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Abstract. A graph is outer 1-planar (o1p) if it can be drawn in the
plane such that all vertices are on the outer face and each edge is crossed
at most once. o1p graphs generalize outerplanar graphs, which can be
recognized in linear time and specialize 1-planar graphs, whose recogni-
tion is NP-hard.

Our main result is a linear-time algorithm that first tests whether a
graph G is o1p, and then computes an embedding. Moreover, the algo-
rithm can augment G to a maximal o1p graph. If G is not o1p, then
it includes one of six minors (see Fig. 3), which are also detected by
the recognition algorithm. Hence, the algorithm returns a positive or
negative witness for o1p.

1 Introduction

Planar graphs are one of the most studied areas in graph theory and an important
class in graph drawing. Outerplanar graphs are in turn an important subfamily
of planar graphs. Here, all vertices are on the outer face and edges do not cross.
Every outerplanar graph has at least two vertices of degree two, which is used
for a recognition in linear time [16].

There were several attempts to generalize planarity to graphs that are “al-
most” planar in some sense. Such attempts are important as many graphs are
not planar. One generalization is 1-planar graphs, which were introduced by
Ringel [17] in an approach to color a planar graph and its dual. A graph is 1-
planar if it can be drawn in the plane such that each edge is crossed at most
once and incident edges do not cross. 1-planar graphs are a hot topic in graph
drawing, see also [1, 4–6, 8, 9, 13, 15].

The combination of 1-planarity and outerplanarity leads to o1p graphs, which
are graphs with an embedding in the plane with all vertices on the outer face and
at most one crossing per edge. They were introduced by Eggleton [10] who called
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them outerplanar graphs with edge crossing number one. He showed that edges
of maximal o1p graphs do not cross in the outer face and each face is incident to
at most one crossing, from which he concluded that every o1p graph has an o1p
drawing with straight-line edges and convex (inner) faces. Thomassen [18] gener-
alized Eggleton’s result and characterized the class of 1-planar graphs which ad-
mit straight-line drawings by the exclusion of so-called B- and W-configurations
in embeddings. These configurations were rediscovered by Hong et al. [13], who
also provide a linear-time drawing algorithm that starts from a given embedding.

From the algorithmic perspective there is a big step from zero to some cross-
ings. It is well-known that planar graphs can be recognized in linear time, and
there are linear-time algorithms to construct an embedding and drawings, e. g.,
straight-line drawings and visibility representations in quadratic area. On the
contrary, dealing with crossings generally leads to NP-hard problems. It is NP-
hard to recognize 1-planar graphs [15], even if the graph is given with a rotation
system, which determines the cyclic ordering of the edges at each vertex [2].
1-planarity remains NP-hard even if the treewidth is bounded [3]. There also
is no efficient algorithm to compute the crossing number of a graph [12] and
to compute the number of crossings induced by the insertion of an edge into a
planar graph [5]. However, there is a linear-time recognition algorithm of Eades
et al. [8] for maximal 1-planar graphs, which needs a given rotation system.

In this paper we study o1p graphs. Our main result is a linear-time recognition
algorithm for o1p graphs. This is the first efficient algorithm for a test of 1-
planarity that takes solely a graph as input. Our recognition algorithm is based
on SPQR-trees. It analyzes its nodes and then either computes an o1p embedding
or detects one of six minors. If the graph is o1p, it can be augmented to a
maximal o1p graph. In a maximal o1p graph, adding a new edge violates its
defining property. From the structure of a maximal o1p graph we derive that
every o1p graph is planar. Thus, they are subgraphs of planar graphs with a
Hamiltonian cycle, and the SPQR-tree reveals a treewidth of at most three.

