
Model-Based Multi-touch Gesture Interaction

for Diagram Editors

Florian Niebling, Daniel Schropp, Romina Kühn, and Thomas Schlegel

Institute of Software- and Multimedia-Technology, Technische Universität Dresden,
Dresden, D-01062, Germany

{florian.niebling,thomas.schlegel,romina.kuehn}@tu-dresden.de,
d.schropp@gmx.de

Abstract. Many of todays software development processes include
model-driven engineering techniques. They employ domain models, i.e.
formal representations of knowledge about an application domain, to
enable the automatic generation of parts of a software system. Tools
supporting model-driven engineering for software development today are
often desktop-based single user systems. In practice though, the design
of components or larger systems often still is conducted on whiteboards
or flip charts. Our work focuses on interaction techniques allowing for
the development of gesture-based diagram editors that support teams
in establishing domain models from a given meta-model during the de-
velopment process. Users or groups of users are enabled to instantiate
meta-models by free-hand or pen-based sketching of components on large
multi-touch screens. In contrast to previous work, the description of
multi-touch gestures is derived directly from the graphical model rep-
resenting the data.

Keywords: Multi-touch gestures, model-based development.

1 Graphical Model-Driven Development

To allow for the graphical modeling of artifacts according to a given data model,
graphical models can be used to represent features of the data model. These
models contain shapes and containers providing a graphical description of data
models and supporting the development of graphical diagram editors. One exam-
ple of graphical modeling within the Eclipse framework is the Graphical Editing
Framework (GEF) [13], which provides methods for the creation of graphical ed-
itors for the Eclipse Modeling Framework (EMF). The Graphiti Toolkit [7] based
on GEF provides a graphical model for the representation of model instances,
the Graphiti pictogram model. In our prototypical diagram editor, instances of
a data-model can be created and manipulated by interacting with graphical rep-
resentations specified using the Graphiti pictogram model, which are linked to
the appropriate elements of the data model (see Figure 1).

M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2014, LNCS 8511, pp. 121–130, 2014.
c© Springer International Publishing Switzerland 2014

122 F. Niebling et al.

Fig. 1. Model-driven diagram editor based on Eclipse

1.1 Formal Representation of Gestures

Explicit methods for gesture recognition are based on patterns of strokes that
are compared to the user input and evaluated regarding their similarity. To
represent these strokes, previous developments use domain-specific languages to
define multi-touch interaction such as the Gesture Description Language (GDL)
[9] or the Gesture Markup Language (GML). In contrast, we propose to use
the graphical representation of artifacts that is already present in the graphical
model to derive multi-touch gestures. We identified three modes of gesture inter-
action that have been employed by users to sketch the various graphical items
specified using the pictogram model: Single-touch / single-stroke, single-touch /
multi-stroke, and multi-touch / multi-stroke (see Figure 2).

Fig. 2. (left) single-touch / single-stroke. (middle) single-touch / multi-stroke. (right)
multi-touch / multi-stroke.

2 Related Work

Interaction with diagram editors was been simplified by enabling finger- or pen-
based gestural sketching input. Plimmer et al. [12] give some overview about
sketching tools developed for multiple application domains, such as UML mod-
elling and UI generation, as well as on the gesture recognition algorithms that

Model-Based Multi-touch Gesture Interaction for Diagram Editors 123

have been employed in the various works. Rubine’s algorithm [14], a single-stroke
pattern-matching algorithm, is one of the recognition techniques employed e.g. in
InkKit [12], SUMLOW[5] and the Knight UML Designer [6]. Rubine’s algorithm
performs a comparison between features extracted from registered patterns and
features extracted from user input. In the implementation in InkKit, the recog-
nition process is started manually, while in SUMLOW, a timer is responsible for
starting the recognition.

This is regarded as a drawback by Alvardo et al., who provide continuous
recognition in their SketchREAD engine [1], using a gesture recognition algo-
rithm based on bayesian networks.

In their SKETCH framework [15], Sangiorgi et al. employ a recognition al-
gorithm based on the Levenshtein Distance [10], using string-based descriptions
of gestures describing cardinal directions. The development effort on SKETCH
seems to have ceased since 2010.

Scribble [16] is a GEF-based framework which allows for a seamless extension
of GEF editors with gesture input. Since no pre-generated patterns are used,
users are enabled to choose their own gestures, making the framework usable in
many different application domains. The GEF editors that are augmented by
Scribble have to be trained by the user to support their respective gestures of
choice.

