

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 156–171, 2013.
© Springer International Publishing Switzerland 2013

A Model-Based Approach for Supporting Offline
Interaction with Web Sites Resilient to Interruptions

Félix Albertos Marco1, José Gallud1, Victor M.R. Penichet1, and Marco Winckler2

1 Escuela Superior de Ingeniería Informática de Albacete
Campus Universitario, 02071 Albacete, Spain

{felix.albertos,jose.gallud,victor.penichet}@uclm.es
2 Université Paul Sabatier, ICS-IRIT team

118 route de Narbonne, 31062 Toulouse CEDEX, France
winckler@irit.fr

Abstract. Despite the wide availability of Internet connections, situations of in-
terrupted work caused by accidental loss of connectivity or by intentional of-
fline work are very frequent. Concerned by the negative effects of interruptions
in users’ activities, this work investigates a new approach for the design and
development of Web applications resilient to interruptions. In order to help us-
ers to recover from interruptions whilst navigating Web sites, this paper pro-
poses a model-based approach that combines explicit representation of end-user
navigation, local information storage (i.e. Web browser caching mechanism)
and polices for client-side adaptation of Web sites. With this model, we are able
to provide users with information about which Web site’s contents are available
in an offline mode and how they can get easy access to local cache content.
Moreover, the model can also be used to set proactive mechanism such as pre-
caching Web pages that are likely to be looked at by users. Such a model-based
approach is aimed at being used to build new Web sites from scratch but it can
also be used as a mapping support to describe offline navigation of existing
Web sites. This paper presents the conceptual model, a modeling case study and
a tool support that illustrates the feasibility of the approach.

Keywords: work interruption, caching modeling, model-based approach, local
storage, navigation model.

1 Introduction

Despite the wide availability of Internet connections, situations of interrupted work
caused by accidental loss of connectivity or by intentional offline work are very fre-
quent. Several studies have demonstrated negative effects of interruptions in users
activity: resuming the task after an interruption is difficult and can take a long time
[20], interrupted tasks are perceived as harder than uninterrupted ones [12], interrup-
tions cause more cognitive workload and they are annoying and frustrating quite often
because they disrupt people from completing their work [11, 12]. Interruptions can be
particularly dreadful when navigating the Web because they often cause users to be

 A Model-Based Approach for Supporting Offline Interaction 157

disconnected from the applications, so that users should restart tasks from the begin-
ning rather than simply resuming them. Interruptions can also be very annoying when
navigating Web sites that do not even require a connection because most Web brows-
ers do not allow a natural navigation through content already stored in the local cache.

The study of interruptions is relatively new and there is very little information
about how interruptions affect users’ activity on the Web. However, some studies in
the field of Human-Computer Interaction can provide some clues about how to tackle
this kind of problem. Formally speaking an interruption can be defined as a (inten-
tional or unexpected) switch between two tasks; when an interruption occurs, users
are forced to do something else (the secondary task) until the primary task can be
resumed [19].It has also been shown that interruptions will ultimately affect users’
ability to complete tasks but the disruptive effect varies according to the type of
interruption (e.g. system alarms and notification, denial of service, loss of connectivi-
ty…)[14]. Thus, there is no universal solution for dealing with interruptions. Nonethe-
less, an interruption is not a fate. Indeed, previous works [6, 14,18] have shown that it
is possible to design interactive applications resilient to interruptions. The term resi-
lient is often used to name systems that are able to recover from failures, but in the
present context it is used to qualify applications that can prevent from the occurrence
of interruptions, help users to resume from interrupted tasks, and/or ensure a
minimum level of service for performing a task in spite of the interruption [14].

This work investigates a new approach for the design and development of Web ap-
plications resilient to interruptions. We specifically address interruptions caused by
the loss of connectivity. Our goal is to ensure as much as possible a continuity of
services to users that chose or are forced to work offline until their connection can be
restored. For that, we propose a model-based approach that combines explicit repre-
sentation of end-user navigation, local information storage (i.e. Web browser caching
mechanism) and policies for supporting client-side adaptation of the Web site. With
this model we are able to provide users with information about which Web site’s con-
tents are available in an offline mode and how they can get easy access to local cache
content. The approach encompasses mechanisms for pre-caching Web pages that are
likely to be looked at by users. It is fully supported by a set of tools that have been
specially designed to illustrate its feasibility. These tools explore the full potential for
local storage management provided by HTML5; they include an editor for modeling
the Web site navigation and a player for managing the navigation in offline mode.
The approach and the tools can also be used with existing Web sites. The rest of the
paper is organized as follows: section 2 provides an overview of the state of the art of
interruptions, Web technologies, solutions for local storage (i.e. cache) and Web na-
vigation models; this section is aimed at providing the necessary technical back-
ground to understand our approach, which is presented at the section 3; the following
section4 presents a case study and a set of tools that have been specifically conceived
to illustrate our approach; then, at section 5 we present our conclusions and we dis-
cuss the perspective for such as an approach.

