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Abstract. Portable devices are very useful to access services from any-
where at any time. However, when the security underlying the service
requires complex cryptography, implying the execution of several costly
mathematical operations, these devices may become inadequate because
of their limited capabilities. In this case, it is desirable to adapt the way
to use cryptography. One possibility, which has been widely studied in
many particular cases, is to propose a server-aided version of the executed
cryptographic algorithm, where some well-chosen parts of the algorithm
are delegated to a more powerful entity. As far as we know, nothing
has been done to generically change a given well-known secure instance
of a cryptographic primitive in its initial form to a secure server-aided
version where the server (called the intermediary) may be corrupted by
the adversary. In this paper, we propose an almost generic method to
simplify the work of the operator who wants to construct this secure
server-aided instance. In particular, we take into account the efficiency
of the resulting server-aided instance by giving the best possible way to
separate the different tasks of the instance so that the resulting time
efficiency is optimal. Our methodology can be applied to most of public
key cryptographic schemes.

1 Introduction

Constrained devices (e.g. mobile phones, smart cards or RFIDs) are more and
more used in our daily life. Practical applications may require them to execute
cryptographic algorithms. However, in return for their low-cost, these devices are
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generally resource constrained and/or do not implement all the necessary math-
ematical /cryptographic tools to perform such executions. This is not a major
drawback in protocols requiring a low user’s workload, but it can become ap-
palling for some modern and complex protocols allying contradictory properties
(such as anonymity and accountability, or confidentiality and sharing). Then,
some applications may not be developed if the time taken by a device to execute
required operations is too long. Thus, cryptographic protocols sometimes need
to be further studied when executed in such environments. One solution is to
use preprocessing (see e.g. [30]) which permits some data to be computed in
advance so that the whole algorithm does not require heavy computation to be
efficiently executed. This has the drawback of consuming a lot of space memory
and may not be applicable all the time. Another possibility is to modify the cryp-
tographic mechanism to fit the device restrictions. This has already been done
in the RFID case [18)26] or when considering the integration of e.g. group and
ring signatures in a smart card [I0J32]. This approach sometimes necessitates
important modifications of the initial algorithm, and may imply some stronger
(and questionable!) assumptions such as e.g. the tamper-resistance one.

This paper focus on the approach which consists in speeding up the crypto-
graphic operation by delegating a substantial part of computations to a more
powerful entity, generally called a server or an intermediary.

RELATED WORK. Many papers in the literature propose a way to outsource cryp-
tographic operations to servers. Regarding efficiency, the result should be more
efficient than the non-server-aided execution. Regarding security, the possibility
to corrupt the intermediary should be taken into account in the server-aided
version. This work has been done e.g. in the case of RSA [25lJ5], where the aim is
to help the restricted device to perform a modular exponentiation with an RSA
modulud], or in the case of the signature/authentication verification [23/19], for
several existing schemes. Multi-party computation techniques (see e.g. [33]) per-
mit several entities to jointly compute a function over their inputs, while each
entity keeps its own input secret.

When dealing with more complicated protocols, especially those dealing with
anonymity, a lot of research has also been carried out. For group signature
schemes [12], Maitland and Boyd [24] and then Canard et al. [9] proposed vari-
ants of existing schemes where the group member is helped by some semi-trusted
entity to produce a group signature. This trick is also part of the Direct Anony-
mous Attestation framework (see e.g. [8I13]).

Another approach, called wallet with observers, has been taken in the CAFE
project [TIUT6]. Here, a powerful prover interacts with a non-trusted smart card
to perform some computations, such that the prover is unlinkable w.r.t. the
smart card.

Hohenberger and Lysyanskaya [20] have proposed a new security model
where the server is necessarily split into two different components. For signa-
ture/authentication schemes, Girault and Lefranc [I9] have given the theory for

! Even if most of them have later been broken [2912827).
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server-aided verification. However, nothing has been done to generically trans-
form a given secure instance of a cryptographic primitive in its initial form into a
secure server-aided version where the server may be corrupted by the adversary.
Such a transformation permits creating automatically the previous systems, with
a potentially more efficient outcome.

OUR CONTRIBUTION. In this paper, we provide an almost generic method to
simplify the work of an operator for the above problem. More precisely, we focus
on an entity & and its execution of a cryptographic algorithm ALG( underlying
a secure instance of a cryptographic primitive. We first divide & into two roles:
a trusted entity 7 which manages the inputs of ALGy but is not necessarily
powerful (typically a smart card or a PC) and an intermediary Z which is not
necessarily trusted but is considered as more powerful (typically a mobile phone
or a cloud server). Our aim is then to produce a secure server-aided variant
which is as efficient as possible.

We first focus on the data manipulated inside ALG(. All the inputs and outputs
of the algorithm are known by & and, as we trust it, by 7 too. Regarding Z,
this may be different since it depends on the possibility of corruption of Z by the
adversary (who can passively listen to the interactions between 7 and Z, can
obtain the data given to Z or can corrupt Z). Our method allows the operator
to choose the power of the adversary on each expected security property, and
automatically outputs, for most of manipulated data, whether this data can be
known or unknown (called the status of the data) to Z.