The related work shows the relevance of gesture-based input for diagram ed-
itors in multiple application domains. Multiple methods towards gesture recog-
nition have been evaluated, with descriptions of gestures being either program-
matic, pattern-based or feature-based. In contrast to the existing work, we pro-
pose methods for generating gesture description from the graphical models used
to represent entities of the application domain.

3 Specification of Graphical Models

A Graphical Model contains graphical representations of the elements contained
in a Data Model that represents concepts of the underlying application domain.
In the context of workflow editing, a model-based graphical workflow editor
contains a model of the workflow items (i.e. activity, event, loop, connection,
etc.), and a graphical model containing graphical representations of these items
(i.e. rectangle, diamond shape, line, etc.). By selecting graphical shapes in the
editor, the user is enabled to instantiate concepts of the underlying data model.

In our prototypical application, we extended the graphical modeling frame-
work Graphiti to allow for sketching of instances of the underlying pictogram
model used by Graphiti. As can be seen in Figure 3, we extended Graphiti’s Di-
agram Editor to make use of a Gesture Recognizer, that is able to detect shapes
contained in the graphical model of the application. On detection of sketched
fragments of the graphical model, instances of the underlying data model are cre-
ated and the associated feature of the graphical model is added to the editor’s
scenegraph.

124 F. Niebling et al.

Fig. 3. Architecture of the prototypical diagram editing framework. Instances of the
gesture model are recognized by a $N gesture recognizer, features of the data model
and the graphical model are instantiated for display by the system.

3.1 Recognition of Sketched Graphical Models

To be able to recognize sketched user input, fragments of the graphical model,
such as can be seen in Figure 5, have to be able to be detected by theGesture Rec-
ognizer. We would like to give a short introduction about the methods that are
employed in the Gesture Recognizer for sketch recognition, and for transforma-
tion of the pictogram model fragments to reference templates for the recognizer
component.

The $1-Recognizer, a pattern-matching algorithm for single-stroke gestures,
was introduced by Wobbrock et. al. [17]. It uses simple lists of coordinates as pat-
terns for gesture recognition, which are compared to user input. The algorithm
is implemented in four steps:

– Resampling. Because of different speed of user input, gestures contain dif-
ferent numbers of input points. In this step, the point path is resampled to
contain a certain number of equidistant points, Wobbrock et. al. propose to
use 64 points per point path.

– Rotation. Point paths are rotated in negative direction such that the in-
dicative angle, the angle formed between the centroid of the gesture and the
gestures first point, is 0.

– Scale and translation. After scaling the point path to a reference square, the
centroid of the point path is translated to (0,0).

– Recognition. The point path is continuously rotated to find the minimum
path-distance between the point path and supplied reference patterns.

The $1 recognizer’s main benefits are simple implementation, high speed and
that extensive training is unnecessary. This simplicity comes with several draw-
backs. The algorithm is not able to distinguish input according to its orientation,
aspect ratio or position, making it impossible to differentiate between e.g. squares
and non-square rectangles. Also, $1 is not usable for multi-stroke gestures.

Model-Based Multi-touch Gesture Interaction for Diagram Editors 125

Listing 1.1. or.pictograms

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<p i : Diagram xmi : v e r s i on =”2.0”
xmlns : xmi=”http : //www. omg . org/XMI”

xmlns : x s i=”http : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xmlns : a l=”http : // e c l i p s e . org / g r aph i t i /mm/ algor i thms ”
xmlns : p i=”http : // e c l i p s e . org / g r aph i t i /mm/pictograms ”
v i s i b l e=”true ” a c t i v e=”true ” name=””>

<ch i l d r en x s i : type=”p i : ContainerShape ” v i s i b l e=”true ” a c t i v e=”true”>
<graph ic sAlgor i thm x s i : type=”a l : Po l y l i n e ” foreground=”//@colors . 0”

l ineWidth=”2” width=”40” he ight=”40”>
<po in t s x=”0” y=”20”/>
<po in t s x=”20” y=”0”/>
<po in t s x=”40” y=”20”/>
<po in t s x=”20” y=”40”/>
<po in t s x=”0” y=”20”/>