158 F.A. Marco et al.

2 Review of the Literature

2.1 Interruptions in Interactive Applications

Most of the research about interruptions has been done by conducting empirical stu-
dies with users either on controlled conditions (i.e. usability labs) or on working envi-
ronment. The current knowledge [19] suggests the following strategies for reducing
the disruptive effects of interruptions: i) human training: it has been shown that
trained users can recover from interrupted work by rehearsing and/or by learning how
to use environmental clues; ii) design guidelines may help to conceive user interfaces
that might reduce the effects of interruptions; for example, where to place visual clues
to help users to resume from interrupted tasks; and iii) tool support such as GroupBar
[6] can help people to save and retrieve applications and window management setups
when switching between tasks.

2.2 Caching Models for Web Application

Cache management is one of the most important mechanisms to improve the perfor-
mance of Web services [5]. Cache and proxies help users to retrieve documents from
a nearby server, reducing so the request response time, network bandwidth consump-
tion and server load. A side-border effect of cache is that the information stored local-
ly is available even in case of interrupted connectivity with the remote server.

Disconnection is common in particular in mobile environments. For that Chang et
al. [4] propose a standard browsing model that is aimed at supporting user work in
disconnected mode by making the cache model transparent to both Web browsers and
Web (proxy) servers. This tool contains a list of all HTML entries in the cache with a
hyperlink to the corresponding contents stored locally, so it may be used for browsing
local pages when disconnected. Other similar tools for supporting cache management
are Web-Based Teamwork [21] and BITSY [13]. However, all these tools don’t allow
tuning the Web application for working in offline mode.

Most browsers do not have mechanisms for managing Web sites in offline mode.
Recently, Cannon and Wohlstadter [2] have proposed a framework for offline storage
that introduces automated persistence of data objects for JavaScript. Google Gears
allow browsers with the ability to persist data for offline use. However, the manage-
ment of persistent data in the browser is not straightforward due to the need of syn-
chronization, management of throughput, latency and existence of non-standards
browser.

The development of Web applications supporting offline work is complex [8]. Ex-
isting applications are harder to adapt with offline support, usually implying writing
alternate versions of its code [9]. Tatsuboriand Suzumura [17] propose a development
method that speeds up the implementation of offline work in a Web application by
deploying server functionalities on the local machine. However, replicating all data to
the local server is not practical for all applications. They overcome this by enhancing
the local server with an adaptive pre-fetcher mechanism that keeps fetching useful
data from the remote server. Benson et al. [1] propose the synchronization of a

 A Model-Based Approach for Supporting Offline Interaction 159

relational database between the browser and the web server and a client-side template
library. Although work [1] can reduce the transfer between the client and the server it
does not necessarily improve the navigation into local storage.

2.3 Client-side Technologies for Supporting Local Cache Management

Most of the approaches for cache management rely on server-side technologies such
as proxy and server-side templates. However, technologies such as Gears-monkey [9],
HTML5 [22] and Web storage [23] allow to envisage new strategies for storing local-
ly information from Web applications. Gears-monkey [9] allows the injection of code
into third-party Web sites that are visualized in browsers. Client-side scripts devel-
oped by users can thus be injected to support offline information management. None-
theless, this solution is limited to a few platforms and cannot be executed in most of
them, such as in mobile phones. Moreover, it requires experienced users to write the
required scripts.

Web storage [23] introduces two mechanisms similar to HTTP session cookies for
storing name-value pairs on the client side. Despite the fact that Web storage is useful
for storing pairs of keys and values, it does not provide in-order retrieval of keys, nor
efficient searching over values or storage of duplicate values for a key.

World Wide Web Consortium (W3C) has recently proposed to integrate local sto-
rage management into their recommendations [22]. Indeed, the candidate recommen-
dation of HTML5 fully integrates functions for local cache management and offline
work, which was completely neglected in previous versions. Using HTML5’s applica-
tion Cache technology allows us to address the requirement of being always con-
nected to use the web. However, one of the main issues about the Application Cache
proposed in HTML5 is that there is no underlying model.

