
Lessons Learned from the Development

of the ROLE PLE Framework

Sten Govaerts, Katrien Verbert, Evgeny Bogdanov, Erik Isaksson,

Daniel Dahrendorf, Carsten Ullrich, Maren Scheffel, Sarah Léon Rojas,

and Denis Gillet

Abstract Within the ROLE European research project, an interoperability frame-

work has been developed to support self-regulated learning and to enable learners

and teachers to create personal learning environments (PLEs). This framework

enables learners to assemble tools, services and resources together to create their

own custom learning environment. This chapter discusses the overall architecture,

the specific components of this architecture and the platforms in which we have

integrated the ROLE framework. Additionally, we share the lessons learned from

the design and development. Furthermore, we discuss our experience with the

S. Govaerts (*) • E. Bogdanov • D. Gillet

Ecole Polytechnique Fédérale Lausanne (EPFL), REACT, Station 9, Lausanne CH-1015,

Switzerland

e-mail: sten.govaerts@epfl.ch, http://react.epfl.ch; evgeny.bogdanov@epfl.ch, http://react.epfl.ch;

denis.gillet@epfl.ch, http://react.epfl.ch

K. Verbert

Technische Universiteit Eindhoven, Information Systems WSK&I, Postbus 513, 5600 MB,

Eindhoven, The Netherlands

Katholieke Universiteit Leuven, Department of Computer Science, Celestijnenlaan 200A,

3001 Heverlee, Belgium

e-mail: katrien.verbert@cs.kuleuven.be

E. Isaksson

KTH—Royal Institute of Technology, Stockholm, Sweden

e-mail: erikis@kth.se

D. Dahrendorf

IMC Information Multimedia Communication AG, Altenkesseler Str. 17/D3,

Saarbruecken 66115, Germany

e-mail: daniel.dahrendorf@im-c.de, http://www.im-c.de

C. Ullrich

Department of Computer Science and Engineering, Shanghai Jiao Tong University,

1954 Huashan Road, Shanghai 200050, China

e-mail: ullrich_c@sjtu.edu.cn

M. Scheffel • S.L. Rojas

Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven,

Sankt Augustin 53754, Germany

e-mail: maren.scheffel@fit.fraunhofer.de, http://www.fit.fraunhofer.de;

sarah.leon.rojas@fit.fraunhofer.de, http://www.fit.fraunhofer.de

© The Author(s) 2015

S. Kroop et al. (eds.), Responsive Open Learning Environments,
DOI 10.1007/978-3-319-02399-1_8

185

mailto:sten.govaerts@epfl.ch
http://http://react.epfl.ch
mailto:evgeny.bogdanov@epfl.ch
http://http://react.epfl.ch
mailto:denis.gillet@epfl.ch
http://http://react.epfl.ch
mailto:katrien.verbert@cs.kuleuven.be
mailto:erikis@kth.se
mailto:daniel.dahrendorf@im-c.de
http://http://www.im-c.de
mailto:ullrich_c@sjtu.edu.cn
mailto:maren.scheffel@fit.fraunhofer.de
http://http://www.fit.fraunhofer.de
mailto:sarah.leon.rojas@fit.fraunhofer.de
http://http://www.fit.fraunhofer.de


ROLE development infrastructure and our collaboration within the ROLE devel-

opment team and with several open-source projects.

Keywords Development • Interoperability • Best practices • Lessons learned •

Collaboration • Open source • Widgets • Web apps • Framework • Personal learning

environment • PLE • Informal learning • Self-regulated learning • Social media

platforms

Introduction

The proliferation of Web 2.0 technologies (e.g. wikis and social networks) has

impacted the way users retrieve and use information and how they interact with

each other (Maness 2006; Ullrich et al. 2008; Ashley et al. 2009). The abundance of

Web-based tools and content creates many opportunities for Technology Enhanced

Learning (TEL).

The ROLE project aims to exploit Web-based tools and technologies to

empower learners to construct their own personal learning environments (PLEs).

The overall goal is to create flexible, Web-based, open technologies for the feder-

ation and mash-up of learning services to empower the learner to build her own

responsive learning environment. Responsiveness is defined as the ability to react to

the learner needs—i.e. through recommendation, adaptation or visual analytics

services that support the learner to be aware of and reflect upon her own learning

process (Fruhmann et al. 2010). The project also targets critical transition stages of

lifelong learning, e.g. due to shifts in learner interests or when leaving the university

and entering a company. Chapter 1 elaborates more on the ROLE vision on PLEs.

Learning management systems (LMSs) such as Moodle, CLIX and Blackboard

primarily focus on distributing learning content, organising the learning process and

serving as interface between learners and teachers. Dalsgaard (n.d.) notes that in

LMSs generally different tools, such as discussion forums, file sharing, whiteboards

and e-portfolios, are integrated in a single system that bundles all tools necessary to

manage and run courses. In contrast to PLEs, LMSs place a strong emphasis on how

to centralise and standardise the learning experience (Guo et al. 2010). Learning

activities in an LMS-based course are organised within a centrally managed system,

which is driven by the needs of the institution. On the other hand, a PLE takes a

more natural and learner-centric approach and is characterised by the free-form use

of a set of services and tools that are controlled and selected by individual learners.

In recent years, research on mash-ups has been elaborated, for example widget

mash-ups have been deployed at Graz University of Technology (Ebner and

Taraghi 2010). In addition, researchers have focused on augmenting traditional

LMSs with widgets to provide live-updating and flexible applications. Wilson

et al. (2009) have implemented widget support for Moodle. Their big challenge is

logging student activities with the widgets, as there is no communication between

the widgets and the LMS.

186 S. Govaerts et al.

http://dx.doi.org/10.1007/978-3-319-02399-1_1


The ROLE framework builds on this existing work, but incorporates additional

core technologies such as inter-widget communication (IWC), automated user

activity tracking, collaborative spaces and authentication and authorisation services

to protect data. This is the basis to enable real-time communication between

widgets and users, and to automate user activity tracking from tools and services.

The analysis of such data and IWC provides the basis to develop responsive systems

that can react to learner needs in a coordinated way.

Within the time span of the ROLE project, a new Apache project, called RAVE,1

emerged with the aim to provide an extensible mash-up platform for using, inte-

grating and hosting widgets with personalisation, collaboration and content inte-

gration features. The features of Apache RAVE and the ROLE project are quite

similar, as confirmed by recent research that has been applying RAVE in educa-

tional contexts (Pierce et al. 2011; Chudnovskyy et al. 2012). Since the RAVE

project started during the development of the ROLE framework, ROLE did not

adopt Rave, but rather contributed components to the RAVE project (which is

discussed in more detail in section ‘Contributing ROLE Software to Open-Source

Projects’).

