
Combining Design of Models for Smart
Environments with Pattern-Based Extraction

Gregor Buchholz and Peter Forbrig

University of Rostock, Department of Computer Science,
Albert Einstein Str. 21,
18055 Rostock, Germany

{gregor.buchholz,peter.forbrig}@uni-rostock.de

Abstract. There are two different types of approaches for smart envi-
ronments. The first group provides an infrastructure that contains mech-
anisms from artificial intelligence that allow to adapt to certain behavior
of users and to support them by performing their tasks. These approaches
work fine if the conditions in the environment are not experiencing too
many changes. However, when different types of activities have to be
supported and participants change a lot there is the problem of getting
enough training data to recognize the users’ activities with sufficient
reliability. In such cases, designing support by providing models for ac-
tivities of participating users seems to be a solution. Thus, mechanisms
from artificial intelligence can be supported by reducing the search space
for possible actions.

Designing of activity models can be performed by employing the top-
down approach through predefined generic patterns or alternatively the
bottom-up mechanism by looking at traces of performed activities (sce-
narios). Again patterns play an important role as they allow the identi-
fication of important parts of traces that lead to parts of models. The
identification of such trace sections can be done almost automatically.
The mapping to parts of models however, has to be done in an interactive
way. Human decisions are necessary to provide good models. Different
strategies can be supported by tools in order to make decisions within
the models ranging from abstract levels down to the most detailed level.

This paper will provide a discussion of the outlined approach.

Keywords: task models, smart environment, model generation.

1 Introduction

The application of models is a well-established principle of numerous engineering
techniques for designing interactive systems. Task model based development ap-
proaches highlight on the tasks users want to accomplish while using the system.
Thus, not only the requirements analysis and development process are having
a strong focus on the users’ tasks but also the running system can extensively
profit from these models. This is particularly true for Ambient Intelligence Sys-
tems like Smart Environments since the utility value and thus the acceptance

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 285–294, 2014.
c© Springer International Publishing Switzerland 2014



286 G. Buchholz and P. Forbrig

level among users are dependent to a decisive extent on the usefulness and ap-
propriateness of the system’s support. For this purpose, the Smart Environment
needs to be aware of single users’ movements, positions, etc. among a lot of data
describing the current situation, and also has to consider the connections and
mutual dependencies between different users fulfilling different (and dynamically
changing) roles in order to achieve a common objective. As the variability in hu-
man behavior is very high, and potentially unlimited, a real understanding of
such a complex situation is beyond the possibilities of any computer system.
Thus, it might be helpful to provide the system with certain information about
what activities to be supported. Applying this concept means to select (“load”)
a use case description before using the room assistance. Instantiating a use case
may involve some customization, for instance the amount of talks in a conference
session or the number of groups working temporarily separated in a workshop.
Beyond this, an instantiation can include the combination of predefined parts
of scenarios, tailored to the current needs of the user(s). Obviously, such adap-
tion operations must be simple to use since the user should not have to delve
that deep into the technical details of the room’s intelligence. Once started, the
Smart Environment continuously tries to recognize the given situation and, as
soon as the recognition reaches a reasonable degree of certainty, it should give
(or propose) assistance as modeled in the previously designed model. Bringing
together the room’s hardware and high-level models requires some additional
effort: The lack of any semantics in the sensor data suggests the introduction
of an intermediate language by mapping patterns of sensor signals to basic ac-
tions like sit, walk, talk etc. which can be seen as triggers and preconditions for
specific tasks in the models. Basic actions are supplemented with attributes like
timestamp, position information, confidence, and others.

Essentially, the elaboration of task models in the context of Smart Environ-
ments comprises:

1. the identification of entities for which tasks have to be modeled
2. the elaboration of these models from the top element (the abstract main

goal) down to the tree’s leaves describing all single actions necessary for
each sub goal (refinements/alternatives)

3. describing the interdependencies between these entities (see [15])

These steps entail a lot of work. For the first step, a thorough understanding
of the domain and the users is essential as the defined roles should reflect the
users’ perspective of the modeled processes. However, the set of roles cannot be
determined automatically. As far as the identification of devices involved is con-
cerned, we can derive them from observations of user performances (scenarios)
conducted in the Smart Environment. For the second step, domain knowledge
and user knowledge are also required. Nevertheless, with increasing level of de-
tail and decreasing level of abstraction (which is the most laborious part of the
model as the task tree progressively broadens downwards) some useful time and
labour saving assistance can be given to partially automate the construction of
the models.

