.K.: Applying computer game tutorial design techniques
to simulation-based training. In: Proc. 2004 Fall SIW (2004)

23. Isbister, K., Schaffer, N.: “gamenics” and its potential. In: Game Usability: Advancing the
Player Experience. CRC Press (2008)

24. DiMicco, J., Millen, D.R., Geyer, W., Dugan, C., Brownholtz, B., Muller, M.: Motivations
for social networking at work. In: Proc. CSCW 2008, pp. 711–720. ACM (2008)

25. Kaufmann, N., Schulze, T., Veit, D.: More than fun and money. worker motivation in
crowdsourcing-a study on mechanical turk. In: Proc. AMCIS 2011 (2011)

26. Dai, P., Mausam, W.D.S.: Decision-theoretic control of crowd-sourced workflows. In:
Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

27. Mason, W., Watts, D.J.: Financial incentives and the “performance of crowds”. SIGKDD
Explor. Newsl. 11(2), 100–108 (2010)

28. Rogstadius, J., Kostakos, V., Kittur, A., Smus, B., Laredo, J., Vukovic, M.: An assessment
of intrinsic and extrinsic motivation on task performance in crowdsourcing markets. In:
Proc. ICWSM 2011 (2011)

29. oDesk, http://www.odesk.com
30. CrowdFlower, http://crowdflower.com
31. Amazon Mechanical Turk, http://www.mturk.com
32. Duolingo, http://www.duolingo.com
33. OSGi, http://www.osgi.org/Specifications

	Skill Development Framework for Micro-Tasking
	1 Introduction
	2 Related Work
	3 Implications of Micro-Tasking Projects
	3.1 Crowdsourced Video Captioning
	3.2 Crowdsourced Proofreading
	3.3 Implications

	4 Framework
	4.1 Overall Architecture
	4.2 Workflow
	4.3 Core Components

	5 Discussion
	5.1 Implementation Patterns Using the Framework
	5.2 Applicability of the Framework

	6 Conclusion
	References