This chapter presents the ROLE interoperability framework, which is a technical

platform to assemble widgets within responsive open learning environments. The

framework allows the assembly of widget bundles with communication channels,

authentication and authorisation mechanisms and services for activity tracking and

analysis. The framework ensures that the widgets have access to the necessary

information to react to learner needs. Furthermore, the platforms, on which the

interoperability framework has been integrated, are discussed and the lessons

learned from the design and development of the framework components are

presented, as well as on the technical collaboration within the ROLE project and

with open-source projects.

This chapter is organised as follows. First, the overall architecture of the

framework is presented in section ‘The Interoperability Framework’, after which

each component is discussed in more detail. Section ‘ROLE Platforms’ elaborates

on the different platforms that integrate the ROLE infrastructure and the repository

of widgets. Afterwards, the organisation of the ROLE developer community and

our contributions to open-source projects are discussed. Finally, the achieved

results are summarised and their dissemination is discussed.

The Interoperability Framework

The purpose of the ROLE interoperability framework is to support assembly of

different widgets in responsive open learning environments. The architecture sup-

ports communication between widgets, authentication and authorisation

1Apache RAVE, http://rave.apache.org/

Lessons Learned from the Development of the ROLE PLE Framework 187

http://rave.apache.org/


mechanisms, services for activity tracking and analysis and widget spaces, which

manage widgets, resources and users. All these services can be accessed via open

and if possible standardised interfaces. These are necessary for third-party devel-

opers who want to create applications based on ROLE technology. The next section

details the overall architecture.

The Architecture

The ROLE architecture is illustrated in Fig. 1. IWC (see section ‘Inter-widget

Communication’) is used and managed by spaces, but is also an autonomous

component. It depends on JavaScript and the XMPP (Saint-Andre 2004a, b)

protocol to provide a user-, community- and space-centred remote IWC. This

allows developers to build powerful collaborative real-time learning tools and

learners to assemble them easily in responsive open learning environments.

Tracking of activities is done via the Contextualised Attention Metadata (CAM)

framework (see section ‘Contextualised Attention Metadata’). An event-based

schema was developed to model user behaviour in learning environments. Events

are tracked and sent to either a central or container-specific repository. IWC is used

to track such events. The data is stored and retrieved via an REST API.

As the CAM service contains sensitive data, an authorisation and authentication

framework has been developed to protect this data (see section ‘Authentication and

Authorisation’). It is also needed for other ROLE services that handle personalised

data. One of the main goals of this framework is to reduce the amount of user

interaction by providing a Single Sign On (SSO) authentication mechanism.

Finally, widget spaces (see section ‘Spaces’) allow learners and instructors to

create portable collaborative learning environments. Spaces consist of learners,

configurable services and sharable resources, within a learning context. The space

features can be provided either by a (OpenSocial) container itself or by a special

widget. Such an approach guarantees container independence. Furthermore, widget

Fig. 1 The ROLE architecture

188 S. Govaerts et al.



spaces provide a simplified single point of access to the other background services

via an extended OpenSocial API.

Inter-widget Communication

IWC enables event-based communication between widgets following the Publish–

Subscribe communication pattern (Birman and Joseph 1987; Eugster et al. 2003).

We employ both local inter-widget communication (LIWC) within a PLE and

remote inter-widget communication (RIWC) among different users, computers

and PLEs.

LIWC is realised in the OpenApplication Event API (Isaksson and Palmer 2010,

n.d.) using the HTML5 Web Messaging standard (Hickson 2011) available in most

major browsers, including backwards compatibility for the Google Gadget PubSub

mechanism. Instead of ‘hard-wiring’ widgets with each other (Sire et al. 2009), all

widgets within a PLE are notified of all events and then decide autonomously to

react accordingly. If the widget acts upon the received event, a receipt is sent back.

Supporting containers that receive such a receipt can inform the user, e.g. by

highlighting the tool that sent the receipt. The event payload format is designed

for partial semantic interoperability, i.e. developers use a combination of

established vocabularies in a simplified format with name-spaced properties

(e.g. Dublin Core (DCMI Usage Board 2006)). In practice, this means that when

an event is broadcasted, the originating widget does not indicate what receiving

widgets should do (only the past action is specified, e.g. select). If the originating

widget had to specify the intent (i.e. the desired future action), it would need to have

buttons or menu items for every conceivable proposable action in every conceiv-

able widget (e.g. add to portfolio, share with friends, search in Wikipedia). With

events, we instead choose to split the job: events should be broadcasted for as many

user actions as possible within each widget, without concern for what receiving

widgets ought to do, and receiving widgets provide the affordances (e.g. buttons)

for their own proposed further actions.

RIWC enables communication among widgets in different browsers and on

different machines in order to foster real-time remote communication and collabo-

ration functionality. RIWC is realised with the Extensible Messaging and Presence

Protocol (XMPP) (Saint-Andre 2004a, b), an open standard for real-time communi-

cation. The power of XMPP lies in its built-in federation capabilities and extensi-

bility through XMPP Extension Protocols (XEPs), such as for Publish/Subscribe

(Millard et al. 2010) and Multi-User Chat (Saint-Andre 2008) as applied in respon-

sive and collaborative learning scenarios (Friedrich et al. 2011). Since no

JavaScript XMPP library with PubSub support was available, ROLE extended the

dojo XMPP library by a set of common PubSub operations. Users can discover

nodes, retrieve subscriptions, create, configure and delete nodes, subscribe and

unsubscribe nodes and publish/receive IWC events in an XML-based payload

format across a federated network of XMPP servers. However, current libraries

Lessons Learned from the Development of the ROLE PLE Framework 189



using XMPP over BOSH (Paterson et al. 2010) are not applicable in public

containers such as iGoogle due to cross-domain issues. Furthermore, they are rather

unstable and unreliable (Friedrich et al. 2011). Our experiments showed that the

upcoming Web Socket API (Hickson 2009) for XMPP (Moffit and Cestari 2010)

outperforms BOSH with considerable performance and stability improvements and

availability in all containers.

IWC enables more responsive, collaborative environments with real-time noti-

fications and richer user experience, although attention to usability is required

(Isaksson and Palmer 2010).

Contextualised Attention Metadata

Tracking of user interactions with widgets is an essential part to enable responsive-

ness in learning environments. User interaction data can be used for data analysis

and the computation of personal, social and contextual information about users and

applications. Additionally, such data of the actual usage of ROLE services in real-

world settings was used to evaluate the framework.

A variety of attention metadata formats exist. These formats differ in scope,

expressiveness, scalability and context awareness. Butoianu et al. (2010) provide a

survey of the following formats: TaskTracer (Dragunov et al. 2005), Swish (Oliver

et al. 2006), CAM (Wolpers et al. 2006), the User Interaction Context Model

(UICO) (Rath et al. 2009), the Context Modelling Language (CML) (Henricksen

and Indulska 2006) andWildCAT (David and Ledoux 2005). TaskTracer and Swish

are least flexible and expressive. UICO, CML and WildCAT are very expressive;

however, the available frameworks using the formats do not scale well and some are

focused on a specific application (Butoianu et al. 2010). On the other hand, CAM

supports scalability and context awareness very well, but is less expressive. Other

examples are the ActivityStreams specification2 and the Experience API (Glahn

2013). The latter took inspiration from ActivityStreams and only became available

in the last years of the ROLE project. ActivityStreams are less focused on contex-

tual information. In ROLE, CAM is used because of scalability and context

awareness.

