Model-Driven Generation of a REST API
from a Legacy Web Application™

Roberto Rodriguez-Echeverria, Fernando Macias, Victor M. Pavén,
José M. Conejero, and Fernando Sanchez-Figueroa

University of Extremadura (Spain),
Quercus Software Engineering Group
{rre ,fernandomacias,victorpavon,chemacm, fernando}@unex .es
http://quercusseg.unex.es

Abstract. Web 2.0 phenomenon, REST APIs and growing mobile ser-
vice consumption, among other factors, are leading the development of
web applications to a new paradigm, named cross-device web application.
Those web sites let organizations of all sizes provide a pervasive and con-
textual access to their information and services, to customers, employees
and partners via potentially any kind of device. Most organizations often
possess legacy systems which should face an ongoing evolution process
to enhance its accessibility and interoperability. Yesterday they had to
evolve to provide the user with a Web layer, and now they should evolve
again to adapt to the new ways of data and services consumption on the
Web. In such scenario, a REST API plays a key role, defining the interac-
tion layer between the legacy system and all its heterogeneous front ends.
This work presents a model-driven approach to derive a REST API from
a legacy web application within the frame defined by a modernization
process. This approach departs from a conceptual model of the legacy
application generated by reverse engineering techniques. In this work we
detail the API generation process and provide a sample implementation
instrumenting one of the studied web development frameworks to evalu-
ate the suitability of the approach.

Keywords: Software Modernization, Software Reengineering, Rich In-
ternet Applications, REST.

1 Introduction

Since the publication of the REST architectural style [4], the design and devel-
opment of RESTful web services has become the de facto standard to define
the interaction between Web 2.0 frontends and their backends. Actually, REST
APIs may be currently conceived as one of the key factors in the success of a
web (cloud) application, so a great effort is dedicated to its development and

* Work funded by Spanish Contract MIGRARIA - TIN2011-27340 at Ministerio de
Ciencia e Innovacién and Gobierno de Extremadura (GR-10129) and European Re-
gional Development Fund (ERDF).

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 133-147, 2013.
© Springer International Publishing Switzerland 2013

http://quercusseg.unex.es

134 R. Rodriguez-Echeverria et al.

evolution. REST APIs define, on the one hand, a way of lean integration among
a service provider and other applications (consumers), and on the other hand, a
mean to get a cross-device web application, spreading the original scope of the
web application.

Legacy systems have always considered web service technology as a proper
mean to gain interoperability and to decrease their evolution related costs. Since
RESTful services became mainstream fueled, first, by the Web 2.0 adoption
and, then, by ongoing mobile service consumption raise, legacy applications have
searched for alternatives to evolve their interaction layers (web or RPC services)
to this new standard and become cross-device web applications.[1]describe how
web service ecosystems have risen to become the predominant model in soft-
ware solutions. Traditionally centralized domains, such as business solutions,
electronic shops and electronic auctions are now publishing pieces of their func-
tionality to create web service ecosystems.

The main goal of this work is to present an approach for the automatic gen-
eration of a REST API that provides an alternative interface to a legacy Web
system. In this work we present, on the one hand, the architecture of a REST
support layer defined as an extension of the Struts v1.3 Web development frame-
work and, on the other hand, the model-driven process to adapt such layer to
obtain a REST API conformed to the legacy subsystem to be modernized.

The rest of the paper is structured as follows. Section 2 briefly presents an
overview of the MIGRARIA project and its MVC metamodel. In Section 3 an
illustrative example is depicted. Section 4 introduces our approach to generate
a REST API from a legacy web application. The related work is discussed in
Section 5. Finally, main conclusions and future work are outlined in Section 6.