2 Preliminaries

We consider simple, undirected graphs G = (V,E) with n vertices and m edges.
The graphs are biconnected, otherwise, the components are treated separately.
A drawing of a graph is a mapping of G into the plane such that the vertices are
mapped to distinct points and each edge is a Jordan arc between its endpoints.
A drawing is planar if the Jordan arcs of the edges do not cross and it is 1-
planar if each edge is crossed at most once. Accordingly, a graph is planar
(1-planar) if it has a planar (1-planar) drawing. Crossings of edges with the
same endpoint, i. e., incident edges, are excluded. A planar drawing of a graph
partitions the plane into faces. A face is specified by a cyclic sequence of edges
that forms its boundary. The set of all faces forms the embedding of the graph.
In 1-planar drawings, every crossing divides an edge into two edge segments. An
uncrossed edge consists of one segment. Therefore, a face of a 1-planar embedding
is specified by a cyclic list of edge segments.
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A graph G is outerplanar if it has a planar drawing with all vertices on one
distinguished face. This face is referred to as the outer face and corresponds to
the unbounded, external face in a drawing on the plane. G is maximal outerpla-
nar if no further edge can be added without violating outerplanarity. Then, the
edges on the outer face form a Hamiltonian cycle. A graph G is outer 1-planar,
o1p for short, if it has a drawing with all vertices on the outer face and such
that each edge is crossed at most once. G is maximal o1p if the addition of any
edge violates outer 1-planarity.

In an o1p embedding, an edge is either crossing or plane (non-crossing). We
say that it is inner, if none of its segments is part of the boundary of the outer
face. Analogously, an edge is outer, if it is entirely part of this boundary. Observe
that a crossed edge cannot be outer. If the embedding is maximal, we can classify
every edge as outer or inner.

Maximal outerplanar graphs have a unique embedding. This does no longer
hold for maximal o1p graphs. Consider a graph with 6 vertices and 11 edges
consisting of two K4s. If the left K4 is fixed, the right can be flipped. In order to
gain more insight into the structure of an o1p graph G, we consider its SPQR-
tree T . SPQR-trees were first introduced by Di Battista and Tamassia [7] and
provide a description of how the graph is composed. Fig. 2(a) depicts an example
graph along with its SPQR-tree in Fig. 2(b). In the definition we adopt here,
the SPQR-tree is unrooted. The nodes of T either represent a series composition
(S), a parallel composition (P), a single edge (Q), or a triconnected component
(R). Associated with each node μ of T is a graph that is homeomorphic to a
subgraph of G and called the skeleton skel(μ) of μ. In its original definition,
every edge e = {u, v} of a skeleton, except for one of each Q-node, is a virtual
edge, i. e., an edge that represents the subgraph of G which connects u and v.
This subgraph is also referred to as the expansion graph expg(e) of e. For every
virtual edge e in the skeleton of a node μ, there is another node ν that refines
the structure of expg(e). We say that ν is the refining node refn(e) of e. This
link is represented by an edge between μ and ν in T and we say that μ and ν
are adjacent in T . Therefore, every leaf of T is a Q-node. For simplification, we
represent edges of the graph directly in the skeleton of an S-, P-, or R-node, so
that we can neglect Q-nodes. We also call these edges non-virtual. Observe that
all nodes are always as large as possible, so neither two S-nodes nor two P-nodes
may be adjacent. For a more detailed introduction to SPQR-trees, the reader is
referred to [7].

3 Recognition

There are linear-time algorithms for the recognition of (maximal) outerplanar
graphs, that use the fact that there are at least two vertices of degree two. A
single K4 implies that this property no longer holds for o1p graphs. In contrast,
the recognition of 1-planar graphs is NP-hard [15], even if the graphs are given
with a rotation system [2].
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Algorithm 1. o1p Recognition

1: procedure TestOuter1Planarity(G)
2: if G is not planar then return ⊥
3: T ← SPQR-tree of G
4: for all R- and P-nodes μ ∈ T do
5: if μ is R-node then
6: if skel(μ) �= K4 or contains vertex incident to > 2 virtual edges then
7: return ⊥ � Lemma 1, Corollary 1

8: for all neighbors ν of μ do
9: if ν is S-node or R-node then insert plane edge � Proposition 1

10: else if μ is P-node then
11: if skel(μ) contains > 4 virtual edges then return ⊥ � Corollary 1
12: else if μ has only virtual edges then insert plane edge � Lemma 4

