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Abstract. The security of the Cipher-State (CS) mode was proposed
to NIST as an authenticated encryption (AE) scheme in 2004. The usual
SPRP blockcipher security for AE schemes may not guarantee its secu-
rity. By constructing a special SPRP, one can easily make a key-recovery
attack with a single block query. The distinguishing attacks and the
forgery attacks can also be made with simpler SPRP constructions. The
security flaw relies in the method for generating initial whitening values.
To fix this shortcoming, we propose a modified version CS* which in-
corporates a new method for generating initial whitening values, while
keeping the main structure of CS unchanged. As we show, CS* is secure
when its underlying blockcipher is an SPRP and halves of which are
unpredictable.

1 Introduction

Background. An authenticated encryption (AE) scheme is a shared-key en-
cryption scheme whose goal is to provide both privacy and authenticity. There
are usually two approaches to build AE schemes from blockciphers.

• A two-pass scheme combines essentially separate privacy and authen-
ticity modes together, and has to process data twice; and
• a one-pass scheme tightly couples the parts of the mechanism responsi-
ble for both privacy and authenticity, and needs only one time to process
data.

The latter schemes firstly emerged in 2001, with the work of Jutla [12] and
developed by Katz et al. [13], Gilgor et al. [10] and Rogaway et al. [15]. Cipher-
State mode is such a one-pass AE scheme.

The CS mode was firstly introduced by Anderson et al. in ACISP 2004 [3]
and proposed to National Institute of Standards and Technology (NIST)[4] as
submissions for modes development. Besides its advantage for processing data
with only one time, it takes a special method for authentication with any round-
based blockcipher. That is, it takes the internal states in the middle round of
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encryption for authentication information. This method provides a computation-
ally low cost alternative to CBC mode. Furthermore, it can be fully parallelized,
allowing fast execution.

It seems that little attention has been put to CS mode. It has been proposed
and put on the NIST’s web page for nearly a decade, however, seldom analysis
can be found publicly. Švenda provided a brief analysis of CS mode in his com-
parison of AE modes [16]. Besides this, only an incomplete security analysis can
be found in its designers’ report [5] without any formal proof.

Our Contribution. Consider the wide requirements for secure AE schemes,
especially with the recent motivation of CAESAR competition [1]. We find it
necessary to give a formal analysis for such an interesting mode. We study CS
mode from the provable-security point of view and discover that CS mode is
totally insecure with a special SPRP as its underlying blockcipher. The problem
is, EK(K⊕·) is used in generating initial whitening values and this may result in
non-random internal values, and even the leakage of K. Such a way of XORing
the key to a message block has been pointed out to be very dangerous by Furuya
and Skurai [9]. By constructing a special permutation FK(·), we show that one
can build a key-recovery attack against CS mode with FK(·) as its underlying
blockcipher. Distinguishing attacks and forgery attacks can also be made using
simpler SPRP constructions.

To fix CS mode, we build CS* which retains the main structure of CS and
the update method of Ri unchanged, but replaces the method for generating
initial whitening values R0. To simplify the mode, we also take away the LFSR
in Ti’s updating and unnecessary pre-whiten and post-whiten process in gen-
erating a tag from Tm. However, we keep the convenient method that derives
internal states from blockciphers to generate the tag. Therefore, CS* inherits
the advantages of CS and becomes even simpler.

Due to its special method to compose the tag, we have to handle the detailed
proof for CS* more carefully than usual. That is, we have to evaluate the prop-
erties of blockcipher internal states, and show how hard for adversaries to get a
collision just before the last blockcipher encryption for authentication. To solve
this, we introduce unpredictability into our proof. We argue that assuming the
internal states in the middle of blockcipher encryption are unpredictable is quite
suitable here. On the one hand, it is weaker than pseudorandomness, properly sim-
ulates the fact that the outputs of half-rounds blockcipher have less randomness
than those of full-rounds. On the other hand, unpredictability of blockcipher in-
ternal states is sufficient to prevent collisions before the final encryption, allowing
random tags for different messages. In the rest of this paper, we say “the internal
states in the middle of blockcipher encryption” as “the internal states” for short.

Our fixing mode, CS*, is a secure AE scheme as we prove by assuming that
the underlying block E is an SPRP and its internal states are unpredictable. For
privacy, the success probability for an adversary to distinguish CS*[Perm(n)]
from a random function is upper bounded by
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(σ + 2q + 1)2

2n
+ 1.5(σ + q + 1)2Advup

E1
(t, q, σ).

