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Abstract. A directed acyclic graph (DAG) is upward planar if it can
be drawn without any crossings while all edges—when following them
in their direction—are drawn with strictly monotonously increasing y-
coordinates. Testing whether a graph allows such a drawing is known to
be NP-complete, but there is a substantial collection of different algo-
rithmic approaches known in literature.

In this paper, we give an overview of the known algorithms, rang-
ing from combinatorial FPT and branch-and-bound algorithms to ILP
and SAT formulations. Most approaches of the first class have only been
considered from the theoretical point of view, but have never been imple-
mented. For the first time, we give an extensive experimental comparison
between virtually all known approaches to the problem.

Furthermore, we present a new SAT formulation based on a recent
theoretical result by Fulek et al. [8], which turns out to perform best
among all known algorithms.

1 Introduction

When drawing directed graphs, in particular DAGs, one often wants to make
the edges’ orientations clearly recognizable by having all edges pointing in the
same general direction, w.l.o.g. upward. A y-monotone drawing is thus one,
where the curves representing the edges have strictly monotonously increasing
y-coordinates when traversing them from their source to the target vertices.
More formally, a y-monotone edge intersects any horizontal line at most once,
while its source vertex is drawn below its target vertex.

A second central concept in graph drawing is planarity, i.e., we want to avoid
crossing edges if possible. The question of upward planarity of a DAG G is hence
the question whether there exists a crossing-free y-monotone drawing ofG. While
(undirected) planarity is linear time solvable, upward planarity turns out to be
NP-complete to decide [9]. Nonetheless, due to the problem’s centrality, several
exponential-time algorithms have been developed.

A core result is that the problem becomes polynomial time solvable if the
graph’s embedding (i.e., the order of the edges around their vertices) is fixed [1].
Based thereon, the historically first algorithms are fixed-parameter tractable
(FPT) algorithms where the parameters are essentially bounding the (in general

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 13–24, 2013.
c© Springer International Publishing Switzerland 2013



14 M. Chimani and R. Zeranski

exponential) number of possible embeddings; the algorithms are testing upward
planarity for each possible embedding [10]. The process can be sped up using a
polynomial time algorithm to solve the important special case of series-parallel
graphs [7]. The special case of single-source DAGs is also polynomial time solv-
able [1, 5, 11, 13] but not the focus of this paper.

A different approach is based on relaxing the upward requirement (quasi-
upward planarity [2], see below) and considering the optimization problem to
minimize the violating edges. There, the embedding enumeration is coupled with
a sophisticated method to obtain upper and lower bounds for partially embedded
graphs, allowing for a branch-and-bound algorithm. Finally, the most recent
approach [3] is to formulate the problem as an integer linear program (ILP) or
boolean satisfiability problem (SAT), to be solved with a corresponding solver.

In Section 2, we summarize the core ideas of these algorithms. We also present
a new SAT formulation based on a recent theoretical result by Fulek et al. [8].

Before this paper, the only reported implementations were for the branch-
and-bound and the ILP/SAT approach. The former implementation is in fact
considering the more general optimization problem (instead of the decision ver-
sion), and both implementations are based on two different underlying libraries.
This made a direct comparison worrisome. In this paper (Section 3), we report
on our consistent implementations of all the discussed algorithms. They share as
much code as was feasibly possible, to maximize the fairness of the comparison.
Hence, we are for the first time able to make substantiated claims about the
algorithms’ respective applicability in practice.

2 Algorithms

We always consider a DAG G = (V,E) to test for upward planarity. A combina-
torial embedding of G is specified by cyclically ordering the edges around their
incident vertices. A planar embedding additionally chooses an external face.

2.1 FPT Algorithms

A fixed-parameter tractable (FPT) algorithm, with respect to some parameter k,
is an algorithm with running time O(f(k)·poly (n)) where poly(n) is a polynomial
function in the size of the input (here, n := |G|), and f(k) is any computable
function (typically an exponential function) only dependent on k. A central
ingredient of all known combinatorial FPT algorithms is the following result [1]:

Theorem 1 (Bertalozzi, Di Battista, Liotta, Mannino). Let G = (V,E)
be an embedded DAG. There is an algorithm testing whether this embedding of
G allows an upward planar drawing in O(n2) time.

