Practical Compiler-Based User Support during
the Development of Business Processes

Thomas M. Prinz and Wolfram Amme

Friedrich Schiller University Jena
07743 Jena, Germany
{Thomas.Prinz,Wolfram.Amme }@uni-jena.de

Abstract. An erroneous execution of business processes causes high
costs and could damage the prestige of the providing company. Therefore,
validation of the correctness of business processes is essential. In general,
business processes are described with Petri nets semantics, even though
this kind of description allows only algorithms with a worse processing
time and bad failure information to this moment.

In this paper, we describe new compiler-based techniques that could
be used instead of Petri net algorithms for the verification of business
processes. Basic idea of our approach is, to start analyses on different
points of workflow graphs and to find potential structural errors. These
developed techniques improved other known approaches, as it guarantees
a precise visualization and explanation of all determined structural errors,
which substantially supports the development of business processes.

1 Introduction

Business processes, e.g., service orchestrations, can have two kinds of structural
errors: deadlocks and lack of synchronization [1], whereas deadlocks are situa-
tions in which the execution within business processes blocks partly, and lack of
synchronization are situations in which parts of business processes are executed
twice unintentionally. The absence of deadlocks and lack of synchronization in
business processes is called soundness in the literature [2,3], whereas we prefer
to call it structural correctness like Sadiq and Orloswka [1], since soundness
describes the overall correctness.

Current soundness checker tools are based on Petri nets, or on workflow
graphs, which are similar to control flow graphs using explicit parallelism. Most
Petri net-based techniques [4,5] use state space exploration to determine struc-
tural errors. This allows the determination of exactly one runtime error, which
even could be unsolvable, since it could be caused by a previous error. Take the
business process in BPMN notation of Fig. 1 as example. It is possible, that
after the execution of the parallel diverging gateway F'1 the parallel converging
gateway J1 will be executed, however, the task T'1 has still a control flow, since
there is a classical lack of synchronization situation. If this control flow arrives at
J1, then there is a deadlock situation. The state space exploration could find the
deadlock situation firstly, however, bug-fixing this deadlock seems not to be the

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 40-53, 2014.
© Springer International Publishing Switzerland 2014

Practical Compiler-Based User Support 41

Fig. 1. A lack of synchronization causes a deadlock

best solution to get a correct business process. Therefore, such an information is
useless in development tools. Furthermore, state space exploration can lead to an
exponential processing time in the size of the Petri net in general. Summarized,
they are rather unusable within development tools for business processes.

The best known technique is the SESE decomposition [6], which works on
workflow graphs and decomposes the graph into subgraphs called fragments.
For each fragment only a single error may be detected, and this error can be
visualized by highlighting the corresponding fragment. In other words, the SESE
decomposition cannot find all structural errors in a fragment. Furthermore, there
are some complex fragments, which cannot be addressed by this approach.

Overall, there is no development support tool for business processes being
fast, complete and informative. In this paper, we describe new compiler-based
techniques, which work directly on workflow graphs and statically determine
deadlocks and lack of synchronization, i.e., independent of previously executed
workflow graph parts. Compared to other techniques, it guarantees a precise
visualization and explanation of all structural errors, which considerabily assists
the development of business processes and fulfilles most of the requirements.

This paper is structured as follows. In Section 2, we refresh the definitions of
workflow graphs and structural correctness, followed by an informal description
of our approach (Section 3). Section 4 describes the properties of structural
errors, whereas Section 5 applying them for determination. The approach will be
evaluated in Section 6 and compared to other techniques in Section 7. Eventually,
Section 8 concludes the paper.

2 Preliminaries

Formally, a workflow graph is a directed graph WFG = (N, E) such that N
consists of activities Nactivities, forks Nyorks, joins Njoins, splits Nepiirs, merges
Nmerges, one start, and end node. The end node, each activity, split, and fork
has exactly one incoming edge; whereas the start node, each activity, merge, and
join has exactly one outgoing edge. Splits and forks have at least two outgoing

42 T.M. Prinz and W. Amme

edges, and merges and joins have at least two incoming edges. Furthermore, each
node lies on a path from the start to the end node. A workflow graph is called
simple if for each edge e = (n1,m2) € E the source n; or the target ny is an
activity.

