
Weaving Aspect-Orientation
into Web Modeling Languages

Irene Garrigós1, Manuel Wimmer2, and Jose-Norberto Mazón1

1 WaKe Research, University of Alicante, Spain
{igarrigos,jnmazon}@dlsi.ua.es

2 Business Informatics Group, Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. While building Web application models from scratch is well-supported,
reuse in Web application modeling is still in its infancy. A promising approach
in this respect is aspect-oriented modeling to separate certain concerns from the
base application, typically cross-cutting ones, and reuse them in various applica-
tions. A few Web modeling languages targeting the design phase have been al-
ready equipped with aspect-orientation. However, languages for the early phases of
Web modeling lack such support, but especially these phases would tremendously
benefit from aspect-orientation. Moreover, all the existing solutions are tailored
to a specific modeling language. To improve this situation, we consider aspect-
orientation itself as an aspect. This allows us to weave aspect-oriented language
features into already existing Web modeling languages. We introduce a generic
metamodel module comprising the main concepts of aspect-orientation as well as
a tool-supported process to weave it into existing base languages. By having this
systematic metamodel weaving process, dedicated modeling as well as design-
time weaving support is provided for aspects out-of-the-box. We demonstrate our
approach by aspectifying a Web requirements modeling language based on i* and
applying the aspectified version of it to a case study.

Keywords: Model-driven Web Engineering, Web Requirements, Aspect-oriented
Modeling, Language Engineering.

1 Introduction

Web modeling approaches are becoming mature and tailored to supporting different
phases of the Web application development process. Several modeling languages exist
for specifying requirements, designs, and architectures of Web applications [3, 7, 16].
While building new Web application models from scratch is well-supported by existing
approaches, reuse in Web application modeling is still in its infancy. Reuse in software
engineering is generally accepted and promoted to improve productiveness [11, 13].
Although a few Web modeling languages provide dedicated reuse mechanisms, e.g.,
cf. [15], the majority of languages often miss dedicated abstraction, specialization, and
integration techniques for reusing Web models.

A promising approach in this respect is aspect-oriented modeling to separate cer-
tain aspects from the base application, typically cross-cutting concerns, and reuse them

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 117–132, 2013.
c© Springer International Publishing Switzerland 2013

118 I. Garrigós, M. Wimmer, and J.-N. Mazón

in different places of different base applications. In the context of software engineer-
ing, the principle of separation of concerns helps us to manage the complexity of the
software systems that we develop by identifying and separating the different concerns
involved in a given problem. The concerns that cut across other concerns (i.e. crosscut-
ting concerns) are responsible for producing tangled representations which are difficult
to understand and maintain.

Aspect-Oriented Software Development (AOSD) aims to identify and specify such
crosscutting concerns in separate modules, known as aspects, in order to improve mod-
ularity and hence comprehensibility, maintainability and reusability. Some Web model-
ing languages targeting design modeling have been already upgraded to support some
aspect-oriented language features [3, 16]. However, these solutions are language spe-
cific and furthermore, they do not consider the possibility of defining aspects at the
requirements analysis phase. Reasoning in the early phases of Web application de-
velopment about cross-cutting concerns as well as reuse possibilities enables a more
efficient design of the Web applications which results in improved development and
maintenance.

In order to solve these drawbacks, we present an approach that allows to extend a
Web modeling language with aspect-oriented features in a non-intrusive and automated
way. This approach also allows the definition of early aspects (i.e., at the requirements
level). For this purpose, we have defined a generic metamodel where the main concepts
of aspect-orientation are represented, and we have implemented a process in order to
weave it into existing modeling languages’ metamodels.

We demonstrate our approach by using a Web requirements modeling language
based on i* (called Web Requirements Modeling Language (WRML)) and applying
the aspectified version of it to a case study.

The remainder of this paper is as follows: Section 2 briefly introduces WRML that is
later used to illustrate our approach. Section 3 explains our proposal by describing the
aspect metamodel and detailing the composition processes. For a better understanding
of the approach, a case study is presented in Section 4. Section 5 studies related work,
and finally, Section 6 concludes and sketches future work.

2 Running Example: Modeling Web Requirements

In this section we briefly introduce the Web requirements modeling language (WRML)
that we will use as a running example in order to illustrate our approach. It is a goal-
oriented proposal to specify requirements in the context of a Web modeling method by
using i* models [6].

The i* framework [20] consists of two models: the strategic dependency (SD) model
to describe the dependency relationships (represented as) among various actors in
an organizational context, and the strategic rationale (SR) model, used to describe actor
interests and concerns and how they might be addressed.