Let G be planar and biconnected. We can decompose the underlying undi-
rected graph into its triconnectivity components in linear time. These can be
efficiently organized as an SPQR-tree [6]. For notational simplicity, we may talk
about an SPR-tree (as Q-nodes, representing single edges, are not necessary):
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The SPR-tree T (G) is a tree with three kinds of nodes : S- and P-nodes rep-
resent serial and parallel components, respectively; R-nodes represent planar
triconnected components. We call these components the skeletons associated to
the nodes. An edge in a skeleton S may be real or virtual ; in the latter case, it
represents a subgraph, described by the subtree attached to S’s node in T (G).

Embedding Enumeration (EE). The natural approach to test upward pla-
narity of an unembedded graph is to test every possible embedding of G, using
the algorithm of Theorem 1. As the number of embeddings is, in general, ex-
ponential in the size of the graph, one has to seek for a meaningful parameter
to bound the number of embeddings. The SPR-tree can be used to efficiently
enumerate all possible embeddings of a graph. We can bound the number of
embeddings by O(t! · 2t), where t is the number of nodes in our SPR-tree, which
leads to an overall running time of O(t! · 2t · n2) to test upward planarity [10].

In the same publication, a kernelization algorithm for sparse (not necessarily
biconnected) graphs is presented. Using the following preprocessing steps (until
none is applicable anymore), leaves a graph with at most 30k2 + 2k vertices
and at most (2k + 1)! embeddings; thereby, k = |E| − |V | is the number of
edges (minus 1) the (preprocessed) graph has more than a tree. Let a chain
be a path in G where all inner vertices have degree 2, The preprocessing steps
are: (PP1) remove vertices of degree 1; (PP2) replace chains where each inner
vertex v has indeg(v) = outdeg(v) = 1 by single correspondingly oriented edges;
(PP3) remove chains where both end vertices coincide; (PP4) for each set of
parallel chains, remove all but one chain (parallel chains are those that have a
common start vertex, a common end vertex, and an identical sequence of edge
orientations along the chain). This preprocessing requires O(n2) time.

After the preprocessing steps, again, all embeddings are tested in overall
O(n2 + k4 · (2k + 1)!) time. Observe that (PP1)–(PP4) are valid in general
(although one has to specifically consider the case of biconnectivity-breaking
PP4). Hence, when testing all embeddings after preprocessing, we in fact obtain
an algorithm—denoted by EE in the following—with running time O(min(t! · 2t ·
n2, n2 + k4 · (2k + 1)!)) for biconnected DAGs.

Upward Spirality (SPIR). Consider the SPR-tree rooted at some arbitrary
node. Informally, upward spirality is a measure of how much a skeleton is “rolled
up” around its poles (the end nodes of the virtual edge representing the node’s
parent). Furthermore, one has to distinguish several pole categories, i.e., local
properties of the embedding around the pole vertices. For details of the defini-
tions and the following algorithms cf. [7].

For series-parallel graphs, upward spirality allows to develop a polynomial
dynamic programming algorithm that traverses the SPR-tree bottom up—recall
that for such graphs it only has S- and P-nodes. At each node μ, we store a set
of feasible (spirality/pole category)-pairs to upward embed the graph encoded
by the SPR-tree rooted at μ. This information can then be used to obtain a
corresponding set for the parent node, etc. We denote this algorithm by SPIR-sp.
Its running time is O(n4), but there are large constants hidden in the O-notation,
cf. Section 3.1.
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Using this algorithm as a building block, one can establish an FPT algorithm
for general DAGs, where the different configurations of the R-nodes w.r.t. each
other have to be enumerated. This leads to a running time of O(drn3 + dr2n+
d2n2) where d is the largest diameter of any skeleton and r is the number of
R-nodes. We call this algorithm SPIR.

2.2 Branch-and-Bound via Quasi-Upward Planarity (BB)

In a quasi-upward planar drawing, we relax upwardness such that each edge
only has to be drawn y-monotonously within an arbitrary small neighborhood
of its incident vertices. In [2], a branch-and-bound algorithm is established which
produces a quasi-upward drawing maximizing the number of fully y-monotone
edges: For a given embedding, the minimum number of non-y-monotone edges
can be computed in O(n2 logn) time using minimum cost-flow techniques.