Figure 2 shows an example work-
flow graph. The start and end node
are depicted as (thick) circles, and an
activity is depicted as rectangle. Forks
and joins are illustrated as thin rect-
angles, whereas splits and merges are
depicted as (thick) diamonds.

The semantics of workflow graphs
used in this paper is similar to the
semantics of control flow graphs. The
execution of a workflow graph begins
at the start node and follows the flow
described by the directed graph. An
activity, a split, a merge, a fork, and the end node can be executed when a
control flow reaches an incoming edge of these nodes, whereas a join can only
fire if all incoming edges are reached by a control flow. After executing a split,
it decides nondeterministically, which outgoing edge will be followed by the con-
trol flow in workflow graphs without data aspects. After the execution of a fork,
parallel control flows will be built for each outgoing edge.

Without loss of generality, we assume each workflow graph is simple for the
remainder of this paper, since there is a fast transformation from common to
simple workflow graphs, e.g., by placing a new activity on each edge. This allows
a description of the incoming and outgoing edges of a node with the direct
predecessor and direct successor nodes. We write en to describe the set of direct
predecessor nodes of n, i.e., Vn, € en: (n,,n) € E. Furthermore, we write ne to
describe the set of direct successor nodes of n, i.e., Vns; € ne: (n,n,) € E.

Paths will be used to describe control flows within workflow graphs. Formally,

Fig. 2. A workflow graph

a path P =(ni,ne,...,Nm-1,nm) Iis a sequence of nodes of N
such that Vie {l,...,m—1}:(n;,ni11) € E. A path is called direct if
N2y, Mm—1 7 N1, Nm; and simple if all nodes on the path are pairwise different.

The structural correctness will be defined by the absence of deadlocks and
lack of synchronization. Thereby, a deadlock in a join can be reached if it was
not executed as often as each of its direct predecessor nodes and cannot fire in
future. Furthermore, a reachable fork causes a lack of synchronization when
its execution may cause a node to be executed twice in series. A workflow
graph is structurally correct if it has neither deadlocks nor lack of synchroniza-
tion.

Practical Compiler-Based User Support 43

Fig. 3. An unreachable deadlock in join J2

3 Informal Description

The basic idea of our approach is to start the analysis for structural correct-
ness on different points (nodes) of the workflow graph, called entrypoints. It is
comparable to a compiler, which tries to find a next safe program point to find
further errors after a compile time error was found. For example, Figure 3 shows
a workflow graph containing two deadlocks. Starting an analysis in the start
node shows only a deadlock at the join J1, whereas restarting the analysis at
the split S2 detects another deadlock in join J2.

Each node of a workflow graph can be an entrypoint. In order to avoid wrong
analysis results, the entrypoints have to be chosen carefully. For example, the
activity A4 of Fig. 3 is not a good entrypoint to show a possible deadlock in
join J2, because it has no path to all direct predecessor nodes of this join. To
find suitable entrypoints, they will be chosen with regard to another node, e.g.,
a join.

Definition 1 (Entrypoint). A node ny is an entrypoint of a node ns if after
an execution of ny the execution of ne could follow.

An entrypoint n1 of a node no is called safe if after each execution of ni the
execution of ny follows. Furthermore, an entrypoint ni of a node ny is called
closest if on at least one path from ni to ny lies no other entrypoint of ns.

For example, the entrypoints of activity Al are the nodes S, A0 and S1 in Fig.
3. Al has S1 as closest but not safe entrypoint, since not each execution of S1
causes Al to be executed. A safe and closest entrypoint of the split S1 is the
activity AO. The joins J1 and J2 have no entrypoints, since no node within the
workflow graph could cause the joins to be executed.