We then consider the studied algorithm ALGq as a set of tasks. Then, depending
on the status of the inputs and outputs, we decide whether each task can be
performed by T alone, Z alone or by both (using some well-known server-aided
computations).

We finally provide an algorithm which outputs the best possible secure variant,
depending on the time performances of both 7 and Z. All along the paper, we
use as a running example the case of group signatures (to make a comparison
with the work in [9]) but our method can also be applied to most existing cryp-
tographic primitives.

ORGANIZATION OF THE PAPER. The next section describes our framework and
introduces the notion of intermediary. Section [B] describes how one can fill in
the data status table according to the chosen security. Section 4 defines task
statuses and explains how one can determine them. Section 5 is devoted to the
description of the way to efficiently distribute the computations.

2 Background and Definitions

All along the paper, any entity is denoted using calligraphic typography (e.g. £),
an object or a data using sans font typography (e.g. d), algorithm using small
capital letters (e.g. ALG), list using true type typography (e.g. list), and sets
using greek letters (e.g. £2). A task is always denoted t.

When a single entity is required to perform a procedure, it is generally called
an algorithm, whereas it is called a protocol when interactions between several
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entities are required. However, protocols can be split into as many parts (algo-
rithms) executed by a single entity as needed. We thus only focus on the notion
of algorithm in the following.

2.1 Definitions

NOTION OF PRIMITIVE. A cryptographic primitive II describes the main guide-
lines of a cryptographic application. Informally, a primitive IT is defined by a set
Z of entities, a set {2 of objects, a set A = {ALGy,..., ALG,} of algorithms and
a set X of security properties. An instance of a given primitive IT is a precise
description of all the algorithms and the associated objects which ensure the
security properties of IT. We consider in the following that each algorithm is
realized thanks to a sequence of tasks, defined below.

CONSIDERED TASKS. The instance of an algorithm ALG; is a set of tasks, de-
noted @;, related to cryptographic or mathematical operations, that formally
describes how to reach the output of the focused algorithm, denoted out, from
its input, denoted inp. In this paper, we group these tasks by types which are
assigned an identifier: (1) pseudo-random generation (e.g. r €g Zy), (2) multi-
linear combination evaluation (e.g. s = a - b+ ¢), (3) exponentiation evaluation
(e.g. T = ¢g%), (4) group operation (e.g. z = g - h), (5) pairing evaluation (e.g.
h = e(P,Q)), (6) hash function evaluation (e.g. hash(m)) and (7) communica-
tion. This list is totally arbitrary and our generic transformation still works if
other types of tasks are introduced. As an example, exponentiations in a regular
finite field and in an elliptic curve group might be considered as two different
tasks while leading to the same result.

THE DATA. In an instance 7 of a primitive IT, data can come from two different
ways. Some of them represent the objects of the primitive, and so inputs and
outputs of the algorithms. But there are also data used as “intermediate values”
within a sequence of tasks of a given algorithm. The former data are called in-
trinsic, while the latter data are called ephemeral.

DEFINITION OF AN INSTANCE. To sum up, an instance m of a primitive IT is
defined by a set © = [J; ©; of tasks, a set & = (J; &; of intrinsic data and a
set ¥ = Uf ¥, of ephemeral data, where each subset is related to one specific
algorithm ALG;. In the following, ALG;(&,inp) = out denotes that the (intrinsic)
data contained in out € @ have been obtained by the execution of the algorithm
ALG; by the entity £ using the data contained in inp € @ as inputs.

2.2 Owur Running Example: Group Signatures

In the group signature primitive [I2], the set of entities is composed of one group
manager (sometimes called the issuer), several group members, one opener and
several verifiers. In this primitive, any member of a group can sign messages
on behalf of the group. Such signatures remain anonymous and unlinkable for
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anyone except a designated authority, the opener, who has the ability to identify
the signer. Anyone, called in this case a verifier, can check the validity of a group
signature. The objects related to this primitive are the issuer, members, and
opener keys as well as all the possible messages (generally defined by a message
space). Following [6], such primitive is composed of 7 procedures called SETUP
(to compute secret keys and public parameters), USERKG (for users), JOIN (a
protocol for users to become group members), GSIGN (for the production of
a group signature), GVERIFY (for the verification step), OPEN (for anoymity
revocation) and JUDGE (for the public verification of an anonymity revocation).
An interested reader may refer to e.g. [6] for details.

2.3 Our Method in a Nutshell

Let mp be a particular instance (e.g. XSGS [I7]) of a given primitive ITy (e.g.
group signature scheme). Let ©; be an instance of one particular algorithm ALG
(e.g. the GSIGN algorithm) which is executed by the entity & (e.g. a group
member). This task description is called the initial version of the algorithm.
Our aim is to improve its time complexity without compromising the security of
T, or in a controlled way.