2 MIGRARIA Project

The process defined herein is framed within a whole modernization strategy:
MIGRARIA project [9]. This project defines a systematic and semi-automatic
process to modernize legacy non-model-based data-driven Web applications into
RIAs. The process starts with the generation of a conceptual representation of
the legacy system by using reverse engineering techniques. According to that
project, this conceptual representation is based on the MIGRARIA MVC meta-
model that allows the specification of legacy web applications developed by
means of MVC-based web frameworks. Once the conceptual representation is
obtained, the modernization engineer must decide the legacy system functional-
ities that should be part of the target system, i.e. the new RIA client. In other
words, she must specify the set of components or subsystem to modernize. This
decision is carried out in our approach by the selection of the different views
included in the subsystem within the generated conceptual model of the legacy
application. Note that the modernization process defined by MIGRARIA does
not aim at sustituying the current system by a new one. Indeed, its main pur-
pose is to complement the system by the generation of new ways of access and
interaction such as a RIA client [8] and its corresponding server connection layer,
a REST API in this work.

MD Generation of a REST API from a Legacy Web Application 135

H View

IE F‘r-:senlali:n»\\mibulrf“ IE Prf“”“”””O'-‘JEﬂ;f “*1H ObjectRequestContainer] | H PresentationCollection
| | I | |
Al
Request
i bata - Reaust T tf
Controller

E AtrMapping E objectMapping | B controlFlow [‘ B Response ‘ [El PageRresponse |
I -— | |

[] ;] [] []
H Mapping H DataOperatienCal

|

Model

| H Dataattribute | H DataObject |H DpataOperationReturnf [DataOperationParametere——

H DataRelation T T [DataOperation |

Fig.1. MIGRARIA MVC metamodel overview

2.1 MIGRARIA MVC Metamodel

Within the MIGRARIA project, a specific language has been defined to gen-
erate a conceptual representation of a legacy MVC-based web application: the
MIGRARIA MVC metamodel. This metamodel has been designed based on the
Model-View-Controller pattern that has become the conceptual foundation of
a great number of web development frameworks. In that sense, this metamodel
specifies the main concepts of the development of a web application arranged in
the three main components of the MVC pattern. Figure 1 presents an excerpt of
the MIGRARIA MVC metamodel focusing on the main elements of each compo-
nent. Such elements and their relations are used throughout this work to develop
an illustrative example of the approach. The Model package provide elements to
represent data objects, their attributes, their relationships and the operations
defined over them. The View package provide elements to represent pages, as
main containers, and presentation objects and requests, as main containtments.
Presentation objects, basically, have a set of attributes, can indicate data in-
put or data output and can be presented individually or inside a collection.
Meanwhile, requests are characterized by their parameters and path and define
connection points with controller elements by means of the request-handler asso-
ciation. The Controller package provides elements to represent request handlers
(ControlFlow), their mappings defined between presentation and data objects,
their response defining a relationship with the target page element, and the se-
quence of operation calls performed to execute the requested action or to fetch

136 R. Rodriguez-Echeverria et al.

the requested data. This metamodel is a comprehensive revision and extension
of our work presented last year [8].

Although our intention is to follow the guidelines proposed by Architecture
Driven Modernization (ADM) [12], we have declined to use Knowledge Discovery
Metamodel (KDM) because of its complexity to specify MVC-derived semantics.
We have also declined to use one of the ripe existing MDWE approaches [10]
cause most of them are designed within forward engineering approaches. The ab-
stract concepts they defined are difficult to match with the information resulting
of a reverse engineering process. In our opinion, the semantic gap may be wide
enough to motivate the definition of a new language to bridge the technology
platform of a web application and MDWE approaches.

Papers
Author Menu
id Title Abstract File Path Track
Papers Cloud Storage of Artifact Annotations to rpaas
6 Support Case Managers in Knowledge- Ll CeBPM Edit Delete
i \cloudStorage pdf
o New Intensive Business Processes
o Edit
Search.
Search
Paper List
P New Paper
Title
id | Title Absiract | FinalStatus e
"Cloud Storage of Artifact Annotations to Support Case Managers in Knowledge-Intensive Business Processes” fryveeme
1° * Author
* Track: W ILH p C\ d nabled Bu: s Process Management
7 "Challenges for Migrating o the Sarvu:e Cloud Paramgm An Agile Perspective”
19 "ICOM: A Framework for Integrated Collaborative Work Environments™ Submit