13: compute mapping C
14: PF ← {fixable P-nodes} ; PN ← {P-nodes with crossings, but none fixable}
15: while PF ∪ PN �= ∅ do
16: while PF �= ∅ do
17: remove next P-node π from PF with fixable S-nodes σ1, σ2

18: z ←FixCrossingAtPNode(G, T , π, σ1, σ2)
19: if z = ⊥ then return ⊥
20: for all π′ ∈ z do update C
21: if π′ is fixable then move π′ from PN to PF

22: if PN �= ∅ then � Lemma 5
23: choose any element π of PN with S-nodes σ1, σ2 conformant to C
24: z ← FixCrossingAtPNode(G, T , π, σ1, σ2)
25: for all π′ ∈ z do update C
26: if π′ is fixable then move π′ from PN to PF

27: for all S-/P-/R-nodes μ ∈ T do fix embedding

28: return 2-clique-sum of skeleton embeddings

Theorem 1. There is a linear-time algorithm to test whether a biconnected
graph G is o1p and, if so, returns an embedding.

We prove this theorem by first establishing a number of necessary conditions for
a graph to have an o1p embedding. At the same time, we implement a linear-time
algorithm (Algorithm 1) that checks these conditions and, if positive, constructs
an o1p embedding of the input graph. The algorithm starts by ensuring that the
input graph is planar (cf. Corollary 4) and computes its SPQR-tree. Both subrou-
tines take O(n) time [11]. Observe that, although the graph will be augmented
during the next steps, it remains o1p and therefore also planar. Consequently,
the number of nodes in T always is in O(n). In a second step, we show that the
conditions are not only necessary, but also sufficient.

We start with two observations regarding o1p embeddings. For maximal 1-
planar embeddings, a well-known fact is that every crossing induces a K4. This
holds in an even tightened form for o1p embeddings:
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Proposition 1 ([6]). Let {a, b} and {c, d} be a pair of crossing edges in an o1p
embedding of a maximal o1p graph. Then the vertices a, b, c, and d form a K4

and the edges {a, b}, {b, c}, {c, d}, and {d, a} are plane.

Consider a plane, inner edge {u, v} in an o1p embedding of a graph G. Then,
{u, v} “partitions” the embedding and the deletion of u and v disconnects G (cf.
Fig. 1(a)).

Proposition 2. Every plane, inner edge in an o1p embedding connects a sepa-
ration pair.

Let T be the SPQR-tree of an o1p graph G.

Lemma 1. The skeleton of every R-node is a K4.

Proof. Recall that outerplanar graphs are series-parallel. Hence, the SPQR-tree
of an outerplanar graph has no R-nodes. Let μ be an R-node in T . Then, skel(μ)
must be embedded such that at least two edges cross, e. g., edges {a, b} and
{c, d}. By Proposition 1, the vertices a, b, c, and d form a K4.
There must be an embedding of skel(μ) such that all vertices are on the boundary
of the same face. Suppose skel(μ) has more than four vertices. Then, at least one
of {a, b}, {b, c}, {c, d}, and {d, a} is an inner edge. By Proposition 1, all of them
are plane. As an inner edge cannot be virtual, by Proposition 2, skel(μ) has a
separation pair, so skel(μ) is not triconnected, a contradiction. ��

Instead of considering the possible embeddings of G on the whole, we study those
of the skeletons of the nodes in T . As G is o1p, there must be an embedding of
every skeleton of T such that the 2-clique-sums over all skeletons result in an o1p
embedding of G. In short, a 2-clique-sum combines two graphs by selecting an
edge (2-clique) in each one and glueing them together at those edges. The selected
edges are removed from the new graph. If the input graphs were embedded, the
embedding is inherited for the 2-clique-sum such that in each case the other
graph takes the position of the removed edge.