Now, we can consider all possible embeddings of the graph via the SPR-tree.
At any moment we have a partial embedding—several embeddings are fixed
while the others are free. The algorithm in [2] is able to compute upper and
lower bounds for the number of non-y-monotone edges in this case. If the cur-
rent lower bound is worse than the global upper bound, we can avoid testing all
embeddings further down in the search tree, which have the same fixed embed-
dings in common.

Observe that a DAG is upward planar iff there is a quasi-upward planar
drawing where all edges are y-monotone. Hence, when testing upward planarity,
we can prune a partial embedding in the search tree whenever we obtain a lower
bound strictly greater than 0. We denote this algorithm by BB. Formally, this
algorithms could also be considered an FPT algorithm with the same worst-case
running time as EE.

2.3 SAT Formulations

A SAT formulation of a decision problem instance I is a propositional logic
formula that is satisfiable if and only if I has the answer true. The formula is
typically given in conjunctive normal form, i.e., as a set of clauses, each of which
has to be satisfied. Each clause is a disjunction of (possibly negated) variables.
For the sake of readability, we will provide rules as propositional formulae; it is
straight-forward to transform them into their corresponding clauses.

Ordered Embeddings (OE). An edge e dominates an edge f if there is a
directed path (possibly of length 0) from e’s target to f ’s source vertex in G.
Clearly, f has to be drawn above e in any upward drawing. A pair of edges is
non-dominating if neither edge dominates the other. Let N denote the set of all
non-dominating edge pairs of G.

In [3], a SAT formulation based on ordered embeddings has been proposed.
We consider a strict total (vertical) order of the vertices together with a strict
partial (horizontal) order of the edges; edges are comparable w.r.t. this order iff
they are non-dominating each other. We model the vertical order by introducing
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boolean variables τ(v, w) for each proper pair of vertices v and w. Intuitively,
τ(v, w) = true means that v is drawn below w. Since the vertex order is to be
strict, τ(v, w) = false means that v is above w. We may use the shorthand
τ(w, v) := ¬τ(v, w) for notational simplicity. To establish a strict total order, it
then suffices to require transitivity via (Rt

τ ). The upward rules (Ru) ensure that
all edges are drawn upward.

τ(u, v) ∧ τ(v, w) → τ(u,w) ∀ pairwise distinct u, v, w ∈ V. (Rt
τ )

τ(v, w) = true ∀ (v, w) ∈ E. (Ru)

Similarly, we can establish the horizontal order of the edges by introducing vari-
ables σ(e, f) for each pair {e, f} ∈ N . Thereby (if both edges are vertically
overlapping), σ(e, f) = true implies that e is to the left of f , and the satisfied
shorthand σ(f, e) := ¬σ(e, f) implies that e is to the right of f . Again, we simply
require transitivity:

σ(e, f) ∧ σ(f, g) → σ(e, g) ∀ {e, f}, {f, g}, {e, g} ∈ N . (Rt
σ)

Based on this (upward) order system, we can establish planarity using sur-
prisingly simple planarity rules : We only have to ensure that two adjacent edges
e and f are on the same side of g (non-incident to the common vertex of e and
f) if they both vertically overlap with g. Let e ·∩f denote the common vertex
of two edges e, f , and P := {(e, f, g) | {e, g}, {f, g} ∈ N ∧ e ·∩f �∈ g} the set of
edge-triplets as described above. We have:

(
τ(x, e ·∩f) ∧ τ(e ·∩f, y)

)
→

(
σ(e, g) ↔ σ(f, g)

)
∀ (e, f, g = (x, y)) ∈ P . (Rp)

The collection of the above rules allows a satisfying truth assignment to τ and
σ if and only if G is upward planar [3]. Given such an assignment, it is trivial to
construct the embedding in linear time. We denote this formulation by OE.

Hanani-Tutte type characterization (FPSS). The classical Hanani-Tutte
theorem shows that a graph drawn such that all pairs of non-adjacent edges
cross an even number of times is planar. A similar result has been established
by Pach and Tóth [12], and was only recently improved upon by Fulek et al. [8]:

Theorem 2 (Pach, Tóth; Fulek, Pelsmajer, Schaefer, Štefankovič). Let
G = (V,E) be a DAG. If G has a y-monotone1 drawing such that every pair of
non-adjacent edges crosses an even number of times, then there is a y-monotone
planar embedding of G with the same location of vertices.