The SR model (represented as) provides a detailed way of modeling internal inten-
tional elements and relationships of each actor (). Intentional elements are goals (),
tasks (), resources () and softgoals (). Intentional relationships are means-end
links () representing alternative ways for fulfilling goals; task-decomposition links

Weaving Aspect-Orientation into Web Modeling Languages 119

Fig. 1. Overview of our metamodel for i* modeling in the Web domain

() representing the necessary elements for a task to be performed; or contribution
links (help

hurt) in order to model how an intentional element contributes to the satisfaction
or fulfillment of a softgoal.

Although i* provides good mechanisms to model actors, their intentions and rela-
tionships between them, it needs to be adapted to the Web engineering domain to re-
flect special Web requirements that are not taken into account in traditional requirement
analysis approaches, thus being able to assure the traceability to Web design. To adapt
the i* framework to the Web engineering domain we used the taxonomy of Web re-
quirements presented in [5]. As such, the i*’s “task” element, which is used to model
functional requirements (FRs), was further specialized in the following Web specific
requirements: service, navigational, layout, and personalization requirements. With the
aim of considering Web requirements, we defined an i* metamodel extended with each
of these requirements. Therefore, the core metamodel specifies metaclasses that repre-
sent the i* elements and their relationships, as well as new metaclasses according to the
different kinds of Web requirements. Some requirements extend the Task metaclass: the
Navigational (represented by an N inside the task symbol), Service (represented by an
S), Personalization (represented by a P), and Layout (represented by an L). The Con-
tent requirement extends the Resource metaclass and it is represented as a C inside the
resource symbol.

It is worth noting that non-functional requirements can be modeled by directly using
the Softgoal metaclass. Figure 1 shows an excerpt of our metamodel for Web require-
ments specification. For a further explanation, we refer the reader to [1, 6]. A sample
application of the i* modeling framework for the Web domain is shown in Section 4.

120 I. Garrigós, M. Wimmer, and J.-N. Mazón

3 Aspect-Orientation by Aspect-Oriented Language Design

Nowadays we are facing a pantheon of (domain-specific) Web modeling languages.
Extending these languages with new modeling features seems the next necessary step
to make them more mature and to tackle practical needs. A promising way to tackle this
need is to have reusable language modules that can be attached to existing languages.
In this paper, we follow this idea for introducing aspect-orientation to existing Web
modeling languages.

3.1 Approach Overview

In this section, we describe how we developed a composable metamodel module cov-
ering the core concepts of aspect-orientation. This metamodel module is composable
with modeling languages defined as Ecore-based metamodels. For composing the as-
pect metamodel module with base modeling languages, we propose a dedicated compo-
sition process that attaches the aspect-oriented concepts to existing modeling languages
and an in-place transformation for relaxing some modeling constraints of the base lan-
guage to allow for language-specific modeling of aspects with respect to a given base
language. By this, we can reuse existing modeling editors to specify aspects as well
as validation frameworks to check them before they are composed with base models.
Based on the aspect-orientation metamodel module and the systematic process for im-
porting this module to base metamodels, we also present a generic composition process
for the model level, namely composing aspects and base models. We demonstrate the
approach by using WRML introduced in the previous section as a running example, but
we have to stress that the approach is reusable for any other modeling language defined
as an Ecore-based metamodel.

3.2 Aspect-Orientation Metamodel Module

In Figure 2, we illustrate the core concepts of aspect-orientation based on our previous
work on establishing a reference model for aspect-oriented modeling languages [19]. In
this paper, we solely focus on the asymmetric approach to aspect-orientation, namely
aspects that are not independent but that have to be composed with base models based
on explicit and well-defined join points. The symmetric case, i.e., aspects representing
independent models that are composed by merging them based on, e.g., name similarity,
we leave as subject to future work.

In the metamodel module shown in Figure 2, we have two kinds of concerns rep-
resented (this reflects the asymmetric approach): (i) aspects are defining adaptations
described by a set of model elements and (ii) the base concern represents the base
model that is, of course, made up of a set of model elements (cf. the top of Figure 2).

