
Chapter 16

Earthquake Risk Assessment: Present

Shortcomings and Future Directions

Helen Crowley

Abstract This paper looks at the current practices in regional and portfolio seismic

risk assessment, discusses some of their shortcomings and presents proposals for

improving the state-of-the-practice in the future. Both scenario-based and probabi-

listic risk assessment are addressed, and modelling practices in the hazard, fragility/

vulnerability and exposure components are presented and critiqued. The subsequent

recommendations for improvements to the practice and necessary future research

are mainly focused on treatment and propagation of uncertainties.

16.1 Introduction

In the 1st European Conference on Earthquake Engineering and Seismology in

Geneva in 2006, a keynote paper was presented by Norman Abrahamson on

“Seismic hazard assessment: problems with current practice and future develop-

ments” (Abrahamson 2006). Abrahamson reviewed areas within the practice of

probabilistic seismic hazard assessment (PSHA) that needed improvement and

made recommendations on the direction that future research in PSHA should

take. In this paper I take inspiration from Abrahamson, but will focus on the

practice and development of probabilistic seismic risk assessment (PSRA),

i.e. the estimation of the probability of damage and loss, for distributed buildings.

The main components of a PSRA for buildings comprise the hazard model

(to get the probability of levels of ground shaking), the exposure model (location

and characteristics of buildings) and physical vulnerability models (that provide the

probability of loss, conditional on the level of ground shaking). An exposure model
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provides information of the distribution of assets (e.g. buildings) within the region

and might include the location, structural/non-structural characteristics, built area,

replacement cost (new), contents value, business interruption cost, number of

occupants (day/night). The buildings are grouped in terms of building classes as a

function of their similar structural/non-structural characteristics, and a physical

vulnerability function is developed for each building class. Vulnerability functions

for structures provide the probability of loss or loss ratio (the loss as a percentage of

the value, e.g. the repair cost divided by replacement cost), conditional on a level of

input ground motion (Fig. 16.1), and can be derived from empirical, analytical or

expert opinion based methods, or a combination of these methods (hybrid) (see

e.g. Calvi et al. 2006; Rossetto et al. 2014). In empirical and expert-opinion based

vulnerability modelling it is common to separate the damage distribution that is

conditional on the ground motion (i.e. fragility function), from the loss distribution

that is conditional on the damage (i.e. damage-loss model). In analytical vulnera-

bility modelling, fragility functions are developed considering both the nonlinear

response (in terms of parameters such as inter-storey drift) that is conditional on the

input ground motion, and the damage state that is conditional on the nonlinear

response. Aspects related to the application of each of the components of a PSRA

are discussed in more detail herein, starting with the hazard model in the following

section.

16.2 Ground-Motion Modelling

16.2.1 Scenario-Based Hazard/Risk Assessment

Abrahamson (2006) summarised both deterministic and probabilistic approaches to

hazard assessment, and outlined many of the misunderstandings related to these two

approaches. Abrahamson’s focus was on hazard input for design and assessment,

whereas herein we are interested in the hazard input for risk assessment of distrib-

uted assets. Nevertheless, the key message that Abrahamson put forward – that both

deterministic and probabilistic approaches result in probabilistic statements about

the ground motion – is also of relevance for risk assessment.

In fact, the use of the term “deterministic” in current hazard and risk assessment

practice is misleading as it implies that there is no uncertainty involved in the

process. On the contrary, it is just the event characteristics (magnitude, location,

style of faulting etc.) that are commonly modelled as deterministic, whereas the

ground motion as well as the damage and loss estimation all involve uncertainties.

Furthermore, it is not necessarily the case that the event characteristics are deter-

ministic (for example, the location may have an uncertainty associated with it), and

it would be possible to model both aleatory and epistemic uncertainties related to

the event as part of the assessment. For this reason, it is perhaps better to use the

term “scenario-based” risk assessment, rather than deterministic risk assessment.
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In a site-specific design project the current practice in “deterministic” hazard

assessment is to select a certain number of standard deviations (i.e. epsilon) above

or below the median ground motion for the design seismic actions (Abrahamson

2006), but in a scenario risk assessment of distributed assets (e.g. buildings, people,

infrastructure), which can be useful for emergency planning as well as risk com-

munication and awareness, the epsilon should not be modelled as fixed across the

region of interest. Figure 16.2 shows the natural aleatory variability in ground

motions with distance that can be observed from two different earthquakes, together

with the median attenuation from both events (thick black line) and the median

attenuation from each event (thin black lines). Each event has an inter-event

residual (δe,1 or δe,2) which is given by the difference between the median curve

for both events and the median curve for the specific event; this variability arises

due to differences in the source mechanics of the events, such as the stress drop.

