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Abstract. In this paper, we synthesize research on the type of cognitive com-
mands that have been examined for controlling Brain Computer Interface (BCI) 
wheelchairs and the human factors that have been reported for the selection of 
different protocols of BCI commands for an individual user. Moreover, we in-
vestigate how different researchers have considered the necessity of sustained 
movement from a single thought/command, having an emergency stop, and the 
commands necessary for assisting users with a particular disability. We then 
highlight how these human factors and ergonomics' considerations were applied 
in the design and development of an EEG-controlled motorized wheelchair, 
aiming to emphasize users' requirements for people with severe physical dis-
abilities. In this case study, we propose a brain controlled wheelchair navigation 
system that can help the user travel to a desired destination, without having to 
personally drive the wheelchair and frequently change the movement directions 
along the path to the destination. The user can choose the desired destination 
from a map of the environment, using his/her brain signals only. The user can 
navigate through the map using BCI cognitive commands. The system 
processes the brain signals, determines the required destination on the map, and 
constructs an optimized movement path from the source to the intended destina-
tion. To construct an obstacle-free path with the shortest possible distance and 
minimum number of turns, a path planning optimization problem is solved us-
ing a simple Simulated Annealing (SA) algorithm. The resulting optimized path 
will be translated into movement directions that are sent to the microcontroller 
to move the wheelchair to the desired destination.  

Keywords: Brain Computer Interaction (BCI), electroencephalography (EEG), 
Path Planning Optimization, Simulated Annealing, Wheelchair. 

1 Introduction 

Human factors in the design of assistive technologies are essential to the successful 
adoption and utilization of devices that provide alternatives to functional limitations 
imposed by users' physical disabilities. Recent advances in technologies have made it 
possible for a person to interact with and control devices using only his/her brain 
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waves or Brain Computer Interaction (BCI). Brain–computer interactions/interfaces 
(BCIs), brain–machine interfaces (BMIs), Direct Brain Interfaces (DBIs), and neuro-
prostheses, all refer to the same concept. According to [1], a BCI interface was  
defined formally in the first international meeting for BCI research in June 1999 as: 
“A communication system that does not depend on the brain’s normal output  
pathways of peripheral nerves and muscles” [1]. 

There are some available techniques to detect the brain activity such as electroen-
cephalography (EEG) and magnetoencephalography (MEG), where EEG is consi-
dered to be the most common way to detect the electrical activity in the brain for the 
context of wheelchair designs [2].  In EEG systems, the sensors are placed on the 
brain scalp without surgical intervention. Nowadays, unobtrusive wireless headsets 
are available that can be used to detect EEG signals (e.g. Emotiv's EPOC and Neu-
rosky's Mindwave [5-6]). The available EEG headsets are relatively inexpensive, easy 
to wear and control. Furthermore, the temporal resolution of EEG which represents 
the ability to detect changes within a certain time interval is relatively good; a millise-
cond or even better. However, the spatial resolution - a measurement of the accuracy 
of a graphic display - and the frequency range are limited, This consequently limits 
the amount of information that can be extracted [3-4]. One of the popular EEG  
headsets is EPOC which is made by Emotiv Systems.  

The proliferation of BCI-oriented assistive technologies have the potential to im-
prove the quality of life of people with severe motor disabilities with increased inde-
pendence and less reliance on caregivers. Among the promising devices that have 
been developed for this purpose, is an EEG based brain controlled wheelchair, which 
the user can move using his/her brain signals only; hence, alleviating the need for any 
physical movement to control the device [7]. This wheelchair can be used to serve 
people who cannot move their limbs or people living with spinal cord injury.  Never-
theless, a person with a disability may face difficulty in controlling the brain con-
trolled-wheelchair for long periods of time, since the procedure usually requires  
non-trivial concentration by the person with a disability throughout the navigation 
process from the source to the destination. Accuracy of BCI-controlled systems re-
mains a concern and using brainwaves to drive a wheelchair may not effectively lead 
the user to the required destination. 