To prove this theorem, [8] gives a quadratic time algorithm testing whether
G allows a y-monotone drawing with prespecified vertex positions. This is es-
sentially done by solving an equation system over (e, v)-moves. Such a move
redraws the edge e by deforming it, close to the y-coordinate of v, into a hori-
zontal “spike” that passes around v. There is a y-monotone embedding iff there

1 In the original publications, these theorems were stated in terms of x-monotonicity.
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is a set of (e, v)-moves turning a y-monotone drawing into a drawing in which
every non-adjacent pair of edges crosses an even number of times. A simple set of
only two equation classes suffices to describe all possible selections of (e, v)-moves
that may lead to an even-crossing solution. These equations, in fact, resemble a
2SAT formulation (each clause has at most 2 literals), with the only prerequisite
to know the vertical relationship between the DAG’s vertices. This allows us to
cast this powerful theoretical tool into a new SAT formulation not unlike OE:

We reuse the above boolean variables τ and rules (Rt
τ )∪ (Ru) to guarantee an

upward strict total order on V . We can then use these variables as indicators to
activate or deactivate the above 2SAT-clauses to link move-variables. For every
edge e and node v, we introduce a boolean variable �(e, v) that indicates whether
we perform an (e, v)-move. Let se and te denote the start and target vertex of
an edge e, respectively. We obtain

(
τ(se, sf) ∧ τ(sf , te) ∧ τ(te, tf )

)
→

(
�(e, sf ) ↔ ¬�(f, te)

)
∀ e, f ∈ E (Rm

0 )(
τ(se, sf) ∧ τ(tf , te)

)
→

(
�(e, sf ) ↔ �(e, tf)

)
∀ e, f ∈ E (Rm

1 )

where the subformulae after the implication are the clauses from the 2SAT sug-
gested by [8], for the scenario described by the rules’ left-hand sides.

Corollary 1. Let G = (V,E) be a DAG. G is upward planar if and only if the
formula composed of rules (Rt

τ ) ∪ (Ru) ∪ (Rm
0 ) ∪ (Rm

1 ) is satisfiable.

Hybrid formulations. Constructing an upward planar embedding (in polyno-
mial time) using only a feasible truth assignment for FPSS is non-trivial, and in
fact an open problem.2 In order to obtain an embedding from the FPSS formu-
lation, we consider two variants of hybridizing FPSS and OE, as extracting an
embedding is trivial for the latter. Recall that both formulations use the same τ
variables to establish a vertical order of the vertices. Hence we can simply put
all rules together in one large formulation, denoted by HF.

Alternatively (denoted by HL), we can first compute a satisfying assignment
to FPSS. If it exists, we can “learn” the subsolution for the τ variables to fix the τ
variables in OE and solve the so-restricted OE to obtain a matching σ assignment.

3 Experiments

3.1 Considered Algorithms and Their Implementations

Overall, we consider the practical performances of the following algorithms:

FPT b&b SAT ILP (see note below)

EE, SPIR-sp, (SPIR) BB OE, FPSS, HF, HL iOE, iFPSS, iHF, iHL

2 An algorithm achieving this is currently under development [personal communication
with Marcus Schaefer]
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All experiments were performed on an Intel Xeon E5520, 2.27GHz, 8GB
RAM running Debian 6. We implemented the algorithms as part of the Open
Graph Drawing Framework (www.ogdf.net), using minisat as our SAT solver
and CPLEX 12 as our ILP solver. For both solvers, we used their default settings.
For all considered instances (available at www.cs.uos.de/theoinf), we first per-
formed the preprocessing steps (PP1)–(PP4), as described in Section 2.1.

A note on the ILPs. Given the SAT formulations, it is straight-forward to con-
struct integer linear programs (using only binary variables) along the same lines,
for which to test feasibility. This has been done for OE in [3], leading to a vastly
weaker practical performance than the SAT approach. We note that FPSS (and
the hybridizations) also allow such ILPs. We performed all the below experiments
also for the ILP variants. However, also for iFPSS and the hybridizations, the
pure feasibility testing functionality of ILP solvers—lacking sophisticated prop-
agation and backtracking—is clearly too weak to allow compatible performance.
We will hence disregard the ILP approaches in the following discussions.