</graphicsAlgorithm>
<ch i l d r en v i s i b l e=”true”>

<p r op e r t i e s key=”ge s tu r e ” va lue=”1”/>
<graph ic sAlgor i thm x s i : type=”a l : E l l i p s e ”

foreground=”//@co lors . 0” l ineWidth=”3” f i l l e d =” f a l s e ”
width=”18” he ight=”18” x=”11” y=”11”/>

</ch i l d r en>
<ch i l d r en>

<p r op e r t i e s key=”ge s tu r e ” va lue=”2”/>
<graph ic sAlgor i thm x s i : type=”a l : Po l y l i n e ”

foreground=”//@colors .0”>
<po in t s x=”0” y=”0”/>
<po in t s x=”50” y=”100”/>
<po in t s x=”100” y=”0”/>

</graphicsAlgorithm>
</ch i l d r en>

</ch i l d r en>
<c o l o r s red=”102” green=”102” blue=”255”/>

</p i : Diagram>

Fig. 4. Instance of Graphiti pictograms model representing the or data model instance
of our prototypical workflow editor

Protractor [11] was developed to address some shortcomings of the $1 recog-
nizer, the key difference being sensitivity to orientation, making it possible to
distinguish eight base orientations. The $N recognizer [2] improves on the $1 al-
gorithm, allowing for the representation of multi-stroke gestures as single-stroke
gestures, combining the last point in a stroke with the first point of the following
stroke. This allows for the recognition of a mixture of single- and multi-strokes.
The $N Protractor [3] is a combination of the $N recognizer and the aforemen-
tioned Protractor algorithm.

The main reason for selecting the $N family of algorithms for our application
framework is the simplicity of transforming fragments of the employed graph-
ical model into patterns for the recognizer. The coordinate lists contained in
the al:Polyline elements of the graphical model, as well as al:Rectangle and
al:Polygon elements, as can be seen in Figure 5, can be easily converted into
required coordinate lists for the $N recognizer. For shapes such as al:Ellipse and
al:RoundedRectangle, we sample the shape to provide the appropriate coordinate
lists.

126 F. Niebling et al.

Fig. 5. Input possibilities for the or element: (left) mathematical symbol. (middle)
circular gesture. (right) circular + diamond gesture.

3.2 Functionality of the Workflow Editor

We selected an existing EMF-based workflow editor to evaluate our prototypical
gesture based sketching framework. The editor uses traditional mouse based in-
teraction according to the WIMP concept. In addition to interactions performed
using existing Eclipse interfaces, possible interactions with the editor are sepa-
rated into two categories. As can be seen in Figure 1, the right side of the editor
contains a list of workflow objects that can be dragged to the main diagram in
the middle of the workspace, instantiating entities of the graphical model and
placing them inside the diagram. Inside the diagram, existing workflow objects
can be moved, deleted or connected using transitions between ports contained
in workflow objects.

3.3 Integration of Gesture Recognition

The extended architecture of the workflow editor can be seen in Figure 6.
Input, processing and detection of gesture based sketching are enabled inside
Graphiti’s Diagram Editor and our additional Gesture Recognizer. The link be-
tween Graphiti and gesture recognition is Graphiti’s Interaction Component,
where touch input is received and forwarded to the newly introduced gesture
recognizer. Upon detection of one of the entities provided in the graphical model
based on Graphiti’s pictogram model, the Diagram Type Provider is used to
instantiate the particular entities of the data model and the graphical model
respectively.

4 Evaluation

The evaluation of our prototype was performed on a Dell XPS One 27 featuring
a capacitive multi-touch display. The gestures that were automatically generated
from the graphical model of our workflow editor were evaluated in a user study
involving 15 participants. Furthermore, a comparison between the existing, tra-
ditional mouse-based interaction and gesture based usage was performed. This
was done to gather evidence towards if expected advantages of gesture based
sketching, such as higher intuitiveness, or expected disadvantages such as fat-
finger problem or user fatigue, dominate the user experience. The evaluation

Model-Based Multi-touch Gesture Interaction for Diagram Editors 127

Fig. 6. Integration of gesture based sketching into the Graphiti architecture (adapted
from Brand et al. [4])

was performed using two different quantitative methods, a formative user sur-
vey, and user transparent observation of behaviour. Participants in the study
have not been involved in the development of the gesture recognition, although
most of them belonged to the same faculty with similar background in software
engineering, the application domain of the tasks in the user study.