For authenticity, the success probability of making a forgery is upper
bounded by

(σ + 2q + c+ 5)2

2n
+ 1.5(σ + 2q + c+ 2)2Advup

E1,E2
(t, q, σ),

where E1 and E2 are two unpredictable permutations satisfying E = E−1
2 ◦ E1.

2 Preliminaries

2.1 Notation

A string is a finite sequence of symbols, each symbol being 0 or 1. The string
of length 0 is called empty string and is denoted ε. Let {0, 1}∗ denote the set of
all strings. If A,B ∈ {0, 1}∗ then AB, or A‖B, is their concatenation. 0i and 1i

denote the strings of i-many 0s and 1s, respectively. Let {0, 1}n denote the set
of all strings of length n. If A ∈ {0, 1}∗ then |A| denotes the length of A in bits.
If A,B ∈ {0, 1}∗ are strings of same length then A ⊕ B is the bitwise xor of A

and B. If A is a set, then #A denotes the size of set A, and a
$←− A denotes that

a is chosen from set A uniformly at random.
If M ∈ {0, 1}∗ then the padding rule used in this paper is pad(M) =

M10n−1−(|M| mod n). Furthermore, we assume that each message M used in
this paper has already padded and |M | is a multiple of n. In pseudocodes, “par-
tition M into M1 · · ·Mm” means “let m be the length of M in n-bit blocks
and let M1 · · ·Mm be string such that M1 · · ·Mm = pad(M) and |Mi| = n for
1 ≤ i ≤ n”.

If π is a function on {0, 1}n, let Dom(π) and Ran(π) be the domain and range
of π, respectively. Especially, if we defines the values of π(x) point-by-point
in game, Dom(π) is the set of values x ∈ {0, 1}n such that π(x) /∈ undefined.
Similarly, Ran(π) is the set of y ∈ {0, 1}n such that there exists an x ∈ {0, 1}n
for which π(x) = y. If π is a fixed function, we use Dom(π) and Ran(π) to
describe the sets of queried inputs and outputs, respectively.

2.2 Description of Cipher-State Mode

As illustrated in Fig.1, Cipher-State mode derives internal states from each
round-based blockcipher invocations during data encryption for authentication
information. It needs one blockcipher key K and one nonce N . An initial whiten-
ing value R0 is created from K and N .

An LFSR is used as a pseudorandom number generator (PRNG) to pre-whiten
the plaintext and post-whiten the ciphertext with the same parameter. The
polynomial selected for the authentication combiner and the PRNG is the lexi-
cographically least primitive polynomial, p(x) of degree n.
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The blockcipher EK is split into two roughly equal pieces, 1:r/2EK and

(r/2+1):rEK : 1:r/2EK returns the internal state after completing r/2 rounds of
the blockcipher; while (r/2+1):rEK takes the internal state as input and returns
the final state after all rounds. If the blockcipher has odd rounds, it will be split
into 1:�r/2�EK and (�r/2�+1):rEK .

Let M be a padded data and be split into m n-bit blocks Mi:

M = M1‖M2‖ · · · ‖Mm.

The initial whitening value R0 is computed with R0 = EK(N ⊕K)⊕K. The
plaintext block Mi is pre-whitened using Ri which updates after each step using
LFSR with p(x). A pre-authenticator value Ti is computed with internal states
of the underlying blockcipher and updates in the same way.

Ri = Ri−1 × x (mod p(x)), i = 1, 2, · · · ,m.

Tm = Σm
i=1EK(Mi ⊕Ri−1)× xm−i.

To prevent possible information leakages from using the internal cipher state,
a final authenticator T is computed using an extra blockcipher invocation:

T = EK(Tm ⊕Rm)⊕ Tm.

