

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 320–330, 2014.
© Springer International Publishing Switzerland 2014

HCI-Patterns for Developing Mobile Apps
and Digital Video-Assist-Technology for the Film Set

Christian Märtin1, Anthony Stein2,3, Bernhard Prell2, and Andreas Kesper2

1 Augsburg University of Applied Sciences, Faculty of Computer Science,
An der Hochschule 1, 86161 Augsburg, Germany
Christian.Maertin@hs-augsburg.de

2 Vantage Film GmbH, Digital Division,
Fuggerstraße 7, 86150 Augsburg, Germany

{AnthonyStein,BernhardPrell,AndreasKesper}@vantagefilm.com
3 University of Augsburg

Department of Computer Science
86135 Augsburg, Germany

Abstract. Digital cinema technology is now widely accepted by directors,
directors of photography, producers, film crews, and during the post-production
process. On the film set high-resolution digital motion picture cameras have
entered the field. In order to exploit the full creative and organizational
potential of the advanced digital production technology and to support the
whole shooting process, digital video-assist systems are connected to the
cameras, monitors, and auxiliary components on the set to form a computer-
supported film set (CSFS). The CSFS around Vantage Film’s PSU® family of
advanced video-assist systems offers intelligent support for all the roles and
tasks on the film set. This paper focuses on the design of the PSU® product
generations. Contextual design, agility, and patterns, both for designing control
and user interface functionality, have been used extensively in the development
process. This is demonstrated for the iPad-based mobile PSU® Satellite and
some GUI patterns that were used for different features of the touch-screen
based user interface.

Keywords: Digital video-assist, design patterns, HCI-patterns, digital motion
picture cameras, iPad, iOS, touch-screen user interface, computer-supported
film set.

1 Introduction

For more than a decade digital video-assist systems have been used to support and
optimize the production process of feature films and commercials directly on the film
set. Such highly interactive systems are responsible for take recording and replay,
rendering and pre-screen simulation of special effects, rehearsal purposes, and for
improving the user experience of the entire film crew [9], [3].

 HCI-Patterns for Developing Mobile Apps and Digital Video-Assist-Technology 321

A system that can integrate most of the digital hardware, software functionality,
and user-assist technology for all the roles on the set within a common distributed
architecture, is called a computer-supported film set (CSFS). When we developed our
first CSFS, the PSU®-1 video assist system, using a contextual design process [4],
[1], we came up with some solutions for the resulting high-end video-assist-system,
like touchscreen-based user interface or content-based retrieval of film takes that even
today still define the state-of-the-art in video-assist technology.

Our imagination and the feedback from early contextual inquiry showed us the
direction for our future work and provided us with ideas, which roles were needed in
the shooting process and which film and IT components should be integrated into a
CSFS. At that time we already envisioned and prototyped the Director´s Pad, a tablet
based video-assist client. Only today, however, embedded and wireless technology
provides the necessary performance, energy efficiency, reliability and software
flexibility for building high-performance mobile video-assist clients for professional
use in all imaginable contexts.

Fig. 1. Computer-supported film set based on the PSU®-3X HD digital video-assist system

The current PSU®3-X HD based CSFS, as shown in figure 1, combines client-
supported video recording features with simultaneous multiple camera support,
intelligent software functionality for on-the-set effects simulation and rendering
(slow-motion, time-lapse, ramping, filtering, mix-and-overlay of takes, blue-, green-
screen effects, editing, 3D-support, etc.), shooting day organization, rehearsal mode,
and hard- and software-support for active camera control and communication [2].

In the following it will be shown that our development process for advanced video-
assist software, could profit enormously from the use of different pattern categories.

322 C. Märtin et al.

We will outline, how contextual design, object-oriented modeling and agile
development practices helped us to attain the high quality standards, necessary for a
whole class of successful real world products.

2 Mixing Contextual Design and Agile Development

When we started to develop software and digital technology for supporting the movie
production process in 1999, we first had to get acquainted with the environmental,
contextual and functional requirements of the people working on the film set, their
roles, their tasks, their goals, their wishes, and their communication behavior. We
formed a joint team of computer scientists and film professionals and started the
project that should lead to a widely accepted and reliable CSFS solution. Already in
the early planning phase, we de decided to set up a contextual design process [1] – at
the time a relatively novel development method for user-centered systems.