To achieve the above mentioned goals, the following scenario was prepared.
The participants were to sketch the graphical workflow elements Process, If,
Or, And, Loop and Ports. Ports belonging to some of the elements were to
be connected using Transitions. The workflow editor was to detect sketched
workflow elements and position them at the respective position in the diagram.

Indicators that were rated were based on the NASA TLX evaluation [8] to as-
sess cognitive and physical demands, overall effort, mental effort, physical effort,
temporal effort, time pressure, performance and frustration levels. The observer
that was monitoring the participants was mainly passive. Although the sequence
of user tasks was arranged through the use of a survey sheet, the approach to-
wards the solution of each task was presented to be open to the preferences of
the user. The advances of the users were logged in the background and analyzed
afterwards.

4.1 Evaluation Results

Following a short introduction of the evaluated categories are an evaluation of
the most interesting results of the user study. Mental effort of gesture based
sketching was perceived to be lower as traditional mouse interaction throughout
the study. Further, a significant reduction in mental effort between the first
and the following tasks leads to the impression that the method of interaction is

128 F. Niebling et al.

learned after a very short period of familiarization, and can thus be characterized
as intuitive.

Physical effort was perceived to be higher using gestures than using mouse
interaction, a result that was to be expected since gesture interaction requires
free movement of a stretched arm in mid-air in front of the display. Physical
effort seems to be a fundamental weakness of gesture interaction, which is also
seconded by results in the overall effort category. Temporal effort was also per-
ceived to be higher for gesture interaction, even on tasks where measurements of
the time requirements for mouse based and gesture based interaction where sim-
ilar. Overall values for frustration where quite high when recognition of sketched
objects failed. This happened mainly in the sketching of ports, with a recognition
rate as low as 67.5%, where recognition rates for the other workflow elements re-
liably achieved between 90% and 100%. Further evaluation has since shown that
the low rate of recognition of ports was due to problems with the positioning
of the performed sketching. Multiple users have tried to sketch ports slightly on
the outside of existing workflow objects, when ports were actually only added to
workflow objects when the sketching was performed on the inside of an object,
due to programming errors in the prototype.

Although multiple participants of the study voiced their discomfort with
longer periods of gesture interaction on a desktop computer due to physical
effort, overall evaluation has shown that users accepted the process of gesture
based sketching of graphical representations as equal to mouse based interaction.

The decision to allow for multi-stroke gestures has to be reconsidered, as
only two of the 15 participants made active usage of multi-stroke sketching for
the And element, even after being explicitly advised towards the possibility of
multi-stroke sketching.

Fig. 7. Pen-input on interactive whiteboard

Model-Based Multi-touch Gesture Interaction for Diagram Editors 129

Multiple users intuitively reduced complex geometries to simpler gestures that
represented subsets of the graphical representation of objects. E.g., the surround-
ing diamond of the graphical representations of the And and Or elements (see
Figure 5) have been disregarded by most users, leaving just a simple circle ges-
ture for the Or element and a plus gesture for the And element.

All participants but one have sketched transitions in a straight line between
workflow objects, even when the final graphical representation of a transition
was not a straight line to avoid cutting existing workflow elements.

5 Summary and Conclusion

We have evaluated a method for diagram sketching where gestures were au-
tomatically derived from the underlying graphical model of the application. A
prototypical workflow editor based on Eclipse and Graphiti was augmented to
support the generation of templates for a gesture recognizer from the Graphiti
pictogram model. A formative user study was performed to evaluate user inter-
action with the modified editor.

As a fundamental difference towards previous work, the presented concept
and prototypical implementation allows for collaborative multi-user interaction
using multi-touch multi-stroke gestures. Evaluation with single user interaction
on a desktop PC have shown that the sketching of workflows was accepted to
be largely equivalent to mouse-based interaction concerning the preparation of
workflow diagrams. Follow-up testing has shown tendencies that collaborative
scenarios featuring digital whiteboards are promising targets for further user
studies. Independent of the testing environment, our evaluations have shown that
gestures derived from graphical models are accepted as input methods by users.
The intuitive reduction of graphical representations by users towards simpler ge-
ometric subsets suggests further areas of research towards automatic generation
of intuitive gestures from graphical models.