The CAM schema (Schmitz et al. 2011) can be used to describe computer-

related activities of one or several users—i.e. which objects attract user attention,

which actions users perform and what the user contexts are. CAM was developed to

describe as many types of attention metadata as possible. Therefore, CAM records

of a user cannot merely describe user foci of attention, but rather her entire

computer usage behaviour. Collections of CAM records can be exploited for

generating diverse kinds of profiles like user profiles and object profiles (item

profiles). CAM records represent user–computer-related foci of attention and

actions and thus can instantly constitute profiles of individual usage behaviour.

2 The ActivityStreams specification, http://activitystrea.ms/specs/json/1.0/

190 S. Govaerts et al.

http://activitystrea.ms/specs/json/1.0/


CAM records of different users can be exploited for generating attention and usage-

based object profiles.

CAM records can be used to support self-reflection. For instance, visualisation

widgets can support a user to recapitulate what she did and generate a picture of her

competences. Furthermore, statistical metrics can be employed to aggregate and

evaluate CAM records of different users. By this, general trends, for instance in

computer usage, data consumption and communication behaviour, can be detected.

Aggregated CAM records entail information on the behaviour of average users and

on the behaviour of user groups. They also entail usage information on data objects,

such as how often a certain object was used, and by which kinds of users and in

what contexts it was used. In addition, they can reveal in which respect a user

deviates from the average, whether her behaviour conforms to general trends or

not, etc.

The CAM schema has been developed to provide a unified schema for monitor-

ing data across system boundaries (Wolpers et al. 2007; Schmitz et al. 2011). The

CAM schema has been transformed from a once user-centred version to an event-

based version (see Fig. 2) that is better suited for evaluating and analysing user

observations over time.3

Fig. 2 Structure of the CAM schema

3 Information about the schema is available at https://sites.google.com/site/camschema/ and the

CAM API: http://sourceforge.net/projects/camapi/

Lessons Learned from the Development of the ROLE PLE Framework 191

https://sites.google.com/site/camschema/
http://sourceforge.net/projects/camapi/


One major goal of ROLE is to provide personalisation, recommendation and

self-reflection mechanisms. To achieve this, users can be monitored while

interacting with their learning environment. The collected CAM information is

used to generate different patterns and statistics, such as discovering learning trends

and detecting what is currently happening in the learning environment. For an easy

integration of the CAM monitoring into different learning environments, the moni-

toring architecture was divided into a client and a server component. The client

component can be considered as a data collection element, responsible for accumu-

lating and transforming the information into CAM, while the server component is

responsible for the persistence management and data access control.

Figure 3 shows the CAM architecture applied in ROLE and how it works

together with other ROLE components. The picture shows a platform, which uses

ROLE technology by integrating ROLE widgets into their learning environment

Fig. 3 The CAM architecture used in ROLE

192 S. Govaerts et al.



(container). Furthermore, the picture illustrates that the CAM monitoring compo-

nents must not be integrated into the platform since they are running on an external

application server. First, a user performs an action on a widget (step 1), e.g. clicking

a button. Since this widget supports IWC (see section ‘Inter-widget Communi-

cation’) this action causes an event, which is published via the OpenApp mecha-

nism (Isaksson and Palmer 2010; Isaksson and Palmer n.d.). Thus the event is

broadcasted (step 2) and can be received by all other widgets in the user’s learning

environment (local IWC, see section ‘Inter-widget Communication’). Each receiv-

ing widget can process and react on the event (step 3). The CAM widget can thus

receive all events sent through IWC. Afterwards the CAM widget identifies the

event and forwards all required information to the CAM Web service, which is

responsible for the CAM mapping and persistence. To offer the user an overview

over the activities in the learning space, it contains a graph where past events from

the users of the space can be displayed using different configurations, i.e. one or

several users and several dates (see Fig. 4). As already mentioned, the picture

illustrates that the Web service is not integrated into the platform, but is a stand-

alone service that can be installed for a specific platform.

In addition to storage, the CAM Web service provides a query method, which

consumes an arbitrary SQL select statement and returns the results in the JSON

format. Using arbitrary SQL select statements ensures maximum freedom for the

Fig. 4 Screenshot of the ROLE CAM Monitoring widget

Lessons Learned from the Development of the ROLE PLE Framework 193



developers to experiment with the data. Access to the monitoring data causes

privacy issues. These issues have not been completely resolved in the ROLE

project. Some steps have been taken though. For instance, data privacy can be

supported through a stand-alone installation of the CAM Web service, e.g. by

installing the CAM service in the intranet of an institution. The CAM widget also

allows users to disable tracking (see Fig. 4). Additionally, the CAM Edit and Share

widget4 (see Fig. 5) allows the user to filter and export her CAM data from a specific

space into an SQL file. This widget provides the user with full access and larger

control over her CAM records, and she can share her events with others or analyse

them herself. Finally, since the Web methods for querying and storing CAM are

publicly available, the CAM service requires password-based authentication.

From our experience developing the CAM service and using it in real-world

settings various new insights have been gained. One of the main benefits of the

approach is that developers do not have to specifically write code to track user

events, as the CAM widget will collect the IWC events automatically. On the other

hand, this can also limit the data collection since not all important events might be

requiring IWC. This tracking method also allows developers to be agnostic about

the CAM schema and the implementation of the CAM Web service, since they do

just need to send out IWC events. One of the strengths of the OpenApp IWC is the

openness of its data format, which has no mandatory fields and enables developers

to transmit any kind of JSON data from one widget to another. This freedom makes

the mapping of the OpenApp events into CAM harder as such mapping cannot rely

on certain elements to be present. Defining a subset of fixed mandatory IWC fields

and fixing taxonomies of event types would make the CAMmapping more easy and

robust.

Another flexibility issue is due to the high abstraction level of the CAM schema

to allow all kind of events to be stored. This can generate a large number of different

CAM event mappings, which can make it harder to analyse and compare the CAM

records. The different IWC events stored information in different CAM fields,

making the data analysis more complex without knowing the details of the intrinsic

mapping. The ActivityStreams specification provides an extensible, common

vocabulary list of actions that would aid this and when applied properly could

provide more portable data (Vozniuk et al. 2013).

Currently, user activities are only tracked when the CAM widget is added to the

learning environment. Hence, this enables users to have full control over where

their activities are tracked, but also causes that nothing is recorded if the user

forgets to add the CAM widget. This problem could be circumvented by integrating

CAM monitoring directly into the platform.

