Towards Automating the Detection of Event Sources

Nico Herzberg, Oleh Khovalko, Anne Baumgrass, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Straf3e 2-3, 14482 Potsdam
{nico .herzberg, oleh.khovalko, anne.baumgrass,
mathias. weske}@hpi .uni-potsdam.de

Abstract. During business process execution, various systems and services pro-
duce a variety of data, messages, and events that are valuable for gaining insights
about business processes, e.g., to ensure a business process is executed as ex-
pected. However, these data, messages, and events usually originate from difter-
ent kinds of sources, each specified by different kinds of descriptions. This variety
makes it difficult to automate the detection of relevant event sources for business
process monitoring. In this paper, we present a course of actions to automatically
associate different event sources to event object types required for business pro-
cess monitoring. In particular, in a three-step approach we determine the similar-
ity of event sources to event object types, rank those results, and derive a mapping
between their attributes. Thus, relevant event sources and their bindings to speci-
fied event object types of business processes can be automatically identified. The
approach is implemented and evaluated using schema matching techniques for a
specific use case that is aligned with real-world energy processes, data, messages,
and events.

1 Introduction

Service-Oriented Architecture (SOA) enables flexible operations by utilizing highly-
distributed and loosely-coupled applications [1]. These applications use different func-
tions encapsulated as services by information systems that are based on the SOA
paradigm. These services interact with each other by the means of messages and events
[2]. In parallel, these messages and events provide information required for operations
(executed by services or humans) in an organization.

Nowadays, frequent changing markets and customer requirements force companies
to quickly adapt their operations to stay competitive within their environment. That is
why they strive to run their operations in a process-oriented way using tools and prac-
tices from Business Process Management (BPM) to achieve their goals. BPM comprises
concepts, methods, and techniques to support the design, administration, configuration,
enactment, and analysis of business processes [3].

One of the current research areas of BPM is Business Process Intelligence (BPI)
that comprises process analysis, monitoring, and mining [4]. During the execution of
business processes — run of the process instances — services and humans are utilized to
fulfill certain tasks and at the same time events can occur which represent the real world
happenings and the current process state. This information about process execution is

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 111-122, 2014.
(© Springer International Publishing Switzerland 2014

112 N. Herzberg et al.

essential for analysis and improvement of business processes. It can be used for mon-
itoring, to identify current and predict upcoming process steps by observing occurred
events, and deriving process behavior from them [5,6]. However, processing events in
distributed and heterogeneous environments in a semantically meaningful way requires
explicit information about the structure and semantics of events. This is enabled by the
framework presented by Herzberg et. al [7], but includes mostly manual steps to identify
and connect the right event sources. These steps are subject for automation.

In this paper, we introduce a three-step approach that enables us to automatically
identify an event source in a collection of event sources which matches a given Event
Object Type (EOT) of a business process. It determines the similarity of event sources
to event object types, ranks those results, and derives a mapping between their attributes.
Thus, this technique establishes the basis for fine-grained business process monitoring
by allowing the monitoring of an unlimited amount of events that originate from differ-
ent kinds of sources and are specified by different kinds of descriptions.

The remainder of the paper is structured as follows. In Section 2, we introduce basic
concepts and terms we build on, followed by the introduction of our use case from the
utilities domain, in Section 3. In Section 4, we describe our approach of detecting event
sources and detail the three main steps. The evaluation of the presented approach using
schema matching techniques based on the introduced use case is explained in Section 5.
In Section 6, related work is considered before we conclude our work in Section 7.

2 Preliminaries

In our work, we explicitly distinguish between real-world events and event objects. A
real-world event happens in a particular point in time at a certain place in a certain
context (cf. [8,9]). The context describes the situation in which the event has happened.
Real-world events that are represented in information systems are called event objects.
An event object is an object that represents, encodes, or records a real-world event,
generally for the purpose of computer processing [10]. We embed our approach in the
framework from Herzberg et. al [7] which is described below.