4 Properties of Structural Errors

In this section, we show some properties of structural errors. The proofs are out
of the scope of this paper, however, the interested reader may find them in the
technical report [7].

Safe entrypoints of joins are excellent entrypoints for the determination of
deadlocks, referred to as activation points.

44 T.M. Prinz and W. Amme

Definition 2 (Activation Point). A node ny is an (closest) activation point
of a node ny if ny is a (closest) safe entrypoint of no.

With regard to activation points and to joins, the following lemma combines
some properties of a join.

Lemma 1 (Properties of a Join). Let WFG be a workflow graph. Then, the
following holds:

1. each activation point of a join is an activation point of the joins direct pre-
decessor nodes.
2. each closest activation point of a join is a fork.

Summarized, all closest activation points of a join should be forks and are activa-
tion points of all direct predecessor nodes of that join. Knowing these properties,
the following theorem could be used for the determination of deadlocks within
workflow graphs without lack of synchronization.

Theorem 1 (Deadlock). Let WFG be a workflow graph, which is free of lack
of synchronization.

join € Njoins has a deadlock
=
on at least one path from the start node to join or from join to itself lies no
activation point of join.

In other words, before any control flow ever arrives at a join within a workflow
graph free of lack of synchronization, an activation point of this join must be
executed to prevent a deadlock. The basic idea of the proof is to show that after
each execution of an activation point, the join will be executed and a remaining
deadlock is only caused by lack of synchronization.

The entrypoints for the determination of lack of synchronization are forks,
since only forks build more than one control flow, that can cause an execution
of a node twice in series. Indeed, control flows will be described by paths within
workflow graphs.

Definition 3 (Intersection Point). Let fork € Nyoris and sucy, sucs € forke,
sucy # sucs.

An intersection point of sucy and suce is a node N-point with a direct path
from sucy and sucs to N-point without node fork. It is called closest if it is the
first common node of such two direct paths. We write t(sucy, sucg) for all closest
intersection points of sucy and sucs.

Intersection points can be used to determine lack of synchronization, since they
represent combination points of control flows. Furthermore, all control flows from
the same fork have to be combined in joins, before the fork can be executed again
or the end node is reached. This fact will be used in the following theorem.

Practical Compiler-Based User Support 45

Theorem 2 (Lack of Synchronization). Let WF'G be a workflow graph, end
its end node and fork € Nyorks. Furthermore, let stopr, stops € { fork,end}.

from the execution of fork follows a lack of synchronization
=
dsucy, suce € forke, sucy # sucs:
t(suct, suca) € Njoins, OT
3 direct pathy = (sucy, . .., stop1), pathy = (sucy, ..., stops):
pathy N paths = 0.

The basic idea of the proof is to show that no two control flows built by a fork
can ever execute the same node twice in series.

The conditions used in Theorem 1 and 2 describe a superset of deadlocks and
lack of synchronisation, since parts of it never occur at runtime, because forgoing
deadlocks will prevent their execution. Therefore, we call them potential.

Nevertheless, the structural correctness of a business process can be proven
if we can show that no potential deadlock and lack of synchronization arise in
its corresponding workflow graph. In addition, with the successive elimination of
deadlocks and lack of synchronization during the development process, a moment
will be reached at which the set of potential errors equals the set of real errors.
In this sense, based on conditions used in Theorem 1 and 2, a finite development
process could be defined, which eventually can be used for the determination of
real deadlocks and real lack of synchronization.

5 Determination of Structural Errors

The basic idea of the overall algorithm for detecting structural errors is the
iteration over two steps until the workflow graph is structurally correct. The
first step determines potential lack of synchronization, which are then bug-fixed
by the user. Afterwards, the potential deadlocks will be determined, which will
also be bug-fixed.