Within a given event, each site, j, where ground motions have been observed, has a

different intra-event residual, (δa,1j or δa,2j) which arises due to the varying path

characteristics from the source to the site. Many researchers (e.g. Wang and Takada

2005; Goda and Hong 2008; Jayaram and Baker 2009; Esposito and Iervolino 2011)

have shown that the intra-event residuals at two different sites for a given event are

correlated, as a function of their separation distance – the greater the distance, the

lower the correlation between the residuals. Hence, when modelling distributed

ground motions for a future potential scenario earthquake, a sample of the inter-

event residual/epsilon for the event should be made and then this should be

combined (through SRSS) with the intra-event residual/epsilon at each site,

which should be obtained by employing a model of spatial correlation of the

intra-event residuals (see e.g. Crowley et al. 2008 for a summary of this process).

Figure 16.3 shows examples of ground-motion distributions, or fields based on

different assumptions: median ground motion everywhere, uncorrelated ground-

motion residuals, and spatially correlated ground-motion residuals.

Fig. 16.1 Example of a

physical vulnerability

function, where the

intensity measure type on

the x axis is Peak Ground

Acceleration (PGA) and the

mean and distribution of

loss ratio is shown at

discrete levels of PGA
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For the estimation of the loss to all assets in the exposure model, the damage/loss

assessment should be based on a simulation of all possible ground-motion fields

that could occur, and thus the event should be repeated many times, sampling across

the full inter-event variability, and then the total mean damage/loss and total

standard deviation of damage/loss across all simulations can be estimated.

Fig. 16.2 Spatial variability from two different earthquake events (Bommer and Stafford 2008)

Fig. 16.3 Example of simulated ground-motion fields (PGA in g), based on median ground

motion (left), one realization of uncorrelated ground-motion residuals (centre) and one realization
of spatially correlated ground-motion residuals (right) (From Silva et al. 2014a)
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Nevertheless, in practice, scenario-based risk assessments are frequently based

on the ground motions with a fixed epsilon (often taken as 0 or +1) applied at all

sites. Such an approach assumes the unrealistic scenario of full spatial correlation of

the ground-motion residuals. When epsilon is taken as +1 everywhere, the assump-

tion being made is that the shaking at all locations has just 16 % probability of ever

being exceeded, and the joint probability of occurrence of this level of ground

motion at all sites will be extremely low. The resulting damage/loss thus also has an

extremely low probability of occurrence, and its usefulness for communicating risk

or preparing for emergency situations is questionable.

Even when the damage/loss is required at just a single location, the use of the

median or even the mean ground motion should be avoided as the resulting damage/

loss will often (though not always) be an underestimation of the damage/loss that

would be expected, on average, should the event be repeated many times. An

underestimation of damage/loss is expected when the ground motion is concen-

trated over the range that leads to loss ratios that are less than 50 % (from the

vulnerability function), though the opposite may occur if the ground motions are

concentrated in the upper 50 %. Figure 16.4 shows an example of the mean loss

based on the median ground motion (A) and the mean loss and standard deviation of

loss based on the ground motion with aleatory variability (B).

In order to estimate the mean damage/loss at a single site, an alternative

procedure can be employed which does not require the added complication of

separating the inter- and intra-event ground-motion variability and simulation of

the ground motions, as described previously. Instead, at the chosen location, one

should combine the probability of occurrence of each intensity measure level IML

(by integrating the probability density function of ground motion based on the total

aleatory variability) with the mean loss ratio from the vulnerability function at each

IML, and sum across all IMLs. Due to the lognormal function of ground-motion

variability and the nonlinear vulnerability function, the mean loss at the mean

ground motion will not be the same as the mean loss considering the full range of

potential ground motions at the site; in the example given in Fig. 16.5, the former is

0.098 and the latter (as shown in the workings of Table 16.1) is 0.105. Although the

difference is not pronounced in this example, it can be larger and will depend on the

specific ground-motion distribution and vulnerability function.