In Section 3, the above-mentioned support type is described in more detail.



Combining Design of Models with Pattern-Based Extraction 287

2 Related Work

Several approaches adress the scenario-based formalization of human behavior,
many of which fall into the field of process mining. A comprehensive collec-
tion of such algorithms is implemented in the ProM framework [3]. Some of the
numerous applications beyond the “basic” mining of processes are the identifica-
tion of bottle-necks, verification of business rules, and creation of social network
graphs. Import from a number of different sources is possible and many plugins
for import formats and functionality are available. In common with the major-
ity of process mining approaches, the focus lies in the extraction, visualization
and optimization (in terms of resource usage) of processes. Here, it is taken less
concern for requirements like human readability and understandability, support
for a strong orientation towards a hierarchy reflecting different levels of abstrac-
tions from the viewpoint of a user and the suitability of the resulting models for
discussions between modeling experts and untrained persons.

An example of a system generating task models is ActionStream [10] that
records user activities for a long period while all interactions are interpreted
as terminals of a grammar. By continuously adapting the grammar’s produc-
tion rules, ActionStream learns a formal model of the user’s behavior. Such
approaches are likely to produce quite precise models successfully covering the
learned scenarios, lacking however a semantic meaning of the non-terminals. The
resulting models, as “correct” as they may be, are of limited use in the attempt
to establish a means of communication between different skilled individuals that
is as decisive as easy-to-understand.

Some further references that are very much related to specific parts of our
approach will be discussed together with the following presentation of our ideas.

3 Design and Extraction

After the definition of roles and devices (introduced as step 1 in the introduc-
tion) the elaboration of task models for all identified entities is our next step.
The procedure of constructing role-based task models as proposed in this paper
consists of two complementary parts: Taking the role’s main goal as starting
point, the modeler refines the top goal into sub goals, declares alternatives, tem-
poral dependencies and so on as far as it is known and reasonable from the user’s
point of view. Part two makes use of recorded scenarios as additional input and
synthesizes the task tree following a bottom-up technique, thus completing the
manually designed parts. Both parts are highlighted below.

3.1 Top-down Construction of Models

The development process for Smart Environments as proposed here has to start
with a careful requirement analysis resulting in, among other things, a set of use
cases each comprising a set of roles and devices involved as well as an informal
description of what the use case is about and how the roles and devices contribute
to the overall objective.



288 G. Buchholz and P. Forbrig

For each role within a use case, the main purpose of a user fulfilling that role
has to be identified and is modeled as the root node of the task model. That
node is the most abstract description of why a user assumes a certain role for a
specific time. Based on the results of the requirements analysis this main task
is further decomposed into sub-tasks (i.e. nodes representing tasks with a lower
degree of abstraction and vital to achieve the goal related to the parent task)
or choice tasks (i.e. the goal related to the parent node can be achieved in more
than one way). Between tasks at the same level of abstraction temporal opera-
tors, as far as known, can be used to specify the order of task execution. This
procedure is continued until all identified activities and their discovered rela-
tions are formalized. What emerges from this procedure is a hierarchical model
of what constitutes the respective role from the perspective of the user in domain
specific terms. It can be supported by patterns that reflect already analysed and
specified behavior and characteristics of roles, devices or spaces. Such a pattern-
based approach is discussed in [16]. In [17] it is presented how this approach can
be used to develop supportive user interfaces for Smart Environments.

However, patterns are available only if the domain is already known and
analysed by experts. Knowledge of the domain is a precondition for the top-
down approach. Sometimes such kind of knowledge does not exist. In this case the
opposite buttom-up approach is worth to be studied. Based on observed scenarios
hierarchical models can be constructed. Also combining both approaches seems
to be promising. In that way some knowledge of the domain can be combined
with information of observed scenarios.

This idea will be explained in more detail in the rest of this paper.