Basically, to determine potential deadlocks, each path from the start node to a
join and from this join to itself is checked, whether it contains a fork as a closest
activation point. If this does not hold true for a certain join, then this join has
a potential deadlock. The determination of potential lack of synchronization is
straightforward to Theorem 2, i.e., all paths from direct successor nodes of a fork
to the end node and to the fork itself will be determined and pairwise examined:
if both paths of all pairs have a first common node and this is a join, the fork is
said to be free of causing lack of synchronization.

5.1 Determination of Potential Deadlocks

In the following, let join € Njoins. The first step of the algorithm finds all entry-
points for join. Thereby, the focus lies on entrypoints which are forks. Afterwards,
the closest entrypoints of join will be determined. These closest entrypoints have
to be checked to be safe, i.e., they are activation points. Eventually, the algorithm
checks the conditions of Theorem 1.

46 T.M. Prinz and W. Amme

Fig. 4. Two forks and two joins

1. Determine the entrypoints. With regard to Lemma 1, closest activation points
of node join can only be forks, which have a direct path to each direct predecessor
node of join. But this basic lemma is not sufficient to proof that a fork is an
entrypoint of a join.

For example, a look on Fig. 4 shows, that the fork F'2 is no entrypoint of J2,
because no execution of F2 follows an execution of J2. The execution will be
stopped by the join J1, because F2 is not an entrypoint of J1.

Instead of searching the entrypoints for join, we determine for each fork the
set of nodes for which it is an entrypoint, called the scope of a fork.

Definition 4 (Scope of Forks). Let fork € Njoris. The scope o(fork) is a
set of nodes with o(fork) = {n: fork is an entrypoint of n}.

A fork fork is an entrypoint of each of its direct successor nodes, since the
workflow graph is simple. Furthermore, if a node n is not a join and has a
direct predecessor node for which fork is an entrypoint, then n has fork also as
entrypoint, since n can be executed if at least one predecessor node was executed.
At last, if the node n is a join and each of its direct predecessor nodes has fork
as entrypoint, then fork is also an entrypoint of n, since n can be executed when
all of its direct predecessor nodes were executed. Hence, the scope o(fork) of a
fork could be determined recursively with the algorithm in Fig. 5.

Input: A fork fork and o(fork) < 0 10: function COMMONCASE(current)
Output: The scope o(fork) of fork 11: o(fork) < o(fork) U {current}
1: for all suc € forke do 12: for all suc € currente do

2: determineScope(suc) 13: determineScope(suc)

3: 14:

4: function DETERMINESCOPE(current) 15: function JOINCASE(current)

5: if current ¢ o(fork) then 16: if ecurrent C o(fork) then

6: if current ¢ Njoins then 17: o(fork) < o(fork)U{current}
7 commonCase(current) 18: for all suc € currente do
8: else 19: determineScope(suc)

9: joinCase(current)

Fig. 5. Determine the scope of a fork

Practical Compiler-Based User Support 47

A fork is an entrypoint of a join if the join is within the scope of the fork. After
the determination of each scope of each fork, the set X'(join) can be determined
containing all entrypoints being forks of join. If X'(join) is empty for join, then
join cannot have closest activation points, i.e., join has a potential deadlock.

2. Determine closest entrypoints. From the definition of closest entrypoints,
there has to be at least one path from an entrypoint of a node m to this
node n, which contains no other entrypoint of n. The closest entrypoints
Yelosest(join) C X(join) can be determined efficiently with a backward depth-
first search. It searches the entrypoints of join. If such an entrypoint was reached,
then this entrypoint is marked as a closest entrypoint of join, and the depth-
first search stops the ongoing traverse of this path. If the start node or join was
reached, then join has a potential deadlock.

3. Determine closest activation points. Referring to Lemma 1, the closest entry-
point fork is a closest activation point for join if fork is an activation point
for each pre € ejoin. As mentioned before, fork is an activation point of a
pre € ejoin when the execution of pre follows after the execution of fork. More
specifically, there is a direct path from fork to pre which will be guaranteed
to be executed. In general, there could be more than one path from fork to
pre, e.g., the paths start of different direct successor nodes of fork; or decisions
(splits) creates a divergence. Therefore, we merge all the direct paths starting in
the same direct successor node of fork and ending in pre. This union of paths
is called deliverer, because it describes how a control could be delivered from a
direct successor node of fork to pre.