Real-world events are observed and published as machine-readable event objects
via event sources (see Fig. 1). Typically, an event source publishes one specific type of
event objects, e.g., the European Energy Exchange publishes the values of the European
Electricity Index. The event source description defines the structure and semantics of
event objects the event source provides.

The structure of event objects that need to be processed is described by an EOT
(see Fig. 1). In particular, the EOT (i) defines the structure of the event content and (ii)
provides the rules for mapping the information of real-world events into event objects,
the so-called binding.

Definition 1 (Event Object Type (EOT))

An event object type FOT = (cd, bind) consists of a specification of the event content
structure cd and a binding bind that describes the way how the information of a concrete
event source needs to be utilized to form an event object. o

A binding is a function specifying the rules and methods to extract real-world event
information from the event sources for an EOT. The implementation of the extraction

Towards Automating the Detection of Event Sources 113

includes» Process Event
Node RN .
* | Monitoring Point
1* *
contains A references ¥

1 1

Business Event Object specifies» .
Process Model Type 1 +| Event Object
publishes A
1
Real-world <«observes «specifies | Event Source
Event Source L
Event * * 1| Description

Fig. 1. The connection between a business process model and real-world events

of real-world event information can be established by applying techniques and methods
from the domain of Complex Event Processing (CEP).

Event objects need to be assigned to specific points in the business process to enable
BPI. Business processes are specified in business process models.

Definition 2 (Business Process Model)

A business process model M = (N, F') consists of nodes N and flow relations F' C
N x N that connect nodes. Every node n € N has an assigned life cycle C : N —
29 x 2T consisting of states S and state transitions 7 C S x S. o

We utilize the concept of Process Event Monitoring Points (PEMPs) that define at which
point in a process an event object is expected [7] (see Fig. 1). Therefore, a PEMP refer-
ences an EOT. This connection is defined during design time in a process model. The
points in the process model a PEMP can be assigned to are described by life cycles of
the nodes, i.e., activities, gateways, and events. Assigning PEMPs on node life cycle
level enables fine-grained BPI.

Definition 3 (Process Event Monitoring Point)

Let M = (N, F) be aprocess model and C(n) = (S’,T") the node life cycle consisting
of states S’ € 2° and state transitions 7’ € 27 for a node n € N. A process event
monitoring point is a tuple PEM P = (M, n,t, E'), where M is the process model it is
contained in, n € N is the node it is created for, ¢ € T is the state transition within the
node life cycle of n, and F represents the set of references to its defined EOTs. o

3 Use Case

We introduce the approach of automating the event source detection along an example
from the utilities domain. We consider the change of an energy supplier (COS) at the
distribution organization from the request of a COS until all parties are informed about
the COS or the rejection of the transactions. As a common technique to represent busi-
ness processes, we illustrate the described process using a Business Process Model and
Notation (BPMN) [11] process model shown in the upper part of Fig. 2. A customer
requests a change of supplier at its new selected energy supplier. This request is then
forwarded to the distributor by the new supplier and therewith, the change of supplier

114 N. Herzberg et al.

Process Model

Check
Change of
Supplier

Reject
Request

]
x
M —
o—

ex
4
|
I
| |
I I
i | i |
| eb t eb t
Process Event ‘\ T ‘\ T
Monitoring Point
T T T T
] | | |
Event Object v v v v
| | |
Event Soruce i v v v
Description
w S S S
COS Request COS Accept COS Reject COS Notification

Fig. 2. Framework proposed by Herzberg et. al [7] applied to an use case from the utilities do-
main: business process model for handling the change of an energy supplier for a household from
the distributor point of view, PEMPs associated to the node state transitions (e)nable, (b)egin,
(t)erminate, or (ex)ecute, EOTs, and event sources

process at distributor site starts (start event). Afterwards the request is checked (Check
Change of Supplier) for feasibility by the distributor and the corresponding acceptance
or rejection is handled (Accept Request and Reject Request). In case the COS is accepted
by the distributor a notification about the change of supplier is send to the old energy
provider (Inform old Supplier). Afterwards, no further activities have to be performed
by the client and the process ends (end event).