N

R0

0
n

R0

R0L C1

M1

Rm-1

Rm-1

Mm

0
n

Tm

1:r/2 EK

(r/2+1):r EK

EK

Cm

1:r/2 EK

(r/2+1):r EK

Tm

EK

T

LFSR

EK

K

K

LFSR

Rm

Tm

Fig. 1. Cipher-State Mode

2.3 Security Definitions

Adversaries. An adversary is a programwith access to an oracle. Oracle queries
are tuples of strings. An adversary is nonce-respecting if it never repeats the
first component, N , to its oracle, regardless of oracle responses. In this paper,
adversaries are always assumed to be nonce-respecting. We write an oracle as
superscript to the adversary that uses it.
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AE-schemes. We use the syntax of a nonce-using authenticated-encryption
schemes and their security given by Bellare et al. [6] and extended by Rogaway
et al. [15] [14]. An authenticated-encryption scheme (an AE-scheme) is a triple
Π = (K, E ,D) and an associated number n (the blockcipher length). Here K is a
finite set and E andD are deterministic algorithms. Encryption algorithm E takes
K ∈ K, N ∈ {0, 1}n, and M ∈ {0, 1}∗, and returns a string C ← EK(N,M).
Decryption algorithm D takes K ∈ K, N ∈ {0, 1}n, and C ∈ {0, 1}∗, and
returnsDK(N,M), which is either a stringM ∈ {0, 1}∗ or a distinguished symbol
Invalid. If C ← EK(N,M) then DK(N,C) = M .

Privacy. Consider an adversary A that has one of two types of oracles: a “real”
encryption oracle or a “fake” encryption oracle. A real encryption oracle, EK(·, ·),
takes as input N , M and returns C ← EK(N,M). Assume that |C| = l(|M |)
depends only on |M |. A fake encryption oracle, $(·, ·) takes as input N , M and

returns a random string C
$←− {0, 1}l(|M|). Given adversary A and encryption

scheme Π = (K, E ,D), define

Advpriv
Π = |Pr[K $←− K : AEK (·,·) ⇒ 1]− Pr[$(·, ·) $←− Rand(∗, ∗) : A$(·,·) ⇒ 1]|.

Authenticity. Fix an encryption scheme Π = (K, E ,D) and run an adversary
A with an oracle EK(·, ·) for some key K. Adversary A forges (in this run) if A is
nonce respecting, A outputs (N,C), where DK(N,C) �= Invalid, and A made

no earlier query (N,M) that resulted in a response C. Let Advauth
Π = Pr[K

$←−
K : AEK(·,·) forges]. We stress that the nonce used in the forgery attempt may
coincide with a nonce used in one of the adversary’s queries.

Pseudorandom Functions. A function family from n-bit to n-bit is a map
E : K × {0, 1}n → {0, 1}n, where K is a finite set of strings. It is a blockcipher
if each EK(·) = E(K, ·) is a permutation. Let Rand(n) denote the set of all
functions from {0, 1}n to {0, 1}n. These sets can be regarded as function families
by imagining that each member is specified by a string. For π ∈ Perm(n), let
π−1(Y ) be the unique string X such that π(X) = Y . Let

Advprf
E (A) = |Pr[K $←− K : AEK(·) ⇒ 1]− Pr[ρ

$←− Rand(n) : Aρ(·) ⇒ 1]|
Advprp

E (A) = |Pr[K $←− K : AEK(·) ⇒ 1]− Pr[π
$←− Perm(n) : Aπ(·) ⇒ 1]|

Advsprp
E (A) = |Pr[K $←− K : AEK(·),E−1

K
(·) ⇒ 1]− Pr[π

$←− Perm(n) : Aπ(·),π−1(·) ⇒ 1]|

be defined for the advantages of adversary A attacking blockcipher E. The se-
curity of E is defined as the maximum over all advantages of the adversaries
with time complexity t, making at most q queries with at most σ blocks. If
the advantage Advprf

E (t, q, σ) is negligible, then E is said to be a pseudorandom
function (PRF). The notions of pseudorandom permutation (PRP) and strong
pseudorandom permutation (SPRP) are defined similarly.
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Unpredictability. The notion of “unpredictablilty” is first proposed by Gol-
dreich et al. in 1986 [11]. Let E be a blockcipher and A be an adversary with
access to E for some key K. Consider this experiment.

ExperimentExpup
E (A)

K
$←− K

whenAmakes a queryM toEK(·), do
C ← EK(M)
returnC toA

untilA stops and outputs (M ′, C′) such that
− EK(M ′) = C′, and
− M ′ was never queried toEK(·)

then return 1 else return 0

Let

Advup
E (A) = Pr[Expup

E (A) = 1]

Advup
E (t, q, σ) = max

A
{Advup

E (A)}

where t, q, σ stand for the total time, number of queries, and the total length
of queries respectively. If Advup

E (t, q, σ) is sufficiently small, we say E is unpre-
dictable. Unpredictable is a wekaer notion than pseudorandomness, examples
can be found in [2].

3 Attacks against CS

In this section, we will show CS mode could not be secure with some special
SPRPs F : {0, 1}k×{0, 1}n → {0, 1}n. By constructing three different SPRPs, we
give a distinguishing attack, a forgery attack and a key-recovery attack against
CS[F ] respectively, with only one query of length no more than two blocks.