4 http://www.role-widgetstore.eu/tool/cam-edit-and-share-widget

194 S. Govaerts et al.

http://www.role-widgetstore.eu/tool/cam-edit-and-share-widget


Fig. 5 Screenshot of the

ROLE CAM Edit and Share

widget

Lessons Learned from the Development of the ROLE PLE Framework 195



Spaces

In the ROLE framework, a PLE can consist of various spaces. A space is an abstract

concept that materialises the user’s context and aggregates people, resources,

applications and other subspaces. All these artefacts belong to the same activity

that a person (or a group of them) is working on to achieve a common goal. This

common goal is the purpose to create the space. Various people can participate in a

space and might have different access rights and roles within this space, where they

share resources and applications that they need to achieve their goal. A space might

have subspaces that help hierarchical organisation of resources, applications and

people. A space can be seen as a PLE unit. On the one hand, a space is a way for

users to give shape to their PLEs by aggregating information. On the other hand, a

space allows users to share their PLEs with others by inviting them to collaborate.

The space concept exists in all ROLE platforms (see section ‘ROLE Platforms’):

the ROLE SDK (see section ‘ROLE SDK’), Graasp5 (Bogdanov et al. 2012a) (see

section ‘Graasp’), the OpenSocial Moodle plugin (Bogdanov et al. 2012b) (see

section ‘OpenSocial Moodle Plugin’) and theWidget Store (see section ‘The ROLE

Widget Store’). Every platform internally implements this concept in a different

way. In order to allow widgets to use the information about the space and to enable

integration and portability of spaces between the platforms and beyond, we applied

two approaches: Linked Data and OpenSocial.

For the first approach, we created a space ontology for Linked Data. Linked Data

provides a very powerful and extensible way of describing data in a machine-

understandable way. It targets the discovery and integration of data originating

from different sources. Due to its design, it has limitations. First, Linked Data and

SPARQL require a rather steep learning curve, which is a disadvantage compared

to simple RESTful APIs that are used by many Web developers.6 The second

limitation is the performance. Since the data is located on different servers, many

HTTP requests have to be issued to retrieve the complete data. Moreover, the

SPARQL engine requires traversal of a graph, which is much slower than retrieving

data from a relational database. The authors Health and Bizer (n.d.) (see section 6.3)

foresee the use of data crawling for real-time Linked Data applications, rather than

on-the-fly URI dereferencing.

The alternative approach we used is OpenSocial. The OpenSocial specification

consists of three main parts. The first part describes the widget standard. The second

part standardises the model for social network elements (i.e. Person, App and

Document) and relations between them. The third part standardises a set of com-

mon REST and JavaScript APIs to retrieve data from a social platform. Since the

space concept did not exist in OpenSocial, we introduced it into the OpenSocial

specification. The OpenSocial Space extension standardises the space model

(namely a list of fields that a space can contain), and the REST and JavaScript

5 Graasp, http://graasp.epfl.ch
6 Linked Data API, http://code.google.com/p/linked-data-api/wiki/API_Rationale

196 S. Govaerts et al.

http://graasp.epfl.ch/
http://code.google.com/p/linked-data-api/wiki/API_Rationale


APIs to work with spaces (Bogdanov et al. 2011). Through this extension, widgets

can retrieve information about their containing space and its content via OpenSocial

APIs. For example, the Person API can be used to retrieve all the members of the

space. The widget can retrieve a list of the resources and widgets available in the

space via the Document and App APIs, respectively.

The main disadvantage of OpenSocial is that the social model cannot be easily

and arbitrarily extended as with Linked Data. The new extensions require going

through the process of standardisation, which can be quite cumbersome. On a

positive note, OpenSocial provides easy-to-use REST APIs with a JSON-based

data representation. The data format and APIs are standardised, which enables

interoperability when data is accessed and processed. OpenSocial does not target

data discovery (as Linked Data) but rather data retrieval and exchange. Since the

data is often centralised in one institution, it is very fast to retrieve the data

compared to the SPARQL engine.

Authentication and Authorisation

CAM contains sensitive and personal data protected by law. Additionally, users

might prefer to keep the content of their spaces private. The data access has to be

trusted and allowed by the users. The data communication occurs at two different

levels: service-to-service and widget-to-service communication.

Service-to-service communication can occur when for example a recommen-

dation service requires CAM relevance feedback on resources. Data can be trans-

ferred across institutions and countries with different laws. Thus, we decided to

leave the decision of service-to-service authentication and authorisation (A&A) up

to the service developers.

Widget-to-service communication occurs when for example a self-reflection

widget wants to query the CAM service. This has been implemented as follows.

A user is authenticated as being the owner of a particular personal space. The user

first authenticates as being the owner of a separate identity, to which the personal

space is linked (or a new personal space will be created), which thereby implies that

the user is the authenticated owner of the space. The personal space then functions

as the identity of the user.7 Authentication is typically done via OpenID, which is

the standard for decentralised authentication on which we have focused, but other

protocols may be supported as well (one test bed, at Uppsala University, has

implemented support for CAS while also keeping support for OpenID

authentication).

Delegated authorisation is used by widgets that access collaborative and per-

sonal spaces. Furthermore, such delegated authorisation may also be used by third-

7 The identifier of the personal space, i.e. a URI, is used as the identifier of the user, cf. WebID (see

http://www.w3.org/wiki/WebID)

Lessons Learned from the Development of the ROLE PLE Framework 197

http://www.w3.org/wiki/WebID


party services. The standard for delegated authorisation that we have focused on,

i.e. OAuth, lets the currently authenticated user choose whether to authorise the

widget or service. After authorisation, the service is provided with a token granting

access to spaces on the user’s behalf. For widgets, the token is managed by the

OpenSocial widget container, which allows widgets to perform requests through the

engine’s OAuth proxy that first applies OAuth and then forwards the request.

Currently, OAuth endpoints for OpenSocial widgets must be hard coded in the

widget’s source XML. Therefore, spaces implement a rewriting of the XML so that

the proper endpoints are included. Otherwise, it would be necessary for widget

developers to maintain separate XML files of their widgets for every server where

the widget is deployed. Widgets using the rewritten XML files, however, can be

added to any widget container, such as Liferay8 (Yuan 2009), while still

maintaining the connection to their respective spaces.

ROLE Platforms

The ROLE interoperability framework has been integrated in various platforms.

This section describes these platforms where users create and use their PLEs and

search for widgets.

The ROLE SDK

The ROLE SDK is a collection of software and tools, which allows trying out

ROLE technology and developing new widgets for mash-up PLEs. In total, ten

versions of the ROLE SDK were released, each one packaging the implementation

outcomes of one milestone of an iterative development process (see section ‘The

ROLE Developer Community’).

The central core of the SDK is the reference implementation of a sample PLE,

which allows using ROLE technology in practice and developing new widgets at

the same time. Within the ROLE SDK, a learning space functions as a collaborative

context for learning, consisting of a bundle of widgets, along with a list of

participants. Widgets can interact with other widgets, and participants can interact

with other participants, by using widgets and built-in features of the ROLE SDK

(e.g. chat functionality).