2.1 Design Process

After the first interviews and contextual inquiries with directors and DoPs we did
some paper mockups and experiments with desktop computers and various interaction
techniques. We defined the major use-cases and specified the basic video-assist-tasks.
We immediately abandoned mouse and keyboard interaction, as we learned from our
interviews, that these devices were not accepted by the crews on the film set. We
relatively straightforwardly decided to base the user interface completely on a touch-
screen solution. We then built an early touch-screen based prototype with limited
performance and only the visualization features and interactive properties necessary
for demonstrating the key functionality, e.g. how to record takes, or how to replay
takes in slow motion.

About one year after project launch the prototype was presented to a large audience
of directors of photography (DoPs), camera operators, directors, and film crew
members, at an international industry trade-show for film equipment. The prototype
got enormous positive feedback and the final decision for product development was
made. Within two more years a small team of never more than ten developers
(including software and hardware development, user-interface design, and mechanical
construction) with accompanying input from film professionals at each critical stage
created a pre-product prototype of the final system that was tested under real-world
production conditions by directors and DoPs around the world [4].

Most usability problems resulting from a lack of communication between software
engineers and the final users, i.e. our film experts, could be avoided by having the
film people evaluate each new interactive feature on the pre-product prototype
immediately after the feature was available. This method worked for the first product
version of the system, the PSU®-1, and was used in all of the following video-assist
products since then. Software features that will be integrated in future product
versions today are first integrated into software updates for the current product
version and tested and evaluated on real sets. The other way round, ideas for

 HCI-Patterns for Developing Mobile Apps and Digital Video-Assist-Technology 323

innovative features often come from the people on the set. As we listen to them, our
agile process allows us to implement new features rapidly and introduce them in one
of the next software updates that are distributed by a remote maintenance process.

It soon became clear that with a rapidly growing interactive functionality a layered
design approach was necessary for the user interface in order to maintain the overall
look-and-feel of the system. Although the visual design undergoes evolutionary
changes from product generation to product generation, each new product will still
present its basic take recording and replay functionality on the main screen after
power-up. More complex features are hidden below the surface. The more specific or
sophisticated the functionality becomes, the more effort is needed by the operator to
arrive at the desired level of functional detail. However, several design and HCI
patterns guide our layered structuring of the software and the design of the end-user
navigation. Examples of such patterns are given in sections 3 and 4.

2.2 Technology Context

In the 15 years since we started to develop systems and components for the computer-
supported film set the greatest technology revolution was the migration of the film
industry from celluloid film to digital film recording. Today, most advanced video-
assist systems are used in combination with highly sophisticated digital motion
picture cameras, like the ARRI Alexa [12], the RED Epic [13], or the Sony F65 [14]
to name only a few. In contrast to earlier professional electronic cameras, these digital
film cameras already are equipped with integrated support for HD video-out signals
that can be sent to the video-assist system over the HD-SDI interface. Earlier cameras
only provided analog SD video-signals for video-assist purposes. The high-definition
2K or 4K high contrast and high luminosity raw signals of today’s most advanced
film cameras are used in post-production for preparing the final movie and are not
directly used on the set. They have to be stored in separate high-capacity film storage
servers.

However, the video signals that arrive over the HD-SDI interface are of remarkably
high quality, i.e. available as HD video signals. They can directly be exploited by the
digital video-assist technology on the set. The current product generation, the
PSU®3-X HD, is able to record up to four takes simultaneously and at the same time
replay up to two recorded takes (on different external HD screens). The high
computing performance that is needed by the CSFS is made possible by an embedded
Intel Core-i7 quad core processor, Nvidia GPUs, several custom-designed FPGA-
boards for frame grabbing and visualizing takes, the Linux OS and by highly
optimized software using C++, Qt, and OpenGL. The power envelope of the system is
nevertheless relatively low (100W). Therefore, the system can be battery-powered for
several hours.

To further improve the flexibility on the film set and allow directors, DoPs and
crew members the direct interaction with the PSU® systems while moving around at
the location, a mobile extension to the CSFS, the iPad-operated PSU® Satellite was
recently announced. Its software design is discussed in the following chapter.