The data created during that process deliver valuable insights about the progress
of each process instance. In our recent approach [7], we introduced a framework that
allows to define PEMPs with which we are able to associate EOTs originating from
different sources to business processes and enable BPI. Fig. 2 illustrates this association.
Below the process model, the PEMPs are associated with state transitions of activities,
start or end events, and thus contain the connection to a business process. To transform
real-world events from different event sources to events relevant for the business process
we define EOTs. We assume the association of an EOT to a PEMP is given and focus
on identifying the binding between an EOT and an event source.

Examples for the use case are taken from real-world cases of the energy market. In
particular, we used the data of the Association of Swiss Electricity Companies'. It pro-
vides 73 publicly available XML schema definitions (XSDs) which describe the mes-
sage interchange format of Swiss electricity market? and represent our event sources.
Their structure is rather complex, as they are interlinked with each other and con-
tain a lot of complex element structure descriptions. For instance, the COS request
schema definition (RequestToMPA) and its linked core component, shown in Listing 1.1,

"http://www.strom.ch/
2 Schemas, descriptions, and examples are available at:
http://www.strom.ch/de/dossiers/strommarkt/sdat.html

http://www.strom.ch/
http://www.strom.ch/de/dossiers/strommarkt/sdat.html

Towards Automating the Detection of Event Sources 115

imports 30 other schemas, defines 22 elements and 62 complex types used for the struc-
ture definition. In Line 12 of Listing 1.1, we see the structure in which the switch date
period of the COS request is indicated. This element is defined by a complex type, see
Line 20, which refers to another simple type, see Line 26.

Furthermore, the systems used for message exchange, as well as the content of the
COS-related messages may differ for each supplier that is communicating with the dis-
tribution organization in this process. Because of that numerous amount of structure
information it is difficult to manually define the binding between the event sources and
the defined EOTs. Therefore, an automatic approach is necessary.

Listing 1.1. An excerpt of a COS request schema definition (RequestToMPA)

1 <xsd:schema xmlns:rsm="http://www.strom.ch” ...>

2 <xsd:element name="RequestToMPA 10” type="rsm:RequestToMPAType 10”/>

3 <xsd:complexType name="RequestToMPAType 10”>

4 <xsd:element name="MeteringPoint” >

5 <xsd:complexType>

6 <xsd:complexContent>

7 <xsd:extension base="rsm:EnergyMeteringPointLocationType” >

8 <xsd:sequence>

9 < xsd:element name="BalanceResponsible” type="rsm:EnergyPartyType”
minOccurs="0"/>

10 <xsd:element name="BalanceSupplier” type="rsm:EnergyPartyType” minOccurs="
07/>

11 <xsd:element name="Consumer” type="rsm:ConsumerEnergyPartyType”
minOccurs="0"/>

5

12 <xsd:element name="SwitchDate” type="rsm:SwitchDatePeriodType”/>
13 </xsd:sequence>

14 </xsd:extension>

15 </xsd:complexContent>

16 </xsd:complexType>

17 </xsd:element>

18

19 </xsd:complexType>

20 <xsd:complexType name="SwitchDatePeriodType” >

21 <xsd:choice>

2 <xsd:element name="StartDate” type="rsm:EnergyDateType”/>
23 <xsd:element name="EndDate” type="rsm:EnergyDateType”/>
24 </xsd:choice>

25 </xsd:complexType>

26 <xsd:simpleType name="EnergyDateType” >

27 <xsd:restriction base="udt:DateType” >

28 <xsd:pattern value=".{4} — {2} —.{2}"/>

29 </xsd:restriction>

30 </xsd:simpleType>

32 </xsd:schema>

To monitor the start of the process, we define an EOT indicating the execution of the
start event, see Listing 1.2. Because of business needs, we are explicitly interested in
information about a COS request (MPA Request), consumer, switch date, and balance
supplier.