To connect aspects with base models, weavings (cf. the middle of Figure 2) are used
that compose a set of adaptation rules describing the effect (i.e., an enhancement, a
replacement, or a deletion in the base model) of an adaptation as well as the place
where the adaptation actually takes place by using so-called pointcuts. A pointcut se-
lects possible join points of an aspect by either statically linking directly to some model
elements in the base model by using extensions of the JoinPoint meta-class or using an

Weaving Aspect-Orientation into Web Modeling Languages 121

OCL expressions (cf. meta-attribute Pointcut.expression) to dynamically calculate the
join points in the base model by selecting elements based on certain conditions.

As join points in the context of this work we consider the container elements that will
contain the elements of the assigned aspect. The main reason for this decision is the fact
that EMF-based models have to comprise a valid tree with respect to the containment
hierarchy, i.e., there is only one root element allowed and all other elements have to be
inside a unique container.

In addition to the join points, an aspect may interact with the base model by having
further cross-references. This means to substitute some aspect elements with specific
model element when introducing the aspects to the base models. For modeling such
replacements, we allow for template signatures for aspects (cf. Figure 3). Template
signatures contain template parameters that may be bound to concrete model elements
or String values. This is defined in the context of join points contained by the weaving
models. In particular, join points can have template bindings that again contain a set
of template parameter substitutions giving for each formal parameter a concrete value.
More details on the template support is presented based on concrete modeling examples
in Section 4, Figures 7-8.

Important to note is that the aspect-orientation metamodel module (shown in Fig-
ure 2) has two root classes with respect to the containment relationships. First, aspect
models may be defined that describe reusable aspects in a first step, and second, weav-
ing models may be created for introducing the aspects to several base models. By this
separation, aspects are completely independent of particular base model examples and
not specific to one weaving model.

Fig. 2. Aspect-orientation metamodel module in Ecore

122 I. Garrigós, M. Wimmer, and J.-N. Mazón

Fig. 3. Templateable aspects (elements from Figure 2 are referred by the prefix ao)

Having these concepts defined in the aspect-orientation metamodel module allows to
represent aspects and their introduction to base models on a generic level, i.e., agnostic
to any metamodel. In the following, we present how this generic aspect metamodel
module can be attached to specific metamodels. As one may have already noticed,
the abstract meta-classes BaseModel and ModelElement play an important role in this
process.

3.3 Weaving the Aspect-Orientation Metamodel Module into Base Metamodels

To make efficient use of the aspect-oriented concepts described in the previous sub-
section for a particular language, we foresee a specific process to compute a dedicated
metamodel that allows to define well-formed aspect models. As one can see in Figure 2,
aspects are composed of a set of different model elements. Thus, also the aspects have
to follow the rules of the host modeling language in an eventually relaxed form (be-
cause aspects may only represent model fragments, not all language constraints may
be meaningful). Thus, we aim for a language-specific aspect language that is equipped
with a specific metamodel. This specific metamodel is formed by composing the base
language metamodel with the aspect-orientation metamodel module by using some spe-
cific join points. By this, we introduce aspect-orientation to languages by using aspect-
orientation itself. In particular, the following two steps are necessary to achieve this
composition:

– Step 1: Aspects have to be introduced to base models by weaving models. For
this, the base models have to be identified by the weaving models by setting the
weavingTarget reference (cf. Figure 2). Thus, it has to be specified on the meta-
model level, which model element actually represents the base model in the base

Weaving Aspect-Orientation into Web Modeling Languages 123

metamodel. Normally a root model element containing all other model elements
directly or indirectly is used for this purpose in EMF, because the containment re-
lationships span up a tree. Therefore, the language designer has to link the root
meta-class of the base language metamodel with the BaseModel meta-class of the
aspect-orientation metamodel module by using an inheritance relationship.

– Step 2: Model elements of the base language are used to specify the adaptation
rules, i.e., what has to be introduced, updated, or deleted in the base model. In or-
der to ensure that the elements contained in adaptation rules represent valid model
fragments, every meta-class in the base metamodel has to directly or indirectly in-
herit from the ModelElement meta-class of the aspect-orientation metamodel mod-
ule. By this, the adaptation rules can be populated by ordinary model elements of
the base language.

Both steps may be completely automated. While for the first step, a manual selection
of root meta-class candidates may be necessary if there is more than one candidate, the
second point is completely automatic. All top meta-classes in the inheritance taxonomy
of the base metamodel have to be calculated and then these classes get an additional
super class, namely, the ModelElement class of the aspect-orientation metamodel mod-
ule. To avoid name clashes, the classes of the aspect-orientation metamodel module
are introduced in the base metamodel by using their own package that is integrated as
a subpackage in the root package of the base metamodel (normally EMF metamodels
have exactly one root package as they exhibit a tree-based package structure). We have
implemented support for these two steps by using a parameterizable model transforma-
tion, whereas the parameter to be set is the root meta-class of the base metamodel.