A personal space is defined as a personal context that consists of a person’s user

model. One representation of the user model is a user profile; another representa-

tion, also based on the user model, is a bundle of (personally chosen) widgets. In the

8 Liferay, http://www.liferay.com/

198 S. Govaerts et al.

http://www.liferay.com/


ROLE SDK, the learning space and personal space are combined in one user

interface.

Additionally, there is a social context. The social context offers access to the

communities of which the user is a member. The specific community that is

accessed typically depends on the website where the widget is currently being

used, which may be a different website than that of the PLE. For instance, if a

widget is being used on a social networking website, the community would be that

of the website. Collaborative contexts (i.e. learning spaces) can transcend social

contexts. A widget may be part of a learning space, and at the same time be used on

a social network for inviting people from that network to participate in the space.

OpenSocial standardises APIs for access to what is defined as the social

context here.

Furthermore, the concept of activities was introduced. Activities can be defined

as purposes for which the user structures her learning context and assembles

widgets. In the ROLE SDK, activities are displayed as one group of visible widgets

at a time. In the GUI, activities can also be tabs or pages. However in the ROLE

SDK, the additional semantics that the term ‘activities’ offers is covered. The term

hints to the user that the groupings should be used for focusing on one activity at a

time (such as training English vocabulary or searching for Web resources), using

the tools that are appropriate to that activity, without being distracted by what is

unrelated to the activity.

As mentioned before, the ROLE SDK relies on the concept of spaces. While a

space is, at its most basic level, simply a bundle of resources such as widgets, there

are several aspects that contribute to its usefulness as the basis for a PLE:

• Aggregation: Widgets (or more generically, tools) are bundled with any other

kind of resources that contribute to the space’s goals. The model enables a very

flexible use of spaces, without requiring modifications in the model or its

implementation.

• Contextualisation: A space forms a context for its contained resources. Widgets

can be made context aware, and are then able to interact with the space and its

resources. In addition to being in the context of a space, widgets can be

contextualised further by being given configuration that is specific to their

instantiation within the space.

• Participation: People can join a space, which means that they become members

of that space. Members are notified of the presence of other members, and can

interact with them both asynchronously and synchronously.

• Personalisation: Spaces offer a level of customisability, so that users are able to

personalise the environment according to their needs.

These design requirements are realised within the ROLE SDK. Being a sample

implementation of a PLE platform, the space user interface (see Fig. 6) is a Web

application composed of four parts. First and on top, the header element is

implemented as a top-aligned bar. It provides elements for controlling the Web

application as a whole, such as signing in and out, and navigating to other parts of

the application. Secondly, the sidebar element is a narrow, fixed-width section,

Lessons Learned from the Development of the ROLE PLE Framework 199



running along the left side. It provides elements for controlling the space, such as

switching between activities, and adding widgets.

Thirdly, the container element comprises the central area of the user interface,

not covered by the other parts. This is where the main content is located, typically

the space’s widgets. The container can also be used as an embedded browser, which

is how the ROLE Widget Store (see section ‘The ROLE Widget Store’) is inte-

grated (see Fig. 7).

The fourth and last element is the dashboard, a bottom-aligned bar when

collapsed. Expanding the dashboard displays the widgets on the personal space

Fig. 6 The ROLE SDK user interface of a learning space

Fig. 7 The ROLE Widget Store, embedded in the ROLE SDK

200 S. Govaerts et al.



right above the container, as illustrated in Fig. 8. The dashboard provides access to

the user’s personal space, which is a space that is private to the authenticated user. It

is available from any other space (and other pages of the Web application) as well

as from third-party websites via a bookmarklet (cf. Fig. 9).

In the case that the space itself is embedded (e.g. on the course page of an LMS),

it is intended that the parts can be hidden or moved (e.g. the Header), because their

functionality (e.g. sign in) can be already provided by the LMS or to adhere to

another design.

Fig. 8 The personal space, inside the expanded dashboard

Fig. 9 The personal space, being accessed on a third-party website

Lessons Learned from the Development of the ROLE PLE Framework 201



Graasp

Graasp9 (Bogdanov et al. 2012a) is a social media platform for collaborative

learning and knowledge management (see Fig. 10). Graasp implements the

OpenSocial space specification (see section ‘Spaces’), which enables the creation

of spaces shared between people belonging to different communities and networks.

Embedded shared resources are gathered across institutional and corporate bound-

aries. Unlike dominant social media, Graasp enables a fine definition of the

audience, as well as the associated rights and roles to ensure trust and privacy

enforcement. In Graasp, people map their personal and shared projects, interests

and activities into public or private contextual spaces integrating invited members,

relevant resources and necessary apps which can be tagged and rated. Any space or

resource in Graasp integrates its own discussion thread to enable contextual inter-

action. Graasp allows learners to construct and manage their own PLEs. Users can

create a PLE for each learning objective, populate it with various resources and

tools, personalise it and share it with others (Bogdanov et al. 2012a).

Fig. 10 A shared contextual space created in Graasp that integrates resources gathered from the

Cloud, such as YouTube videos, SlideShare presentations, OpenSocial Widgets, Web pages or

PDF documents with previews

9Graasp, http://graasp.epfl.ch

202 S. Govaerts et al.

http://graasp.epfl.ch/


The space concept is at the core of Graasp. A space can represent a PLE and can

contain four types of entities: people, resources aggregated and used within the

space, apps added to the space to extend its functionality and subspaces to organise

the space content in a hierarchical structure. Graasp enables users to manage their

spaces.

The resources and apps can be aggregated into a Graasp space from both local

and remote locations. First, users can easily drag and drop files directly from their

desktops into their spaces. Second, remote resources from the Cloud can be easily

aggregated via an aggregation mechanism called GraaspIt!. Whenever a user

encounters an interesting page, she can simply click on the GraaspIt! bookmarklet

in the browser and the resource will be added into a space (Gillet and Bogdanov

2012). These collected resources can be aggregated as URLs, embed tags or Web

page screenshots. In addition to resources, Graasp allows users to aggregate widgets

into their spaces. Currently, the OpenSocial widget standard is supported, though

other standards (e.g. W3C widgets) can be added in a similar way. Such widgets

either can be added manually or can be aggregated from existing widget reposito-

ries. For example, when the user is browsing through widgets in a widget repository

(e.g. the ROLE Widget Store, see section ‘The ROLE Widget Store’), a widget of

interest can be added by just clicking on GraaspIt!. The second way is to add

widgets from the ROLE Widget Store by exploiting the widget repository search

mechanism provided within Graasp.