Listing 1.2. The EOT definition to identify events for starting a change of supplier process

< ?xml version="1.0" encoding="UTF—8"?>
<xs:schema xmlns:rsm="http://www.strom.ch” xmlIns:xsd="http://www.w3.org/2001/XMLSchema”...>
<xs:element name="MPA Request” type="xs:string” > </xs:element>
<xs:element name="Consumer” type="xs:string” > </xs:element>
<xs:element name="Date” type="xs:date” > </xs:element>
<xs:element name="BalanceSupplier” type="xs:string” > </xs:element>
</xs:schema>

R T I U S

116 N. Herzberg et al.

Listing 1.3 shows an excerpt of a real-world event from the event source for the
COS requests. To transform such an event to an event relevant for the given business
process, we need to define a binding between EOT; and the event source structure
RequestToMPA 10. Manually derived from the example, we can define a binding bind
of EOT including, for example, the switch date:

EOT, .Date = RequestToMPA 10.Switch.MeteringPoint.SwitchDate.StartDate.

The other elements of £OT; can be mapped and the binding of the other EOTs
can be defined accordingly. Establishing this bindings manually is time-consuming and
error-prone, therefore, we present an approach establishing the bindings automatically.

Listing 1.3. Event of event source COS request

1 <rsm:RequestToMPA 10 xsi:schemaLocation="http://www.strom.ch RequestToMPA 1p0.xsd” xmlIns:rsm="http://
www.strom.ch” xmlns:xsi="http://www.w3.0org/2001/XMLSchema—instance”> ...
2 <rsm:Switch>
3 <rsm:DocumentID>DID Beispiel 3 2 1 x LiefWec 10 11c</rsm:DocumentID>
4 <rsm:MeteringPoint >
5 <rsm:VSENationalID schemeID="VSE” schemeAgencylD="260">
CH9999901234500000000000000000002 < /rsm:VSENationalID >

6 <rsm:BalanceSupplier>

7 <rsm:ID> <rsm:EICID schemeAgencylD="305">12X —PARTY —A —000K </rsm:EICID > </
rsm:ID >

8 </rsm:BalanceSupplier>

9 <rsm:SwitchDate > <rsm:StartDate >2008 —06—30 </rsm:StartDate > </rsm:SwitchDate >

11 </rsm:MeteringPoint >
12 </rsm:Switch>
13 </rsm:RequestToMPA 10>

4 Approach to Detect Bindings between EOTs and Event Sources

As defined in Section 2, EOTs are defined in a PEMP for a process model. In this paper,
we assume the EOTs for a business process are known and relevant event sources with
its descriptions are available. Thus, we focus on the association of event sources to
corresponding EOTs. We perform our approach in three steps (see Fig. 3), which are
closely interrelated, but should be considered isolated as they can be implemented by
different tools, algorithms, or means.

1 2 3
Determine similarity Rank and determine

between the suitable event
event source(s)) source(s) based on
and defined event their similarity values
object types (EOT) for each EOT

Derive binding
for highly ranked
event source(s)
to defined EOT

Fig. 3. Approach for the detection of suitable event sources for given EOTs

4.1 Step 1: Determine the Similarity between Event Sources and EOTs

In a collection of event sources, e.g., systems providing XML data, we aim at identify-
ing those event sources that are similar and suitable to a defined EOT. This identification
is conducted by comparing the elements of an EOT with every event source available
and computing their similarity value.

Towards Automating the Detection of Event Sources 117

A comparison requires the description and structural properties of the events orig-
inating from an event source and those that are expected for the EOT. The structural
descriptions of event sources need to be stored in a repository, e.g., a database storing
the descriptions as XSD files. The search of event sources in the repository can be uti-
lized by matchers that compare the descriptions. As we cannot assume that each event
source description is completely contained in an EOT and vice versa, element-level
matchers are required that consider elements in isolation and ignore element’s substruc-
ture and components. For instance, the fact that the elements Date defined in the EOT
(see Listing 1.2) and the SwitchDate from the event source (see Listing 1.1) are likely to
match (although contained in different sub-elements) can be derived by a name-based
element-level matching without considering the hierarchical structure of the descrip-
tions. As result of a comparison, we receive a matrix for each event source that includes
the similarity values between the elements of the compared event source and the EOT.