Having the classes of the aspect-orientation metamodel module integrated in the
base metamodel may be not enough to end up with an appropriate aspect modeling
language. Some modeling constraints may be too strict for defining aspects, because
aspects represent model fragments and not necessarily complete models that have to
fulfill all language constraints. Here similar issues arise as defining a domain-specific
transformation language that is tailored for a given modeling language [10]. Thus, we
apply a relaxation process to the base metamodel before the composition with aspect-
orientation metamodel module takes place to end up with a language that allows to
model aspects that may be completed by weaving them into the base models in a flex-
ible way. In particular, this relaxation process requires to reset the lower multiplicities
of the references and attributes in the base metamodel to zero in order to make them all
optional properties. By this, aspects can be defined as model fragments that are com-
pleted by the subsequent weaving step. Again, the relaxation process is automated by a
model transformation.

Example. In Figure 4, a small excerpt of the aspectification of the WRML is shown.
On the top of this figure, an excerpt of the WRML metamodel and an excerpt of the
aspect-oriented metamodel module are illustrated by the two packages as well as the
Actor meta-class representing the root element of the base metamodel. The two meta-
models are merged into one metamodel whereas the AO package is now nested into the
base language root package. Furthermore, the inheritance relationships are specified as
described above and the relaxation takes place. When running this composition process

124 I. Garrigós, M. Wimmer, and J.-N. Mazón

aWRML

AO

BaseModel

ModelElement

WRML

0..1

Actor

SR Parameter Model
root_class = Actor

AO

BaseModel

ModelElement
0..1

Actor

SR

Fig. 4. Aspectification of WRML (excerpt)

on a tuple consisting of a base metamodel and the aspect metamodel, we finally end
up with a metamodel that allows us to model aspects that can be checked against the
newly created aspectified metamodel as well as it allows to define weaving links be-
tween a base model (that is an instance of the base metamodel) and aspects. In the next
subsection, we show how aspect models and weaving models are specified.

3.4 Modeling Aspects and Weavings with Aspectified Metamodels

Based on the available metamodeling capabilities and out-of-the-box tool support in
EMF, we can instantiate the automatically produced aspectified metamodels by stan-
dard EMF modeling editors. The particular usage of the metamodel is to model aspect
models that define independently from base models certain model fragments that are
later integrated with specific base models by using a weaving model. We decided to go
for a separation of aspect models and weaving models to allow for aspect repositories
from which a modeler may select certain aspects and integrate them to her base model
using additional weaving models.

Example. To demonstrate how to use the aspectified metamodels, we present a small
instance of the afore enhanced metamodel in Figure 5. On the right-hand side of the
figure, a small aspect model is shown that is conform to the aspectified metamodel. The
aspect only describes a small adaptation, namely to add a task to an actor by adding it to
the SR element. In order to actually use this aspect, a weaving model is residing between
the base model and the aspect model. In the upper half of Figure 5, the weaving model
uses an explicit joinpoint defined by the modeler that points to the particular SR element
that should be enhanced by the aspect, i.e., who should get the task assigned, while in
the lower half of Figure 5, no extensional joinpoint is used. Instead, it is described
intensionally by a OCL query that is defined by the Pointcut object. The OCL query

Weaving Aspect-Orientation into Web Modeling Languages 125

Aspect_M

a1 : Aspect

Base_M (excerpt)

o1: Actor

name = „admin“

Weaving_M

w1 : Weaving

name = „Assign main-
tenence task to admin“

o2 : SR

description =
„adminSR“

a2 : Adaptation
name = „Add
maintanence task“

a4 : Task

name = „Maint…“

w2 : AdaptationRule

effect = enhancement

w3 : Pointcut

w4 : JointPoint

…

Aspect_M

…

Base_M Weaving_M

w3 : Pointcut
exp = SR.allInstances() ->

select(sr|sr.description =
„adminSR“)

Base_MM Aspectified_MM
In
te
ns
io
na

lJ
oi
nP

oi
nt
s

Ex
te
ns
io
na

lJ
oi
nP

oi
nt
s

a3 : SR

baseModel aspect

represented
Element

adaptationRule

adaptation

modelElement

iElement

joinPointSelection

joinPoint

…

«conformsTo» «conformsTo» «conformsTo»

strategic
Relationships adaptation

Fig. 5. Aspects and Weaving Models by Example

is evaluated by an OCL engine and all the selected elements are extended by the given
aspect. One may think about the OCL query as a mechanism to compute automatically
a set of joinpoints. In our example, the evaluation of the OCL query results in the same
weaving semantics as has before been extensionally defined. Only the SR element with
the description ”adminSR” gets the aspect attached when we assume that only one SR
element with such a value exists in the model.