3.2 Bottom-up Synthesis of Models

For the bottom-up synthesis of task models previously recorded traces are essen-
tial. These sequences list all events emitted by sensors and devices (e.g. projec-
tors, lamps) during the scenario executions. Thus, the user activities as detected
by the system as well as the user interaction with the devices can be analyzed.
By applying appropriately configured and trained complex pattern detection al-
gorithms on the sensor traces the event stream is filtered and transformed into
new events (in the following referred to as “basic actions”) that reach a semantic
level suitable for further processing. This transformation itself is a challenging
task and requires considerable investment of technical knowledge, experience and
work. It has to be set up for each environment separately and has to be extended
with the addition of new sensor types, considering the possibilities of new forms
of sensor fusion.

Detecting Basic Actions from Sensor Stream. Figure 1 illustrates the
detection of complex events and the generation of a basic action stream.

Given a potentially unlimited stream of sensor data from different sources as
input, a stream-to-stream transformation is achieved by concurrently running
queries in order to find occurences of predefined event patterns. Reducing the



Combining Design of Models with Pattern-Based Extraction 289

Fig. 1. Complex event detection from sensor stream

scope of queries via sliding windows helps restricting resource usage. Krämer et
al. [9] suggest a stream processing infrastructure based on an operator and a
physical algebra that carries over a wide range of theoretical aspects of stream
processing (e.g. windowed aggregation, adaptive resource mangement, and query
optimization) into a consistent implementation concept. Furthermore, Hoßbach
et al. describe a Java middleware for event processing (JEPC: Java Event Pro-
cessing Connectivity) in [8].

In the following, we assume that such a transformation with sufficient perfor-
mance (real time is required for event detection during usage) is available and
continue with the basic action stream as the starting point.

Linking Basic Actions to Task Models. After transforming the sensor event
stream into a stream of semantically meaningful basic actions, the bottom-up
task model construction comprises the following three steps:

1. Pattern recognition
2. Hierarchy creation
3. Identification of temporal relations

Pattern recognition. – Frequently occurring action sequences in the recorded
scenarios might indicate a correlation between these actions that can be inter-
preted as a more abstract task in some cases. Using algorithms like the Apriori
algorithm [1], PrefixSpan [12], and BIDE+ [14] a set of such sequences can be
detected, providing the modeler with groups of potentially combinable actions.
Because of the fact that these groups are of algorithmic origin and initially name-
less, the reviewing of these groups comprises the check of their reasonableness as
well as the specification of a proper label. Once a suggested group is confirmed
and labeled, its name is treated as the name of a new task that references the ac-
tions of that group as child nodes. Our implementation of the pattern recognition



290 G. Buchholz and P. Forbrig

provides the selection of one of the implemented algorithms and the definition of
the usual parameters for pattern recognition like “Min support”, “Max support”,
and minima and maxima for the number of actions in a sequence and the time
interval a sequence has to fit in. In our prototype, all detected sequences are
shown in tabs ordered by sequence length while an input field per sequence is
offered to confirm a group by entering a name for it.

Hierarchy creation. – Combining the model fragments created so far with the
basic action tasks from the scenario traces (protocols) is the main goal of this
step. Taking the identified main goal as the root node, the tasks are successively
decomposed into less abstract tasks in a top-down technique, while the recorded
action traces are arranged in a bottom-up manner, initially quite loosely coupled
to the upper part of the task tree. This step combines the analysis results with
the output of the synthesis. To achieve this, we use a modified version of the
LearnModel algorithm [6] which originally exploits objects links as an indication
for probably connected activities. Since we cannot assume the presence of object-
related information we decided not to integrate the propagator concept from
LearnModel. The second modification concerns the set of temporal operators:
As the models in our approach should be usable with other tools, our notation
and operators have been adapted to the operators of CTT.

During the creation of a hierarchy the Choice relation has a special role to
play as it crucially influences the emerging structure.

Among the approved action groups detected by the pattern recognition there
may be more than one group assigned to a task (called group set). In each group
set the minimal group (i.e. the group with the lowest number of sub tasks)
is determined. The smaller number of basic actions is used as the secondary
criterion, in case of equality one group is randomly selected.

Each occurrence of the minimal group within the action sequences of other
groups is replaced by this group’s assigned task. Then, the group is removed
from the group set. This process is repeated until either only one group is left
or no more substitutions are possible.

Tasks that were used as replacements for action sequences in other groups as
well as the remaining action sequences are considered as alternative realizations
of the common super-task.