2.4 Model-Based Approach for Dealing with Interruptions

There have been several attempts to formalize cognitive models describing the impact
of interruptions on human behavior [20]. The unpredictability of interruptions would
favor the use of declarative models to describe what should be accomplished by the
user system (whatever it happens) rather than describe the steps required (i.e. control
flow) to accomplish it. Notwithstanding, there are some situations where the interrup-
tion of present task can be predicted - in particular when users decided to get
interrupted -, so that the systems should provide an alternative representation of the
interrupted tasks.

Only a few works in the literature have addressed the description of interruptions
in system specifications [14]. It is interesting to notice that despite the fact that model-
based approaches [15] are prominent in the field of Web engineering, as far as we
could investigate there is no clear proposal for using Model-Driven Approaches for
building Web sites resilient to interruptions.

Most of Web engineering methods such as UWE [10], WebML [3], WSDM [7],
OOHDM [16] and SWC [24] are useful to describe the structure of Web applications
that are aimed at deploying on a Web server and run online. The occurrence of

160 F.A. Marco et al.

interruptions during the execution of the Web application is not a matter of concern of
currently existing MDA approaches; they assume that interruptions should be treated
by the browser alone. As a consequence, there is no construct in such models to de-
scribe an alternative navigation for the Web application when the connectivity is lost.

3 A Model-Based Approach for Supporting Offline Interaction

This section presents our model-based approach for supporting the user interaction
with Web sites in offline mode. In case of loss of connectivity, user experience with
Web sites can be improved this way by providing users with an explicit representation
of an alternative offline navigation of contents previously stored in the cache. The
offline navigation doesn’t provide all functions and contents available online. None-
theless, our model can control the way users can interact with Web sites’ offline
contents.

3.1 The Approach in a Nutshell

Our approach combines explicit representation of user navigation and local informa-
tion storage. For that we define an offline navigation model that is able to cope with
two basic requirements: i) to determine a set of information resources available in
every state of the user navigation; and ii) to be able to describe the transitions linking
the states. The focus of the model relies on the hypertext level of Web applications as
illustrated by Fig. 1. States in the navigation models correspond to containers for the
information units featuring a Web page. Transitions correspond to links that allows
users to navigate between pages. Transitions might contain conditions that decide
about links activation, thus providing the means to control the navigation between
Web pages. Mappings are established so between states and content embedded into
Web page and then, between transitions and links.

Fig. 1. Modeling levels of Web applications

 A Model-Based Approach for Supporting Offline Interaction 161

States in the offline model represent resources that are stored in the local cache;
therefore unavailable remote resources should not be described as part of the model.
Transitions in the offline model are described in the local storage as paths to the local
cache; the information carried out by transitions is used to replace URLs encoded into
the original Web pages. Our approach relies on a local storage to establish mappings
policies for accessing information stored in the local cache. Fig. 2 provides a view at
glance on how the key components of our approach, i.e. resources, offline mode, local
storage and cache, are distributed between the client and the server. As we will see,
resources (i.e. current Web site content) are delivered to the client in conjunction with
an offline model. However, the offline model is only activated when the user is offline.

Fig. 2. Overview of the architecture of our approach describing local cache storage places

Hereafter we describe the basic concepts used for building offline models. It is
noteworthy that the offline model can be used even over Web sites that were not built
according to a model-based approach.

3.2 Basic Concepts of the Offline Model

The basic concepts of the offline model are derived from the SWC notation [24],
which is dedicated to the modeling of Web sites navigation. The offline model is
represented as a graph - called project - that contains the following elements:

• Project corresponds to a set of contents, nodes and connections of the Web site;
The information needed to define a project includes the identification of the Web
site, the location of the Web site and the status (online/offline) that is used to
check the URL base for determining if the offline model must be activated or not.

• Content refers to the many kinds of elements, such as textual, visual and audio
information, that are available in a Web site. Contents are usually organized by
information units. Some contents are embedded into the HTML code while others
are encoded into external files (e.g.CSS, images, videos, etc.) or are only accessi-
ble after connecting to a database. We assume that Web pages can be static, with
fixed content, or dynamic, when generated on the fly.

• Node is the basic element in the model; a node usually refers to a Web page.
Nodes correspond to states that constitute the graph representing the navigation

162 F.A. Marco et al.

in the Web site. Each node is associated with a list of contents that are available
when the users access a particular Web page. When dealing with dynamic pages,
nodes in the offline model correspond to a snapshot of the content delivered by
the site in a given moment of time and, as long as the user is disconnected, that
node is treated as a static Web page. It is noteworthy that, within a web project,
navigation may go beyond the boundaries of the site. In such cases, nodes are
used to represent external states that appear in the navigation model; however,
such nodes have no content associated with them.