Definition 5 (Deliverer). Let join € Njgins, pre € ojoin, fork € Nioris is a
closest entrypoint of join, and suc € forke, which has a direct path to pre.

A deliverer of join between suc and pre is a set of mnodes
0(fork, join, suc,pre) = {n: n lies on a direct path from fork to join containing
suc and pre}.

With the help of the definition of deliverers, the safeness of a closest entrypoint,
i.e., the closest activation points, could be formulated as follows.

Lemma 2 (Safeness). Let join € Njoins, and fork be a closest entrypoint of
join.

fork is a safe and closest entrypoint of join iff Vpre € ejoin, Isuc € forke:
d(fork, join, suc, pre) will be guaranteed to be executed.

A deliverer 6(fork, join, suc, pre) will be guarenteed to be executed if it neither
contains a deadlock nor control flows can leave it. Since fork must be a closest
activation point of join, it has to be an activation point of all joins within this
deliverer. Without loss of generality, we assume that fork is an activation point
of all these joins.

Furthermore, an execution of 6(fork, join, suc,pre) is given if the control
flow cannot leave this deliverer. The only node where it is possible to leave a

48 T.M. Prinz and W. Amme

Input: a workflow graph WFG = (N, E)

Output: all joins with a potential deadlock

1: determine scope o for all forks and entrypoints X for all joins
2: for all join € Njsins do

3: determine the last entrypoints Xy, (join) with a backward depth-first search
4: for all entrypoint € Xiqs:(join) do

5: determine all deliverers A(entrypoint, join) for each direct successor node

of entrypoint and predecessor node of join

6: for all d(entrypoint, join, suc, pre) € A(entrypoint, join) do

7 determine guaranteed execution of é(entrypoint, join, suc, pre)

8: if §(entrypoint, join, suc, pre) is guaranteed to be executed then
9: mark pre as safe for entrypoint

10: if not all pre € ejoin are marked as safe for entrypoint then

11: eliminate entrypoint from Y44 (join)

12: do a backward depth-first search with begin in join and which stops in a
traversation of a path on a fork € X5 (join)

13: if the start node or join were reached by the depth-first search then

14: mark join as deadlock

Fig. 6. Determine potential deadlocks

deliverer is a split. Thus, if §(fork, join, suc, pre) contains a split, which has a
path outside this deliverer, then an execution is not guaranteed.

Lemma 3 (Guaranteed execution). Let §(fork, join, suc, pre) be a deliverer
whose fork is an activation point of all inner joins.

The execution of d(fork,join, suc, pre) is guaranteed iff
Vsplit € (§(fork, join, suc, pre) N Ngplies): splite C 6(fork, join, suc, pre).

Summarized, the safeness of each closest entrypoint of a join can be determined,
i-e~, the set Eactivation(njoin)-

4. Check the conditions of Theorem 1. This could be proved easily by a backward
depth-first search with begin at join. It searches the closest activation points of
join. If such an activation point was found, it stops the further traverse of this
path. If it reaches the start node or join itself, join has a potential deadlock.

The overall algorithm is shown in Fig. 6 and has a cubic runtime complexity,
although faster implementations are possible.

5.2 Determination of Potential Lack of Synchronization

In the following, let suci,suce € forke, suciy # sucs. Furthermore, let
pathy = (sucy, ..., stop) and pathe = (suca, ..., stops) be two direct paths with
stop1, stops € { fork,end}, whereas end is the end node. Note, Theorem 2 states
that a lack of synchronization will be caused directly by fork if there are two
paths with pathl N path2 =), or the closest common node of them is not a join.