6 Future Work

Several different methods that support graphically similar objects need to be
evaluated in future work. First, using context to allow the system to choose the
item that is perceived to be of higher probability. Second, the support of similar
objects using the same gestures, with additional pop-up menus allowing the user
to choose one of the different objects. Third, further evaluation which parts of
the graphical model are perceived by users to carry the most significance or
relevance. Identifying parts that are perceived to be meaningful by users given
a graphical representation is also necessary the more complex graphical models
become.

Further work is also needed in the evaluation of introducing mobile multi-
touch devices such as tablets into the software modeling process, expanding
the collaborative user environment from single devices such as whiteboards to
multiple devices.

130 F. Niebling et al.

References

1. Alvarado, C., Davis, R.: Sketchread: A multi-domain sketch recognition engine. In:
Proceedings of the 17th Annual ACM Symposium on User Interface Software and
Technology, UIST 2004, pp. 23–32. ACM, New York (2004)

2. Anthony, L., Wobbrock, J.O.: A lightweight multistroke recognizer for user inter-
face prototypes. In: Proceedings of Graphics Interface 2010, GI 2010, pp. 245–252.
Canadian Information Processing Society, Toronto (2010)

3. Anthony, L., Wobbrock, J.O.: $N-protractor: A fast and accurate multistroke recog-
nizer. In: Proceedings of Graphics Interface 2012, GI 2012, pp. 117–120. Canadian
Information Processing Society, Toronto (2012)

4. Brand, C., Gorning, M., Kaiser, T., Pasch, J., Wenz, M.: Development of High-
Quality Graphical Model Editors. Eclipse Magazine (2011)

5. Chen, Q., Grundy, J., Hosking, J.: An e-whiteboard application to support early
design-stage sketching of uml diagrams. In: Proceedings of the 2003 IEEE Confer-
ence on Human-Centric Computing, pp. 219–226. IEEE CS Press (2003)

6. Damm, C.H., Hansen, K.M., Thomsen, M.: Tool support for cooperative object-
oriented design: Gesture based modelling on an electronic whiteboard. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 2000, pp. 518–525. ACM, New York (2000)

7. Fuhrmann, H.A.L.: On the Pragmatics of Graphical Modeling. Kiel Computer
Science series. Books on Demand (2011)

8. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Re-
sults of empirical and theoretical research. Human Mental Workload 1(3), 139–183
(1988)

9. Khandkar, S.H., Maurer, F.: A language to define multi-touch interactions. In:
ACM International Conference on Interactive Tabletops and Surfaces, ITS 2010,
pp. 269–270. ACM, New York (2010)

10. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

11. Li, Y.: Protractor: A fast and accurate gesture recognizer. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010,
pp. 2169–2172. ACM, New York (2010)

12. Plimmer, B., Freeman, I.: A toolkit approach to sketched diagram recognition. In:
Proceedings of the 21st British HCI Group Annual Conference on People and Com-
puters: HCI...But Not As We Know It - Volume 1, BCS-HCI 2007, pp. 205–213.
British Computer Society, Swinton (2007)

13. Rubel, D., Wren, J., Clayberg, E.: The Eclipse Graphical Editing Framework
(GEF). Eclipse, Addison-Wesley (2011)

14. Rubine, D.: Specifying gestures by example. SIGGRAPH Comput. Graph. 25(4),
329–337 (1991)

15. Sangiorgi, U.B., Barbosa, S.D.J.: Sketch: Modeling using freehand drawing in
eclipse graphical editors. In: Proceedings of the FlexiTools Workshop (May 2010)

16. Scharf, A.: Scribble - a framework for integrating intelligent input methods into
graphical diagram editors. In: Software Engineering 2013 Workshopband (inkl.
Doktorandensymposium), pp. 591–596 (February 2013)

17. Wobbrock, J.O., Wilson, A.D., Li, Y.: Gestures without libraries, toolkits or train-
ing: A $1 recognizer for user interface prototypes. In: Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology, UIST 2007,
pp. 159–168. ACM, New York (2007)

	Model-Based Multi-touch Gesture Interaction
for Diagram Editors

	1 Graphical Model-Driven Development
	1.1 Formal Representation of Gestures

	2 Related Work
	3 Specification of Graphical Models
	3.1 Recognition of Sketched Graphical Models
	3.2 Functionality of the Workflow Editor
	3.3 Integration of Gesture Recognition

	4 Evaluation
	4.1 Evaluation Results

	5 Summary and Conclusion
	6 Future Work
	References