In the literature, the notion of server-aided cryptography is most of the time
related to the split of an entity & into two components, namely a trusted entity,
denoted? T, which manages all inputs of the algorithm, and an intermediaryé
denoted Z with which 7 can interact and delegate some of his workload. We will
speak in this case of a server-aided version of the algorithm. From one initial
version of the instance g, it is possible to design several secure server-aided
versions w(()l), 7r(()2), e

To decide which one is the most efficient, we first need to decide which data
(intrinsic or ephemeral) can be given to the intermediary. This is done in accor-
dance with the security properties of the studied primitive Iy (see Section [3)).
Then, depending on this result, we focus (in Section 4) on each task of ALGy and
try to say whether it can be executed by 7 alone, Z alone, and/or cooperatively
(both 7 and Z participate in its execution). This leads to a bunch of different
secure repartitions. Our method finally outputs the most efficient one according
to the performances of 7 and Z (see Section 5).

i

3 Status of the Data

Our methodology is in particular based on the definition of a status for each
manipulated data. In this section, we define the status of a data w.r.t. an entity
of an instance. Then, we adapt the adversary against the server-aided instance
in the security properties.

2 We should have used the notation Tz, but, as it is not ambiguous, we simplify it.
3 T is not necessarily a new entity in the system but can be in fact seen as a new role
played by one existing entity.
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3.1 Data Status and Intermediary

Traditionally in cryptography, some data are said secret, and some others are
said public. This can be formalized by the notion of known data w.r.t. a specific
entity, and we argue that this is enough to handle all possible cases. On the one
hand, the status of a data is secret if an entity is the only one to know it. On
the other hand, its status is public if all involved entities know such data. It
also permits to formalize intermediate cases where a data is known by several
entities, but not all. By the way, the only relevant status in our case is that of
known data.

Let IT = (=, £2, A, X)) be a primitive and let 7 = (©,®,¥) be an instance of
II. The security properties verified by 7 determine the status of each intrinsic
data w.r.t. the different entities. The status of an ephemeral data ed € ¥ is
known by an entity £, denoted stgled] = kn, if ed is an output of an elementary
task t run by £ for which the inputs are all known by £. Otherwise the status
of the data is unknown (noted ukn).

Now let us consider an algorithm ALGq, executed by an entity &y, the status
of intrinsic (@) and ephemeral (¥) data are thus known w.r.¢. this entity. Now,
if & is divided into the two entities 7 and Z, we should focus on the status of
intrinsic data w.r.t. Z since it follows from our above choices that the status of
these data w.r.t. T is necessarily known.

SECURITY EXPERIMENT AND ADVERSARIES. Let us consider a security property,
denoted secu, expected by the primitive II. We assume that the studied instance
7 verifies this security property. We thus need to clearly describe the server-aided
security property secu expected by a server-aided execution of the primitive I7.
We recall that 7 is only implicated in the execution of the ALG(y procedure.
Since 7 and Z are two distinct entities, possible corruption of Z by an ad-
versary must be taken into account, while we assume all along this paper that
T is never corrupted (if & is not). We should then modify the related security
experiments accordingly. First, we give the following definition which states the
possible strategies given to the adversary against a server-aided version of 7.

Definition 1 (server-aided adversary). Let secu be a security property re-
lated to a server-aided instance w. Let A be an adversary against secu in the
server-aided setting. For the related experiment, an adversary is said to have the
power of a

— listener-receiver if A can obtain all the communication between T and Z and
is given access to all the data known by I.
— controller if A totally controls T.

It is obvious that a controller is necessarily listener-receiver. Then, there are
three different types of adversary to study: standard (with no extra power),
listener-receiver and controller.

DEALING WITH SEVERAL SECURITY PROPERTIES. In most of the complex cryp-
tographic primitives, several security properties are required at the same time
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(see the example of group signatures in Section [22). In order to build a server-
aided instance with an improved efficiency it can make sense to relax some of
them in regards of the intermediary, while the others are preservedH.

Several server-aided instances of the initial instance 7 can thus be generated
depending of the combinations of desired properties. For example: the adversary
may e.g. be standard for the server-aided security property secu; but controller
for secus.

3.2 Filling the Data Status Table

We should now make the link between the security properties and the status of
all the data manipulated in ALGy.

GENERIC OR NOT GENERIC. Again, our aim is to design a generic autonomous
(as possible) method to obtain the best secure server-aided variant of a secure
instance. In fact, from the security point of view, it seems hard to completely
automate our work.

One solution is to make use of some formal analysis dedicated to cryptographic
protocols, such as the (non exhaustive) work given in [7JIJ3/4]. For this purpose,
we first need to precisely formalize the operations available to the adversary.
We then make use of the description of the experiment, depending on the power
of the adversary (see above) and execute formal methods to find a way for the
adversary to break the security, using its available operations as defined above.
This execution is done several times by having the status of all the data vary.
Finally, each set of data status which leads to “no attack” by formal analysis can
be given to the next step of the procedure (with the deletion of some redundant
choices). Such work requires a complete and deep study and it is not our aim in
this paper to study this independent research topic.