In this example the numerical integration of the ground-motion variability with

the mean loss ratio has been used, but since the vulnerability function could also

have an analytical form, an analytical integration is also possible, which would be

based on the following formula:

LR ¼
ð1

0

LR
��IML� f IML IML

��μIML, σIML

� �
dIML

where LR|IML stands for the conditional loss ratio for a given an intensity measure

level (IML), and fIML(IML|μIML, σIML) stands for the conditional probability density

function of ground motion given a mean intensity measure level (μIML) and asso-

ciated standard deviation (σIML).
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For what concerns the estimation of the standard deviation of the loss, it is also

possible to do that by combining the probability density function of the loss ratio

and ground-motion shaking through the employment of the total probability theo-

rem (more details are given in Crowley et al. 2010).

16.2.2 Probabilistic Hazard/Risk Assessment

In a fully probabilistic risk assessment, where all possible and relevant determin-

istic earthquake scenarios are considered together with all possible ground motion

Fig. 16.4 Mean loss based

on the median ground

motion (a) and the mean

loss and standard deviation

of loss based on the full

aleatory variability of

ground motion (b) (Silva

2013)

Fig. 16.5 Illustrative figure

of the variability in ground

motion (in this case PGA) at

a given site and how this

probability distribution

should be integrated at

intervals to get the

probability of occurrence,

and combined with the

mean loss ratios from the

vulnerability function
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probability levels, there are two commonly applied approaches in practice: one

based on the outputs of a PSHA (i.e. using the rate or probability of exceedance of a

set of IMLs) and the other based on the simulated ground-motion fields from

scenario events (which can either represent the full set of potential ruptures, or

can be a reduced set of scenarios, each with an associated probability of occur-

rence). The use of one method over the other depends on the application, and

whether there is a need to robustly model the standard deviation of damage/loss

across the full set of assets, or not. If the main output of interest is the annual

expected/average value of damage/loss, if the risk at a single site is required, or if a

comparative analysis of the risk at different sites is required, then the outputs of

classical PSHA (i.e. Cornell 1968; McGuire 1976) can be employed.

In this approach, a PSHA is carried out for the region leading to hazard maps for

a given intensity measure type (e.g. spectral acceleration at 1 s) for a number of

return periods. The use of PSHA hazard maps is appropriate for site-specific risk

assessment and maps which present the comparative risk at different sites, but a

frequent error that is made in practice is to use a single hazard map and to report that

the damage/loss at each site has the same return period/probability of exceedance as

the hazard map upon which it was derived. The problem with such an approach is

that it ignores the uncertainty in the vulnerability assessment (e.g. from the fragility

functions and the damage-loss conversion). As shown previously in Fig. 16.1, the

probability of exceeding a specific loss value is conditional on a number of different

intensity measure levels; from the hazard curve one can obtain the probability of

occurrence of those intensity measure levels, and by multiplying the two we obtain

a number of unconditional probabilities of exceeding the loss value, which are then

summed to get the total probability of exceeding the loss value. We then plot the

loss value against its respective probability of exceedance to produce a so-called

loss exceedance curve (Fig. 16.6).

Table 16.1 Estimation of the mean loss ratio based on example shown in Fig. 16.5a

IML Prob. occur PO|IML Mean loss ratio MLR PO|IML�MLR

0.20 0.004 0.016 0.000

0.25 0.041 0.032 0.001

0.30 0.135 0.052 0.007

0.35 0.230 0.075 0.017

0.40 0.240 0.102 0.024

0.45 0.176 0.131 0.023

0.50 0.099 0.161 0.016

0.55 0.046 0.192 0.009

0.60 0.019 0.223 0.004

0.65 0.007 0.254 0.002

0.70 0.002 0.284 0.001

∑¼ 0.105
aIt is noted that the numerical integration depicted in Fig. 16.5 and in the calculations in Table 16.1

is purely demonstrative and in practice a much smaller integration interval should be employed
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An event-based approach to probabilistic risk assessment is required when the

mean and standard deviation of the total, aggregated, loss to a spatially distributed

portfolio of assets is to be estimated. By modelling each event separately we are

able to model the spatial correlation of ground motions, as discussed previously.