Afterwards, the similarity values in each matrix need to be aggregated to receive a
global similarity value for the EOT and the event source. It is likely to estimate the
degree of the similarity is given by a normalized numeric value in the range O to 1, in
order to identify the best matching event source. For example, in our scenario, the total
amount of 73 event sources must be compared with the given EOT shown in 1.2 to
calculate the overall similarity values.

4.2 Step 2: Rank and Determine Suitable Event Sources for an EOT

In this step, event sources that may deliver information for the requested EOT are ranked
based on their overall similarity from highest to lowest. We use the computed similarity
values of each comparison of an event source description with the EOT specification
from the previous step. The assumption is that higher overall similarity values indicate
the better suitability of the event sources to the EOT. However, note that these values do
not contain an evaluation of how suitable the mappings of each attribute are. Therefore,
it may be required that a domain expert looks into the set of event sources ranked at
the first places to exactly evaluate their fitness. As we are aiming at automating the
process of event detection, we use the event source ranked at the first place for further
processing. According to our scenario, we rank all 73 event sources based on their
similarity to the requested EOT shown in Listing 1.2. Such a ranking should indicate
that the event source RequestToMPA 10 will satisfy the given EOT most probably.

4.3 Step 3: Derive the Binding between an EOT and an Event Source

For the highly ranked event source(s) the binding is derived, so that for the requested
elements or attributes in the EOT a corresponding counterpart from the event source(s)
is assigned. The binding defines the rules and methods to extract raw event information
from the data source within the information system landscape required for the events of
the given EOT. To establish the binding the resulting similarity matrix from step I can
be reused. Same as for the global similarity, we assume that the higher similarity value
are better suited and thus they are used for the matching of elements. Therefore, each
required binding is produced by utilizing the element in the event source with the most
promising similarity value. For example, it is likely to assume that the similarity value

118 N. Herzberg et al.

between the elements Date (of the EOT) and SwitchDate (of the event source) is higher
then a value between Date and Consumer.

Based on the similarity matrix, we can obtain a binding of every element described
by the EOT to an element in the determined event source. Using this technique, we
can derive a binding between the EOT; requested in the scenario and the event source
RequestToMPA 10 describing that, for example, the content for filling Date can be
found in R2ZMPAType 10.Switch.MeteringPoint.SwitchDate. This binding can then be
used to generate CEP-queries and process events in a CEP engine or to generate XPath-
like pattern and process XML documents using Extensible Stylesheet Language Trans-
formation (XSLT), for instance. Both can be used to detect corresponding events and
data coming from different sources but belonging to the specified EOT. In this context,
the existing Event Processing Platform (EPP) [6,7] can be used as it is able to receive
events from different kinds of sources, check the format of these events, associate them
with an EOT, and then normalize, store, process, and forward them via the platform.

5 Evaluation Using Schema Matching

We show the applicability of our approach by using schema matching to implement the
three steps and evaluate it for the use case described in Section 3. By automating the
event source detection, we can decrease the efforts for enabling process monitoring and
analysis in distributed and heterogeneous environments. In this evaluation, we did not
investigate the quality of the matching results.

In general, schema matching techniques are used to identify an alignment that ex-
presses the correspondence between elements and attributes belonging to different
schemas or ontologies [12,13]. A schema can be, for example, an XSD, a database
schema, an Electronic Data Interchange For Administration, Commerce and Trans-
port (EDIFACT) message definition, or an event type definition. To apply schema match-
ing, we assume that each event source as well as the EOT are represented by a schema,
i.e., an XSD that describes the events produced by that event source as well as the ex-
pected events in a formal and standardized manner. This assumption is reasonable since
XML is a common standardized data interchange format.