Taking such difficulty into account, we developed a brain controlled wheelchair 
system, which we called Brain-Wheel, in a way that will relieve users from the task of 
planning the path to the destination. To avoid the inaccuracy of existing BCI tools, we 
are restricting the use of BCI to the selection of the destination. Hence, BCI is not 
utilized in this context for guiding the wheelchair step-by-step as the user is navigat-
ing to the destination. The system was designed so that users of this system can 
choose a target destination, which they would like to navigate to, from the 2-D envi-
ronment map using their brain signals. In the system, Emotiv's Epoc is used to detect 
the brain signals for selecting the required destination from the presented room map. 
In the Brain-Wheel system, we used the Emotiv cognitive suite, where the headset can 
understand the user’s intent to perform specific actions. Based on the user’s intention 
to move, the detected brain signals will determine whether or not to start the naviga-
tion system. The navigation system will then decide the optimal path that the  
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wheelchair should follow using a metaheuristic algorithm, which has been specifically 
designed for this problem. The output of the algorithm will be fed back to the micro-
controller where we used an Arduino UNO Rev3 [8]. The circuit, which the Arduino 
controls, consists of two servos [9]. Once the signals from the software are received, 
the Arduino directs the two servos to rotate accordingly, to push the wheelchair’s 
joystick shaft forward, backward, left, or right. Thus, allowing the wheelchair to move 
to the desired location via the user’s command. Insights from this project and  
reflections on the design of related systems are discussed in this paper. 

In this paper, a review of related work is presented in the next two sections. Then, 
we discuss the Brain-Wheel system that we developed with an emphasis on the hu-
man factors related to BCI control and motion modules.   

2 Human Factors in the Design of Powered Wheelchairs 

In this section, we describe the human factors in the design of wheelchairs that sup-
port independent movement of users with a range of disabilities. Innovative designs 
for wheelchairs have emerged in recent years that address a wide spectrum of ergo-
nomics ranging from the seats, motor controls, and head support to the interaction 
modalities that facilitate freedom of navigation and movement with configurable  
controls. 

Innovations in wheelchair design are intended to improve the ergonomics of 
wheelchairs and independence of wheelchair users, thereby saving the cost of addi-
tional treatment or assistance in daily living. Complexities in the interaction between 
wheelchairs and their users have risen in recent years that are in-line with advance-
ments in computing power, decrease in cost of microcontrollers, and the emergence of 
a variety of sensors. Human factors in the design of wheelchairs have been examined 
extensively with regards to the mechanical components such as the seats, foot rests, 
hand rims, castors, head supports and arm rests [16]. Several factors influence the 
energy needed to propel wheelchairs; most notably are as the users' position and the 
control modules for navigating in the space. Human factors related to the control 
components of electrical powered BCI wheelchairs have been recognized as key de-
sign issues due to the inaccuracy of sensors in BCI modules but have been inade-
quately examined [e.g. 10]. BCI-controlled wheelchairs have been designed with 
wired and wireless EEG headsets. Wireless headsets have the advantage of increased 
freedom of head movement but with less accuracy in interaction/control. On the other 
hand, wired headsets provide more accuracy but in a more obtrusive setting using the 
EEG caps and constrained movements. Navigation interfaces have facilitated control-
ling the movement commands and the selection of destinations in gradual navigation 
through physical spaces. Virtual environments have been proposed to train users in a 
safe context-of-use before engaging in the real-time control of the BCI wheelchair in 
the actual environment [10]. Minimizing the cognitive load of users in interacting 
with BCI wheelchairs is a key design factor and different control mechanisms have 
been examined where some interfaces allow users to select the navigation path phase-
by-phase while other interfaces facilitate selecting only the destination and handover 
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the path-planning and maneuvering task to the computing and mechanical modules of 
the wheelchair [10-11, 14]. Computational intelligence has potential for contribution 
in such scenarios of Human-Computer Interaction (HCI) contexts of research and 
development to alleviate the cognitive load of users; however, very few attempts been 
reported in the literature to address this interaction design problem for BCI-controlled 
wheelchairs. Reducing the mental effort and concentration of users that is required for 
BCI-controlled wheelchairs has been examined for selection components in [10] and 
in stopping controls in [11] and [14]. In user acceptance evaluations of BCI-controlled 
wheelchairs, human factors of response time of BCI, training time of the systems to 
recognize patterns of user thoughts and interpreting them into commands, and the 
thresholds of mental effort required to trigger controls (e.g. selection, navigation, 
sustained attention for recognition of evoked potentials) are key in the effective  
design of such assistive technologies.  

3 BCI-Controlled Wheelchair Designs 

BCI-controlled wheelchair prototypes have been developed to provide un-aided con-
trol of wheelcahairs for people with disabilities. In this section we present some of the 
existing BCI applications designed for powered wheelchairs.  