The way in which the ground-motion aleatory variability is spatially modelled

affects the standard deviation of the loss; neglecting site-to-site ground-motion

correlation leads to systematically underestimation of large, rare losses and

overestimation of smaller but frequent ones (see e.g. Crowley and Bommer 2006;

Park et al. 2007; Weatherill et al. 2013). Monte Carlo simulation is generally

employed to simulate the seismicity of the next one hundred thousand years or so

(see e.g. Pagani et al. 2014), and for each event a spatially correlated field of ground

motion is simulated, and the resulting damage/loss is estimated by combing this

with the exposure and vulnerability models (see e.g. Crowley and Bommer 2006;

Silva et al. 2013a).

However, when different intensity measure types are used in the model (e.g. for

the vulnerability functions of different assets) then they need to be cross-correlated

(also known as spectrally correlated). Baker and Cornell (2006) looked at the cross-

correlation between the residuals of spectral accelerations (i.e. the difference

between the spectral acceleration from a record at a given period and the spectral

acceleration predicted for that record using a ground-motion prediction equation) at

different periods using a number of records and found that they were neither

uncorrelated (Fig. 16.7a) nor fully correlated (Fig. 16.7b), but featured a correlation

that varied as a function of the inter-period difference. Application of the model

leads to simulated spectra like those shown in Fig. 16.7c, which are seen to be

highly realistic when compared with real spectra with similar characteristics

(Fig. 16.7d). It should be noted that it is not just the intra-event variability of

different intensity measures that is cross-correlated but also the inter-event vari-

ability (see e.g. Goda and Atkinson 2009).

Fig. 16.6 Loss exceedance

curve
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When simulating spatial distributions of ground motion for loss assessment, if

cross-correlation, for example between the spectral acceleration at 0.3 s (used for

the vulnerability function of a low rise building type) and that at 1.0 s (used for a

mid rise building type), is not modelled, and each ground-motion field is simulated

independently, the impact of the spatial correlation is eroded when the combined

damage/loss to both building types is estimated. Weatherill et al. (2013) show that

the impact of spatial correlation on the total loss to a heterogeneous portfolio is

minimal when cross-correlation is not modelled (Fig. 16.8) but that when both

spatial correlation and cross-correlation are accounted for, the impact on the losses

at low probabilities of exceedance can be significant. However, it is noted that the

portfolio selected by Weatherill et al. (2013) was highly heterogeneous and

included building types with a very wide range of periods of vibration; should the

portfolio be more clustered around a smaller range of periods of vibration then the

impact of the inclusion or not of spatial correlation (without cross correlation) will

have a significant effect on the resulting losses, as has been shown in other studies

(e.g. Crowley et al. 2008).

Fig. 16.7 Comparison of simulated spectra with no inter-period correlation (a), full inter-period

correlation (b), modelled inter-period correlation (c) with real spectra (d), taken from Baker and

Cornell (2006)
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16.3 Fragility and Vulnerability Modelling

16.3.1 Issues Related to Commonly Used Intensity Measure
Types

The use of macroseismic intensity continues to be a popular choice for fragility and

vulnerability modelling, especially when the latter is based on observed damage

and loss data. One of the main reasons for this lies behind the volume of

macroseismic intensity data that is available following an event, which allows us

to constrain the level of shaking, and thus reduce the uncertainty in an empirical

vulnerability model. It is furthermore frequently argued that the use of

macroseismic intensity leads to more reliable damage/loss estimates as it is possible

to carry out an internal consistency check. However, there are still a number of

shortcomings in using macroseismic intensity in risk assessment. The previous

section discussed the developments on the modelling of spatially correlated ground

motion for the loss assessment of distributed portfolios; although state-of-the-art

Intensity Prediction Equations are still being developed (e.g. Allen et al. 2012) there

are currently few, if any, models of spatial correlation of the residuals of

macroseismic intensity. Furthermore, when good data on the site conditions within

a given area is available, the impact of site amplification on macroseismic intensity

is still generally modelled in an empirical manner without explicit modelling of the

uncertainties.