5.1 Evaluation Setup

For our experiment, we used a state-of-the-art schema matching tool called Onto-
Builder* to implement the identification and matching of suitable event sources for
EOTs. For the comparison in the OntoBuilder, we first defined an EOT in form of an
XSD for each PEMP required by the use case in Section 3. The related XSDs of the
event sources are taken from the data set provided by the Association of Swiss Electric-
ity Companies (see Section 3). Second, each XSD was imported in the OntoBuilder and
transformed to a generic ontology structure. Third, we conducted a schema matching
for each pair of a target (EOT) and source schema (event source).

3 Downloads, tutorials, and further information can be found at:
http://bpt.hpi.uni-potsdam.de/Public/EPP
4 See http://ontobuilder.bitbucket.org/

http://bpt.hpi.uni-potsdam.de/Public/EPP
http://ontobuilder.bitbucket.org/

Towards Automating the Detection of Event Sources 119

Table 1. Excerpt of results for matching of EOT: and event sources

Event source schema Average similarity
1 RequestToMPA 1p0.xsd 0.78
2 ResponseFromMPA Confirm 1p0.xsd 0.71
3 NotificationFromMPA 1p0.xsd 0.67

In the OntoBuilder, the schema matching is based on a sequence of two kinds of
matchers: (1) first line matchers and (2) second line matchers. The first line matchers
are applied to two schemas to determine their similarity using textual and structural
heuristics. For each schema pair a first line matcher produces a similarity matrix which
contains the similarity value for each attribute pair of those two schemas. In our use
case each similarity value is calculated by comparing the names as well as the data
types of the schema attributes. For this reason, we used the OBTermMatch algorithm for
the name comparison and the OBValueMatch algorithm for the data type comparison.
Then, a second line matcher is applied to the similarity matrix together with a set of
constraints (e.g., allowing only 1:1 mappings of attributes) that returns for each attribute
of the target schema a corresponding attribute of the source schema together with its
computed similarity value. OBStableMariage was used as a second line matcher that
implements the stable marriage algorithm for royal couples [14], extended for unequal
sets of schema attributes.

Following this setup, our approach uses schema matching in the OntoBuilder as fol-
lows: for step I the overall similarity of the EOT to an event source is calculated as
the arithmetic mean of their similarity values, for step 2 the overall similarity values of
the event sources for each EOT are ranked, and for step 3 the binding is derived
from the matching between the attributes of event sources to attributes of the EOT.

5.2 Evaluation Results

The results presented in Table 1 show an excerpt of found event source descriptions
that match the event type EOT; (see Listing 1.2) ordered by their computed overall
similarity. The event source description RequestToMPA 1p0.xsd, which represents the
event source RequestToMPA 10 (see Listing 1.1), is ranked with the highest similarity of
0.78. It describes the supplier change request to a metering point administrator within
Association of Swiss Electricity Companies and corresponds to the definition of the
EOT; (see Listing 1.2).

Next, the matching of attributes were computed in the OntoBuilder. For example,
using the OBTermMatch algorithm, which includes a set of weighted string compari-
son algorithms for similarity calculation, we receive a similarity between Date (EOT)
and SwitchDate (event source) of 0.46, while the similarity between Consumer (EOT)
and Consumer (event source) is 1. Table 2 shows the results of the mappings for each
attribute of the EOT] to the attributes of the best matched event source description
(RequestToMPA 1p0.xsd) and the similarity values for each mapping.