Once a space is created and populated in Graasp, the core part of the interface

(see Fig. 10) enables users to interact with the aggregated content and can be further

personalised with the concept of functional skins (Bogdanov et al. 2011). A

functional skin is a client-side plugin for a space that can retrieve space data via

the OpenSocial APIs and provides users with visual and functional features differ-

ent from Graasp and tailored to specific needs. For example, in addition to the

standard view of Fig. 10, Graasp offers two built-in functional skins: the resource

view and the app view. The resource view displays a list of all resources that exist in

a space and provides download links and presents resource previews. The app view

displays all widget instances from a space as a visual mash-up. In this view, widgets

can be resized and their order can be modified through drag and drop. The

possibilities to personalise the space are extensive and through functional skins

the users can further adapt their spaces for their own professional/personal tasks.

Graasp implements several mechanisms to share and exchange spaces and

widget bundles (sets of widgets combined together for a specific purpose). An

app bundle can be extracted from the existing space and exported as an OMDL

file.10 The OMDL file can be imported into another platform (or reused in Graasp)

or shared at the ROLEWidget Store. Additionally, a space created in Graasp can be

shared with other people and with other platforms. The space can be extracted from

Graasp as a secret URL. This URL can be given to other users and allows them to

collaborate anonymously. Alternatively, the space can also be embedded into

10Open Mashup Description Language, http://omdl.org

Lessons Learned from the Development of the ROLE PLE Framework 203

http://omdl.org/


another Web platform. Chapter 5 provides more information on how Graasp was

used and evaluated for formal learning.

OpenSocial Moodle Plugin

The OpenSocial Moodle plugin (Bogdanov et al. 2012b) enables the use of

OpenSocial widgets within the Moodle LMS11 to create PLEs. By providing

support for PLEs in an existing LMS, the disruption often caused by providing

users with completely new environments decreases. By integrating PLE features in

an existing LMS, users can still continue to use the features of the familiar LMS, but

can personalise their learning environment with widgets.

The OpenSocial plugin for Moodle exists in two variations. The first version

adds a new module to Moodle, which is displayed in the central area in the Moodle

UI.12 The module allows a teacher to add a ‘widget space’ to the Moodle course

page, specify a set of widgets and choose the widget layout on the Moodle page (see

Fig. 11). After this configuration, students can work with several widgets simulta-

neously (see Fig. 12) in the Moodle course.

Fig. 11 A teacher creates a space with widgets for a course

11Moodle, http://www.moodle.org
12 OpenSocial Moodle module, https://github.com/vohtaski/shindig-moodle-mod

204 S. Govaerts et al.

http://dx.doi.org/10.1007/978-3-319-02399-1_5
http://www.moodle.org/
https://github.com/vohtaski/shindig-moodle-mod


The second version13 of the OpenSocial plugin adds a new block in the right

column of the Moodle UI. With this Moodle block, the teacher can add widgets to

the right column of existing Moodle pages. Both versions of the Moodle plugin

make use of the Apache Shindig engine,14 which provides an open-source imple-

mentation of the OpenSocial specification, to render and manage widgets.

One of the main benefits of these plugins is that they enable teachers to easily

extend Moodle with new features and services provided by widgets. Consequently,

once the OpenSocial plugin is installed in Moodle, a teacher can append the

required functionality herself, without the intervention of system administrators.

The plugin enables the flexibility of selecting the resources and tools required for a

specific course. Additionally, the plugins enable reuse of existing educational

resources and tools. Furthermore, teachers and students can continue to operate in

the learning environments they are familiar with but gain the mash-up features of

PLEs. Naturally, the components of the ROLE architecture are compatible with the

Moodle plugin. For instance, IWC and CAM are fully operational in the Moodle

plugin. By extending widely used LMS with PLE features, we aim to achieve a

faster adoption of the PLE paradigm among institutions. Further details on how this

Fig. 12 OpenSocial widgets displayed within Moodle

13 OpenSocial Moodle block, https://github.com/vohtaski/shindig-moodle-block
14Apache Shindig, http://shindig.apache.org

Lessons Learned from the Development of the ROLE PLE Framework 205

https://github.com/vohtaski/shindig-moodle-block
http://shindig.apache.org/


Moodle plugin was put to use for formal learning and evaluated are available in

Chap. 4.

The ROLE Widget Store

The ROLE Widget Store allows users to search and browse for widgets and

compilations of them. The store addresses the issue of categorisation, browsing,

searching and recommending by providing various widgets categorised based on

functionality, learning phases and learning domains. Further, the Widget Store

enables sharing of platform-independent PLE and templates composed of learning

tools and artefacts (or the so-called Widget Bundles). Via these mechanisms, the

Widget Store fosters the development of a community of practice to exchange

learning tools. Regarding the widget bundles, the store provides features to apply

and share bundles across different learning platforms. This section further discusses

different recommendation strategies and the interfaces that enable interoperability

are specified (LMS/PLE system integration). Figure 13 presents an overview of the

Widget Store architecture.

The main focus of the store is to provide a catalogue of widgets by supporting

two commonly used widget specifications: the W3C widget specification (Caceres

n.d.) and the OpenSocial specification (Mitchell-Wong et al. 2007). Developers can

post either their self-developed widgets or widgets based on licenses which allow

further distribution. Where possible metadata are automatically extracted from the

Fig. 13 Components of the ROLE Widget Store

206 S. Govaerts et al.

http://dx.doi.org/4


widgets. Widget bundles are compilations of widgets, which are created to share

good practices of widget use in learning environments. They are intended as a fast

and simple way to provide learners with tools, services, content and a detailed

description of how to use these to complete a specific learning task. Learners can

select several tools from the store to create their learning environment. Additional

references to learning resources can be added. For each tool and resource, learners

are able to add learning activities in order to describe what should be done using the

tool or learning resource. Once such a bundle is created by a learner, she can share it

with the community. Such bundles can be reused by teachers and learners for their

learning environments. In order to support learners in selecting applications for

their PLEs three different categorisations are provided.

• Tool categories are derived from the Psycho-Pedagogical Integration Model

(PPIM) (Fruhmann et al. 2010) (more information on PPIM is also available in

Chap. 2), so users can select widgets supporting different learning phases.

• Tool functionalities represent features of widgets (e.g. text editing, video chat)

and are based on an ontology developed in ROLE.

• Learning domains describe, if possible, the domain of the tools by providing

semantic tags using DBpedia.15

The categorisation of bundles differs from the tool categorisation. A bundle can

be designed to cover several phases of the PPIM model and thus refers to several

tool categories. The approach of the Widget Store is that a bundle automatically

inherits functionalities of tools it contains and can be tagged manually by learning

domains from the DBpedia.

To provide an interface for external systems, the ROLE Widget Store offers an

SPARQL endpoint which allows retrieval and insertion of the data of the Widget

Store based on a standardised interface. Furthermore, different formats (Turtle,

RDF/XML and JSON) are supported so that developers can choose their preferred

data format. Another possibility for PLE platforms to integrate the store is to embed

the store in the learning environment. The embedded version provides a simplified

user interface and offers buttons that allow users to directly choose widgets to

assemble their PLE. The store is connected to other ROLE components in the

following ways:

• Graasp queries the store to provide a catalogue of widgets enabling easy

integration of widgets in Graasp spaces.