Fig. 2. Legacy Web Application and RIA snapshots

3 Illustrative Example

Figure 2 illustrates a modernization scenario extracted from the main case study
of the MIGRARIA project, named the Conference Review System!. The data
model proposed by [2] has been respected during system development. In this
case, the paper submission subsystem has been selected to be modernized. In
Figure 2, the top half presents a legacy view listing the papers submitted by
a concrete author, and the bottom half shows a possible RIA client as the re-
sult of the modernization process. This new client is a composite formed by the
legacy views: paperList (in the image), paperCreate, paperEdit and paperDe-
tails. So the generated RIA client follows the single-page paradigm providing all
the CRUD operations from a single view [7]. Basically this page is composed
of an interactive list of papers, popping up additional information on mouse

! http://www.eweb.unex.es/eweb/migraria

http://www.eweb.unex.es/eweb/migraria

MD Generation of a REST API from a Legacy Web Application 137

over event, a search box, and a web form to submit a new paper or to edit
an existing one. All the requests performed by that client are AJAX-based and
REST-compliant, and used JSON as data exchange format. So the server side
needs to provide a convenient connection layer for such client.

Having introduced that modernization scenario, in the next sections we will
tackle the generation of a REST API to connect that new RIA client with the
legacy application of our case study.

4 The Approach

The main goal of this work is to present an approach for the automatic gen-
eration of a REST API that provides an alternative access to a legacy Web
system. This process is framed within the modernization framework defined by
the MIGRARIA project [9].

Based on the selected subsystem to modernize, the process must generate, on
the one hand, a RIA client and, on the other hand, a REST API that allows the
communication between the new RIA client and the legacy Web application. In
this paper, we focus on the approach defined to generate the REST API in the
context of the modernization scenario defined. The REST layer must then fulfill
the next requirements:

1. Adapting its behavior based on a configuration file.
2. Adding support for HTTP PUT and DELETE methods, if needed.
3. Adding parse and conversion support for common data formats (JSON,
XML).
4. Delegating to a legacy controller the action of handling a REST request
(REST-controller mapping).
(a) Generating the context for the proper execution of the legacy controller
(JSON-objects conversion).
(b) Generating the response according to a particular format (previously
decided).

In the specification of the REST API we may identify two different parts clearly
separated: (1) a part of the system depending on the Web framework used to
develop the legacy application; (2) a part specific for the legacy system being
modernized. The former includes all the extensions and adaptations performed
in the framework to add it the REST capabilities aforementioned. The latter
mainly concerns to the specification of the behavior of the API for a particu-
lar Web application, namely: (i) the mappings among REST requests and legacy
controllers; (ii) the input (request) and output (response) data conversion among
the formats expected by, on the one hand, the RIA client and, on the other hand,
the controller. Obviously, while the first part remains unchanged for different
legacy Web applications, the second one depends on the concrete legacy system
being modernized. The process followed to specify the Web application depen-
dent part is illustrated by Figure 3. As it can be observed, the work presented
herein takes the MVC model of the legacy application as input and generates
its REST API. This process is defined by the next activity sequence:

138 R. Rodriguez-Echeverria et al.

1. Identification of the resources related to the subsystem to be modernized.

. REST URI? generation for the identified resources.

3. Identification of the available operations over the resources based on the
selected views, their requests and the controllers that manage these requests.

4. Generation of request mappings for the operations available for each resource
and for a particular data format.

5. Delegation of the REST request handling to the controllers available in the
legacy application and providing the correspondingly data conversions.

[\

A detailed description of both parts of this REST API generation process is
provided in the next sections.

Resources | URs | Struts Legacy WA-COdEl
Struts VD Reverse MIGRARIA || |dentification . generation eneration
legacy - - MvC i i Generated REST Layer
Engineering 2 rest-config.xml :
WA-Code | process Model Identification RI-Operation " - Static framework API
available operations - rest-config.xml

Fig. 3. Process outline

4.1 Framework-dependant REST API Specification

In order to generate a REST API from the legacy application, the framework
used to develop the legacy system must be extended conveniently to enable the
handling of REST requests. From a modernization point of view, we may rely
on two different approaches to obtain this REST API:

1. To generate the REST API from its conceptual description by using model-
to-code transformations.

2. To manually implement the REST API and, later, automatically generate its

configuration based on the information extracted from the legacy application
and the functionality to be included into the target RIA client.
The main disadvantage of the first alternative concerns to the need of adapt-
ing (or redefining) the transformations once and again for each Web frame-
work considered in the approach even, in many cases, for its different ver-
sions. Moreover, based on the structural properties of this REST API which
clearly contains a static part, it does not seem to make sense to completely
generate it from scratch by means of transformations. Thus, the second al-
ternative seems more suitable although it implies implementing and main-
taining different versions of the REST API according to the different frame-
works and versions. In other words, this second approach requires different
implementations for the framework-dependent part for different frameworks
and versions whilst the variable part is automatically generated by means
of model-to-text transformations. This variable part represents, in our case,
the REST API configuration and, thus, it will be automatically generated
by model transformations.

MD Generation of a REST API from a Legacy Web Application 139

—— _.[Legacy Client] [RIA Client

6) HTML 1) HTTP 1) REST+JSON 6) JSON
Request Request

—_———
| .
Server |
r v N
Struts = ¥ &
CustomActionServiet
[GET] [POST] [PUT] [DELETE]
CustomModuleConfig
struts-conﬁg.xmq rest-conﬁg.xmlw
e — 2) getPr
L v
RequestProcessor i RESTRequestProcessor

[3.5) populateForm [a.a) populateForm (parseJSONJ

3.b) processForward (3.&:) processForward

3.d) performForward

)
(])
[3.::) performAction]1--1 ‘[41 ?s;’l‘; }—1{3.::) performAction]
(])

(S.d) performForward

5) Beans : F 5) Beans

I _ |

|
|
I
|
|
|
I
|
|
|
I
|
|
|
| +
|
I
I
|
|
|
I
|
|
|
I
|
L

Fig. 4. REST layer for Struts v1.3.X

In order to illustrate how a particular Web framework is instrumented to
provide REST API support according to our approach, an implementation for
the Struts v1.3 Web framework has been developed. This implementation is
graphically described in the process shown in Figure 4. This figure is organized
according to the lifecycle of a request in the Struts framework extended with the
REST API support. Note that each step in the lifecycle has been enumerated
in the figure. The figure shows, on the one hand, the request-response lifecycle
for a request generated by the legacy Web application (dashed line) and, on
the other hand, the request-response cycle for a REST request generated by the
target RIA client (solid line). This comparative illustration allows appreciating
the modifications performed to the Web framework in order to incorporate the

2 Uniform Resource Identifier.

140 R. Rodriguez-Echeverria et al.

REST API support. Notice that the white boxes indicate modified or generated
elements. It may be easily observed that the extension has basically required the
modification of the classes: ActionServlet (that implements the Front Controller
3 in Struts) and RequestProcessor (which handles the request lifecycle within
the framework). on the one hand, the CustomActionServlet class has the next
responsibilities: (1) adding support for PUT and DELETE HTTP requests; (2)
loading the specific configuration of the REST API for a concrete Web appli-
cation (rest-config.xml); and (3) deciding which RequestProcessor must handle
the request. On the other hand, RESTRequestProcesssor is responsible of: (1)
generating the needed context for the legacy controller invocation (step 3-a);
(2) generating the response object according to the specified data format (step
3-b); (3) delegating to the legacy controller (Action), according to the REST-
controller mapping specified in the configuration, the handling of the request
(step 3-c); and (4) delegating the response generation in the corresponding com-
ponent according to the specified data format (step 3-d). In addition to the
commented extensions, the JSON Writer class has been added, as an alternative
new response composer. In this case, it generates a JSON-valid response from
the data generated by the invoked controller (Action). Obviously, the generation
of responses in other data formats would require the implementation of different
Writer classes.

4.2 Application-dependant REST API Specification

Next, we describe the main steps of our approach to extract the information to
set up the framework-dependant REST API implementation. Such information
is obtained from the MIGRARIA MVC model of the legacy Web application.