Another possibility is to ask an operator to perform such choice(s). We give
him the new experiment and ask him on output the status of all data. We then
assume that such output is good regarding security.

In the following, we have chosen a compromise between the two. We have suc-
ceeded, using some results given below, in simplifying the work of this operator
by automatically treating some cases. The way we assign a status to each task
depends on their nature (intrinsic or ephemeral) and their type.

STATUS OF INTRINSIC DATA. Informally, we do not want that a non-standard
adversary uses his extra power to get access to more data than the adversary in
the original security experiment. We then use the following result.

Definition 2. Let X' = {secu[l],...,secu[t]} be the security properties ensured
by w. For alli € I = [1,t], A; is the set of all intrinsic data known by A;, the

*In [9], the authors argue that the anonymity property may be relaxed w.r.t. the
intermediary as this latter may already know the identity of 7, while it should not
be able to produce a group signature without the help of 7, and thus break the
traceability property.
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adversary of the security experiment defining seculi]. Let A; be the adversary
against seculi] in the server-aided setting. We define A = (| A; where i € I if
iel
A; has extra power (i.e. has the power of a listener-receiver or a controller).
We then consider that an intrinsic data d is stated as known to Z iff d € A.
We illustrate this method in Section 3.3 using the XSGS group signature scheme
given in [I7].

STATUS OF EPHEMERAL DATA. A server-aided version should not compromise
the security of the instance 7. One way is to make use of a strong notion, related
to the zero-knowledge property used for proofs of knowledge.

Definition 3. : A server-aided version 7 of an instance 7 is said to be

— listener-receiver secure iff there exists a simulator S, whose inputs are known
intrinsic data, such that the output of S is computationally indistinguishable
from the view of the real communications between T and (a non-controller)
T.

— controller secure iff, for any intermediary Z*, there exists a simulator Sz«
whose inputs are known intrinsic data, such that the output of Sz« is compu-
tationally indistinguishable from the view of the real communications between
T and Z*.

Definition 4. Let II be a primitive and 7 an initial instance of Il ensuring
Y = {secu[l],..., secult]}. Let secuvec be a vector of length t, defining the
class of each adversary A;, such that for all i € [1,t], secuvec[i] € {standard,
listener-receiver, controller}. Let w be a server-aided version of the instance .
The server-aided instance 7 is a secuvec secure server-aided version of w if for
all i € [1,t] such that secuvec[i] # standard, 7 is secuvecli] secure.

The next result helps for a partial automation of the filling of the data status
table.

Lemma 1. Let IT be a primitive and w an initial instance of Il ensuring X =
{secu[l],..., secult]}. If m is a secuvec secure server-aided version of the in-
stance  then 7 ensures X = {secull],...,secult]}.

Proof. First, let A; be a standard adversary against secu[i]. Since it does not
have access to the data given to Z and cannot listen to the communication
between T and Z, it is equivalent to an adversary against the initial security
property secu[i]. Thus the security of the initial instance implies the security of
the server-aided instance .

Now we consider A;, a non-standard adversary against secu[i]. We recall that
the status of intrinsic data are known to Z iff they are known by any adversary
A of the security properties verified by 7. Since we assume the existence of S
which is able, using these known intrinsic data, to simulate the communications
between 7 and Z, we do not give more information to the adversary than in the
original experiment. Thus, the security of the initial instance implies the one of
the server-aided version. O
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One can argue that we could reach the security property secu without this
strong “zero-knowledge” requirement. Indeed, in some experiments, if we allow
the adversary to get access to some additional information, we can get a more ef-
ficient repartition of the tasks without endangering the security of 7. Yet it then
seems hard to guarantee the security of m without asking the operator which
ephemeral data can be stated as known.

In practice, the way our algorithm assigns status to each ephemeral data de-
pends on the type of task in which it is involved. For example, if a secret data is
involved in a multi-linear combination then another data involved in the same
task has to be set as unknown w.r.t. Z. Now, if we consider a hash function
evaluation we could consider the output as known, regardless of the status of the
inputs. We still refer to Section 3.3 for a more explicit example.