A note on BB. The branch-and-bound algorithm has only been devised for
biconnected graphs. Our implementation hence inherits this restriction. As de-
scribed above, we strengthened BB for the special case of upward planarity testing
by pruning any subproblems with a lower bound larger than 0.

In [2], the practical performance of an implementation (within GDToolkit) has
been reported on a set of random instances, denoted by BDD in the following.
Out of the originally 300 considered instances, only 200 are still available3. Of
those, we can discard 139, as they are not DAGs. The largest remaining instances
have 100 vertices and take 0.03 seconds on average (cf. Table 2). In [2]—on a
clearly slower PC and not restricted to the pure upward planarity test!—the
graphs with 100 vertices require roughly 100 seconds on average. This gives us
a hint that our implementation is not vastly inefficient.

A note on EE. As BB is already restricted to biconnected graphs, we also re-
stricted our implementation of EE to this case, to be able to efficiently generate all
embeddings purely via the SPR-tree. Our implementation is able to enumerate
≈100,000 (bimodal) embeddings per second (disregarding any testing time).

A note on SPIR-sp and SPIR. The spirality-based algorithms are very theo-
retically demanding algorithms. We provide the seemingly first implementation
of the polynomial case for series-parallel graphs (SPIR-sp). However, the al-
gorithm’s theoretical beauty is unfortunately not matched with practicability.
E.g., when combining tables in the bottom-up dynamic programming, there is
a very large number of possible combinations of choices to check. Although this
number is bounded by a constant, we often need to check close to the theoret-
ical worst-case of 249 (≈ 5.6 × 1014) combinations. This constitutes the main
bottleneck of the algorithm; further theoretical research may be able to bring
down this vast number. In our implementation, we parallelized this checking via
OpenMP to mitigate the effect. However, it remains to slow down the algorithm
dramatically.—We will see experimental evidence in Figure 3 below.

3 Personal communication with Walter Didimo.

www.cs.uos.de/theoinf
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Table 1. # of solved instances within given time frames in seconds (Rome and North)

Rome North
time (s) [0, 0.01] (0.01, 0.1] (0.1, 1] (1, 10] > 10 [0, 0.01] (0.01, 0.1] (0.1, 1] > 1

FPSS 1922 993 46 4 2 710 120 6 0
OE 1474 1223 257 11 2 625 172 39 0
HL 1384 1324 253 4 2 614 185 37 0
HF 1393 1311 254 6 3 609 187 40 0

The series-parallel algorithm SPIR-sp, as a base case for SPIR, can essentially
be used as a lower bound for the running time of the latter, when applying it on
the SPR-subtrees induced by only S- and P-nodes. This resembles the situation
that SPIR could decide the R-nodes and all their embedding combinations (i.e.,
the reason for the exponential running time) in no time. Since obtaining these
bounds is already not competitive enough, we refrained from a full implementa-
tion of the even more demanding enumeration procedures within SPIR.

3.2 Evaluation

In the course of our investigation, we will observe the following central findings
throughout all benchmark instances, summarized here:

F1 FPSS gives the best solution time over virtually all scenarios. When extrac-
tion of the embedding is required, HL dominates OE; both dominate HF.

F2 FPSS (and to some extent OE) are rather independent of the number of
embeddings and on whether we consider a yes- or a no-instance.

F3 Generally, all SAT approaches are preferable over their competitors.
F4 SPIR (and SPIR-sp) and the ILP variants are not competitive.
F5 EE and BB work well when the number of embeddings is small. For triv-

ial instances, and for large instances with few embeddings, EE and BB can
dominate the SAT approaches.

F6 EE is usually far weaker for no-instances than for yes-instances (as all em-
beddings have to be checked), while the effective pruning of BB allows it to
typically solve the former faster than the latter.

Instances from Literature. There are mainly three instance sets that have
been used in the context of upward planarity:

The Rome graphs [14] are (originally undirected) graphs with up to 100 ver-
tices. They can be directed canonically to obtain DAGs. The North DAGs [4]
were originally collected by AT&T and Stephen North. After filtering for bimodal
planar graphs, 2967 and 836 remain, respectively. As some of our algorithms are
restricted to biconnected graphs, we also consider sets Rome2 , North2 that are
generated from the above by planar biconnectivity augmentation, obtaining (af-
ter filtering for bimodal planar graphs) 2671 and 780 instances, respectively.
Furthermore, we consider the 61 BDD instances [2], described above in the con-
text of BB’s implementation.