3.5 Model Composition Process

Having the weaving models defined between the aspect models and the base models, a
composition process is activated to actually introduce the aspects to the base models by
producing an enhanced model that is solely conform to the base metamodel. In order to
compose models with aspects, several composition strategies are possible:

– Arbitrary order: Weavings are contained in one single set and are executed based
on their implicit order, i.e., the order in which they are contained in the weaving
model.

– Priorities: If aspects are building on each other, priorities have to be supported
for weavings, i.e., to split the single set of weavings into a sequence of different
subsets.

– Orchestration: For more complex weaving plans, control structures such as condi-
tionals may be applied to orchestrate the execution of the composition.

126 I. Garrigós, M. Wimmer, and J.-N. Mazón

Currently, we support no particular order for integrating the aspects to the base mod-
els. The order is implicitly given by the order of the weaving elements in the weaving
model which is traversed and based on the traversal strategy, the aspect order is given.
The concrete composition of one aspect to the base model is as follows: First, the aspect
is retrieved from the weaving object and the first join point that adds the aspect model
elements to the containment structure of the base model is executed. Of course, con-
straints have to be checked such as if the base model element that gets the aspect root
model element has an empty slot in the used reference available. Consider for instance
that the base element has already another element contained by a reference that has as
upper bound cardinality 1. Then, the aspect root element cannot be added to the base
model without either deleting the already referenced element or destroying the well-
formedness of the base model. In such cases a warning is given and the composition
process is terminated. Furthermore, not all elements have to be added but the templates
of the aspect have to be substituted.

3.6 Implementation

We have implemented our approach for the Eclipse Modeling Framework (EMF). The
metamodel composition process has been implemented as a Java-based transformation
that takes the base metamodel and the aspect metamodel as input and produces as out-
put the aspectified metamodel. Based on this aspectified metamodel, aspects containing
adaptations as well as weavings containing adaptation rules are defined. In particular,
we exploit the capabilities of EMF to load several resources within one modeling editor
that allows basic inter-model reference support out-of-the-box. The model composition
process takes as input the model triple (i.e., base model, aspect model, weaving model)
and produces the composed model. Again this process is implemented as a model trans-
formation.

4 Case Study

In this section, we consider the example shown in Figure 6. The figure shows the SR
model of a book store. The main goal of the system actor is to manage the book sales.
In order to fulfill this goal we have two different alternatives: books can be sold online
or books can be sold at the store. We are going to focus on the first task “books be sold
online”. In order to complete this task, two subtasks should be completed: “provide
book info” (which is a navigational requirement) and “provide recommended books”
(which is a personalization requirement).

The data is specified by means of the content requirement “books”. Each of the leave
tasks is related with this content requirement.

In the following, we show how to model two new concerns in an application indepen-
dent way by defining aspects using the aspectified metamodel of WRML. Furthermore
we show how the aspects can be introduced in the base model by using weaving mod-
els. To allow for a more concise representation, we switch from the abstract syntax to a
concrete syntax to visualize the models in the rest of this section. For didactic reasons,
we present the base model and weave both concerns independent from each other to it.
The woven model is illustrated in Figure 9.

Weaving Aspect-Orientation into Web Modeling Languages 127

Fig. 6. Base model

4.1 The Shopping Cart Aspect

Concern Description. The first concern we want to model is a shopping cart. The tasks
needed are adding a product to the cart and viewing the shopping cart content.

Aspect Model. The shopping cart aspect is shown in the right hand side of Figure 7.
This concern includes a general task “provide a shopping cart”. It is decomposed into
two subtasks to be completed, which are of different type: “$add <x> to cart$” (ser-
vice requirement) and “view cart content” (navigational requirement) which are related
to the content requirement “cart”.

The aspect has a template signature consisting of two template parameters, one is
a String expression while the other is a content requirement element. Please note that
the name of the first subtask is dynamically computed by including the first param-
eter, since we can weave this aspect with a base model of any kind of e-commerce
application (i.e., not necessarily a book store). The tasks are also related with a content
requirement named“item” which is a generic element, that will depend again on the
type of application of the base model we weave the concern in.