324 C. Märtin et al.

3 The Usage of De

The application discussed
approach, where design pa
PSU® Take Manager, whic
the aim to increase the mo
going to be described for th
view controller (MVC) patt
gets illustrated. On the ot
subject matter. To reach th
(here the PSU® Satellite, b
System PSU®-3X HD. To
short overview of the rudim

As mentioned above, tw
PSU® Take Manager (fig.
on the PSU® main device.
internal storage. To find t
comfortable browsing throu
can also be viewed frame-b

Another application, call
at up to four independent l
playback. Furthermore
implemented, so that the di
give instructions to the (hum

Fig. 2. PSU Take Mana

For the purpose of iOS-
Cocoa Touch comes into
design patterns from objec
implementing CSFS-mobil
Figure 3 illustrates the basic

The MVC pattern resem
logic-, as well as a present

esign Patterns within the iOS Domain

d in this chapter was developed using a model-ba
atterns serve as the models. On the basis of the so-cal
ch is one of two currently developed iOS applications w
obility of the CSFS, some well-known design patterns
he context of iOS programming. On the one hand the mo
tern – also sometimes denoted as an architecture patter
ther hand some other useful design patterns become
e goal of increased mobility on the CSFS, the iOS Dev
based on the iPad) interacts with the Digital Video-As
provide an understanding of how this challenge is face

mentary feature set is given [7], [8].
wo independent applications are under development. T

2, left) helps directors to replay already shot takes sto
Such takes can also be stored and organized in the iPa

the right scene to replay, a filter mechanism for a m
ugh all available takes was integrated. During replay ta

by-frame.
led PSU Streaming (fig. 1, right), offers the ability to lo
live-streams from cameras connected to the PSU® or d
some bi-directional conversation functionality w
irector can view the scenery from different viewpoints
man) video-assist operator “over-the-air”.

ager screenshot (left) and PSU Streaming screenshot (right)

App programming a framework provided by Apple cal
operation. This framework makes great use of softw

ct-oriented design (OOD) and was an ideal platform
lity. Some of the patterns are described in the followi
c concept of the MVC pattern within the iOS domain.

mbles a three-tier architecture with a database-, a busin
tation-layer. The model corresponds to the database la

ased
lled

with
are

odel
rn –
the

vice
ssist
d, a

The
ored
ad’s

more
akes

ook
disc
was
and

lled
ware

for
ing.

ness
ayer

 HCI-Patterns for Developing Mobile Apps and Digital Video-Assist-Technology 325

whereas it is not restricted to database connections at all. It could provide data from
the web via HTTP or, e.g., from a persistent file. In the case of the PSU® Take
Manager the model is represented by a WebDAV client, which also handles the
connection to the PSU®-3X HD. Over an established WebDAV connection meta-
information about the takes stored on PSU can be requested. Files can be accessed via
a GET-request. The returned meta-information is stored in the iPad’s memory and
prepared for further usage within the application.

The middle layer – the controller object – handles the delivery of requested data to
the view layer on top. It collects the requested data from the model (pulling),
transforms it into an adequate representation and returns the well-formatted data via
the return parameter of the callback method invoked by the view.

Fig. 3. An MVC illustration for the Cocoa Touch Framework [8]

Figure 4 shows a concrete model-based implementation of the MVC pattern on top
of the task of an initial WebDAV request when the PSU® Take Manager App gets
launched. The semantics of the red dyed actions is that these actions are invoked or
provided by the iOS Framework. The UML signal element was used to illustrate
notifications (described below) as well as events on which callback methods will
react.

Using callback methods, invoked when needed by the system, is one approach for
updating data presented to the user. Another method is pushing new information to
the view directly. Therefore Apple provides a macro called IBOutlet that allows the
graphical interface builder to bind an interaction object, e.g. a label, to a
corresponding instance in the source code.

Let’s consider the case of a progress view. While downloading a take, the PSU®
delivers small data packages that are collected and stored by the model. The view is
presenting a so-called UIProgressView to let the user know about the status of the
download progress. Each time a new data package arrives, the progress has to be

326 C. Märtin et al.

calculated again and passe
manner by accessing the bo

Pushing the information
mechanism called notifica
NSNotification object with
station object (NSNotificati
all objects that have been r
is an adapted implementatio

Fig. 4. Activity Diagram –

The Cocoa Touch fram
controller responds on req
changing data from the mod
methods invoked by the vi
protocol. A protocol equals
language-level feature of O
with different public interfa
interpreted as an instance

ed to the controller that manipulates the view in a dir
ound IBOutlet member.
n from the model to the controller is possible throug
ation posting. The sender (here the model) posts
h appropriate information to a central message receiv
ionCenter). This central instance routes the notification
egistered as observers for such a kind of notification. T
on of the well-known Observer Pattern [10], [11].