We observe in Table 1 that all SAT formulations solve the North instances
very fast: each is solved within 1 second, most of them (≈80%) in less than 0.01
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Table 2. Number of solved instances (yes- and no-instances) within given time frames
in seconds (Rome2 , North2 , and BDD). In brackets, are the number of no-instances.

Rome2 North2 BDD
time (s) [0, 0.1] (0.1, 1] > 1 [0, 0.1] (0.1, 1] (1, 10] > 10 [0.0.1] (0.1, 1] (1, 10] > 10

FPSS 2474 (26) 195 ( 6) 2 (2) 711 (33) 68 ( 7) 1 (0) 0 ( 0) 27 (3) 23 ( 1) 11 (2) 1 (1)
OE 1743 (12) 915 (17) 13 (5) 600 (24) 149 (13) 31 (3) 0 ( 0) 24 (3) 25 ( 1) 12 (2) 1 (1)
HL 1844 (26) 820 ( 6) 7 (2) 610 (33) 143 ( 7) 27 (0) 0 ( 0) 24 (3) 26 ( 1) 11 (2) 1 (1)
HF 1743 (11) 923 (19) 14 (5) 605 (28) 143 ( 9) 32 (3) 0 ( 0) 21 (3) 27 ( 1) 13 (2) 1 (1)
EE 2665 (29) 5 ( 4) 1 (1) 753 (27) 5 ( 1) 6 (4) 16 ( 8) 62 (7) 0 ( 0) 0 (0) 0 (0)
BB 2635 (22) 22 ( 9) 4 (3) 667 (14) 30 (11) 13 (4) 70 (11) 58 (4) 4 ( 3) 0 (0) 0 (0)

seconds. Generally, FPSS is the fastest SAT, solving 99% of Rome in under 0.1
seconds, whereas OE achieves a ratio of 90% (→F1).
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Fig. 1. North2 ; avg. runtime vs. # of
edges. The different SATs are visually in-
distinguishable.

On the biconnected benchmark sets,
we can compare the SAT approaches
to the other implementations (Table 2):
For Rome2 and BDD , both EE and BB

seem faster than any SAT formulation.
This is mainly due to the triviality of
many instances and the necessary over-
head of SAT formulations and solvers.
Already when considering ≤ 1 second
computation time, all approaches solved
nearly the same number of instances.
We observe that instances of both these
sets have only very few embeddings
(Rome2 : max. 36,864, avg. 372), BDD :
max. 11,528, avg. 512) (→F5). As an in-
teresting side note, the lone instance in

the last BDD column requires roughly 200 seconds for all SAT approaches; it
is solved trivially by BB and EE as it has only two planar bimodal embeddings
to check. The North2 instances, however, have many embeddings (avg: 1017),
cf. Fig. 1. There, all SAT formulations dominate EE and BB for the non-trivial
instances (→F1,F5).

Constructed Instances. The above instances are very simple, small, and are
solved too quickly to deduce general findings. Therefore, we consider a set Rand
of generated biconnected instances with n = 50, 100, 150, 200 nodes and density
|E|/|V | = 1.2, 1.4, . . . , 2.4. As suggested in [2], we start with a triangle graph
and iteratively perform random edge-subdivisions and face-splits (adding an edge
within a face). Now, we orient this embedded graph to be upward planar, and in-
vert i = 1%, 2%, 3%, 4% of the edges (retaining the DAG property). We generate
1120 instances, 10 per possible parameter setting, which have up to 2.5 × 1015

embeddings (3.7× 1012 on average). See Fig. 2 for a detailed graphical analysis.
We use a timeout of 600 seconds, using this value for unsolved instances when
averaging. Overall (Fig. 2, top-left), we can observe FPSS < HL < OE < HF < BB

< EE for the running times, FPSS being the clear winner (→F1,F3,F5,F6). The
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Fig. 2. Rand instances; avg. runtime vs. # of nodes (left) or embeddings (right). The
latter is given as powers of 10, i.e., > 1012 embeddings are considered. We group SAT
formulations if they are visually indistinguishable. The first row considers all instances;
the second and third row considers only the yes- and no-instances, respectively.