Weaving Model. As we can see in Figure 7, the shopping cart concern is a subtree of
tasks with cross-links to content requirements that is introduced in the base model by
using a weaving model. The join point (jp) for the aspect is the general task “books be
sold online” in the base model that acts as container element for the general task “pro-
vide a shopping cart”. Furthermore, we need for this example additional cross-links
from the aspect model elements to the base model elements by binding the template

< jp > books be sold
online,

x > „Book“,
i > books >

Base Aspectbook sales
be managed

books be sold
online

provide
book info

books be
sold at store

provide
recommendations

books
< i >
item cart

$add <x> to cart$ view cart content

provide a
shopping cart

< x : StringExp>
< i : ContentReq>

<<weave>>

jp

N P

C

S N

C C

Fig. 7. Shopping cart aspect

128 I. Garrigós, M. Wimmer, and J.-N. Mazón

parameters. In particular, the content requirement “books” has to play the role of the
template “item” of the shopping cart aspect. Thus, when introducing the aspect to the
base model, the template “item” has to be substituted with “books”. This is done by
mapping the content requirement “books” of the base model to the template parameter
i of the aspect. Finally, for the first parameter of the aspect, namely parameter x, a prim-
itive String value has to be provided. This parameter is needed for calculating the name
of an element contained in the aspect when it is introduced to the base model. Thus,
the parameter is also occurring in the expression that is used to calculate the name of
a navigation concern (cf. expression “$add <x> to cart$”). The rest of the elements
contained in the aspect are just “simple” model elements that are woven into the base
model by just copying them.

4.2 The Search Engine Aspect

Concern Description. This concern refers to a search engine that we want to reuse. In
this case we have defined the search by keyword or by category. We can also refine the
search by expanding our keyword list with semantic-related keywords or by listing all
the possible items.

Aspect Model. The aspect model of this concern can be seen on the right hand side
of Figure 8. It has a goal named “$<i.name> be searched$” . Again this concern is
modeled in a generic way (i.e., independent of the target base model). This goal is
decomposed into two tasks, we can “search by keywords” or “search by category”.
In order to fulfill the first one, a goal “search to be refined” and a task “$search by
<x> keyword$” (service requirement) need to be completed. The search can be refined
in two ways: “by listing all’ or “by keyword expansion”. Again in this case, the leave
tasks are related with the needed content requirements.

For this aspect, the template signature consists of three parameters. First, a String ex-
pression is needed for computing the name of the keyword search task. Second, the con-
tent requirement playing the role of the item has to be introduced. Finally, an additional
content requirement presenting the categories of the items is considered. Please note that
the latter is optional, i.e., the multiplicity of this template parameter is zero-to-one. This
has as consequence, that if it is bound to a specific element then the parameterized element

Aspect

< i >
item

< c >
category

search by
keywords

$search by
<x> keyword$

search by
category

< x : StringExp>
< i : ContentReq>
< c : ContentReq>?

$<i.name> be
searched$

by keyword
expansion

by listing all

search to be refined

< jp > books be sold
online,

x > „title“,
i > books >

<<weave>>

Base book sales
be managed

books be sold
online

provide
book info

books be
sold at store

provide
recommendations

books

jp

PN

C

N

S

S

S

C

C

Fig. 8. Search engine aspect

Weaving Aspect-Orientation into Web Modeling Languages 129

Woven
Model

book sales
be managed

books be sold
online

provide
book info

books be
sold at store

provide
recommendations

books

category
search by
keywords

search by title
keyword

search by
category

books be
searched

by keyword
expansion

by listing all

search to be refined

cart

add book to cart view cart content

provide a
shopping cart

books

C

C

C

C

S

S

S

N

N

N P

S

Fig. 9. Resulting model after aspect composition

is substituted by the specific element. Otherwise the content requirement “category” is
introduced in the base model.

Weaving Model. As for the shopping cart concern, the join point for the aspect is the
general task “books be sold online” in the base model. In contrast to the previous ex-
ample, only one of the two content requirement parameters is mandatory to be bound
in the weaving between the base and the aspect model. More specifically, the content
requirement “item” has to be bound (that is bound to content requirement “books”
again by using the parameter i), but not the content requirement “category” (thus it is
introduced to the base model in our example, because no binding has been specified for
the parameter c). Besides the content requirement parameters, we have again a simply
typed parameter that is used in the expression (“$search by <x> keyword$”) to cal-
culate the name for a task similar as it has been done for the shopping cart aspect. In
addition, the content requirement parameter i is used also in an expression for calculat-
ing the name of another task (cf. “$<i.name> be searched$”). Here the parameter is in
the expression for accessing the name of the content requirement that is bound to the
content requirement parameter by using an OCL expression.