– MVC Implementation of WebDAV Request Mechanism [8]

mework makes use of the Delegation Pattern, too. T
quests sent by the view or reacts on notifications ab
del. The implementation of the already mentioned callb
iew is mandatory, because these methods are defined i
s the concepts of interfaces or pure virtual methods and
Objective-C. Protocols make it possible to let two obje
aces communicate with each other. Thus, protocols can
 of the Adapter Pattern [10], [11]. A delegation, e

rect

gh a
an

ving
n to
This

The
bout
back
in a
is a
ects
n be
e.g.,

 HCI-Patterns for Developing Mobile Apps and Digital Video-Assist-Technology 327

happens when a UI control element is asked how to appear. A delegate object could
be set up conforming to a special purpose delegate protocol. An example is the
UITableView object. A table view needs to know how many rows and sections it will
have, how the cells should appear (height, color, etc.), whether there should be a
section header or footer describing the individual sections or not, and so on.

The Cocoa (Touch) framework also considers a core problem of graphical user
interfaces. A developer of a GUI puts so called interaction control elements on the
screen so that a user can interact with the software in the background. The
programmer in fact doesn’t know at which time or how often a user decides to use the
element just as a developer of a GUI library can’t know how, e.g., the usage of a
button is intended by the developer of a GUI. The flexibility to face this issue is one
of the purposes the Command Pattern was introduced. When using this pattern a
method invocation gets encapsulated by an object. This object usually holds the
receiver (also denoted as target) of the message, as well as the identifier (selector) of
the method which should be invoked. The GUI developer defines, which message to
which receiver shall be executed and every time a user interacts with a control
element, an invocation object is generated dynamically. That, in turn, makes it
possible to trigger a method invocation at runtime. Apple conforms to this pattern
with the Target-Action-Mechanism as well as through NSInvocation objects [11].

Another design pattern introduced by Erich Gamma et al. (aka The Gang of Four,
see also [10]) is the Composite Pattern. This approach allows the programmer to use
and implement whole/part-hierarchies of objects. That means that an abstract
composite class specifies behavior of individual objects and compositions (container)
of such individual objects at the same time. Thus the individuals and compositions of
individuals could be used uniformly. With this technique it is possible to build tree-
structured hierarchies of objects, whereby the developer doesn’t have to handle of
which type an instance of a tree-branch (composition) or tree-leave (individual) is.

A more specific example is the view-hierarchy of a graphical user interface. The
UIView class is a composite class, because it is the base class of most interaction
elements like sliders, buttons, etc. If a superview containing some subviews, which
are in turn superviews of further subviews (tree-structure), is asked to redraw itself,
the redraw message is propagated to all subviews until the leaves are reached. Thus
the internal treatment of branches (container) and leaves (individual subviews) is the
same [11].

To keep the limited scope of this paper, the focus was set on such design patterns
that are related to the User Interface most closely and thus meet the topic of human
computer interaction. Of course, some more instances or adaptions of well-known
design patterns exist within the Cocoa (Touch) framework. For more details on the
mentioned patterns and the usage of them within the iOS-Framework we refer to [10]
as well as [11].

328 C. Märtin et al.

4 User Interface P

Another area for the succ
process is the touch-scree
evolutionary development
user interface had often to b
Figure 5 shows an example

The slider pattern is al
without the necessity for e
used to navigate to a spec
frame can be directly locate
pattern for the intuitive set
superimposed as, e.g., for
used for the intuitive setting

Fig. 5. Implement

Another HCI pattern ex
display element. It serves
current value. If pressing
accelerated. The graphical
where it can be used to set
for simulating slow motion

Patterns for the Digital Video-Assist

cessful application of patterns in the CSFS developm
en user interface of the PSU® main device. During

process of the PSU® family of video-assist-systems
be adapted to new functionality and new interaction sty
 of the slider user interface pattern.
lways used when a parameter has to be intuitively
ntering an exact value. Implemented as a take slider, i
cific position within a take. With the slow-buttons, e
ed. Another implementation would be the use of the sli
tting of the overlay intensity, when two image-layers
3D cinema simulation). Finally, the slider pattern can

g of brightness, contrast and gamma parameters.