• Mapping between nodes and contents: nodes should be considered containers
of a set of contents, either static or dynamic. A mapping function describes which
the content that a state must contain is. The mapping between contents and nodes
in the offline model is illustrated by Fig. 3. There, the requested content from a
web page, Cx, is translated to the content Cx’, according to the offline model and
the state of the web site.

Fig. 3. Mapping between contents and web pages

• States are used to describe three different properties (static, navigational and
data) that characterize the state of a node:
o Static: it describes how the node is defined in the model. Possible values are:

internal, external, initial, precacheable, nocacheable and normal. Internal
means the node that represents an element of the web site, whilst external
represent a node for a connecting third part web site. The case normal refers
to a node that is part of the navigation model. An initial node indicates the
state for starting the navigation; only one initial state is allowed in offline
mode. Nodes marked as Precacheable are always cached when the web site
is visited. Conversely, nocacheable nodes will never be stored.

o The property navigational state is used to set the current dynamics of Web
site navigation; so they will change according to the user navigation. Possi-
ble values for nodes are: nonvisited and visited.

o The property data state defines what the cache is able to store with respect to
the user navigation and the expected behavior set for the model. As a result, a
node can be cached or no cached. When a node is cached, it will be available
when the site is interrupted. When a node is nocached, it will not be availa-
ble when the site is interrupted.

 A Model-Based Approach for Supporting Offline Interaction 163

• Connections: this refers to the links that allow the navigation between nodes.
Connections are set by identifying a source and a target node. Moreover, the na-
vigation between nodes is defined by the attribute type that might contain one of
the following values: normal (is an usual link), online (works when the site is on-
line), offline (works when the site is offline and points to content that is available
on the local cache, and which is used to avoid dangling links in the offline mode)
and alternative (is a link created in the model to provide alternative navigation
when the site is in offline mode).

• Storage places: it refers to possible locations for the contents (e.g. web, proxy,
local cache). The approach can combine access to distant resources only availa-
ble on the Web server and contents available on local or distant caches. The sto-
rage contains: web pages, with all the associated resources, and the offline model
that recreate the navigation through content for offline operations. Within this lo-
cal cache, two techniques are used: application cache and local storage, as illu-
strated by Fig. 2. Application cache is used to store elements of the offline model
and Web contents locally. The local storage stores annotated web pages and in-
formation about the offline model, such us visited nodes and related properties.

3.3 Runtime Concepts of the Model

If an interruption occurs, the information encoded in the offline model can be used to
perform a client-side adaptation of the Web site. Then, when the connection is res-
tored, users should be able to resume the navigation online and eventually synchron-
ize the actions performed offline with the Web server. Thus, users should be informed
constantly about the status of the connection and what is actually available on the
local cache and how such contents can be navigated.

Mechanisms for client-side adaptation of Web pages
The local cache is dynamic and the contents stored locally may evolve overtime.
Moreover, certain nodes may lack the access to remote resources that thus cannot be
shown during offline navigation. In order to make a fair description of what is availa-
ble in the local cache and what is not, we propose small modifications in the DOM
structure of locally stored Web pages. The policies for modifying the DOM are de-
rived from the information provided by the offline model. Such transformations
should include: i) replacing link’s labels to indicate if the target resource is local or
external; ii) removing links and resources from pages that are not available in offline
mode; iii) providing alternative contents to links; iv) add a navigation map to inform
users what resources are available while offline.

Fig. 4 and Fig. 5 illustrate some of these DOM modifications on Web pages to
cope with offline navigation. Fig. 4 illustrates how links have been replaced in the
source page (Fig. 4.a) to prevent users from navigating to a page that contains a video
streaming only available online (Fig. 4.b). Instead of the video, users working offline
will see a static picture and a descriptive text, but the rest of the content of that page
remains intact (see Fig. 4.c).

164 F.A. Marco et al.

Fig. 4. Example of link transformation and content replacement to cope with offline navigation

Fig. 5 shows another example of adaptation where DOM elements have been dis-
abled to prevent users to try to access external resources such as databases or interac-
tive maps (Fig. 5.a). Removing DOM elements is a possible, yet drastic, solution that
could be alleviated by adding alternative content; for example, when offline users
cannot search products in a database they could be diverted to a simple page featuring
a PDF catalogue. Using similar client-side adaptation techniques, DOM elements can
be inserted in Web pages to users informed about the nodes and resources available in
offline mode. Fig. 5.b shows a new element depicting the graph of the corresponding
offline model for navigating the Web site.