Table 1. REST resources and relations

Views Potential Resources Resources I/O Collection Relations
paperCreate paperForm Paper I NO 1 Track : N Paper
track Track O YES 1 Paper : N Coauthor
paperEdit paperForm Paper I NO 1 Paper : N Review
track Track O YES 1 Author : N Paper
coauthorForm Coauthor I NO 1 Author : N Review
coauthor Coauthor O YES N Author : M Track
paperDetails paper Paper O NO
coauthor Coauthor O YES
review Review O YES
paperList paper Paper O YES
author Author O NO

3 http://struts.apache.org/development/1.x/apidocs/org/apache/
struts/action/ActionServlet.html

http://struts.apache.org/development/1.x/apidocs/org/apache/struts/action/ActionServlet.html
http://struts.apache.org/development/1.x/apidocs/org/apache/struts/action/ActionServlet.html

MD Generation of a REST API from a Legacy Web Application 141

Identifying Resources. The specification of a REST API implies to redesign
the interaction between client and server from a resource-centric point of view.
In that sense, the adequate identification of the involved resources and their rela-
tions becomes a fundamental step in the REST API generation process. In order
to carry out this activity, the modernization engineer must analyze and query
the MIGRARIA MVC model to find out the resources related with those views
that compose the subsystem to be modernized. Each view container (page) is
composed by one or more presentation objects that define a concrete data view
over the corresponding data objects defined at the model component, e.g. pre-
senting some of their attributes. These presentation objects may represent input
or output data and they may be either presented individually or organized into
collections. In order to identify the model objects, an analysis of the controller
component is required to identify the actual mappings defined among presenta-
tion and model objects within a concrete view.

4 < Page paperDetails,jsp
4 < Presentation Object paper
4 Data PAid

4 < Control Flow PaperAction.details
< Page Response details
4 < Object Mapping paper

4 <4 Data Object Paper
<= Data Attribute id
< Data Attribute title

4 Data PA title
4 Data PA abst
< Data PAtrack.name
% Request listPapers
4 4 Object Presentation Collection coauthors
» 4 Presentation Object coauthor

< Attr Mapping id

[Attr Mapping title
< Attr Mapping abst
< Attr Mapping track.name

<= Data Attribute abst

<+ Data Attribute fileLocalPath

<+ Data Attribute finalStatus

< Data Relation author

Data Relation track

= Properties 52 Data Relation subjects

4 4 Object Presentation Collection reviews < Data Relation conflictPcmembers

4 < Presentation Object review Praperty vale

< Data PA reviewerMame Attribute
< Data PA commentToAuthor Name
4 Data PAfinalGrade Presentationattribute

& 4

4 Data Relation assignedPcmembers
"= Data Attribute title 4 Data Relation reviews

le

= Data PA title
Type "= output

<+ Data Relation coauthors

Fig. 5. Resource identification on a MIGRARIA-MVC Model

Figure 5 presents the presentation object paper, included in the view pa-
perDetails, and its mapping with the data object Paper, defined in the controller
paperAction.details. As the final result of the analysis of the MIGRARIA MVC
model, the engineer must obtain: i) the data objects involved in the subsystem
to be modernized; ii) their relationships; and, moreover, iii) the different ways
of being presented by views and consumed by controllers. All this information is
gathered in the potential resources column of the table 1 which shows the results
for the paper submission subsystem in our running example. This table contains
also the relations established among the collected resources.

Generating REST URIs. Taking as input the information regarding the re-
sources and their relations obtained in the previous step, all the feasible REST
URI combinations for each obtained resource are generated by means of the next
process. The URIs column of table 2 shows a brief sample of the collection gen-
erated for our running example which illustrates the main construction blocks
of our process.

142 R. Rodriguez-Echeverria et al.

The steps of the process are described as follows:

1. Generate base URI pair for each resource:
(a) /resources
(b) /resources/{id}

2. Generate base URI pair for each one-to-many relationship:
(a) /resources one/{id}/resources many
(b) /resources one/{id} /resources many/{id}

3. For each many-to-many relationship, locate the master resource and execute
the previous step taking the master resource as the main one.