ConcrLusions. The filling of the data status table by the operator is done by
first choosing the security vector secuvec, enabling him to determine A, the set
of intrinsic data known by Z. Then he runs our algorithm that will automatically
assign a status to most of the ephemeral data. Finally, the operator just has to
indicate the status of the non treated ephemeral data, using the security notions
given in Definition Bl

3.3 Example of Group Signatures

Let us consider the XSGS group signature scheme given in [I7/9] and we focus
on the data. The whole GSIGN algorithm is given in Figure [l

Group signature scheme [I7] - GS1GN(m, gsk[i] = (4, z,y))

t1. a1 €ER Z; ti5. r1 €ER Z; t29. tg = y;rs

{s. /31 €Rr Z;, ti6. r2 €ER Z;, t30. t5:t/5~tg

3. a9 €ER Z; t17. r3 €ER Z; t31. tg = Tg‘r’

ta. B2 €RZy tis. ra €r Zy t32. e1 = e(ts, &2)

ts. m=a1+01 to. rs ERZy tss. tr =e(y,, )77

1. 72:a2+ﬁ2 t20. 16 €R Z; 134. t/7=e(y1,g2)_r6

t7. legal to1.z=v-x+vy 135. tg:el-t7-t’7

ts. To :glﬁl to2. r7 =r1 + 19 t36. C:H(mHTln...HTGH‘tlH...Htg)
to. T =y* to3. rg =r3+rg ts7. s1 =r1 +c- a1 (mod p)
tio. T3 =A- T/3 foq. t1 = gr1 {38. sSo =ra+c- ﬁl (HlOd p)
t11. Ta= got2 to5. to = g”2 t39. S3 =r3+cCc- o (mod p)
tio. Ts = ¢/ tos. tz = g™ t40. sS4 =rs +c- B2 (mod p)
ti3. Tg = y;z tor. t4 = g”4 t41.55 =r5 +c-x (mod p)
tia. Ts :A-Té tos. t/5:ylr17 t42. 56 =16 +c-z (mod p)

Output: 0 = (T, T2, T3, T4, Ts, Te, ¢, 51, 52,53, 54, S5, S6)

Fig. 1. The XSGS GSIaN algorithm [I7/9]
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DEALING WITH SECURITY PROPERTIES. The security properties required from
a group signature scheme [6] are: correctness, traceability, anonymity and
non-frameability. We consider a standard adversary against the correctness
and listener-receiver against traceability and non-frameability. We use, as in [9],
the relaxed anonymity property w.r.t. the intermediary since it has other ways
to identify the signature issued by &y, and then consider a standard adversary
against the anonymity. Using the above order for security properties we then
set the corresponding security vector to secuvec = [standard, listener-receiver,
standard, listener-receiver].

STATUS OF INTRINSIC DATA. We now have to determine A using Definition 21
The status of most of the intrinsic data is obvious since the adversaries of the
different security experiments have access to the public parameters (g, g, ...), the
message (m) and the group signature. We thus have:

{gvg/aYIaYQapvg%e(ylvp)ve(y17g2)vm7T13T2aT37T4aT57T63C7517527s3754755756} C A

Now let consider the user’s key: A, x,y. We have chosen non-standard adver-
saries for the traceability and non-frameability, the status of the user’s key only
depends on the knowledge of the adversaries of these experiments. Since the
issuer is adversary-controlled in both experiments, the adversaries know A and
x and thus we have: {A,x} C A. The only intrinsic data that has to remain
unknown to Z is then vy.

STATUS OF EPHEMERAL DATA. Once the status of each intrinsic data is set,
the operator runs the algorithm SETSTATUSDATA, described in Section 5, which
outputs stz[{re,z}] = ukn and stz[¥ \ {re,z}] = kn.

4 Status of a Task

We will now focus on each task of the studied algorithm ALGy and decide which
entity(ies) can execute it. For this purpose, each task of the algorithm is char-
acterized by a status. More precisely, let us consider independently each task
t; € O of the procedure ALGy. We focus on the inputs and outputs of t; and
make use of the data status which has been stated as explained in the previous
section.

4.1 Execution of a Task by the Intermediary

Based on the data status table, there are initially two cases that can be seen as
trivial.

1. All input and output data of t; are known to Z: for obvious reasons, this
task may be executed by either 7 or the intermediary Z. We denote such
case st(t;) = 1.
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2. At least one output data of t; is not known to Z: we first consider that t;
is executed by 7 and we say that the status of t; is 0, which is denoted
st(t;) = 0. However, depending on the existence of a cooperative version of
this task, this status could be changed (see Section A.2l).

MULTIPLICITY OF THE CHOICES. One important thing is that a task with status
1 will not necessarily be executed by Z. Indeed, we consider that it can be either
executed by 7 or by Z. Our main objective is to determine the best possible
server-aided instance, which may include a task that can be executed by Z will
possibly be executed by T (if the latter has nothing more to do during enough
time for example). This will be taken into account in our main method below.

We now try to do better by searching in the literature some tasks where 7
can help T even if some of the manipulated data are secret.

4.2 Server-Aided Execution of a Task

There are numerous papers about outsourcing some specific cryptographic tasks
(for example [25J5l20§3T2]). We here talk about a “cooperative” execution of a
task.

COOPERATIVE EXECUTION OF A TASK. We have previously made some choices
regarding the set © of tasks. Then, for each type of task in ©, we can say
whether it exists in the literature a way to execute such task cooperatively or
not, depending on the status of the different inputs and outputs. For example,
the authors of [I514] provide a method to compute e(A, B) when A and B are
secret. Appendix [Allists some existing cooperative methods for the tasks in ©. In
the following, the database CoopMeth contains the status of each task depending
on the status of the inputted and outputted data.