Consequently, we need to derive properties of o1p embeddings of skeletons.
Like in usual o1p embeddings, there must be a face (the outer face) such that all
vertices lie on its boundary. However, as virtual edges represent entire subgraphs,
they demand special attention. Observe that the expansion graph of every virtual
edge contains, besides the separation pair, at least one more vertex. Consider
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Fig. 2. Input graph (a), its SPQR-tree (b), the SPQR-tree after the algorithm (c) (new
edges and nodes colored), and the found o1p embedding (d).

the virtual edge {u, v} in Fig. 1(b). The crossing edge {x, y} partitions {u, v}
into two segments, hence, expg({u, v}) must be embedded such that it replaces
the edge segment of {u, v} that lies on the outer face. Suppose a virtual edge
e is embedded such that it has at least two crossings. Then there is either an
edge in expg(e) that is crossed more than once or at least one vertex is enclosed
between two crossings and hence does not lie on the outer face (cf. Fig. 1(c)).

Proposition 3. Every virtual edge may consist of at most two edge segments
and the embedding must be such that at least one segment is part of the boundary
of the outer face.

Observe that in contrast to the o1p embedding of the whole graph, we must allow
the crossing of two virtual edges with a common end vertex in the embedding of
a skeleton. We qualify the virtual edges that must always be embedded plane.

Lemma 2. Let μ be a node of T and let e = {u, v} be a virtual edge in skel(μ).
If both u and v have degree > 1 in expg(e), then e must be embedded plane.

Proof. Suppose e is embedded such that it crosses another edge e′, which can
be virtual or not. In either case, e′ may be crossed at most once. As skel(μ)
is biconnected and expg(e) contains at least one additional vertex, in expg(e),
either all edges incident to u or all edges incident to v must be crossed in order
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to have all vertices lie on the outer face. If both u and v have degree > 1 in
expg(e), e′ has at least two crossings. ��
Note that unlike planar embeddings, neither the skeleton of an S-node nor that
of an R-node has a unique o1p embedding. However, Lemma 2 limits the number
of possible o1p embeddings for skeletons considerably:

Lemma 3. Let μ be a node in T . Then for every virtual edge e = {u, v} in
skel(μ) holds:
If refn(e) is a P- or an R-node, then e must be embedded plane in skel(μ).
If refn(e) is an S-node whose skeleton is the cycle graph (u, c1, c2, . . . , ck, v, u),
then e must be embedded such that the segment incident to u (v) lies on the outer
face if the edge {u, c1} ({ck, v}) is virtual.

Proof. If refn(e) is a P- or an R-node, both u and v have degree > 1 in expg(e),
hence by Lemma 2, e must be embedded plane. Suppose refn(e) is an S-node
whose skeleton is the cycle graph (u, c1, c2, . . . , ck, v, u). As the embedding must
be such that all vertices lie on the outer face, only the edges {u, c1} or {ck, v}
may be crossed. Recall that by the structure of an SPQR-tree, if {u, c1} ({ck, v})
is virtual, then refn({u, c1}) (refn({ck, v})) is either a P- or an R-node, so {u, c1}
({ck, v}) must be embedded plane. ��
Lemma 1, Proposition 3, and Lemma 3 allow us to draw the following conclusion:

Corollary 1. Every virtual edge in an S-node must be embedded plane.
The skeleton of every R-node contains at most four virtual edges, which must be
embedded plane, and no vertex may be incident to more than two virtual edges.
The skeleton of a P-node may have at most 4 virtual edges.

The conditions for R-nodes are easily checked by Algorithm 1 in time O(1)
per R-node. Additionally, if an R-node is adjacent to another R-node or an S-
node, then one of the edges of the K4 is not present. For an example, see the
R-nodes ρ1 and ρ2 in Fig. 2(b). By Proposition 1, however, the edge may be
inserted and is always plane. Observe that this introduces a new P-node π5 in
Fig. 2(c). As an R-node may have at most four neighbors and as the SPQR-tree
can be updated in O(1) time, this modification takes constant time, too.

The following lemma allows us to insert a non-virtual edge in every P-node,
if none is present. In Fig. 2(b), this would apply, e. g., to π1.

Lemma 4. Let u, v be the vertices in the skeleton of a P-node without non-
virtual edges. Then, the insertion of {u, v} does not violate outer 1-planarity
and {u, v} is plane for every o1p embedding of G.