4. Complete the URIs adding to the query string any control parameter that
appear in the original requests.

4 <4 Page paperlist.jsp 4 < Control Flow PaperAction.details 4 4 Data Object Paper
4+ Presentation Object author + .. 4+ ..
4 < Object Presentation Collection papers a4 < Data Operation Call paperDAQ.get 4 Data Operation create
4 Presentation Object paper <» Data Operation Call Parameter id 4 Data Operaticn update
4 < Request paperDetails < Operation Call Return paper » % Data Operation remove
<~ Object Request Parameter id > 4 Data Operation Call coauthorDAG.getAll » 4 Data Operation get
< Value Request Parameter op < Data Operation Call reviewDAC.getAll % Data Operation getAll
% Request editPaper
» 4 Request deletePaper

Fig. 6. Operation identification on a MIGRARIA-MVC Model

Identifying Available Operations. Considering that our modernization pro-
cess takes as input a previously implemented legacy application, obviously the
set of operations for each resource that the REST API must provide is limited
by the operations available in the original system. Therefore, we need to identify
the operations previously defined over these resources to be modernized in order
to properly filter the set of possible REST requests to be provided. Again, this
information is obtained by the modernization engineer by analyzing and query-
ing the MIGRARIA MVC model. This analysis allows, in this case, obtaining
all the requests related with the set of views that compose the subsystem to be
modernized. Although most of such requests are included in these views, there
may be other ones not included in the views but being responsible for gener-
ating a concrete view, e.g. a request generated by a menu link. Note that the
MIGRARIA MVC model provides enough information to identify the controller
handling a particular request and moreover the controller responsible for the gen-
eration of a particular view. The Controller component of a MIGRARIA MVC
model permits the engineer to specify the operation call sequence executed by
a controller to manage the data objects of the legacy application. Based on the
analysis of this sequence, the operations being performed over a resource within
a controller may be identified. A comprehensive analysis of the controllers that
handle the set of requests related with the modernization provides, as result, the
list of available operations for each resource.

MD Generation of a REST API from a Legacy Web Application 143

To illustrate the operation identification process, we consider here a specific
request contained in one of the views to be modernized of the running example,
concretely the paperDetails request of the paperList view. Based on this request,
the controller (ControlFlow) that handles it is identified by means of the existing
relationships between the View.Request and Controller. ControlFlow elements. In
this case, the paperDetails request is handled by the paperAction.details Con-
trolFlow which contains the operation call sequence described in figure 6. In this
case, for example, the operation get is invoked over the data object Paper, pass-
ing as parameter the id of the paper (request parameter) to fetch and receiving
a Paper object as result. As shown, in this model excerpt, all the operation
calls are related to concrete data operations defined in a concrete data object.
In a MIGRARIA MVC model, all the data operations are classified according
to its defined mission among the following categories: create, update, remove,
get, get All and getFilter. Such classification provides the modernization engineer
with a common vocabulary to identify unequivocally the list of data operations
performed by a controller. Such identification is necessary to match properly
those operations with the correct HT'TP method to use in a REST REQUEST.
The table 2 shows such mapping.

Generating REST Requests Mappings. Following a similar approach to the
generation of REST URIs, our process generates all the possible combinations
of URIs and HTTP methods, producing four different request mappings for each
REST URI. Next, that collection is filtered by the set of available operations,
so only the REST requests with a proper matching with a legacy controller is
maintained, while the rest is removed. Table 2 summarizes the results obtained
for the REST URISs selected in our illustrative example.

Delegating REST Requests Processing to Legacy Struts Actions. It
comprises the following steps:

1. The definition of the mappings between REST requests and existing con-
trollers. This mapping is derived from the previously obtained information
regarding the relation request-controller. Therefore, for instance and accord-
ing to table 2 | the management of an HTTP GET request for the path
/paper/{id} will be delegated to the paperAction.details controller.

2. The conversion of the request input data (parameters or message body)
to the corresponding data format expected by the controller. Since legacy
controllers are reused in the process, the context that they expect must be
built in order to ensure a right execution. Thus, it could be needed, for
instance, that a particular object that represents the information sent by an
HTML form (expected by the controller) must be populated with the data
obtained from the REST request (e.g. in JSON format). The generation of
this context needed by the controller requires to know, on the one hand, the
parameters of the source request and, on the other hand, the presentation
objects related with the source request. All this information may be also