Fig. 16.8 Comparison of spatial correlation (blue curve) and spatial cross-correlated losses (green
and red curves) on the total loss to a heterogeneous portfolio of losses (Weatherill et al. 2013)

524 H. Crowley



The use of instrumental intensity measures in vulnerability modelling is required

when analytical modelling of the response of structures is employed. In this case the

explicit nonlinear behaviour of structures of a given class under accelerograms with

differing characteristics is evaluated. However, many analytical vulnerability

models developed today do not propagate all the uncertainties from the variability

in the capacity of the structures of a given class (due to varying geometrical,

material and design detailing properties), to the variability in the response from

records with the same intensity measure level (i.e. record to record variability), to

the variability in the limit state thresholds to damage (e.g. in the values of inter-

storey drift that would lead to collapse), to the uncertainties in the conversion of

damage to loss (e.g. uncertainty in the cost of repairing buildings that are exten-

sively damaged). Although these uncertainties might not necessarily be robustly

and explicitly modelled at every stage of the vulnerability function derivation, an

attempt should be made to include them, even just through engineering judgement.

This is an area that vulnerability modellers will need to focus on further in the

future.

One of the most diffused methodologies for scenario-based risk assessment

includes the use of the capacity spectrum method (see e.g. Freeman et al. 1975),

as proposed in ATC 40 (ATC 1996) and implemented in the HAZUS software

(FEMA 2003). In this methodology the median nonlinear response of the buildings

of a given class is estimated by combing the capacity curve with a response

spectrum, and then fragility functions based on this nonlinear response parameter

provide the damage distribution (see Fig. 16.9).

In the original HAZUS method the spectral ordinates at 0.3 and 1.0 s are

estimated, and then the full response spectrum is obtained by applying a code

spectral shape. With the use of a fixed spectral shape, the specific spectral charac-

teristics of the event under consideration are not accounted for, and given that a

code spectral shape attempts to reproduce a uniform hazard spectrum, enveloping

both low magnitude nearby events as well as high magnitude distant events (see

Fig. 16.10), the response spectrum used may be unrealistic. An improvement on this

practice is to use a scenario spectrum from a ground-motion prediction equation,

appropriate for the region and scenario. However, this modelling decision is not

without its drawbacks as a fixed epsilon (defined in Sect. 16.2), generally taken as

zero, is frequently applied in practice and thus cross-correlation is ignored. Instead,

and as mentioned previously, a large number of cross-correlated scenario spectra

should be simulated and used in the scenario risk analyses, after which the mean

and standard deviation of damage/loss can be estimated. An alternative approach to

using ground-motion prediction models for simulating realistic ground motions

(with spatially cross correlated intensity measures) would be to use physics-based

methods for modelling the fault rupture and wave propagation (and associated

uncertainties), leading to a number of synthetic records at the sites in question

(see e.g. Atkinson 2012).

When the capacity spectrum method (or any other nonlinear static procedure,

NSP) is used in PSHA-based risk assessment, as has been done in many applica-

tions (e.g. in the LESSLOSS project as described in Spence 2007; in the RISK-UE
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Fig. 16.9 Application of the capacity spectrum method in HAZUS (FEMA 2003)

Fig. 16.10 Schematic sketch of a uniform hazard spectrum at a given return period in which the

contributions to hazard at the shorter and longer periods come from different sources (Reiter 1990)
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project, as described in Mouroux and Le Brun 2006) and software (see e.g. Crowley

et al. 2010), the uniform hazard spectrum (UHS) at a number of different return

periods needs to be employed. The problems with this approach are that, again, the

spectral shape is unrealistic and all spectral ordinates are assumed to be fully

correlated. A vector-based PSHA analysis (e.g. Bazzurro and Cornell 2002),

where the joint probability of exceedance of spectral acceleration at multiple

periods is estimated, would need to be employed to address these issues. However,

applying such a method to the full response spectrum might not be feasible and it

would most probably be simpler to revert to a Monte Carlo event-based approach

(as mentioned earlier in Sect. 16.2).