3.1 Distinguishing Attack against CS

Let E : {0, 1}k×{0, 1}n→ {0, 1}n be a randomly chosen SPRP, and A ∈ {0, 1}n
be a randomly chosen constant. The special permutation F : {0, 1}k×{0, 1}n →
{0, 1}n is built with E with a special property: FK(K ⊕ A) = K for any key
K ∈ {0, 1}n. This will help us building the distinguishing attack against CS
mode.

FK(M) =

⎧
⎨

⎩

K ifM = K ⊕A,
EK(K ⊕A) ifM = E−1

K (K),
EK(M) else.

A similar PRP (PRP-RK) has been constructed with A = 0n−11 by Peng
Wang et al. to show that 2-Key XCBC using this PRP (PRP-RK) is totally
insecure[17]. They proved that the special permutation F is a PRP as long as
E is a PRP. And more specifically, F and E are indistinguishable. We can show
that F is an SPRP as long as E is an SPRP.
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Theorem 1. If E is an SPRP, then F is an SPRP. More spexifically, for any
adversary A with q queries trying to distinguish F and E, there exists an adver-
sary B with no more than (q + 1) queries such that

|Pr[AF,F−1 ⇒ 1]− Pr[AE,E−1 ⇒ 1]| ≤ 2qAdvsprp
E (B) + 2q

2n − q
.

Furthermore, B runs in approximately the same time as A.
If CS takes F as its underlying blockcipher, it is distinguishable from CS with

a random permutation. Let O be an oracle, with equal probability to be CS[F ]
or CS[π], where π is a random permutation. One query with nonce N = A will
lead to R0 = EK(N ⊕K)⊕K = 0n. Notice that if R0 = 0n, the algorithm will
set R0 = K. A distinguishing algorithm is built using this information:

AlgorithmAO(·,·) :
query (A,A) toO(·, ·) and get (C, T )
ifC = 0n return 1

else return 0

We can see that Pr[ACS[FK ] ⇒ 1] = 1 and Pr[ACS[π] ⇒ 1] = 1/2n, so the
advantage is 1− 1/2n.

3.2 Forgery Attack against CS

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a randomly chosen SPRP and I : {0, 1}k×
{0, 1}n → {0, 1}n be an identity function. The special permutation F is built
by combining E and I: 1:r/2FK(·) = EK(·), (r/2+1):rFK(·) = I(·). Obviously, F
is an SPRP as long as E is an SPRP. Taking F as the underlying blockcipher,
there will be Cj ⊕Rj−1 = Zj−1(j = 1, . . . , c) in CS.

Noticing that the tag T is generated by underlying blockcipher EK(·) with
Rm and Tm =

∑m
i=1 Zi · xm−i, and verified with Rc and Tc =

∑c
j=1 Zj · xm−j ,

where Zi(i = 1, . . . ,m) in former situation is the internal state of EK(Mi⊕Rj−1)
and Zj(j = 1, . . . , c) in latter situation is the internal state of E−1

K (Cj ⊕Rj−1).
Suppose (N,C, T ) is valid, if we can find C∗

1 , . . . , C
∗
c satisfying

c∑

j=1

1:r/2E
−1(C∗

j ⊕Rj−1) · xm−j =

c∑

j=1

1:r/2E
−1(Cj ⊕Rj−1) · xm−j ,

then (N,C∗, T ) will be valid. A forgery attack using only one query of two blocks
to CS.Enc can be built as following.

AlgorithmACS[F ](·,·) :
randomly chooseN,M1,M2 ∈ {0, 1}n

query (N,M1||M2) toO(·, ·) and get (C1||C2, T )
randomly chooseC∗

1 ∈ {0, 1}n satisfyingC∗
1 �= C1

letC∗
2 = C2 ⊕ (C1 ⊕ C∗

1 ) · x
forgery(N,C∗

1 ||C∗
2 , T )
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We can see that
T ∗
2 = Z∗

1 · x⊕ Z∗
2

= (C∗
1 ⊕R0) · x⊕ (C∗

2 ⊕R1)
= (C1 ⊕R0) · x⊕ (C2 ⊕R1)
= Z1 · x⊕ Z2

= T2

Therefore, T ∗ = FK(T ∗
2 ⊕ R2) ⊕ T ∗

2 = FK(T2 ⊕ R2) ⊕ T2 = T . The probability
of the forgery success is 1.