SATs, in particular FPSS, seem nearly oblivious to the number of embeddings
in the graph (Fig. 2, top-right, →F2). It is instructive to consider the yes- and
no-instances independently: We see that EE performs somewhat reasonable for
yes-instances, but fails for no-instances (where it has to check all bimodal em-
beddings). In contrast to this, BB becomes even faster for the latter instances,
due to its efficient pruning of large classes of “hopeless” subembeddings (→F6).
The SAT approaches behave very similar for both kinds of instances (→F2).

Now, we consider biconnected series-parallel graphs SP to evaluate SPIR-sp.
We generated a test set of 4500 instances (10 instances per parameter setting)
with m = 20, 40, . . . , 300 edges. They are constructed bottom up with probabil-
ity p = 0.1, 0.3, . . . , 0.9 to perform a serialization instead of a parallelization. We
embed the graph, choose an upward planar orientation for the edges, and invert
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Fig. 3. SP instances; avg. runtime vs. # of edges (left) and embeddings (right)

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0,0E+00 

5,0E+06 

1,0E+07 

1,5E+07 

2,0E+07 

2,5E+07 

0-
2 

2-
4 

4-
6 

6-
8 

8-
10

 

10
-1

2 

12
-1

4 

14
-1

6 

 % gen. time OE 
 % gen. time FPSS 
 HF 
 OE 
 FPSS 

# embeddings (power of tens) 

# 
cl

au
se

s 

%
 generation tim

e to solution tim
e 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0,0E+00 

4,0E+05 

8,0E+05 

1,2E+06 

1,6E+06 

2,0E+06 

2,4E+06 

2,8E+06 

3,2E+06

3,6E+06 

4,0E+06 

0-
4 

4-
8 

8-
12

 

12
-1

6 

16
-2

0 

20
-2

4 

24
-2

8 

28
-3

2 

32
-3

6 

36
-4

0 

40
-4

4 

44
-4

8 

>4
8 

 % gen. time OE 
 % gen. time FPSS 
 HF 
 OE 
 FPSS 

# embeddings (power of tens) 

# 
cl

au
se

s 

%
 generation tim

e to solution tim
e 

Fig. 4. Rand (left) and SP (right); the line plots show the number of generated clauses,
relative to the number of embeddings (as a power of 10). The bars show the percentage
of the running time spent to generate the formula (in contrast to solving it).

i = 0, 10, 20, 30, 40, 50% of the edges (retaining the DAG property). Again, we
use a timeout of 600 seconds, using this value for unsolved instances when aver-
aging. SPIR-sp—although formally the only polynomial time algorithm in this
comparison—offers the clearly weakest performance, solving no instance with
over 100 vertices in under 5 minutes and running into the time limit for all
graphs with more than 120 edges (Fig. 3, left). The picture is analogous (Fig. 3,
right) when looking at the runtime depending on the number of embeddings
(→F4). On SP , EE performs better than BB, but this is since nearly 90% of
the instances happen to be upward planar. Considering yes- and no-instances
independently, we can observe the same pattern as for Rand (→F6).

Details on SAT. Although FPSS and OE have the same number of clauses in
O-notation—dominated by (Rt

τ ) over the common τ variables—the former has
considerably fewer additional clauses. In fact, this seems to be one of the main
reasons of FPSS’s superior performance. To back-up this assumption, consider
the line diagrams in Fig. 4. They show that FPSS is rather independent of the
number of embeddings (→F2). Impressively, the (minor) difference between OE

and HF (=“OE ∪FPSS”) shows that the number of clauses FPSS has to consider
additionally to (Rt

τ ) is negligible.
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The bar diagrams in Fig. 4 show that the SATs spend a large portion of
their time (≈70%) with (trivially) constructing the formula. This explains the
overhead for trivial instances where EE and BB can be faster than SAT (→F5).

Acknowledgements. We thank Marcus Schaefer for pointing us to [8] and its
potential applicability within our SAT approach, Walter Didimo for helpful dis-
cussions on BB, and Fabrice Stellmacher and Kerstin Gössner for implementation
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