tation of the slider pattern as a take-navigation-slider

xample that is reused for different functions ist the
to enter a new value that is not too far away from

g the buttons longer, the rate of the value changes
representation of the pattern can also be seen in figure
the frame rate (original camera speed, or some other va
or time lapse).

ment
the
the

yles.

set,
it is

each
ider
are

n be

+/-
the

s is
e 5,
alue

 HCI-Patterns for Developing Mobile Apps and Digital Video-Assist-Technology 329

The same pattern is used for setting the length of short takes, that are ignored by
the system and will be deleted automatically, or for the fine-tuning of the cooling fan
in order to avoid too much noise when shooting takes, or the setting of the
microphone volume. If the user presses on the display, a numeric keypad
automatically appears for entering an exact value.

Many other user interface patterns were applied for getting a consistent look-and-
feel and for reducing the user-interface complexity for the end user [6].

5 Conclusion

Design patterns and HCI patterns can contribute heavily to the successful construction
of complex interactive systems. This was shown for the development of an iPad-based
mobile video-assist client. The applied structured patterns available in Apple’s Cocoa
Touch library served as design models and we assume they facilitated the develop-
ment of several communication tasks between the PSU® main system and the client.
At the same time, the use of patterns could accelerate the development process and
ensure good coding quality. It was also demonstrated by examples that HCI patterns
can be used for keeping navigation and interaction consistent from product generation
to product generation and lead to high acceptance by end-users. Our experience with
the systems has shown that users in productive environments appreciate, if they
quickly recognize functions and can use new functionality intuitively, because inter-
active behavior is controlled by usage patterns, they already know. Patterns therefore
also serve as a means for reducing complexity in rich interactive environments.

References

1. Beyer, H., Holtzblatt, K.: Contextual Design. Interactions, 32–42 (January + February,
1999)

2. Fauer, J.: Vantage PSU-3X HD Digital Video Assist. Film and Digital Times (55-56), 76–
77 (2013)

3. QTake (2013), http://qtakehd.com (retrieved on September 13, 2013.)
4. Märtin, C., Prell, B.: Contextual Design of a Computer-Supported Film Set: A Case Study.

In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS,
vol. 2844, pp. 392–405. Springer, Heidelberg (2003)

5. Märtin, C., Prell, B., Kesper, A.: A New Generation Digital Video Assist System with
Intelligent Multi-Camera Control and Support for Creative Work on the Film Set. In:
Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) IMC 2009.
CCIS, vol. 53, pp. 331–332. Springer, Heidelberg (2009)

6. Märtin, C., Prell, B., Schwarz, A.: Managing User Interface Complexity and Usability in
Computer-Supported Film Sets. In: Proc. of HCI International, Las Vegas, Nevada, USA,
July 22-27, vol. 3. Lawrence Erlbaum Associates (2005) Human-Computer Interfaces:
Concepts, New Ideas, Better Usability, and Applications Series

7. Märtin, C., Stein, A., Prell, B., Kesper, A.: Mobile App-Support for Advanced Digital
Video-Assist Systems in Computer-Supported Film Sets. In: Proc. 6. Forum
Medientechnik, Fachhochschule, St. Pölten, Austria (2013)

330 C. Märtin et al.

8. Stein, A.: Evolutionäre Entwicklung einer proprietären iPad-Applikation für die
mobilitätssteigernde Interaktion mit dem digitalen Video-Assist-System PSU®-3,
Bachelor Thesis, Augsburg University of Applied Sciences (2012)

9. Vantage Film GmbH (2013), http://www.vantagefilm.com (last access February
4, 2014)

10. Gamma, E., et al.: Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley (1995)

11. Apple Inc.: Cocoa Fundamentals Guide, pp. 165–208 (September 2013)
12. http://www.arri.com/camera/digital_cameras/ (last access: February 4,

2014)
13. http://www.red.com/products/epic (last access: February 4, 2014)
14. http://pro.sony.com (last access: February 4, 2014)

	HCI-Patterns for Developing Mobile Apps and Digital Video-Assist-Technology for the Film Set
	1 Introduction
	2 Mixing Contextual Design and Agile Development
	2.1 Design Process
	2.2 Technology Context

	3 The Usage of Design Patterns within the iOS
Domain
	4 User Interface Patterns for the Digital Video-
Assist
	5 Conclusion
	References