This attack shows the CS security requires some randomness on the
blockcipher internal states. We will show unpredictability is a proper choice
in Section 4.

3.3 Key-Recovery Attack against CS

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a randomly chosen SPRP. Similar to the
permutation we used in distinguishing attack, by modifying several ordered pairs
in EK(·) we can get:

FK(M) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

EK(A1) ifM = A2 ⊕K,
A3 ⊕ EK(A1) ifM = A3 ⊕K ⊕ EK(A1),
EK(A2 ⊕K) ifM = A1,
EK(A3 ⊕K ⊕ EK(A1)) ifM = E−1

K (A3 ⊕ EK(A1)),
EK(M) else.

where A1, A2, A3 are randomly chosen from {0, 1}n. What we do is exchanging
the values of EK(A1) and EK(A2⊕K), and the values of EK(A3⊕K⊕EK(A1))
and EK(E−1

K (A3⊕EK(A1))). Noting that, some chooses of (A1, A2, A3) may lead
to collisions happen in X = {A2⊕K,A3⊕K⊕EK(A1), A1, E

−1
K (A3⊕EK(A1))},

which may make this construction fail. The probability of no collision happens
in X is more than at least 1− 6/2n. We can proof that F is an SPRP as long as
E is an SPRP.

If CS takes this permutation F as underlying blockcipher, then we can build
a key-recovery attack as following.

AlgorithmACS[F ](·,·) :
query (A2, A3) toCS[F ](·, ·) and get (C, T )
K ← C ⊕A3

returnK

Noting that R0 = K ⊕ EK(A1), and

C ⊕A3 = (FK(M ⊕R0)⊕R0)⊕A3

= (FK(A3 ⊕ (K ⊕ EK(A1)))⊕ (K ⊕ EK(A1))) ⊕A3

= ((A3 ⊕ EK(A1))⊕ (K ⊕ EK(A1)))⊕A3

= (A3 ⊕K)⊕A3

= K
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Noting that, some choices of (A1, A2, A3) may lead this attack to fail. For
example, if EK(A1) = 0n and R0 will be set toK not EK(A1). The probability of
choosing such (A1, A2, A3) is less than 1/2n−1. Therefore, the success probability
of this attack is at least (1− 6/2n)(1 − 1/2n−1).

4 Fixing CS and Its Security Proof

The main problem of CS comes from the method for generating the initial
whitening value R0 with nonce and key. We naturally consider modifying only
the generation method of R0 and analyze the fixing mode CS*.

4.1 CS* Mode

CS* mode retains the updating way of Ri unchanged, but changes the method
for generating the initial whitening value R0.

R0 = EK(N ⊕ L)⊕ L with L = EK(0n).

To make the mode simpler, the LFSR in Ti’s updating and the unnecessary
pre-whiten and post-whiten process in generating a tag from Tm are taken away.

The algorithm given below illustrates the CS* construction for a m-block
message, M = M1, . . . ,Mm, initialization vector, IV , and encryption key, K.
Let EK be a r-round blockcipher.

N

R0

0
n

EK

R0

R0L C1

M1

L

Rm-1

Rm-1

Mm

0
n

Tm

1:r/2 EK

(r/2+1):r EK

EK

Cm

1:r/2 EK

(r/2+1):r EK

Tm

EK

T

Fig. 2. CS* Mode
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Algorithm CS.EncK(N,M) Algorithm CS.DecK(N,C, T )
Partition M into M1 · · ·Mm Partition C into C1 · · ·Cc

L← EK(0n) L← EK(0n)
T0 = 0n T0 = 0n

R0 ← EK(N ⊕ L) R0 ← EK(N ⊕ L)
for i← 1 to m do Ri ← Ri−1 · x for i← 1 to c do Ri ← Ri−1 · x
for i← 1 to m do for i← 1 to c do

Zi ←1:r/2 EK(Mi ⊕Ri−1) Zi ←1:r/2 E−1
K EK(Ci ⊕Ri)

Ci ←(r/2+1):r EK(Zi)⊕Ri−1 Mi ←(r/2+1):r E−1
K (Zi)⊕Ri−1

Ti ← Ti−1 ⊕ Zi Ti ← Ti−1 ⊕ Zi

T ← EK(Tm) T ′ ← EK(Tm)
return (C, T ) if T = T ′ then return M

else return ⊥

Fig. 3. The specification of CS*

4.2 The Security of CS* Mode

We now proceed to show the security of CS*. For this we assume the underlying
blockcipher of CS*, P , is an SPRP and it can be split into two unpredictable
permutations P1 and P2 satisfying P = P−1

2 ◦ P1. Theorems as following show
the information-theoretic bounds and the computational bounds on the privacy
and authenticity of CS*.