There are other issues with the use of NSPs in risk assessment which include bias

and uncertainty in the nonlinear response (due to the assumptions on the elongation

of the period of vibration and the equivalent viscous damping in the structural

system, which often do not have an associated uncertainty) and underestimation of

the record-to-record variability (see e.g. Pinho et al. 2013; Silva et al. 2013b).

Hence, the use of vulnerability functions based on nonlinear dynamic analysis and

derived in terms of elastic scalar intensity measures would both simplify the hazard

modelling required in the risk assessment (at least for homogeneous portfolios, as

discussed in Sect. 16.2), and avoids issues of response bias and underestimation of

uncertainties. The main price that is paid with the use of dynamic analysis is the

computational demand, which is much higher when many structures and records are

considered. Should there thus be a desire to improve the computational efficiency,

NSPs could instead be used (provided the increased uncertainties and bias are both

accounted for), but it is nevertheless recommended that they are used to develop

scalar intensity measure-based vulnerability functions, to simplify the hazard

modelling requirements (see e.g. Silva et al. 2014b).

The elastic scalar intensity measure that is most commonly applied is the

spectral acceleration at the fundamental period of the structure. However, as

discussed previously, different structures in the portfolio will have different periods

of vibration and thus with the use of such an intensity measure type there will be a

need to model vector quantities of ground motion. In order to avoid this, one option

could be to use a fixed period of vibration (e.g. 0.5 s) for all buildings in the

portfolio. This avoids the need to model spectral correlation, but has the drawback

that the chosen period may not be the most efficient for all the building types in the

exposure model. The primary advantage of an efficient intensity measure is that it

should require fewer numerical analyses to achieve a desired level of confidence in

the nonlinear response (Mackie and Stojadinovic 2005). Hence, it is to be expected

that the use of an inefficient intensity measure type would increase the uncertainty

in the vulnerability functions. A comparison of the loss exceedance curves that are

produced for a heterogeneous portfolio with vulnerability models based on efficient

(structure-dependent) intensity measures and cross-correlation of the ground

motion should be made against the curves obtained with vulnerability functions

based on a fixed intensity measure type and no cross-correlation, to assess whether
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the increased simplicity of the analysis is penalised by an increased uncertainty in

the final loss.

16.3.2 Correlation of Vulnerability Uncertainty

When vulnerability functions for a class of structures are used in a regional risk

assessment, the uncertainty needs to be sampled from the loss distribution (see

Fig. 16.1). The question which then arises is whether all the buildings of a given

typology within the region will respond better or worse than average, and thus

whether there is a correlation in this uncertainty. For example, after the Northridge

earthquake in 1994 a previously unknown design deficiency in the connections of

steel structures was observed, which led to a correlation in the response of the

buildings of this class, and in Turkey after the 1999 Kocaeli earthquake, there was a

case where all but one mid-rise concrete frame buildings in the same complex

collapsed. Currently, however, it is generally not possible to do more than estimate

the losses both with and without vulnerability uncertainty correlation; more

research is needed to better constrain this correlation. In the meantime, a useful

practice is to run the risk model both with and without full correlation to get the

bounds of the expected losses.

16.3.3 Epistemic Uncertainty

Finally, a practice that has increased recently includes the use of logic trees to

model the epistemic uncertainties in vulnerability modelling (e.g. Molina

et al. 2010). However, this practice is not widespread and more research is needed

in order to bring this practice to the level of maturity found with the use of logic

trees within PSHA studies. For example, the recent European hazard modelling

project SHARE (www.share-eu.org) used a state-of-the-art methodology for devel-

oping the ground-motion logic tree that combined expert judgement with the use of

strong ground-motion data for the selection, ranking and weighting (Delavaud

et al. 2012). Although the data available for testing vulnerability models is sparse,

initiatives such as the GEM Global Earthquake Consequences Database1 (that is

collecting damage and loss data for a number of building typologies around the

world) will help improve the potential for data-driven guidance for vulnerability

model selection.