4.3 Status of a Task
Using the above results, we can now formally define the status of a task.

Definition 5 (status of a task). Let II = (5, 2, A, X) be a primitive and
let 1 = (O,P,¥) be an instance of IT. The status of a task t € O is defined as
st[t] = 0 if t has to be executed by T; st[t] = 1 if t can be executed by either
T orZ; st[t] = * if t can be executed cooperatively, or by T alone; stlt] = 1x
if t can be executed cooperatively, or by I or T alone; st[t] = 2 if t should be
entirely executed by T.

The last item (st[t] = 2) corresponds to the case where the trusted entity
T is not able to perform a task. For example, most of today’s smart cards
do not implement a bilinear pairing (even cooperatively), which makes all the
other statuses impossible. However, depending on the chosen security vector,
the introduction of such status may imply that no possible secure server-aided
version of a given instance can be designed (the result is that all the tasks should
be performed by 7 sole). As it may occur in practice, we prefer to keep it.
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TABLE OF STATUS TASK. Each task t; of ALGq (in ©) has to be associated to one
of these status in order to design the server-aided version, which is done by the
SETSTATUSTASK algorithm. In order to ease the execution of this algorithm, we
list in a database the existing possibilities of execution for all elementary tasks
depending on the status of their inputs and outputs.

— If a task cannot be executed by 7, then the status is necessarily stated to 2.

— If all the inputs and outputs of t; are known to Z (except when the adversary
is a controller w.r.t. the correctness), then it can be totally executed by Z
and the status includes a 1.

— We then focus on existing server-aided executions of the task. Regarding the
status of all inputs and outputs, we are able to say whether such cooperative
method exists or not (see Appendix [Al for some examples). If one exists,
then we can introduce the % in the task status (which implies the possibility
to obtain a status 1x with the previous case). In addition, the cooperative
method is inserted in the database.

— Otherwise, the status of t; is set to 0.

Now the task status table is filled, we can explain how we determine the best
variant, which will be done in the next section. We first illustrate our purpose
on task status with our example of group signatures.

4.4 Example of Group Signatures

When considering the elementary tasks of the XSGS group signature we find two
types of them which can be executed cooperatively, namely the pairing and the
exponentiation. However, cooperative executions of the these tasks remain inef-
ficient (for example the delegation of pairing provided by [15] and [14] requires
respectively 10 and 7 exponentiations in G which is costlier than computing
the pairing) or insecure [BI28]. We then do not consider in our example the status
“x” and get the following repartition:

St[{fgo, le,f42}] =0 and St[@o \ {fg(), le,f42}} =1.

5 Producing the Most Efficient Server-Aided Variant

Before formally describing the algorithms that construct the most efficient server-
aided version, we introduce some useful notations for this section. The best
server-aided version of an algorithm mainly depends on the efficiency of both
actors, namely the trusted entity 7 and the intermediary Z. Consequently, a
database denoted Perf containing the performances of both entities for all types
of tasks must be set. Perf[X][t] returns the time taken by the entity X" (either T
or 7) to perform the task t. If it is not able to perform this task, the associated
time is arbitrarily fixed to oo.

Each task is defined by its identifier, its type (exponentiation, pairing,...), its
inputs and its outputs.
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5.1 Description of the Global Method

We here make a high level description of our algorithms by taking again our run-
ning example of the XSGS group signature phase. The more formal description
of the main algorithms is further given by Algorithms 1, 2 and 3.

We first run the algorithm SETSTATUSDATA to determine the status of each
epheme-ral data depending on the status of the intrinsic data and on rules de-
fined by the operator. For example, if a secret data is involved in a multi-linear
combination over Z,, then another data involved in the same task has to be kept
secret from Z. Considering the task t2; : z = y1x + y, this means that the algo-
rithm will have to set y; or z as unknown because y is secret and stz[x] = kn.
Using the same methodology for each task, the algorithm will finally output the
status of each data. The resulting status of ephemeral data will be known, except
for r¢ and z. We are then able to determine the status of each task. As already
explained, we will consider that a task can be executed by Z if the status of all
inputs and outputs are known to Z because of the lack of efficient cooperative
protocol for the considered tasks.

Before allocating each task to T or Z we first have to ensure that their order
is respected. Indeed, some tasks take as inputs the output of other ones and thus
have to be computed after. For example tasks t37, t3s, t39, t4o, t41, tao require the
data ¢ and thus have to be computed after the task t3s. We then assign to each
task, using the algorithm REPROUND described below, a round number such
that every task of a same round only takes as input intrinsic data or ephemeral
data produced during previous rounds. We may thus look for the best repartition
of the tasks in the round without caring for their order of execution.