5 Related Work

With respect to the contribution of this paper, we elaborate on aspect-oriented modeling
support in the field of Model-Driven Web Engineering (MDWE).

Baumeister et al. [2] presented one of the early works in MDWE that proposed
the use of aspect-orientation for modeling customization in hypertext models. In the
UWE metamodel, the Aspect concept has been introduced as a sub-class of the UML
meta-class Package. Furthermore an Aspect is defined to have one Pointcut and one
Advice each likewise specialized from the UML meta-class Package. The approach dis-
tinguishes between static aspects woven at design time and dynamical aspects woven at
runtime.

In [3], Casteleyn et al. presented the extension of the Hera-S approach with aspect-
oriented concepts for modeling customization concerns in Web applications. More

130 I. Garrigós, M. Wimmer, and J.-N. Mazón

specifically, to separate adaptations from the hypertext models, the textual language
Semantics-based Aspect-Oriented Adaptation Language (SEAL) has been designed.

OOHDM provides support to compose so-called volatile concerns with a base Web
application [7]. A volatile concern introduces some additional services temporarily in
Web applications for a short and determined period of time. For supporting volatile con-
cerns, OOHDM allows to model each concern separately by defining a separate content,
hypertext, and presentation models. In addition, OOHDM provides a textual language
for defining the integration of the separate models with the base Web application.

For WebML, we have proposed an aspect-oriented extension called AspectWebML
[16]. For realizing AspectWebML, the WebML metamodel has been extracted semi-
automatically from WebRatio and then extended by similar aspect-oriented concepts as
we have used in this paper for the generic aspect-orientation module. However, in [16]
the aspect-oriented extension of the language has been manually achieved.

Cicchetti et al. [4] present a weaving model based approach to model Web applica-
tions using different viewpoints. While we are separating model fragments from one
modeling view, they are concerned with consistency between different viewpoints. This
is especially needed for Web models, because several viewpoints are used such as con-
tent, navigation, and presentation. To validate consistency between viewpoints, con-
straints are introduced for weaving links that allow to reason if weaving models are
complete and consistent. Thus, they do not use weaving as in aspect-oriented modeling,
but as a general form of correspondence links between viewpoints.

To the best of our knowledge, none of the existing Web modeling languages sup-
port aspects at early stages of the development. The only exception is the recent work
presented by Urbieta et al. [18], which defines an approach for tackling crosscutting
workflow behaviour in the requirements phase in the context of the WebSpec require-
ments modeling language [1,12]. Outside the MDWE field, there exist some approaches
that consider specifying crosscutting concerns in the requirements level of a software
application [8, 14, 17]. They mainly propose extensions for UML, i.e., in particular for
use cases, to define aspects.

Furthermore, we are not aware of an approach that considers aspect-orientation as a
generic concern that can be introduced into existing modeling languages. All the men-
tioned approaches have been particularly designed for a specific language. In this pa-
per we take a different angle by semi-automatically enhancing existing languages with
aspect-oriented modeling features. This has been exemplified in the paper for WRML.
However, the application of our approach for re-building the aforementioned languages
already providing aspect-orientation support is left as subject to future work.

6 Conclusions and Future Work

In this paper we have presented an approach to equip already existing languages with
aspect-oriented modeling concepts by using aspect-orientation itself on the metamodel
level. By having aspectified metamodels, aspects and weavings can be systematically
modelled and validated by reusing out-of-the-box EMF support as well as a generic
design-time model weaver is provided for actually introducing the aspects to the base
models. We have demonstrated the approach by using WRML as an example language
and showed how Web requirements can be expressed as aspects.

Weaving Aspect-Orientation into Web Modeling Languages 131

For future work we aim to rebuild already aspect-oriented modeling languages to see
wether this is possible in a generic manner or specific adaptations are necessary. An-
other important point for future work is if different execution orders of given weavings
may result in different woven models, i.e., if the aspects are confluent or not. For this we
plan to investigate the notion of critical pairs defined for graph transformations [9]. In
particular, we plan to provide a mapping to graph transformations in order to reuse the
reasoning techniques currently available for determining if a set of graph transformation
rules, representing the aspects and weavings, is confluent or not.