Finally, the Align and InduceOrdering algorithms are applied. In short, Align
generates “recipes” for every group of sequences assigned to the same non-basic
task while InduceOrdering adjusts the ordering of the sequences. This procedure
is repeatedly executed until all protocol actions are assigned directly or indirectly
(one or more nodes between the nodes were created during the pattern recog-
nition) to a task node modeled in the top-down modeling process described in
section 3.1. Note that only those actions occurring in any of the trace protocols
selected for this step are considered.

Identification of temporal relations. – Each task and action can be flagged as
optional. Within the establishing of the temporal relations the default value
(“mandatory”) is considered to be correct until a conflict with the analyzed action



Combining Design of Models with Pattern-Based Extraction 291

traces occurs. Initially, all child nodes of a given node are considered to be in an
enabling relation with respect to their first occurrence. This assumption may be
proved to be incorrect:

– Two actions or tasks a1 and a2 with a1 being assigned to ai and a2 to aj are
found to occur in the order a2, ..., a1. Now, an order independent relation
between ai and aj is suggested because a1 and a2 were previously detected in
a reversed order and an enabling relation to be revoked has been suggested.

– Iterations are suggested for each task or sequence that occurs more than once.
Two parameters can be set to control the detection: The minimum number
of occurrences of a sequence and the maximum length of sequences that are
examined during this step. Thus, the modeler can reduce the computational
effort of analyzing large protocols. The number of repetitions is attached as
annotation to the iteration.

– End timestamps are synthesized for tasks from the timestamps of the con-
nected basic actions. Based on that, the concurrency of tasks is detected and
denoted in the model.

During the derivation of temporal operators each time an already found op-
erator is modified, all operators up to the root are checked and modified, if
violated. The process of temporal operator derivation can be repeated any num-
ber of times, selecting different sets of task traces recorded before and with
varying settings for operator detection. Thus, different rival model versions can
be created, discussed and evaluated.

3.3 Example

This section will exemplify the task model synthesis. Space restriction does not
enable the example to cover all aspects like pattern recognition but allows us
to demonstrate the principle of the proposed approach. Figure 2 depicts the
analysis model of a lecture event use case: One model (a) describes the whole
process and another model (b) defines the tasks of a role presenter.

(a) (b)

Fig. 2. Analysis models: (a) whole process, (b) model for role presenter

In Figure 3, some excerpts from an example scenario trace (basic action
stream) are shown, illustrating how users behave to accomplish the task Conduct
lecture event.



292 G. Buchholz and P. Forbrig

Fig. 3. Snippets from example scenario trace

Now the modeler has to mark sequences of actions as belonging to tasks or
to task trees, be they leaf nodes or inner nodes. Depending on the algorithm
selected, a synthesized structure with temporal relations and modifications of
existing relations is presented to the modeler (Figure 4).

Fig. 4. Combined task model for role presenter

Here, the design model has been extended with the basic actions from the
scenario trace. Multiple Operate actions are depicted in an aggregated way to
save space; temporal relations for those tasks have also been generated. The
modeler now decides, if and to which extent the suggestions are appropriate,
and finishes the model creation. Similarly, the model for the whole process is
enriched with generated model fragments.

This partly automated elaboration process results in models bridging the gap
between basic action streams as detected from sensor data and the more abstract
analysis task models.



Combining Design of Models with Pattern-Based Extraction 293

3.4 Discussion

The combination of manual creation and semi-automatic generation of models
can substantially contribute to a user-centered design of assistance in smart
environments. Nonetheless, some effort is needed to prepare and control the
generation. The main purpose of this effort is to provide reasonable assurance
that the resulting models do not only describe the scenarios in a formally correct
way (which could be achieved by fully automated generation) but also in a way
that properly reflects the use case from the users’ domain specific perspective.
The usage of such models is not limited to the derivation of proactive assistance,
but also includes the interaction between users and the environment in specific
situations: Models can be used as understandable visualizations of the system’s
state (“Why has something just happened?”, “What will happen next?”) as well
as for giving specific instructions (“The talk is not over yet.”) that may include
(or prevent) a number of device actions.

The approach presented here enables modelers to create task models in a more
effective and proportionate manner.