144

R. Rodriguez-Echeverria et al.
Table 2. REST configuration process result summary
URIs Operations Actions REST Requests
/paper Create paperAction.new POST
Read paperList Action GET
Update
Delete
/paper/{id} Create
Read paperAction.details GET
Update paperAction.save PUT
Delete paperAction.delete DELETE
/paper/{id}/coauthor Create coauthorAction.new POST
Read paperAction.details GET
Update
Delete
/paper/{id}/coauthor/{id} Create
Read
Update coauthorAction.save pPUT
Delete coauthorAction.delete ~ DELETE
easily gathered from the MIGRARIA MVC model of the legacy application
by analyzing the structure of the view that contains the source request. In
our running example, the new request contained in the paperCreated view
is related with the input presentation object named paperForm. Therefore,
the object expected by the controller must be generated to handle that
input presentation object. Figure 7 presents, on its left side, the structure
of the JSON message for the creation of a new paper, and on its right side,
the expected object by the Action paperCreate which will be created and
initialized conveniently from the JSON message received.
. The generation of the response in a particular data format (e.g. in JSON

format) instead of generating an HTML page as response, REST API clients
usually expect responses in a particular data format (JSON, XML) in order
to properly manage them at client tier. Therefore, the response generated
by the legacy application, as an HTML page, is not useful in this case and
it must be replaced by a response generated in the previously accorded data
format. In MVC-based Web development frameworks, controllers used to
delegate to a different framework component the composition of the final
response, i.e. a presentation template management system. Thus, controller
main responsibilities are to generate the needed output objects to populate
the template selected to compose the response. Based on this approach, we
may know the presentation objects that a particular controller will generate
(and their structure) just analyzing the MIGRARIA MVC model. As an
example, the paperActions.details ControlFlow generates the paper output
presentation object to compose the response by means of the template view
paperDetails. The structure of the paper presentation object, defined within

MD Generation of a REST API from a Legacy Web Application 145

i poklic class PaperForm extends ActionForm {
"paperForm"™ : {
Tidr ;" private Long id;
"title"™ : "My New Faper" private String title;
"shst" @ "Abstract..." private String abst;
"fileLocalPath" : "mypaper.pdf" private String fileLocalPath;
Mauthar™ : "EM private long author;
Merack™ : mam private long track:

Fig. 7. JSON input to form bean

<h2>Paper <bea te name="paper" property="id" /> detaila</h2> {

811sTable">

id="pap s

<try "papern 1 |
<th>Title</th> mign ; nmign
<th»Abstract</th>

"title™ : "Example Paper"™
ER>TraCkS/ohs "abst" : "AbStract..."
"track.name"™ : "Example Track"

name= " propert:
te name="paper" property="t.

Fig. 8. Output bean to JSON

the paperDetails template view, is shown in Figure 8 (left side). Based on
this information the final response is generated in the agreed data format,
JSON in this example.

Generating REST API Configuration. As previously stated, our approach
consists on extending the base Web development framework to incorporate REST
capabilities and automatically configuring it to provide an API to the underly-
ing legacy system. The above sections describe in detail both. In this work, the
(semi)automatic configuration is generated by means of a model to model trans-
formation described in ATL [5]. That transformation implements the process
depicted above and generates an XML file as output. The schema of such file
has been defined as an extension of the one used by the configuration file of
Struts v1.3, so its deserialization can be implemented as an extension of the
actual Struts configuration module. For the shake of brevity, we do not explain
the concrete extensions performed.

5 Related Work

Although other model-based approaches have been proposed to define a REST
API from a legacy application [6,3,11], to our knowledge none of them is contex-
tualized within a complete model-driven modernization process and nor provides

146 R. Rodriguez-Echeverria et al.

extensions of legacy technology, i.e. Struts v1.X, as the approach presented in
this work.

Different approaches and case studies exist about generating a REST API
from a legacy application. [6] describes a common process for re-engineering
legacy systems to RESTful services which is focused on data-driven systems.
The process description is performed at a conceptual level. Parts of their pro-
cess have been used to derive the process presented in this work. Our approach
has extended and adapted that process to a concrete scenario of the modern-
ization of a web application. We also provide a realization of this process in a
specific web development technology. Both approaches share a common focus on
URIdefinition. [3] describes the case study of an existing legacy application for
Internet bidding generalized and replaced by a RESTful API. Instead of reusing
existing implementations the auhtors designed a new protocol and implemented
it in different languages. The main common points is the focus on data-centric
CRUD operations. Finally,[11] develops an API oriented to resources and CRUD
operations, by the transformation of an object-oriented model of a legacy ap-
plication into a resource-oriented one, hereafter generating the URIs is a simple
step (M2M transformation on the contrary to our M2T translation).