Fig. 5. Example of before-after DOM modifications to cope with offline navigation

Client-side adaptations and user interactions in offline mode
All client-side adaptations proposed in our approach are driven by the offline model.
Fig. 6 provides a short excerpt of the algorithm that performs the adaptations by re-
moving contents and changing link destination according to the underlying offline
model. In this example, a Web page is parsed; if the data-offline status attribute value
is “disabled” in the offline model then the element is removed from the Web page. If
the element is a hyperlink, the data-offline URL value is checked to determine if the
destination should be replaced, which is done by changing the href attribute.

Fig. 6. Excerpt of the algorithm for adapting Web pages to cope with offline navigation

b) Target page showing online link to stream video

 c) Target page showing an image replacing online resource
a) Source page when the link
is modified

Legend:
New elements

 Removed elements

a)before b) after

for (every Element in WebPage) do {
// Content removal
if (Element.attributes.data-offlineStatus==”disabled”){
Element.remove();
} else {
 // Change Link Destination

if ((Element.represents(hyperlink)) && (Element.attributes.data-offlineURL.hasValue())){
Element.attributes.href = Element.attributes.data-offlineURL.getValue();
 }
…

}

 A M

The client-side adaptatio
gation over the Web. Tabl
ponding status; for example
in the offline mode; online
modes; finally, alternative
navigate in the model when

Table 1. Conne

Mode\ Connection types No
Online
Offline

Table 2 shows other pro
fline model. The access to
tween nodes and the type of
node that is likely to be vis
in a node it is possible to re
tents in the local cache; the
user has visited the web pa
termining node accessibility

Table 2. Node properties de

Target node properties/Connection
External
Initial
Cached
No cached

Other properties determi
the user has actually visited
associated with each node.
ly the value of the property
according to the type of the
sion process for determinin

Table 3

Node data status/Node type
Novisited
Visited

 a) according to onl

Fig. 7. Deci

odel-Based Approach for Supporting Offline Interaction

on algorithm also takes into account the present user na
le 1 shows the availability of connections and the corr
e, normal connections are available in the online as wel

and offline connections are only available in the epon
connections are added as an independent mechanism

n the site is offline.

ection availability according to the status of the site

ormal Online Offline Alternative
X X -
X - X X

operties that determine the accessibility of nodes in the
 nodes also depends on the existence of connections

of the target node. The property cache can be assigned t
sited during a Web site navigation; by setting this prope
equest the storage (i.e. precache) of the corresponding c
e offline connection can reach that node regardless of if
age or not. Fig. 7.a illustrates the decision process for
y; notice that initial states are always accessible.

etermining whether or not the content is accessible when offlin

ns types Normal Online Offline Alternative
Yes No Yes Yes
Yes Yes Yes Yes
Yes No Yes Yes
No No No No

ining the accessibility of nodes depend on whether or
d the Web page. This aspect is defined by the property d
The user navigation over the Web site changes dynamic

y data of nodes. Table 3 shows the effect on local stor
e node and the user navigation on the Web site. The de
g if content is accessible or not is illustrated by Fig. 7.b.

. Effects on local storage of user navigation

Normal Initial Precacheble Nocacheable
Nocached Cached Cached Nocached
Cached Cached Cached Nocached

line/offline scenarios b) according to current user navigation

ision process for determining node accessibility

165

avi-
res-
ll as
nym
m to

e of-
be-
to a
erty
con-
f the

de-

ne

not
data
cal-
rage
eci-
.

e

166 F.A. Marco et al.

Synchronization mechanisms
Our approach defines mechanisms for synchronizing contents to use offline, allowing
the use of the web until the connection is back. Synchronization is done in two levels
within the local cache: the application cache manager and the offline model, as illu-
strated by Fig. 8. We assume that the application cache manager is implemented in
HTML5. It is in charge of keeping up to date web content associated with the applica-
tion cache storage. The application cache version included in the offline model allows
updating the content if it is out of date. When an online page is loaded or the site sta-
tus changes to online, the offline model is responsible of checking if all the content
associated with the offline model is stored locally.