• The ROLE SDK embeds the store and uses the embedding features to add

widgets to the ROLE spaces.

• The ROLE Pedagogical Recommender (Nussbaumer et al. 2012) queries the

store to provide recommendations based on the ontology of learning activities

and the store categorisations.

15 DBPedia, http://dbpedia.org/

Lessons Learned from the Development of the ROLE PLE Framework 207

http://dx.doi.org/10.1007/978-3-319-02399-1_2
http://dbpedia.org/


• The ROLE Requirement Bazaar16 (Renzel et al. 2013) uses the data to support

the requirements elicitation and negotiation process being part of the ROLE

Social Requirements Engineering approach. The ROLE Requirement Bazaar is a

collaborative social platform where users can illicit their needs and wishes to

developers who can extract requirements for future implementation.

Widgets and Tools

One major problem regarding the adoption of ROLE in new test beds and increas-

ing the number of users was the limited number of widgets that were available.

One approach to overcome this problem is to enable a very simple transforma-

tion of existing Web resources into widgets (Ullrich et al. 2013). This transforma-

tion can be done by developers through the usage of widget templates as well as by

non-technical people with the help of an authoring tool. Both solutions support the

same ROLE technologies, namely the capturing of interactions via CAM and the

possibility to rate the widgets. Interactions are captured on a very generic level:

basically, whenever a student uses a Web application integrated into a widget for a

period longer than five seconds, then the widget sends out CAM event of the type

‘used’. Of course, a developer can refine the interactions, when required.

The ‘widgetisation’ of a Web application is simplified through the usage of a

template and through JavaScript libraries that can be included in (existing) widgets.

The template defines a widget that embeds the Web application via the iframe

HTML element. This has the advantage that the original Web application does not

need to be modified. In case, a widget of the Web application already exists, the

capturing of interactions via ROLE can be enabled by the inclusion of the

JavaScript library. This library uses IWC to send out the captured interactions,

which can be made persistent on the CAM service via the CAM Monitor widget as

described in section ‘Contextualised Attention Metadata’.

The proposed approach has been implemented and a widget template is available

in which the widget developers have to add the link to the Web page they want to

integrate. To extend an existing widget, one has to include several lines of

JavaScript code. The generation can be automated by using a set of shell scripts.

The scripts take a list of URIs as input and generate widgets for the URIs. This

reduces the authoring time to less than a minute. In summary, while this solution

works very well for advanced software developers, it is still too complex for the

average user. As an example, the code to extend an existing widget with ROLE

technologies looks as follows:

16 ROLE Requirements Bazaar, http://role-is.dbis.rwth-aachen.de:9090/BazaarFrontend/index.

html

208 S. Govaerts et al.

http://role-is.dbis.rwth-aachen.de:9090/BazaarFrontend/index.html
http://role-is.dbis.rwth-aachen.de:9090/BazaarFrontend/index.html


//Load two libraries for allowing the user to rate this gadget//and for

capturing interactions in CAM format $.getScript("http://widgets.

onlinesjtu.com/gadgets/libs/rating.js",

function(){

$.getScript(

"http://widgets.onlinesjtu.com/gadgets/libs/interactioncapture.

js",

function(){

var rating ¼ new ROLE_module.rating

("#importedGadget");

var interactioncapture ¼
new ROLE_module.interactioncapture

("#importedGadget");

})

}

);

The first lines load the libraries. The functionality is activated by creating the

appropriate objects. In the example, #importedGadget specifies the HTML element

to which the interaction capturing and rating functionality should be attached

(typically a div element, which is the parent of the iframe element).

In addition to the simplification of the usage of the libraries, the Shanghai Jiao

Tong University (SJTU) created an authoring widget that allows teachers without

Web development expertise to generate widgets from existing Web resources. The

authoring widget asks users to input the URI of the Web application and add some

metadata. Then, the authoring tool generates and uploads the widget to a server.

Through an integration with the OpenSocial Moodle module (see section

‘OpenSocial Moodle Plugin’) users can create widgets without having to leave

the learning environment.

Thanks to these tools, SJTU was able to create several hundreds of very domain-

specific widgets for ROLE. Additional details on the SJTU test bed are presented in

Chap. 4.

ROLE and Open-Source Developer Communities

All technical partners of the ROLE project have been collaborating successfully to

create the ROLE framework. To foster this collaboration, various support mecha-

nisms were set up, consisting of management structures, sub-projects, development

software and developer meetings. This section elaborates on the developer collabo-

ration within the ROLE project and with open-source projects to disseminate ROLE

technologies.

Lessons Learned from the Development of the ROLE PLE Framework 209

http://widgets.onlinesjtu.com/gadgets/libs/rating.js
http://widgets.onlinesjtu.com/gadgets/libs/rating.js
http://widgets.onlinesjtu.com/gadgets/libs/interactioncapture.js
http://widgets.onlinesjtu.com/gadgets/libs/interactioncapture.js
http://dx.doi.org/10.1007/978-3-319-02399-1_4


The ROLE Developer Community

Technical cluster structure: To enable the assessment of requirements, exploration

of technologies, creation of early prototypes and their evaluation, the development

process was split up in consecutive sub-projects, each having its specific goals and

deadlines. In total there were five of such projects: the Christmas project (ended on

Christmas 2010), the Easter project (ended on Easter 2011), the Stonehenge project

(ended on December 22, 2011), the Gunpowder project (ended on January

31, 2012) and the Shori project (ended on January 31, 2013). By defining use

cases and goals for each project, the requirements and planning were defined. These

projects also allowed easier planning of evaluations. The longer projects (i.e. the

Gunpowder and Shori project) had a more elaborate planning phase and manage-

ment methodology. For the Gunpowder and Shori project we aimed to apply the

SCRUM (Schwaber 2004) and Kanban (Ladas 2009) methodology. But due to the

large, geographically dispersed team from different organisations, we opted for an

adapted version of SCRUM combined with Kanban, where one or two persons

would manage the development process and report progress to the ROLE general

assembly. The requirements and goals for the projects were often laid out in a face-

to-face developer meeting or developer camps (see below) and follow-up virtual

meetings. The project managers would then plan milestones (or sprints) often based

on evaluation deadlines and showcases at conferences. Certain topics had smaller

teams working on it in task forces, e.g. assessing a solution for authentication or

CAM. Bi-weekly technical virtual meetings were organised to discuss progress, and

to decide on technology and architecture choices. This setup allowed all developers

to work on their own tasks and be involved in the decision making, but also get an

overview of the current project status. Furthermore, it allowed the project managers

to follow up the progress and react quickly where needed. This approach was

received positive by developers, managers and general assembly. Next to this

methodology, the development was also assisted by software.