Group signature scheme [I7] - GSIGN(m, gsk[i] = (A, @, )

@1 €ER Zy, B1 €ER Zp
5
v =ai+ 81, Ty =yt

*

o1 €R Zy. B1 ER I}
N1 =y + By

Vi I 3 VA VA
g €ER Zy, B2 €ER I B2 €R Zp as €p z;.T3,y11
T3 = AT, T3 = AT,
* E * P *
6 €R Ly r ER%Q,rQERZQ r5€R/:€ 1 ERZE,VZGRZE
3 ER Ly T4 ER Ty 6 €R Zp 3 €ER Zp> 4 €ER Ly

5 €R Ly v2 = a2 + B2

@2

r7=r1tra,rg =r34rg v2 = az + B2 r7=r1tr2,rg =rgtrg
th = e(y1,82) 776 te = T;;‘r” To =32 th =e(y1,82)" "6 L T;;
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tg =g"2, 13 =¢'3 Ty =g2 =gl tg =g"2
ty =g, t5 = tftff Ts = g'P2 t3 =g, 1ty =¢'"4
l/7— e t5 = thtl
1 T1:T4.T5
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>
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Example with ratio 1000

e, 1
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sp =ry +cBy[p]
s3 = r3 + caz[p]
sq =rq +cBalp]
s5 =r5 + ox[p]

Example with ratio 2

Fig. 2. The XSGS GSIaN algorithm [I7/9]
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We get this best repartition using the algorithm REP which focus on the dif-
ferent types of tasks of the round rather than on the tasks themselves. This algo-
rithm will determine how many tasks of each type have to be executed by 7 and
by Z. For example, the round 7 is composed of the tasks t7, ts, t11, t12, t14, tog, tos,
t26, ta7, t30 and t3s5, i.e. 8 exponentiations and 3 group operations. The algorithm
REP will then decide how many exponentiations and group operations have to be
computed by 7 in order to minimize the execution time of this round. For a ratio
of 2 between T and Z we get the following repartitions: 3 exponentiations for 7
and the rest for Z. Now we must choose the 3 exponentiations among the 8 that
will require the less communication time. This is done by the ATTRIBUTETASK
algorithm which is described in appendix [Bl In a nutshell, it mainly depends
on the number of successors of each task. Indeed, since 7 handles less tasks
than Z, the goal is to assign the tasks with the fewest successors to 7 since the
probability that their output will be required by Z is smaller.

Using the same methodology for each round finally gives us the repartitions
described in Figure [2 for 2 different ratios (1000 and 2).

Considering the intermediary Z as far more powerful than 7 is a typical
approach in cryptography [QI522], the resulting protocols trying to delegate as
many tasks as possible to the delegatee. The left side of figure 2 describes the
result of our algorithm in such case, the only tasks handled by 7 being those
who require knowledge of secret data (y, rg,z) and thus cannot be delegate to Z.
One may note that we exactly find the same repartition as the one from [9]. Yet,
the gap between 7 and Z may not be so important, the right side of the figure
describes a different repartition for a smaller ratio.

5.2 Round Attribution

The REPROUND algorithm takes as inputs the number of tasks, task Number,
an array RepRound and a matrix SuccNumber such that SuccNumber[i, j] =1
if t; takes as input the output of t;. It assigns the current round to every tasks
t with no successor and then removes t from the successor lists of all the other
tasks.

5.3 Rep Algorithm

The REP algorithm takes as inputs five arrays TaskRoundT', TaskRoundl,
TaskT, Taskl, and Inder and an integer typeNumber that is the number of
different types of tasks. T'ask RoundT stores, for each type, the number of tasks
that have to be executed by T while TaskRoundl stores, for each type, the
number of tasks that can be executed by Z. Index ensures that the while loop
tests all possible combinations. Finally, the best repartition is stored in T'askT
and Taskl.
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Algorithm 1. REPROUND(RepRound, task Number, SuccNumber)

round = 1; count = 0;
while count != taskNumber do
for i € [0; taskNumber| do
if RepRound[i] == 0 then
/*If no round has been assigned to t; */
succNumber = 0;
for j € [0; taskNumber| do
succNumber+ = Succli * taskNumber + jl;

if succNumber == 0 then
RepRound[i| = round; count + +;

/* We remove each task assigned in this round from the successor list */
for i € [0; taskNumber| do
if RepRound[i] == round then
for j € [0; taskNumber| do
Succ[i * taskNumber + j] = 0;

round + +;

Algorithm 2. REP(TaskRoundT, TaskRoundI, TaskT, TaskI,typeNumber, Index)
bestTime = +o00; consTimel = 0;
for i € [0; type Number| do
/*We first compute the computation time of the tasks that have to be
executed by T*/
constTimeT+ = TaskRoundT[i] x Per f[T][4];
i=0
while ¢! = type Number do
timeT = constTimeT ;timel = 0;
for j € [0; type Number| do
timeT+ = Index[j] * Per f[T][j];
timel+ = (TaskRoundI[j] — Index[j]) * Per f[I][j];
if timeT > timel then
timeMax = timel
else
timeMax = timel
if timeMax < bestTime then
bestTime = timeMax
for j € [0; type Number| do
TaskT[round * type Number + j] = TaskRoundT'[j] + Index[j];
TaskI[round x typeNumber + j] = TaskRoundI[j] — Index[j];

Index[0] + +3i = 0;

while Index[i] > T'askRoundI[i] and i < typeNumber do
Index[i] = 0; Index[i+ 1] + +;
i+ 4
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6 Conclusion

In this paper, we have proposed an almost generic method to simplify and pre-
cise the work of an operator wanting to construct the most possible efficient
secure server-aided instance of a cryptographic primitive. Our work can easily
be applied or adapted to any instance of any primitive.