1 http://www.globalquakemodel.org/what/physical-integrated-risk/consequences-database/
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16.4 Exposure Modelling

There are two main types of exposure models: building-by-building and aggre-

gated. In the latter case the buildings with the same structural/non-structural

characteristics (taxonomy2) are aggregated within the boundaries of a given area,

which is often a zip code, administrative area or grid cell, and relocated to a single

location (either because the locations of the individual buildings are unknown, or to

increase computational efficiency of the model). This is the most common type of

exposure model (e.g. Crowley et al. 2010; Campos Costa et al. 2009; Erdik

et al. 2003), but is also the one that raises the most risk modelling difficulties.

As discussed in Bazzurro and Park (2007), when all of the buildings are

relocated and aggregated, the same intensity measure level is input to the vulner-

ability model which means that a full correlation of ground motion is assumed for

these buildings. In reality, however, these buildings would be distributed across the

zip code/grid cell and would thus be subject to spatially variable ground motion.

Furthermore, all of these buildings will have the same sample of uncertainty in the

vulnerability model applied to them, further correlating the loss of these building

types. If we know the number of buildings that have been aggregated we can avoid

the latter correlation by sampling a number of vulnerability residuals equal to the

number of buildings at the given location, and estimate the loss for each building

separately, after which the statistics for the building typology can be estimated.

There are at least two options to deal with the induced ground-motion correlation

due to aggregation of the buildings: random disaggregation of the buildings within

the aggregation area, or modification of the ground-motion aleatory variability (see

e.g. Stafford 2012). The former approach is straightforward but increases signifi-

cantly the computational demands of the analysis, especially when there are

millions of assets in the model. The latter approach, described in Stafford (2012),

reduces the variance of the ground motion when it is taken to represent the average

of a given area, rather than the ground motion of a single point (which is the case for

distributed assets), following the recommendations of Vanmarcke (1983). More

investigation is needed to compare these methods and to study the difference in

losses and computational performance of both these two approaches together with

the case that simply ignores this induced correlation, thus adding to the studies and

conclusions of Bazzurro and Park (2007). The availability of more building-by-

building exposure models (so-called “ground truth” models), such as those that can

be produced with the tools developed by the Global Earthquake Model,3 will allow

the impact of various exposure aggregation assumptions to be further investigated.

In practice exposure models do not generally feature uncertainties, even though

they are usually developed with poor data and a large number of assumptions, and

are arguably the most uncertain component of the risk model. For large regions

these models are often a combination of population and building census data (where

2 http://www.globalquakemodel.org/what/physical-integrated-risk/building-taxonomy/
3 http://www.globalquakemodel.org/what/physical-integrated-risk/inventory-capture-tools/
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the latter might actually refer to the dwellings rather than the buildings and which

often do not include the necessary structural information of the buildings), statistics

on the average characteristics of dwellings/buildings in the region, expert judge-

ment on replacement costs per square metre and so on. The assignment of uncer-

tainty to exposure models, as well as of any correlations in the uncertainty, is

certainly an area that would benefit from increased research attention.

16.5 Conclusions

This paper has looked at many commonly applied modelling assumptions in the

seismic risk assessment of portfolios of distributed buildings. One of the main

points that should be clear is that as the developments in ground-motion modelling

continue to progress, in particular those related to the correlation of aleatory

variability, these have an impact on the way in which exposure and vulnerability

models are treated in risk modelling. Furthermore, the correlated uncertainties in

the vulnerability and exposure models require more attention in future regional risk

modelling research.

A number of research questions that require further investigation have been

raised herein:

• Is the penalty for simplifying the intensity measures in vulnerability models too

high in terms of the associated uncertainties in the losses?

• How can we define the correlation of vulnerability uncertainty within a given

building class?

• Can we apply lessons learned from data-driven ground-motion prediction equa-

tion logic tree modelling to vulnerability models?

• How should we deal with the induced ground-motion correlation of aggregated

buildings in exposure models, and what is the impact of ignoring it?

• How can we attempt to model the uncertainties in exposure models?

Hence, although the practice of seismic risk assessment is well established, there

are still a number of areas that require further research and exploration by the

present and next generations of risk modellers.
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