6 Conclusions and Future Work

This work tackles a part of the modernization process defined within the MI-
GRARIA project which faces the evolution of the presentation of a legacy Web
system towards a Web 2.0 new RIA client. This process requires not only the
generation of the new RIA client but also the creation of a new connection layer
for enabling the data interchange between the client and the original system
functionalities. In this paper we have presented how this connection layer is gen-
erated. In particular, the generation of a REST service layer is described that
provides the client with an API to handle the user requests. By means of a
running example (excerpt of a fully-functional case study) we have detailed the
activities that comprise the process that are mainly divided into two main steps:
a) framework-dependant REST API specification and b) application-dependant
REST API specification. While the former is performed just once and reused for
applications developed in the same MVC Web framework, the latter depends on
the particular application being modernized so that, in this case, model-driven
techniques come to scene to systematically automate the process providing ben-
efits regarding reusability and effort reduction. Note that the work presented
here takes as input the results obtained in the previous steps of MIGRARIA
that generates a conceptual representation of the legacy system in terms of
models (conformed to a new defined metamodel).

As main lines for future work on MIGRARIA we consider the following: 1)
improve the tool support by developing a visualization tool integrated into the
MIGRARIA tool chain and that eases the developer’s intervention in the process;
2) enrich the process with domain semantic information to improve the resource
and relations identification and the REST request generation.

MD Generation of a REST API from a Legacy Web Application 147

References

10.

11.

12.

Barros, A.P., Dumas, M.: The rise of web service ecosystems. I'T Professional 8(5),
31-37 (2006)

Ceri, S., Fraternali, P., Matera, M., Maurino, A.: Designing multi-role, collabora-
tive web sites with webml: a conference management system case study. In: 1st
Workshop on Web-oriented Software Technology (2001)

Engelke, C., Fitzgerald, C.: Replacing legacy web services with RESTful services.
In: Proceedings of the First International Workshop on RESTful Design - WS-
REST 2010, vol. 5, p. 27 (2010)

Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128-138. Springer, Heidelberg (2006)

Liu, Y., Wang, Q., Zhuang, M., Zhu, Y.: Reengineering Legacy Systems with
RESTful Web Service. In: 2008 32nd Annual IEEE International Computer Soft-
ware and Applications Conference (2100219007), pp. 785-790 (2008)

Mesbah, A., Van Deursen, A.: An architectural style for ajax. In: The Working
IEEE/IFIP Conference on Software Architecture, WICSA 2007, p. 9. IEEE (2007)
Rodriguez-Echeverria, R., Conejero, J.M., Clemente, P.J., Pavén, V.M., Sadnchez-
Figueroa, F.: Model Driven Extraction of the Navigational Concern of Legacy Web
Applications. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE 2012 Workshops.
LNCS, vol. 7703, pp. 56-70. Springer, Heidelberg (2012)

Rodriguez-Echeverria, R., Conejero, J.M., Clemente, P.J., Preciado, J.C., Sdnchez-
Figueroa, F.: Modernization of legacy web applications into rich internet applica-
tions. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059, pp. 236-250.
Springer, Heidelberg (2012)

Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and
Implementing Web Applications (Human-Computer Interaction Series) (October
2007)

Szymanski, C., Schreier, S.: Case Study: Extracting a Resource Model from an
Object-Oriented Legacy Application (2012)

Ulrich, W.: Modernization Standards Roadmap, pp. 4664 (2010)

	Model-Driven Generation of a REST API
from a Legacy Web Application
	1 Introduction
	2 MIGRARIA Project
	2.1 MIGRARIA MVC Metamodel

	3 Illustrative Example
	4 The Approach
	4.1 Framework-dependant REST API Specification
	4.2 Application-dependant REST API Specification

	5 Related Work
	6 Conclusions and Future Work
	References