4 Summary and Outlook

Using models as primary artifacts in software development to specify user be-
havior and user tasks is valuable, but requires a lot of work. This is escpecially
true for Smart Environments, since the establishing of a link between the rather
abstract models and the sensor data as the main input of the system is a very
time-consuming task. The combination of manual top-down creation and semi-
automatic bottom-up generation of task models based on scenario traces can lead
to a considerable reduction in cost and effort. Particular priority is attached to
the retaining of the models’ character as an easily understandable formalization
of tasks and activities from the users’ point of view.

Further investigation of possibilities for improving the support of model cre-
ation for Smart Environments may include the more effective gathering of sce-
nario data: Thus far, traces are recorded from real users in the environment. It
may be useful to allow the recording of traces in a simulated environment. Such
an approach would benefit from and rely on the introduction of an intermediate
language as outlined in this paper (basic action stream).

Acknowledgements. The work of the first author is supported by DFG grad-
uate school 1424 (MuSAMA) at the University of Rostock, Germany.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc.
VLDB 1994, pp. 487–499. Morgan Kaufmann (1994)

2. Chikhaoui, B., Wang, S., Pigot, H.: A Frequent Pattern Mining Approach for
ADLs Recognition in Smart Environments. In: IEEE International Conference on
Advanced Information Networking and Applications (AINA), pp. 248–255 (2011)



294 G. Buchholz and P. Forbrig

3. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool
Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

4. El-Ramly, M., Stroulia, E., Sorenson, P.: Recovering Software Requirements from
System-user Interaction Traces. In: Proc. SEKE 2002, pp. 447–454. ACM Press
(2002)

5. Ferilli, S., De Carolis, B., Redavid, D.: Logic-Based Incremental Process Min-
ing in Smart Environments. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn,
M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 392–401.
Springer, Heidelberg (2013)

6. Garland, A., Lesh, N.: Learning Hierarchical Task Models By Demonstration. Tech-
nical Report, Mitsubishi Electric Research Laboratories (2003)

7. Hamou-Lhadj, A., Braun, E., Amyot, D., Lethbridge, T.: Recovering Behavioral
Design Models from Execution Traces. In: 9th European Conference on Software
Maintenance and Reengineering, pp. 112–123. IEEE Computer Society (2005)

8. Hoßbach, B., Glombiewski, N., Morgen, A., Ritter, F., Seeger, B.: JEPC: The Java
Event Processing Connectivity. Datenbank-Spektrum 13(3), 167–178 (2013)

9. Krämer, J., Seeger, B.: Semantics and Implementation of Continuous Sliding Win-
dow Queries over Data Streams. ACM Trans. Database Syst., 4:1–4:49 (2009)

10. Maulsby, D.: Inductive Task Modeling for User Interface Customization. In: Proc.
IUI 1997, pp. 233–236. ACM (1997)

11. Paris, C., Lu, S., Linden, K.V.: Environments for the Construction and Use of Task
Models. In: The Handbook of Task Analysis for Human-Computer Interaction, pp.
467–482. Lawrence Erlbaum Associates (2004)

12. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.-C.: Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach.
IEEE Transactions on Knowledge and Data Engineering 16(11), 1424–1440 (2004)

13. Seyff, N.: Exploring how to use scenarios to discover requirements. Requirements
Engineering, 91–111 (2009)

14. Wang, J., Han, J.: BIDE: Efficient Mining of Frequent Closed Sequences. In: Proc.
ICDE 2007, pp. 79–90. IEEE Computer Society (2007)

15. Wurdel, M., Sinnig, D., Forbrig, P.: CTML: Domain and Task Modeling for Col-
laborative Environments. Journal of Universal Computer Science 14(19), 3188–
3201 (2008) (Special Issue on Human-Computer Interaction)

16. Zaki, M., Wurdel, M., Forbrig, P.: Pattern Driven Task Model Refinement. In:
Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F. (eds.) Inter-
national Symposium on DCAI. AISC, vol. 91, pp. 249–256. Springer, Heidelberg
(2011)

17. Zaki, M., Forbrig, P.: A methodology for generating an assistive system for smart
environments based on contextual activity patterns. In: EICS 2013, London, pp.
75–80 (2013)


	Combining Design of Models for Smart Environments with Pattern-Based Extraction

	1 Introduction
	2 Related Work
	3 Design and Extraction
	3.1 Top-down Construction of Models
	3.2 Bottom-up Synthesis of Models
	3.3 Example
	3.4 Discussion

	4 Summary and Outlook
	References