Proof. Let π be a P-node with separation pair u, v, that is connected by virtual
edges only. According to the definition of SPQR-trees, every skeleton of a P-
node has at least three edges. Hence, π is adjacent to at least three other nodes.
Subsequently, at least two virtual edges must be refined by S-nodes and are
embedded with a crossing. This results in a crossing of two non-virtual edges in
G that are, by Lemma 3, incident to u and v, respectively. By Proposition 1, the
edge {u, v} can always be inserted and is plane. ��
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Again, Algorithm 1 can check these two conditions and augment the graph for
a P-node in time O(1), which results in a running time of O(n) for ll. 4 – 12.

Consider a P-node π with vertices u, v. If skel(π) has at most two virtual edges,
they can be embedded without a crossing and such that both completely lie on
the outer face. Suppose skel(π) has at least three virtual edges. In consequence
of Proposition 3, two of them must cross each other. In Fig. 2(b), this holds for
π1 and π2. We say that a P-node π claims a non-virtual edge e, and express this
by defining the mapping C(e) = π, if e is crossed in every embedding of skel(π)
that conforms with Lemma 3. Observe that C is uniquely defined, since G is o1p
and thus, no edge may be crossed more than once. We say that an embedding
of the skeleton of a P-node is admissible if it conforms with Lemma 3 and
does not imply the crossing of non-virtual edges claimed by other P-nodes. In
Fig. 2(b), e. g., π1 has two admissible embeddings, but both imply crossing the
edge {f,m}, either by {d, i} or by {h, i}. Hence, π1 claims {f,m}. Computing C
involves checking the embeddings of all P-nodes. As every P-node has at most
four virtual edges, there are at most

(
4
2

)
· 2 = 12 embeddings. Hence, the total

time needed for this step is in O(n).
If every admissible embedding of skel(π) yields the same set of edges that are

crossed, then π is called fixable. Let e, e′ be two virtual edges that are embedded
crossing each other. Observe that in this case, two S-nodes, namely refn(e) and
refn(e′), are “crossing”. By Proposition 1, the crossing can be augmented to a
K4. The insertion of these additional edges transforms the crossing S-nodes into
an R-node that represents the K4. In Fig. 2(b), this happens to π1, σ1, and
σ2. If the skeleton of an S-node previously had exactly three vertices, it is now
completely contained in the K4. Otherwise, its number of vertices is reduced by
exactly 1, i. e., the vertex u or v, respectively. Note that completing the K4 may
affect the number of admissible embeddings and hence the fixability of other
P-nodes if there was an admissible embedding of their skeletons that implied
crossing one of e or e′. Algorithm 2 checks whether the virtual edges may cross
each other and fixes the embedding of π. The next lemma enables us to also
proceed when there is no fixable P-node.

Lemma 5. Let π be a non-fixable P-node. If T has no fixable P-nodes, then ev-
ery admissible embedding of skel(π) maintains at least one admissible embedding
for every other P-node.

Proof. Consider the fixing procedure of an embedding for a P-node π and S-
nodes σ′ and σ′′. Let e′ and e′′ be the non-virtual edges that are crossed thereby.
This affects the number of admissible embeddings for the skeletons of at most two
other P-nodes π′ and π′′, that are adjacent to σ′ and σ′′, respectively. Observe
that π′ �= π′′, as T is a tree, and that every non-virtual edge is represented in
the skeleton of exactly one node of T .

Consider π′. W. l. o. g., let e′ be the non-virtual edge in skel(σ′) that is crossed
after the fixing. Then, the number of admissible embeddings of skel(π′) is reduced
by exactly those that implied crossing e′, too. However, π′ did not claim e′, so
there is at least one other admissible embedding of skel(π′). The same argument
holds for π′′ and e′′. ��
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Algorithm 2. Fix Embedding of P-node with two crossing S-nodes