Practical Compiler-Based User Support 49

Since forks are the entrypoints for the determination of potential lack of
synchronzation, the analysis is done for each fork. The first step of the al-
gorithm determines for each direct successor node suc of fork the set of all
direct paths paths(suc) from suc to fork and from suc to the end node. The
next step checks for each pair (suci, suce) if there is a pair (pathi,paths) €
paths(sucy) X paths(suca), where paths pathy, paths are disjoint or have a clos-
est intersection point not being a join.

1. Find the sets paths(sucy), paths(sucz). As mentioned before, for a suc € forke
holds that paths(suc) = {p : p is a direct path from suc to fork or from suc to
the end node }. Theoretically, there could be any number of such paths, because
the workflow graph may contain loops. To address this fact, only the simple
paths from a suc € forke to fork and to the end node will be determined.
Finding all simple paths between two nodes in a directed graph is called an
all simple paths problem and a fast algorithm can be found in Pahl et al. [§].

2. Checks done for each (pathi,paths) € paths(sucy) X paths(sucz). The check
pathi N paths = () will be done first guaranteeing the absence of closest intersec-
tion points. If path; N paths = (), fork has a potential lack of synchronization.

For the second check, it holds that pathi N paths # @. Furthermore, each node
of pathy N paths is an intersection point of sucy, suce. An intersection point
N-point of sucy, sucy in pathy N pathy is closest by definition, when it has a
pre € N -point with pre € path; and pre ¢ paths, and vice versa.

Summarized, the closest intersection point of suci, sucy within path; and
pathe can be determined by iterating over each intersection point within
pathy N pathy and applying the definition. If the found closest intersection point
is not a join, then fork has a potential lack of synchronization.

The overall algorithm will be shown in Fig. 7. This implementation of the
algorithm was presented at this point for a better understanding. Although the
runtime complexity of the algorithm looks inacceptable, it is possible to build an
algorithm which runs in quadratic time, like used in our implementation [7,9].

6 Evaluation

We have implemented the algorithms in Java to detect structural errors in
workflow graphs. To check the practical application of the approach, we have
evaluated it twice, (1) in the Activiti BPMN 2.0 designer, a modeler for business
processes, and (2) as a soundness verification tool. Tools and benchmarks are
available on www.bpmn-compiler.org and https://sourceforge.net/
projects/bpmojo

Activiti BPMN 2.0 designer. To verify the usability of the structural correct-
ness approach, we have implemented the algorithms for the Activiti BPMN 2.0
designer (http://activiti.org).

www.bpmn-compiler.org
https://sourceforge.net/projects/bpmojo
https://sourceforge.net/projects/bpmojo
http://activiti.org

50 T.M. Prinz and W. Amme

Input: a workflow graph WFG = (N, E)
Output: all forks which could cause a potential lack of synchronization
1: for all fork € Nyorks do
for all suc € forke do
determine paths(suc)

for all (suci, suc2) € (fork e x forke), suci # sucz do
for all (pathi,paths) € paths(suci) X paths(sucz) do

if pathi N paths = () then
mark fork as lack of synchronization

else
Find closest intersection point N-point within path: and paths
if N-point ¢ Njoins then

mark fork as lack of synchronization

—_ =

Fig. 7. Determine potential lack of synchronization

Figure 8 depicts an illustration of the tool highlighting a detected lack of syn-
chronization within the graphical model, and showing a list of all errors. Practi-
cally, the structural correctness analysis is upon every change to the graphical
model without a visible delay.

Soundness verification tool. The comparison of the processing time to other
soundness verification approaches was the primary goal of the evaluation of the
algorithms as soundness verification tool. The benchmark contains real-world
business processes of IBM [3]. It is splitted in 5 libraries, i.e., A, B1, B2, B3 and
C. This benchmark was also used by Fahland et al. [3]. A PNML [10] file was
used as input describing a Petri net and then transformed into a workflow graph.
By using Petri nets, we can directly compare the results with other tools like
LoLA [5].