A brain controlled wheelchair system was proposed in [10]. The proposed system 
is composed of three stages: detect the brain signals, classify them into actions, and 
interfacing to the wheelchair. Firstly, to detect the brain signals the authors used 16-
channel 24-bit electroencephalogram (EEG). Sensorimotor rhythms (SMR), which 
can be produced by imagining the limbs or moving them, are used to produce the 
desired brain signal. To achieve the second step, which requires understanding and 
classifying the detected signals, the authors investigated several feature extraction 
algorithms, such as discrete Fourier transform (DFT) and common spatial patterns 
(CSP). CSP aims to facilitate the process of differentiating between the two classes of 
data by increasing the variation between them, which aids in the classification 
process. Different machine learning algorithms have been used as a classifier. Support 
Vector Machine (SVM) was used to predict the class of the given input. After the 
feature selection phase, the authors investigated the optimal sensors number and loca-
tion. Over 60 sensors, the sensors that produce the most demanding signal that can 
serve both CPS and the classifier were chosen.  The classification performance re-
sults show that when the number of sensors is increased, the classification results will 
be better. The system has been tested in a virtual 3D simulated environment and a 
modular controller was used as an interface to the wheelchair. 

B. Rebsamen et al. [11] also develop a BCI-controlled wheelchair using a hybrid 
P300and mu-Beta interface. The authors used visual stimuli to invoke P300 signals 
where the items or destinations that the users can navigate to are presented and 
flashed sequentially. To select a destination from the presented list, the user needs to 
focus his/her attention on the destination image. P300 signals were used select the 
navigation item that the user focuses on. The authors of [11] represented the naviga-
tion environment as a graph, where a limited number of destinations through the  
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a better quality, it replaces the current path. Otherwise, the new path is adopted with a 
certain probability. To generate a neighboring path, a special neighborhood move was 
designed to fit the constraints of the path optimization problem presented here. 

4.3 Motion Module 

After the path has been generated, the software would translate the path into com-
mands of “forward”, “right”, or “left”. The commands are sent to the Arduino UNO 
microcontroller, the brain of the motion module, and are received as “F” for “for-
ward”, “R” for “right”, and “L” for “left”. The Arduino is programmed to control two 
servos mounted over the wheelchair’s joystick’s shaft. Given a command signal, from 
the Arduino to the servo, the servo's motor will turn its own shaft to a specified angle. 
Each servo controls an axis (X, Y), and their initial setting is 90 degrees (middle val-
ue) each.  When “F” is received, the Y-axis servo would turn to 180 degree, and the 
X-axis servo would be in its initial setting, thus moving the joystick forward. When 
“R” is received, The Y-axis servo would be given its initial setting value, and the 
other servo a 0 degree, same for when the “L” is received except now the x-axis servo 
is set to 180 degree. Each command is carried out for one second; then would lock 
back to its initial setting 90 degrees for each servo, for it to stop. This was made to 
help avoid collisions. Communication between the Arduino and PC/LAPTOP is made 
using serial communication, over a USB cable. Once the signals from the software are 
received, the Arduino will direct the two servos to rotate accordingly, to push the 
wheelchair’s joystick shaft forward, left, or right. Thus, allowing the wheelchair to 
move to the desired location given by the user’s command. Because our work was 
designed as an external component to the powered wheelchair, and we didn’t modify 
the mechanical components of the wheelchair, it is envisioned that similar power 
wheelchair models could integrate our system in their design. Our system allows the 
wheelchair driver to sit comfortably in his/her power wheelchair, only facing the lap-
top screen on their lap tray, and wearing the EEG headset. A USB cable is connected 
from the laptop to the motion module. 

 

Fig. 4. Motion Module 
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5 Conclusion 

Aiming to facilitate the navigation of the wheelchair and other brain controlled devic-
es, we proposed in the Brain-Wheel project a navigation system that combines Brain 
Computer Interaction and Path Planning Optimization. Instead of guiding a device to 
the destination, an interface that contains the environment map will be presented to 
the user offering various destinations to be reached from the point of navigation. The 
user has to select a destination from the presented map using his/her brain signals. 
Two cognitive actions have been used in Brain-Wheel: push cognitive and right cog-
nitive. Using right cognitive, the user can navigate from one cell to another. When the 
required destination cell is reached a push cognitive is required. The system will then 
construct a collision-free path to the desired destination using a Simulated Annealing 
metaheuristic. Finally, the path will be fed to wheelchair using a control box that will 
transform the path into directions of movements that are connected to the wheelchair's 
motor modules. 

The current system is a prototype at this stage, but in future work, we wish to 
create an ergonomically designed enclosure for our wheelchair motion module. For 
example, the speed of the wheelchair was fixed during testing of the system, and can-
not be changed. A more flexible system would allow the user to select the speed of 
their choice. As for safety measures, we plan to add sensors to prevent the wheelchair 
driver from colliding with unobserved objects in our system. 
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