1: procedure FixCrossingAtPNode(G, T , P-Node π, S-Node σ1, S-Node σ2)
2: Let u, v be the separation pair of π,
3: Let (u, c1, . . . , ck, v, u) be the cycle in skel(σ1).
4: Let (u, d1, . . . , dl, v, u) be the cycle in skel(σ2).
5: if {ck, v} virtual or {u, d1} virtual then
6: if {u, c1} virtual or {dl, v} virtual then return ⊥
7: else swap roles of σ1, σ2

8: Pd ← ∅ � possibly affected P-nodes
9: if k > 1 then insert edge {u, ck} in G, update T
10: if {ck−1, ck} virtual then add its associated P-node to Pd

11: else if {u, ck} virtual then add its associated P-node to Pd

12: if l > 1 then insert edge {v, d1} in G, update T
13: if {d1, d2} virtual then add its associated P-node to Pd

14: else if {v, d1} virtual then add its associated P-node to Pd

15: insert edge {ck, d1}, update T
16: if π has two (other) virtual edges then add π to Pd

17: return Pd

Hence, by applying Lemma 5, we can step by step fix all embeddings of the
skeletons of P-nodes with at least three virtual edges. Afterwards, every P-node
has exactly two virtual edges and one non-virtual (cf. Fig. 2(c)). In Algorithm 1,
this corresponds to ll. 15 – 26. FixCrossingAtPNode takes O(1) time per call
and there are embeddings of at most O(n) P-nodes to fix. Hence, the time for
this part is O(n). The algorithm concludes by selecting an admissible embedding
for all P- and R-nodes. All remaining S-nodes are embedded as plane cycles. The
embedding for G is obtained via the 2-clique-sums of all skeleton embeddings
(cf. Fig. 2(d)). Consequently, Algorithm 1 has a running time of O(n).

It remains to show that all conditions presented so far are also sufficient for
a graph to be o1p. Every skeleton is, taken by itself, embedded o1p. Consider
the 2-clique-sum of two skeleton embeddings. This operation glues both graphs
together at two virtual edges. After the augmentation of Algorithm 1, every
virtual edge is embedded such that it lies on the outer face. Hence, in the resulting
embedding, every vertex still lies on the outer face and every edge is crossed at
most once. With this, the outer 1-planarity of the whole embedding follows by
structural induction.

Lemma 6. A graph G is o1p if and only if it is a subgraph of a graph H with
SPQR-tree T such that R-nodes and S-nodes are adjacent to P-nodes only, every
skeleton of an R-node is a K4, and every skeleton of a P-node has exactly one
non-virtual and two virtual edges.

This concludes the proof of Theorem 1. Additionally, if a graph is o1p, Algo-
rithm 1 also provides an o1p embedding. With some extra effort, we can augment
G to maximality. Consider the supergraphH constructed from G by Algorithm 1
and its SPQR-tree. It may have S-nodes with four or more vertices. As all re-
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maining S-nodes are embedded plane, we can insert a plane edge between two
non-adjacent vertices, which splits the S-node into two smaller S-nodes with an
intermediate P-node. This procedure can be repeated until all S-nodes are tri-
angles. Next, consider a P-node that is adjacent to exactly two S-nodes, e. g.,
π4 in Fig. 2(c). Then, we can insert a crossing edge ({g, i} in the example) that
augments the subgraph to a K4. As a result, the nodes π4, σ6, and σ7 are re-
placed by a new R-node. We denote by H+ this supergraph of H . Its SPQR-tree
consists of R-nodes, of which each corresponds to a K4 and S-nodes, of which
each corresponds to a triangle. R- and S-nodes are only connected via P-nodes,
which in turn have exactly two virtual edges and one non-virtual. Consider an
embedding of H+. It has a tree-like structure that consists of K4s and triangles
(K3s) that share an edge if and only if their corresponding R- and S-nodes are
connected via a P-node. As no P-node is adjacent to two S-nodes, triangles can
only share an edge with K4s. Suppose H+ was not maximal. If we were able to
insert an inner, plane edge, this would correspond to inserting a P-node into the
SPQR-tree ofH+. However, no two P-nodes may be adjacent. Inserting an inner,
crossed edge is equal to augmenting two triangles to a K4, which is impossible,
too, as no P-node is adjacent to two S-nodes. Finally, consider adding an edge
to the outer face. As every crossing has been augmented to a K4, the boundary
of the outer face consists of a plane Hamiltonian cycle. Hence, every additional
edge would shield at least one vertex from the outer face. Consequently, we can
easily extend Algorithm 1 such that it maximizes the input graph. Additionally,
we receive another characterization:

Lemma 7. A graph G is maximal o1p if and only if the conditions for H in
Lemma 6 hold and in its SPQR-tree, no P-node is adjacent to more than one
S-node and the skeleton of every S-node is a cycle of length three.

The argument above also implies that every embedded maximal o1p graph is
maximal for all o1p embeddings.

Corollary 2. A graph G is maximal o1p if it has a maximal o1p embedding.

Note that the embedding of a maximal o1p graph is fixed if and only if that of
the skeleton of every R-node is. This, in turn, is the case iff it contains at least
two incident virtual edges.

Corollary 3. The embedding of a maximal o1p graph is unique up to inversion
if and only if the skeleton of every R-node of its SPQR-tree contains a vertex
that is incident to exactly two virtual edges.

Another consequence of Lemma 7 is, that every maximal o1p graph is composed
of triangles and K4s. Changing the embedding of the K4s, we obtain:

Corollary 4. Every o1p graph is planar and has treewidth at most three.

Observe that if the step that augments a P-node with two adjacent triangle
S-nodes to a K4 is omitted, we obtain a plane-maximal o1p graph, i. e., every
additional edge either violates outer 1-planarity or introduces a new crossing.
Equivalently, we can also adjust Algorithm 1 to test (plane) o1p maximality.
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W5 K+
4 K2,5 P1 P2 P3

Fig. 3. Set M of minors of non-o1p graphs

Corollary 5. There is a linear-time algorithm to test whether a graph is max-
imal (plane-maximal) o1p or to augment an o1p graph to a maximal (plane-
maximal) o1p graph.

From the recognition algorithm, we can immediately derive minors of non-o1p
graphs: If the algorithm returns ⊥, the graph at hand contains at least one of
the o1p minors M as depicted in Fig. 3.

Theorem 2. If a graph is not o1p, it contains at least one graph in M as a
minor. Further, M is minimal and every graph in M is not o1p while removing
or contracting an edge makes it o1p.

Note that a graph might still be o1p even if it contains a graph in M as a minor,
as outer 1-planar graphs are not closed under taking minors. The first minor W5

is the wheel with five vertices, which is the smallest triconnected graph that is
not o1p (Lemma 1). W5 occurs in ll. 2 and 6 of Algorithm 1. If ⊥ is returned in
l. 2, then the graph contains a K5 or K3,3 as minor and W5 is a minor of both.
In l. 6, the first of the two checks implies W5: If the R-node contains more than
four vertices, ⊥ is returned and the whole graph contains a planar triconnected
component with at least four vertices, which always contains a W5 as a minor.
If the second condition in l. 6 is true, then the R-node at hand is a K4 that
contains a vertex v incident to three virtual edges. As the expansion graph of a
virtual edge has a path with two edges as minor, we obtain K+

4 in Fig. 3, where
vertex v is in the center. If a P-node has at least five virtual edges (l. 11), then
the K2,5 is the minor. The remaining minors P1, P2, and P3 can occur when
fixing the embedding of a P-node with two crossing S-nodes. Consider l. 6 in
Algorithm 2. If {u, d1} and {u, c1} are virtual, then u is incident to virtual edges
in both S-nodes σ1 and σ2. If u is incident to at least one other virtual edge in
π in whose expansion graph, u has at least degree two, then π has no admissible
embedding and we obtain P3 as minor. By a complete case differentiation, P1

and P2 can also be identified as minors.

4 Conclusion

We have designed a linear-time recognition algorithm for o1p that uses the
SPQR-tree and returns a witness in terms of an o1p embedding or detects one
of six minors, respectively.

Are there other classes of 1-planar graphs which can be recognized efficiently?
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