For benchmark evaluation, we have changed our algorithms to stop structural
analysis upon first error. Furthermore, the algorithm was tuned to answer the
yes-no question if the workflow graph is structurally correct or incorrect.

Our runtime environment was a 64 bit Intel® Core™2 CPU E6300 proces-
sor and 2 GB main memory Linux 3.1.0 system. We ran each of the 5 libraries 10
times, removed the two best and worst results and calculated the average time.

We have chosen LoLA to compare our solution with existing tools. The SESE
decomposition approach is hard to compare, because a standalone implementa-
tion was not available and it depends on other soundness verification approachs.
Table 1 shows the results of the benchmark evaluation.

Compared to LoLA, our algorithm is 150 times faster. This is not the major
result, since LoLA was not build to verify business processes. Fahland et al.
[3] have shown that SESE decomposition and the Woflan tool have comparable
runtimes like LoLA. Summarized, our approach is faster than the state-of-the-art
tools compared by Fahland et al. [3].

Practical Compiler-Based User Support 51

File Edit View Navigate Search Project Run Window Help
e B e e
‘ | Bo o o2 | St o 92| = 00| = | Quick Access | E | [Resource
» =8 < Paper &% = B
Sl 8.0
- ® -
User Task 0 Sk_
- |
| — |2
= ™ @
<[I I £
Q User Task 0 o
» =g (3]
=
-
; - .
An outline is
:\?:\Iabla. [Properties . Problems 52 . = |
3 errors, 0 warnings, 0 others
Description .
a4 € Errors (3 items)
@ Deadlock [NUJOIN9)].{0,1,2,3,4,5,6,7,8,9,11,12,13,14,15}
@ Lack of Synchronization [N(FORK,G), N(MERGE4)]. {1, 2, 3, 4,5, 6,7, 8,14, 15}
@ Lack of Synchronization [N(FORK,8)], {1, 2, 3,6,7, 8, 14}
« m v
Fig. 8. Visualizing control-flow errors in Activiti
Table 1. Results of the benchmark evaluation
Library: A B1 B2 B3 C
Analysis time [ms] 16.4 15.4 20.7 28.4 1.7

Analysis time LoLA [ms] 2373.0 2395.9 3126.1 3651.3 303.8
Per process avg./max. [ms] 0.06/0.28 0.06/0.36 0.06/0.47 0.07/0.69 0.06/0.31
Per process LoLA avg. [ms] 8.5 8.4 8.7 8.7 9.5

7 Related Work

The fastest free choice Petri net soundness verification approach uses the rank
theorem [2], i.e., a mathematical theorem of linear algebra. It has at least a
cubical time complexity in the size of the workflow graph, but does not provide
diagnostic information. The other approach to determine the soundness of free
choice Petri nets is model checking with tools like Woflan [4] or LoLA [5]. Thus,
a search on the state space of the free choice Petri net will be performed. This
technique can lead to an exponential processing time in the size of the free choice
Petri net. However, it supplies a failure trace (or execution sequence) that leads
to the first error found. It is not possible to detect all failures with this technique.

Primarily, techniques working directly on the workflow graph restrict them to
acyclic or restricted, e.g., Perumal and Mahanti [11]. Although they could have
a very fast processing time and could provide very detailed failure information,
they restrict the completeness of the soundness checking tool directly, render-
ing it inapplicable. An exception and the best known technique for soundness

52 T.M. Prinz and W. Amme

checking is performing a SESE decomposition [6]. It decompose the workflow
graph in subgraphs which have a single entry and a single exit. This decomposi-
tion could be done in linear time complexity by constructing a Refined Process
Structure Tree [12]. Each of the subgraphs will be checked first by the applica-
tion of heuristics. Uncovered subgraphs then will be checked by other techniques,
like space state exploration. Because subgraphs are usually smaller than the en-
tire workflow graph, the state space exploration performs fast [3]. However, an
exponentially processing time in the size of the workflow graph is still possible.
Summarized, the SESE decomposition in addition to the heuristics works fast
and gives detailed and localized failure information, but the heuristics do not
cover all cases.