120 N. Herzberg et al.

Table 2. Results for matching the attributes of £OT} and the best ranked event source description
RequestToMPA 1p0.xsd

EOT; attribute RequestToMPA 1p0.xsd attribute sim. value
MPA Request RequestToMPA 10 0.65
Consumer R2MPAType 10.Switch.MeteringPoint.Consumer 1.00
Date R2MPAType 10.Switch.MeteringPoint.SwitchDate 0.46
BalanceSupplier R2MPAType 10.Switch.MeteringPoint.BalanceSupplier 1.00

5.3 Evaluation Discussion

The produced results show that schema matching can be used for the identification of
event sources in our introduced use case. The approach allows to identify heterogeneous
event sources for a given EOT and to derive bindings for each of event sources. The
derived bindings can, for example, be used to generate and run CEP-queries.

We argue that schema matching is a reasonable technique which can be used for an
automated detection of event sources. However, the quality of the produced results may
highly depend on the selected matching algorithms as well as on their configuration set-
tings and may vary with the examined data set. Furthermore, the selection and adaption
of first and second line matcher algorithms have a high impact on the outcome of the
produced matching. Additional element-level matchings such as on type, description,
and key property can be applied as well (see [12]).

In this paper, we focus on the binding of event sources to EOTs. Although the combi-
nation and association of several varying EOTs to one PEMP as well as the combination
and association of several varying event sources to one EOT is possible. While illustrat-
ing our approach, we did not analyze these details, however, we plan to consider them
in future work.

6 Related Work

Baier and Mendling introduce an approach to map events from event logs to activities
in process models [15,16]. The mapping approach suggests relations between events
and activities at type and instance level in an automated manner. These relations are
derived from a comparison between the name of event types and activity’s name and
description. We complement this approach by considering all attributes of EOTs and of
the event sources to identify a matching between these.

Other approaches in the area of complex event processing e.g., [17] address the prob-
lem of semantic decoupling of event subscriber and publisher in heterogeneous event-
based systems. For instance, the approach of Hasan et al. includes an event model, a
subscription model, and a matching model that leverage semantics of events and sub-
scriptions (resp. EOT) to establish approximate matching.

Our work is also related to the area on automated or semi-automated techniques for
schema matching, surveyed, for instance, in [12] and [18]. These techniques leverage
textual and structural similarity measures, and apply different strategies to derive corre-
spondences between concepts from such a similarity assessment [19]. While the results

Towards Automating the Detection of Event Sources 121

of schema matchers have been exceptional for distinguished settings, they are inherently
uncertain due to the enormous ambiguity and heterogeneity of data description [20].

Several approaches were proposed to address the problem of service retrieval - a
process of finding a set of service candidates for a given consumer request. The lack
of an appropriate service description can be identified as one of the main challenges
during the process of service retrieval [21]. Various approaches, e.g., [22], address these
challenges using diverse information retrieval techniques. While these approaches allow
the service consumer to reach high levels of recall, they remain to be prone to low
precision [23].

A few works use schema matching techniques in service retrieval. In [24], the authors
propose an approach to compute the similarity between web services under considera-
tion of a tree edit distance. However, the introduced approach can be applied on the
interface definition of web services only. It does not consider the exchanged data and
their instances as it is needed for event source detection.

7 Conclusion

We automated the association of event sources to EOTs required by PEMPs in a busi-
ness process and therewith enabled event source detection as basis for BPI. In particu-
lar, specified EOTs for business process monitoring are used to identify relevant event
sources. The found event sources are ranked according their computed similarity to the
requested EOT and a binding between the highest ranked event source and the EOT is
generated. During business process execution, these bindings can be used to identify
event objects for a business process in an event stream. We implemented the approach
using schema matching and evaluated its applicability for an use case that is aligned
with a real-world process from the utilities domain.

For future work, we plan to consider the combination and association of several vary-
ing EOTs to one PEMP as well as the combination and association of several varying
event sources to one EOT. Furthermore, we aim to extend our evaluation using different
kinds of configurations and combinations of matching algorithms and, thus, improve the
quality of event source detection.

Acknowledgement. The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement 318275 (GET Service) and from the German Research Association (DFG)
under project number WE 1930/8-1.