References

1. Aguilar, J.A., Garrigós, I., Mazón, J.-N., Trujillo, J.: An MDA Approach for Goal-oriented
Requirement Analysis in Web Engineering. J. UCS 16(17), 2475–2494 (2010)

2. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with Aspects. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 406–416. Springer, Hei-
delberg (2005)

3. Casteleyn, S., Woensel, W.V., Houben, G.-J.: A semantics-based aspect-oriented approach to
adaptation in web engineering. In: Hypertext, pp. 189–198 (2007)

4. Cicchetti, A., Di Ruscio, D.: Decoupling web application concerns through weaving opera-
tions. Sci. Comput. Program. 70(1), 62–86 (2008)

5. Cuaresma, M.J.E., Koch, N.: Requirements engineering for web applications - a comparative
study. J. Web Eng. 2(3), 193–212 (2004)

6. Garrigós, I., Mazón, J.-N., Trujillo, J.: A Requirement Analysis Approach for Using i* in
Web Engineering. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 151–165. Springer, Heidelberg (2009)

7. Ginzburg, J., Rossi, G., Urbieta, M., Distante, D.: Transparent Interface Composition in
Web Applications. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS,
vol. 4607, pp. 152–166. Springer, Heidelberg (2007)

8. Grundy, J.C.: Aspect-Oriented Requirements Engineering for Component-Based Software
Systems. In: RE, pp. 84–91 (1999)

9. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph Transformation
Systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002.
LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

10. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit transformation
modeling. In: Ghosh, S. (ed.) MODELS 2009 Workshops. LNCS, vol. 6002, pp. 240–255.
Springer, Heidelberg (2010)

11. Li, J., Gupta, A., Arvid, J., Borretzen, B., Conradi, R.: The empirical studies on quality
benefits of reusing software components. In: COMPSAC, pp. 399–402 (2007)

12. Luna, E.R., Rossi, G., Garrigós, I.: WebSpec: a visual language for specifying interaction
and navigation requirements in web applications. Requir. Eng. 16(4), 297–321 (2011)

13. McClure, C.: Software Reuse: A Standards-Based Guide. Wiley (2001)
14. Rashid, A., Sawyer, P., Moreira, A.M.D., Araújo, J.: Early Aspects: A Model for Aspect-

Oriented Requirements Engineering. In: RE, pp. 199–202 (2002)
15. Rossi, G., Schwabe, D., Lyardet, F.: Abstraction and Reuse Mechanisms in Web Applica-

tion Models. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops 2000. LNCS,
vol. 1921, pp. 76–88. Springer, Heidelberg (2000)

16. Schauerhuber, A., Wimmer, M., Schwinger, W., Kapsammer, E., Retschitzegger, W.: Aspect-
Oriented Modeling of Ubiquitous Web Applications: The aspectWebML Approach. In:
ECBS, pp. 569–576 (2007)

132 I. Garrigós, M. Wimmer, and J.-N. Mazón

17. Suzuki, J., Yamamoto, Y.: Extending UML with Aspects: Aspect Support in the Design
Phase. In: ECOOP Workshops, pp. 299–300 (1999)

18. Urbieta, M.M., Rossi, G., Gordillo, S., Schwinger, W., Retschitzegger, W., Escalona, M.J.:
Identifying and Modelling Complex Workflow Requirements in Web Applications. In: Gross-
niklaus, M., Wimmer, M. (eds.) ICWE Workshops 2012. LNCS, vol. 7703, pp. 146–157.
Springer, Heidelberg (2012)

19. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W., Kapsammer,
E.: A survey on UML-based aspect-oriented design modeling. ACM Comput. Surv. 43(4),
28 (2011)

20. Yu, E.S.K.: Towards Modeling and Reasoning Support for Early-Phase Requirements Engi-
neering. In: RE, pp. 226–235 (1997)

	Weaving Aspect-Orientation
into Web Modeling Languages
	1 Introduction
	2 Running Example: Modeling Web Requirements
	3 Aspect-Orientation by Aspect-Oriented Language Design
	3.1 Approach Overview
	3.2 Aspect-OrientationMetamodel Module
	3.3 Weaving the Aspect-OrientationMetamodel Module into Base Metamodels
	3.4 Modeling Aspects and Weavings with Aspectified Metamodels
	3.5 Model Composition Process
	3.6 Implementation

	4 Case Study
	4.1 The Shopping Cart Aspect
	4.2 The Search Engine Aspect

	5 Related Work
	6 Conclusions and Future Work
	References