Theorem 2. Let A be a nonce-respecting adversary that asks q queries and
then makes its forgery attempt. Suppose the q queries have aggregate length of σ
blocks, and the adversary’s forgery attempt has at most c blocks. Then

Advpriv
CS∗[Perm(n)](A) ≤

(σ + 2q + 1)2

2n
+ 1.5(σ + q + 1)2Advup

P1
(t, q, σ),

Advauth
CS∗[Perm(n)](A) ≤ (σ + 2q + c+ 3)2

2n
+ 1.5(σ + 2q + c+ 2)2Advup

P1,P2
(t, q, σ).

This theorem can be easily translated to the computational complexity setting
by adding a advantage of distinguishing blockcipher E and its inverse E−1 with
a random permutation π and π−1, where E can be split into two unpredictable
permutation E1 and E−1

2 .

Theorem 3. Suppose E : {0, 1}k × {0, 1}n → {0, 1}n is an SPRP-secure block-
cipher. Let E1 =1:r/2 E and E2 =1:r/2 E−1. Let A be an nonce-respecting ad-
versary that asks q queries and then makes its forgery attempt. Suppose the q
queries have aggregate length of σ blocks, and the adversary’s forgery attempt
has at most c blocks. Then
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Advpriv
CS∗[E](A) ≤

(σ + 2q + 1)2

2n
+ 1.5(σ + q + 1)2Advup

E1
(t, q, σ) +Advsprp

E (t′, q′, σ′),

Advauth
CS∗[E](A) ≤ (σ + 2q + c+ 3)2

2n
+ 1.5(σ + 2q + c+ 2)2Advup

E1,E2
(t, q, σ)

+Advsprp

E,E−1(t
′, q′, σ′),

where t′ = t, q′ = q + 1, and σ′ = σ + c+ 2q + 3.

For privacy, the initial whitening value R0 is generated by EK(·) with a new
nonce N in each query and is kept secret from A. Pre-whiten values are then
generated from R0 and they make the inputs to blockciphers pair-wise distinct,
resulting in random ciphertexts because E is an SPRP. Furthermore, noticing
E1 is unpredictable, it is easy to find Tm is collision-resistant, and the final tag T
is random after the final encryption. Therefore, both the ciphertexts and the tag
are random bits. For authenticity, if the forgery is composed with a new nonce
N , then it has a close-to-1 probability that the inputs to E2 are pairwise distinct
and also distinct from former blockcipher outputs. By the unpredictability of E2,
Tm would be new and the final tag is random. On the other side, if the forgery is
composed with a used nonce N , then there still exists large probability that at
least one of the inputs to E2 is new, resulting in a new Tm by the unpredictability
of E2 and a random tag by the SPRP of E. In either case, the probability to
make a valid forgery is negligible.

In CS* mode, the internal states of the underlying blockcipher are hidden from
adversaries and their sum is again encrypted before being output, these features
result in no information leakage, except the collision before the last blockcipher
encryptions for authentication.

Noting that, in our proofs, we assume that the underlying blockcipher E is
an SPRP and constructed by E = E−1

2 ◦ E1, where E1, E2 are two indepen-
dently unpredictable permutations. However, this doesn’t mean in theory that
the concatenation of two unpredictable permutations can make up an SPRP.

Despite the above, our assumption on blockciphers for the security of CS* is no
stronger than the usual and solo SPRP assumption. This can also be reflected by
the security of practical blockciphers. That is, a full-round blockcipher behaves
like an SPRP and its internal states are unpredictable for adversaries.

5 Conclusion

The CS mode was submitted to NIST in 2004, and is still in NIST’s modes
development list. However, only a few of papers involve this mode in and no
formal proof has been proposed before. In this paper, we pointed out that there
exist some security problems in its method for generating initial whiten values.
By constructing a special SPRP F , a key-recovery attack against CS[F ] with a
single block query can be made.
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A slight modification for generating initial whiten values leads to a new au-
thenticated encryption mode, CS*, which uses the same way of generating initial
whiten values as the OCB mode and retains most parts of CS. Assuming inter-
nal states of the underlying blockcipher behave as “unpredictable” while the
blockcipher is super pseudorandom, it can be proved that CS* is a secure AE
scheme.
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