Fig. 8. Illustration on how synchronization mechanisms can be integrated into the approach

4 Tool Support and Case Study

Hereafter we present the tools that we have developed to demonstrate the feasibility
of our approach. The Offline Model Editor is dedicated to designers and it is aimed at
supporting the design of the model for existing Web sites; this tool runs in a browser
using jQuery and jQuery UI 1.8. It is divided in two applications: the Site Editor and
the Node Editor. The Site Editor is used to define the Web site offline behavior, set
web pages properties and connections. The Node Editor is used to annotate individual
web pages in order to define the rules for content transformation; it allows designers
to include the available transformation only by means of making a click over the de-
sired elements. These tools appear on the Web client as a graphical element that pro-
vides users with information about the pages available, the corresponding links and
the state of the connection. Fig. 9 provides the overall architecture of the tools.

4.1 Demonstration of Tools by a Case Study

Hereafter we present a set of scenarios that illustrate the usage of the tools. We as-
sume two users: a web designer who aims to create the offline model for a Web site;
and an end user who uses offline model.

 A Model-Based Approach for Supporting Offline Interaction 167

Fig. 9. Overall architecture of the tools developed to support the approach and the interaction
with the Client browser and third-party web site

4.2 Creating the Offline Model

Let us assume a very simple Web site. After designing the entire site, as depicted in
the Fig. 10.a, the designers are asked to create an offline model for allowing users to
access in disconnected mode. The first restriction is to remove elements that would
crash if users use an offline mode, such as the map from the “CONTACT” web page
and the Google’s search bar. The second issue is to replace the entire “PROJECT I”
web pageby another one, featuring only textual information and an image instead of
the original video. Finally, the page “NEWS” should not be accessible when offline.
Instead, the “NEWS” page should refer to the page “ABOUT” when offline.

Fig. 10. Site map and offline model for the case study

a) Navigation map of the original web site b) corresponding offline navigation model

168 F.A. Marco et al.

Using the tool Site Edito
by defining nodes and conn
automated by parsing the
existing links between web
ly by inferring the web site
nal web site. The next step
behavior when navigating o
ing the model with the prop
receives an icon initial to in
Then, for every page that sh
a property cacheable such
order to prevent the naviga
nocacheable is associated w
designer can use the tool No

Table 4. Icons repre

Element in the node R
Name
Accessible
Initial
Current
Visited
Precacheable
Cached
No Cacheable
External

The tool Node Editor al
ments as shown by Fig. 11
elements and click on them
all nested elements to the D
yellow in the Node Editor
designer has to select the li
destination. Connections th
red as shown by Fig. 11.b (i

 a) Elements removal from p

Fig. 11. Edition of D

or, we create a navigation model as illustrated in Fig. 1
nections. Part of the process of creating such a graph can
pages of the Web site: connections can be created fr
pages; external pages can also be represented automatic
domain. At this point, the model only represents the or

p consists in adding the policies that describe the Web
offline to the model. Such policies are defined by deco
perties defined in Table 4. For example, the page “HOM
nform that it is the initial navigation page in offline mo
hould be available in offline mode, the designers assoc
as the page “ABOUT” and the page “project image”

ation to the page “NEWS” in an offline mode, the prope
with it. Only when all static properties have been set,
ode Editor to define internal policies for the content.

esenting policies on node elements of the offline model

Representation Description
Text value The name of the node

The node could be visited from the actual one
The node has been set as initial
The user is visiting this node
The node has been visited
The node has been set as “precacheable”
The node has been locally cached
The node has been set as “nocacheable”
The node is external to the web site

llows to visualize the Web page and to modify DOM e
. This is a visual tool, so it is possible to select the DO

m and select “remove element”. It is worthy of notice t
DOM will be removed. Removed elements are marked
, as depicted Fig. 11.a. To change a link destination,
ink and then select a different node in the model as a n
hat have been modified in the offline model are marked
i.e. “LATEST NEWS” link at the page “Web Company

age “CONTACT” b) Changing links destination

DOM elements of a Web page with the tool Node Editor

10.b
n be
rom
cal-
rigi-
site

orat-
ME”
ode.
iate
. In
erty
the

ele-
OM
that
d in
the

new
d in

y”).

 A Model-Based Approach for Supporting Offline Interaction 169

In order to create an alternative connection between the page “OFFLINE PAGE”
and the page “ABOUT”, the designer just needs to draw a new connection between
these pages. As shown in Fig. 10.b, the offline model represents normal connections
(which means connections that match to existing hyperlinks on the Web site) in black;
online connections (those that are available online only) in green; offline connections
are represented in red and alternative connections are depicted in orange.