Our new approach to verify structural correctness is comparable to the SESE
decomposition approach of Vanhatalo et al. [6]. Both techniques find failures in
isolation. However, the SESE decomposition found only one failure per fragment,
while our approach found all potential errors. Furthermore, the SESE decompo-
sition does not always find the structural reason of failures. Therefore, an user
cannot repair these structures. In conclusion, our approach is complete, i.e., it
finds all structural failures.

8 Conclusion

In this paper, new compiler-based techniques to determine the structural cor-
rectness, i.e., the soundness, of a workflow graph were introduced. They directly
work on workflow graphs, in order to guarantee a precise visualization and ex-
planation of all determined structural errors, which substantially supports build-
ing business processes. Furthermore, the delevoped techniques demonstrate that
well-known compiler techniques can be used for business processes. It is possible
to perform a structural correctness analysis in each development step, which
directly visualizes errors within the editor and shows only failures which must
be fixed.

Major issues for future work are including data aspects in our techniques by
transforming business processes into CSSA-based workflow graphs [13,14].

References

1. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117-134 (2000)

2. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W(E.): An alternative way to
analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAISE 2002. LNCS, vol. 2348, pp. 535-552. Springer, Heidelberg (2002)

3. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Vélzer, H., Wolf, K.: Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448-466 (2011)

4. Verbeek, HM.W(E.), van der Aalst, W.M.P.: Woflan 2.0 A petri-net-based work-
flow diagnosis tool. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS,
vol. 1825, pp. 475-484. Springer, Heidelberg (2000)

10.

11.

12.

13.

14.

Practical Compiler-Based User Support 53

. Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.)

ICATPN 2007. LNCS, vol. 4546, pp. 29-42. Springer, Heidelberg (2007)

. Vanhatalo, J., Vilzer, H., Leymann, F.: Faster and more focused control-flow analy-

sis for business process models through SESE decomposition. In: Kramer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43-55. Springer,
Heidelberg (2007)

. Prinz, T.M., Amme, W.: Practical compiler-based user support during the de-

velopment of business processes. Technical Report Math/Inf/02/13. (June 2013),
http://www.bpmn-compiler.org

. Pahl, P.J., Damrath, R.: Mathematical Foundations of Computational Engineering:

A Handbook, 1st edn. Springer, Heidelberg (2001)

. Prinz, T.M., Spief}, N., Amme, W.: A first step towards a compiler for business

processes. In: Cohen, A. (ed.) CC 2014 (ETAPS). LNCS, vol. 8409, pp. 238-243.
Springer, Heidelberg (to be published, 2014)

Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The petri net markup language: Concepts,
technology, and tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 483-505. Springer, Heidelberg (2003)

Perumal, S.; Mahanti, A.: A graph-search based algorithm for verifying workflow
graphs. In: 2012 23rd International Workshop on Database and Expert Systems
Applications, pp. 992-996 (2005)

Vanhatalo, J., Volzer, H., Koehler, J.: The refined process structure tree. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100-115.
Springer, Heidelberg (2008)

Amme, W., Martens, A., Moser, S.: Advanced verification of distributed ws-bpel
business processes incorporating cssa-based data flow analysis. International Jour-
nal of Business Process Integration and Management 4(1), 47-59 (2009)

Heinze, T.S., Amme, W., Moser, S.: A restructuring method for WS-BPEL business
processes based on extended workflow graphs. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 211-228. Springer, Heidelberg
(2009)

http://www.bpmn-compiler.org

	Practical Compiler-Based User Support during the Development of Business Processes
	1 Introduction
	2 Preliminaries
	3 Informal Description
	4 Properties of Structural Errors
	5 Determination of Structural Errors
	5.1 Determination of Potential Deadlocks
	5.2 Determination of Potential Lack of Synchronization

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