References

1. Papazoglou, M.P., Heuvel, W.J.: Service oriented architectures: approaches, technologies and
research issues. The VLDB Journal 16(3) (July 2007)

2. Levina, O., Stantchev, V.: Realizing Event-Driven SOA. In: 4th International Conference on
Internet and Web Applications and Services, ICIW (2009)

3. Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

122

13.
14.

15.

16.

18.
19.

20.

21.

22.

23.

24.

N. Herzberg et al.

. van der Aalst, W.: Process Mining: Overview and Opportunities. ACM Transactions on Man-

agement Information Systems (TMIS) 3(2) (July 2012)

. Weidlich, M., Ziekow, H., Mendling, J., Giinther, O., Weske, M., Desai, N.: Event-Based

Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 182-198. Springer, Heidelberg (2011)

. Biilow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A., Ulm, B., Wong, T.Y., Weske,

M.: Monitoring of Business Processes with Complex Event Processing. In: BPM Workshops.
Springer (2013) (accepted for publication)

. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process

Management. In: IEEE International EDOC Conference, Vancouver (2013)

. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co (2011)
. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-

tributed Enterprise Systems. Addison-Wesley (2002)

. Luckham, D., Schulte, R.: Event Processing Glossary - Version 2.0 (July 2011),

http://www.complexevents.com/wp-content/
uploads/2011/08/EPTS Event Processing Glossary v2.pdf

. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011),

http://www.omg.org/spec/BPMN/2.0/

. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The

VLDB Journal 10(4) (2001)

Euzenat, J., Shvaiko, P.: Ontology matching, vol. 18. Springer, Heidelberg (2007)

Marie, A., Gal, A.: On the Stable Marriage of Maximum Weight Royal Couples. In: AAAI
Workshop on Information Integration on the Web (2007)

Baier, T., Mendling, J.: Bridging Abstraction Layers in Process Mining by Automated Match-
ing of Events and Activities. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 17-32. Springer, Heidelberg (2013)

Baier, T., Mendling, J.: Bridging Abstraction Layers in Process Mining: Event to Activity
Mapping. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider,
I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 109-123. Springer, Hei-
delberg (2013)

. Hasan, S., O’Riain, S., Curry, E.: Approximate semantic matching of heterogeneous events.

In: 6th ACM International Conference on Distributed Event-Based Systems, DEBS (2012)
Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer (2011)
Gal, A., Sagi, T.: Tuning the ensemble selection process of schema matchers. Information
Systems 35(8) (2010)

Gal, A.: Managing Uncertainty in Schema Matching with Top-K Schema Mappings. In: Spac-
capietra, S., Aberer, K., Cudré-Mauroux, P. (eds.) Journal on Data Semantics VI. LNCS,
vol. 4090, pp. 90-114. Springer, Heidelberg (2006)

Kuropka, D., Troeger, P., Staab, S., Weske, M.: Semantic Service Provisioning. Springer
(2008)

Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery. In: 4th Int.
Conference on Web Information Systems Engineering (WISE). IEEE Computer Society
(2003)

Klein, M., Bernstein, A.: Toward high-precision service retrieval. IEEE Internet Comput-
ing 8(1), 30-36 (2004)

Hao, Y., Zhang, Y.: Web services discovery based on schema matching. In: 13th Australasian
Conference on Computer Science (ACSC), vol. 62, pp. 107-113. Australian Computer Soci-
ety, Inc. (2007)

http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.omg.org/spec/BPMN/2.0/

	Towards Automating the Detection of Event Sources
	1 Introduction
	2 Preliminaries
	3 Use Case
	4 Approach to Detect Bindings between EOTs and Event Sources
	4.1 Step 1: Determine the Similarity between Event Sources and EOTs
	4.2 Step 2: Rank and Determine Suitable Event Sources for an EOT
	4.3 Step 3: Derive the Binding between an EOT and an Event Source

	5 Evaluation Using Schema Matching
	5.1 Evaluation Setup
	5.2 Evaluation Results
	5.3 Evaluation Discussion

	6 Related Work
	7 Conclusion
	References