Once finished, the offline model is published with the original Web site. The offline
model is downloaded so that the users connect to the Web site. The activation of the
offline model only occurs when the users got interrupted and the connection is lost. In
such case the parser starts transforming the local Web pages according to the prede-
fined constraints. Then, the graph featuring the offline model is shown as in Fig. 12.
To navigate, users can click on the modified links embedded into pages or by select-
ing the nodes directly on the graph.

Fig. 12. Visualization of the Web site and tool in offline mode (with zoom at right-side)

5 Discussion and Future Work

In this paper we have discussed some problems caused by interruptions whilst work-
ing with the Web application and, in particular, the interruptions caused by loss of
connectivity. For that we have proposed a model-based approach that is delivered
with a tool support for helping to build Web sites resilient to interruptions. The over-
all approach is quite simple: we combine a navigation model to exploit resources that
are already stored in the local cache. The navigation model is tuned to work in a spe-
cific way when users are offline. It is worthy of notice that the so-called offline navi-
gation model is a piece of design that is affected by the designers’ intentions when
designing the offline navigation. Moreover, the model is subject to the actual user
interaction with the Web site. The current implementation exploits resources from
HTML5, in particular the API Web storage and the Offline Web Applications.

The model and the tools presented here are a proof of concept. Despite the evident
limitations, it allows the discussion about the problems related to the loss of connec-
tivity and poses fundamental questions about whether or not we can provide solutions
to make Web sites more resilient to interruptions. The use of the offline model as pre-
sented in this paper has several implications:

170 F.A. Marco et al.

i) First of all, the offline model embeds the main concepts for describing the dynamic
aspects of local cache and Web site navigation. These aspects are duly represented
by our model, which extends the SWC navigation model. As we have seen, the
model takes into account not only the structural aspects of the Web site naviga-
tion, but all the actual behavior over the Web site and the constraints imposed by
the designer to create a specific user experience when the users are navigating the
Web site offline.

ii) Secondly, the offline model can be used as a domain specific language that is used as
input for the tools we have developed to access the local cache and Web storage.
Indeed, it is the offline model that drives our tools to perform the client-side adapta-
tions required to enable users to navigate local cache. It is by the means of such an
offline model that designers can express their constraints on the navigation;

iii) Thirdly, the graph representation of the offline model allows the reconstruction of
a navigation site map (as shown by Fig. 12) that explicitly shows the users the
available resources. Such a visual aid fulfills two main goals: first of all it explicit-
ly shows to users that the navigation proposed corresponds to an offline mode of
interaction (as the online version does not show that graph); then, it visually ex-
plains users the sub-set of information available on the local cache.

The approach can be used to build new Web sites from scratch, but it also can be
used as a mapping support for describing offline navigation of existing Web sites. For
the purposes of this work, we have built our offline model as an extension of the SWC
navigation model. We think that other model-based approach could be extended to
support offline navigation; however, this hypothesis remains to be investigated.

Indeed, despite the fact that we consider the offline model a powerful tool for
building Web sites resilient to interruptions, this paper only provides the foundations
and much more remain to be done. Currently, it only works with static Web pages but
the overall model can be extended to work with dynamic pages. We only have pro-
vided a partial solution for dynamic content and just presented the issue of synchroni-
zation with the Web site when the connection is restored. We assume that dynamic
content can be “frozen” in the local cache and manipulated as static Web pages when
the user is offline. Nevertheless, further investigation is required to test our model and
tools with more complex scenarios. Moreover, despite the fact that the tools presented
are operational this work requires empirical studies with end-users. All these aspects
will be subject of our future work.

References

1. Benson, E., Marcus, A., Karger, D., Madden, S.: Sync kit: a persistent client-side database
caching toolkit for data intensive websites. In: WWW 2010, pp. 121–130. ACM (2010)

2. Cannon, B., Wohlstadter, E.: Automated object persistence for JavaScript. In: WWW
2010, pp. 191–200. ACM (2010)

3. Ceri, S., Brambilla, M., Fraternali, P.: The History of WebML Lessons Learned from 10
Years of Model-Driven Development of Web Applications. In: Borgida, A.T., Chaudhri,
V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 273–292. Springer, Heidelberg (2009)

4. Chang, H., Tait, C., Cohen, N., Shapiro, M., Mastrianni, S., Floyd, R., Housel, B., Lind-
quist, D.: Web browsing in a wireless environment: disconnected and asynchronous opera-
tion in ARTour Web Express. In: ACM/IEEE MobiCom 1997, pp. 260–269. ACM (1997)

 A Model-Based Approach for Supporting Offline Interaction 171

5. Che, H., Tung, Y., Wang, Z.: Hierarchical Web Caching Systems: Modeling, Design and
Experimental Results. IEEE Journal on Selected Areas in Communications 20(7) (2002)