This is obviously a first step and it remains a lot of work to do to improve the
final result. For example, regarding cooperative execution of elementary tasks
such as modular exponentiations or pairings, the related work clearly lacks of
efficient and secure dedicated solutions. Regarding our main methodology, we
also need to work on a true operator-free solution, especially regarding the se-
curity part. As said before, one option seems to work with formal methods, but
it needs to be confirmed by additional work.
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A Cooperative Execution of Elementary Tasks

We here provide some cooperative protocols one can find in the literature. Our
goal is not to be exhaustive but to show that they are relevant to our method-
ology. To the best of our knowledge there is no general method to cooperatively
perform a pseudo random generation or a hash computation. We focus on the
costliest types of tasks introduced in section 2.1.

A.1 Exponentiation

Let g be an element of a group G and a € Z,. The cooperative execution of g¢
depends on the status of g and a. Since our method only considers one inter-
mediary Z, we do not use the method proposed by [20], secure under the strong
assumption that 7 has access to two intermediaries that cannot communicate
with each other.

The method of [3I] describes the way to outsource the computation of an
exponentiation with verifiability of the result (i.e. the intermediary cannot con-
vince T to accept a false value for g*). Nevertheless, this method requires that
g and a are both public.

Several papers [25[2115] provide protocols for secret data, however, they were
later proven insecure [29I5]. We then do not consider cooperative execution of
exponentiation when secret data are involved.

A.2 Bilinear Map

In [I9], Girault and Lefranc have proposed a way to compute e(A, B) for secret
A or B. Their solution works as follows. First, 7 chooses at random u and v
in Z,, computes X = A" and Y = B and sends theses values to Z. Then,
7T computes z = e(X,Y), sends it to 7 which recovers e(A, B) by computing
2w)™" Gince X and Y are random elements of G, and G, we are able to
simulate the communication between 7 and Z without knowledge of A and B.
The above cooperative execution of a pairing is then listener-receiver secure.

However, this protocol does not ensure verifiability of the result. Indeed, if 7
returns a random value from Gr instead of e(X,Y"), then 7 is unable to detect
it. In [15] and [22], the authors provide verifiability but their protocol remain
inefficient since they require respectively 10 and 7 exponentiations in Gr to
check the validity of the result.

B AttributeTask Algorithm

The algorithm ATTRIBUTETASK takes as input TaskT, the output of the REP
algorithm, AssignedTaskT, an array storing for each round and each type the
number of tasks with status 0, StatusTask, TypeTask and RepRound, arrays
indicating the status, the type and the round of each task and three integers
typeNumber, roundNumber and task Number. Recall that the REP algorithm
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has chosen, for each type of tasks, how many of them 7 must compute to get the
best repartition. However, it remains to choose which ones will be computed by
this entity to minimize communication time. Since some tasks, involving secret
data, are already assigned to T, the algorithm only has to find n (see algorithm
[B) other ones. It proceeds as follows. It counts, for each task of this type, the
number of successors succNumber and stores the n of them with the fewest
number in BestRep. Once this is done, we get the best repartition and it only
remains to add the communication time.

Algorithm 3. ATTRIBUTETASK (T askT, AssignedT askT, StatusTask, TypeTask, RepRound,
type Number, round Number, task Number)
for i € [1, roundNumber| do
for j € [0, type Number| do
/* n is the number of tasks with status 1 that 7" has to compute */
n = TaskT[(i — 1) * typeNumber + j| — AssignedTaskT[(i — 1) *
typeNumber + jl;
if n /=0 then
repNumber = 0;
minIndexr = 0;
for k € [0, taskNumber| do
succNumber = 0
if RepRound[k] ==1i and StatusTask[k] == 1 and
TypeTasklk] == j then
for | € [0, taskNumber| do
succNumber+ = Succlk * task Number + j);

if taskNumber < n then
/*BestRep stores the best repartition at this stage */
BestRep[repNumber] = k;
BestSucc[repNumber]| = succNumber;
repNumber + +;
if BestSucc[minIndez] < succNumber then
minIndexr = repNumber;

else
if BestSucc[minIndex] > succNumber then
BestRep[minIndex] = k;
BestSucc[minIndex] = succNumber;
for I € [0;n[ do
if Bestsucc[l] > succNumber then
minIndexr = I;
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