6. Czerwinski, M., Horvitz, E., Wilhite, S.: A diary study of task switching and interruptions.
In: CHI 2004, pp. 175–182. ACM (2004)

7. De Troyer, O., Casteleyn, S., Plessers, P.: WSDM: Web Semantics Design Method. In:
Web Engineering, pp. 303–351 (2008)

8. Gutwin, C., Graham, N., Wolfe, C., Wong, N., de Alwis, B.: Gone but not forgotten: de-
signing for disconnection in synchronous groupware. In: CSCW 2010, pp. 179–188. ACM
(2010)

9. Kao, Y.-W., Lin, C., Yang, K., Yuan, S.-M.: A Web-based, Offline-able, and Personalized
Runtime Environment for executing applications on mobile devices. Comput. Stand. Inter-
faces 34(1), 212–224 (2012)

10. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: Uml-Based Web Engineering - An Ap-
proach Based on Standards. In: Web Engineering, pp. 157–191 (2008)

11. McFarlane, D.C.: Coordinating the interruption of people in human-computer interaction.
In: INTERACT 1999, pp. 295–303. IOS Press, Amsterdam (1999)

12. Mark, G., Gudith, D., Klocke, U.: The cost of interrupted work: more speed and stress. In:
SIGCHI 2008, pp. 107–110. ACM (2008)

13. Mehta, N., Swart, G., Divilly, C., Motivala, A.: Mobile AJAX Applications: Going Far
Without the Bars. In: 2nd IEEE Workshop on Hot Topics in Web Systems and Technolo-
gies (2008)

14. Palanque, P., Winckler, M., Ladry, J.-F., terBeek, M., Faconti, G., Massink, M.: A Formal
Approach Supporting the Comparative Predictive Assessment of the Interruption-
Tolerance of Interactive Systems. In: ACM EICS 2009, pp. 211–220. ACM Press (2009)

15. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering: Modelling and Im-
plementing Web Applications. Human-Computer Interaction Series. Springer (2008)

16. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications with Oohdm. In:
Web Engineering, pp. 109–155 (2008)

17. Tatsubori, M., Suzumura, T.: HTML templates that fly: a template engine approach to au-
tomated offloading from server to client. In: WWW 2009, pp. 951–960. ACM (2009)

18. ter Beek, M.H., Faconti, G.P., Massink, M., Palanque, P.A., Winckler, M.: Resilience of
Interaction Techniques to Interrupts: A Formal Model-Based Approach. In: Gross, T., Gul-
liksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.)
INTERACT 2009. LNCS, vol. 5726, pp. 494–509. Springer, Heidelberg (2009)

19. Trafton, J.G., Monk, C.A.: Task Interruptions. Reviews of Human Factors and Ergonom-
ics 3, 111–126 (2007)

20. Trafton, J.G., Altmann, E.M., Brock, D.P., Mintz, F.E.: Preparing to resume an interrupted
task: Effects of prospective goal encoding and retrospective rehearsal. International Jour-
nal of Human-Computer Studies 58(5), 583–603 (2003)

21. Yang, Y.: Supporting Online Web-Based Teamwork in Offline Mobile Mode Too. In:
WISE 2000, vol. 1. IEEE Computer Society, Washington, DC (2000)

22. W3C. A vocabulary and associated APIs for HTML and XHTML. W3C Candidate Rec-
ommendation (December 17, 2012), http://www.w3.org/TR/2012/CR-html5-
20121217

23. W3C. Web Storage (February 13, 2013),
http://dev.w3.org/html5/webstorage/

24. Winckler, M., Palanque, P.: StateWebCharts: A Formal Description Technique Dedicated
to Navigation Modelling of Web Applications. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer, Heidelberg (2003)

	A Model-Based Approach for Supporting Offline
Interaction with Web Sites Resilient to Interruptions
	1 Introduction
	2 Review of the Literature
	2.1 Interruptions in Interactive Applications
	2.2 Caching Models for Web Application
	2.3 Client-side Technologies for Supporting Local Cache Management
	2.4 Model-Based Approach for Dealing with Interruptions

	3 A Model-Based Approach for Supporting Offline Interaction
	3.1 The Approach in a Nutshell
	3.2 Basic Concepts of the Offline Model
	3.3 Runtime Concepts of the Model

	4 Tool Support and Case Study
	4.1 Demonstration of Tools by a Case Study
	4.2 Creating the Offline Model

	5 Discussion and Future Work
	References