Development software: To support the developers and the management, several

software packages were set up. To provide access to and version control our source

code we experimented with Git17 and Subversion (SVN).18 Initially, Git on

GitHub19 was used, but at that time GitHub did not fulfil the requirements of the

project. To reduce the complexity, the source code was migrated to Subversion.20

At the end of the project, the source code was migrated again to GitHub,21 since

GitHub has a more flexible scheme where any external developer can reuse the

source code without any intervention from the repository owner. Whereas

17Git, http://git-scm.com/
18 Subversion, http://subversion.tigris.org/
19 GitHub, https://github.com/
20 The Subversion repository is available on Sourceforge at http://sourceforge.net/projects/role-

project/
21 The ROLE GitHub repository is available at https://github.com/organizations/ROLE

210 S. Govaerts et al.

http://git-scm.com/
http://subversion.tigris.org/
https://github.com/
http://sourceforge.net/projects/role-project/
http://sourceforge.net/projects/role-project/
https://github.com/organizations/ROLE


Sourceforge still requires management by a ROLE partner. To manage the projects,

milestones and bug and issue tracking, Atlassian JIRA22 was used. Tasks, feature

requests and issues were collected in JIRA and assigned to projects and milestones.

Open tasks and issues were discussed in the technical meetings. Overall, our JIRA

experience was quite positive, as it enabled a quick overview of the progress and

future work for developers and managers. Clearly, to have a consistent and up-to-

date overview, developers have to be committed to report their work in JIRA.

Developer camps: During the project period, three developer camps were

organised. Originally, the developer camps were meant for internal developers to

discuss the overall ROLE architecture and technical solutions, and plan the pro-

jects. During the first developer camp, a shared vision of the ROLE objectives was

created. At the second and third developer camp, external experts were invited to

provide feedback on the architecture, identify missing use cases and requirements

and provide a broader scope on recent research results that could be applied in

ROLE. At the third developer camp (November 2011), we invited a larger group of

experts, presented the current status of the ROLE framework and had a small

developer competition to develop widgets for the platform. This was only possible

at this time, because the implementation was mature enough. This developer

competition was good both for dissemination to research and open-source projects

(e.g. Apache RAVE), and for getting feedback from external developers on the

ROLE APIs and documentation. Later we organised four more widget competitions

that were open to the public. In general, the developer camps were a good platform

to collaborate with the whole ROLE technical team and external experts for a

couple of days.

Contributing ROLE Software to Open-Source Projects

Several components and specifications of the ROLE framework were integrated in

other open-source projects. This strategy enables further uptake and development of

the research results of the ROLE project. This section highlights some of the

contributions to the open-source community.

OpenSocial and Apache Shindig: In order to standardise the OpenSocial space

extension (see section ‘Spaces’), EPFL worked with the OpenSocial community for

the specification and with the Apache Shindig community for the reference imple-

mentation of the specification. The communication with both communities happens

through mailing lists. After our specification proposal was presented on the mailing

list, it received very positive feedback and representatives of several companies

showed interest in the extension for use in their products. After several discussions

and refinements of the proposal, the work on the specification draft started. Typi-

cally, the procedure to get a proposal accepted is as follows: First, a patch to the

22Atlassian JIRA, http://www.atlassian.com/software/jira

Lessons Learned from the Development of the ROLE PLE Framework 211

http://www.atlassian.com/software/jira


OpenSocial specification has to be written. Second, the proposal has to be

implemented in an open source, publicly available platform, e.g. Apache Shindig.

Finally, when the proposal is finalised, the community votes on the final inclusion

of the draft into the specification. Consequently, ROLE wrote a patch for the

OpenSocial specification and extended Apache Shindig, which was shared with

the OpenSocial community.

When we started our proposal, the OpenSocial community was finalising

OpenSocial version 2.0. Thus, initially our proposal would be incorporated in the

next version, 2.5. However, later the decision of the community was to have only

limited changes in 2.5 and leave all larger revisions for the upcoming version 3.0.

Hence, due to the large changes that our proposal would cause, it was decided to

postpone its inclusion and it was only incubated in OpenSocial 2.5. Because of

other changes in the specification of OpenSocial 3.0, our proposal had to be

adapted. Eventually, the process that seemed open and efficient turned out to be

quite time-consuming. Currently (December, 2013), the proposal is still on the road

map for the OpenSocial 3.0. The patch for the specification is ready and the code for

Apache Shindig is available. Once the work on the OpenSocial 3.0 is started, the

patch should be evaluated and voted upon final inclusion into the newest version of

the specification.

However, adding a proposal into the specification does not immediately guar-

antee that it can be used in all OpenSocial platforms. To be able to use the space

proposal in widgets and to enable interoperability with other OpenSocial platforms,

all platforms have to implement the latest version of the specification. There can be

latency, since it takes time to upgrade to newer versions of OpenSocial.

Apache Rave: As mentioned in the introduction section, Apache RAVE is an

open-source mash-up platform with similar functionality as the ROLE framework.

Therefore, it was a very interesting project to contribute to. Technical ROLE

partners have joined two Apache RAVE Hackathons in the Netherlands to present

our work and discuss collaboration. The RAVE community received our concepts

and implementation enthusiastically. Their main interest was in our IWC compo-

nent, the space concept and our Linked Data-based APIs to retrieve and store data in

the PLE. As the space specification proposal was already submitted to the

OpenSocial community, ROLE decided to propose the two other components to

the RAVE community. The process to achieve this is quite similar to the

OpenSocial procedure. One has to announce the idea on the public mailing list of

Apache Rave, where the idea and its specification can be openly discussed. The

next phase is to provide an implementation of the component in RAVE and submit a

patch. This patch will be reviewed by the community and after acceptance can be

included in upcoming milestones. At the time of writing, both proposals have not

yet been accepted. We hope to get approval of the RAVE community in the near

future.

212 S. Govaerts et al.



Strophe.js: The parts of the IWC component have been contributed to the open-

source JavaScript XMPP library, named Strophe.js.23 We mainly contributed our

implementation of the XMPP protocol over WebSockets.24 This makes the library

more efficient as data can be efficiently pushed from server to client and long

polling is no longer necessary.

Discussion and Conclusion

This chapter presented the architecture of the ROLE framework and the platforms

where this framework has been integrated. The ROLE framework provides several

components to enable responsive open PLEs, such as IWC, automated user activity

tracking, collaborative spaces and authentication and authorisation services to

protect data. These components provide the basis for real-time communication

between widgets and users and automatic user activity tracking from tools and

services. To evaluate the usability and usefulness of the ROLE philosophy and the

ROLE framework, we have integrated the ROLE framework in various platforms,

such as Moodle, CLIX (Govaerts et al. 2011; Rensing et al. 2013), Graasp and the

ROLE SDK. These platforms have been used in various real-world evaluation

settings (Govaerts et al. 2011), which have been documented in Chaps. 4, 5, 6

and 7.

In general, we can conclude that with the ROLE framework we were able to

meet the project requirements and support the test beds. The birth of the Apache

RAVE project with very similar goals indicates the interest and usefulness of the

ROLE philosophy. Furthermore, the framework produced several components that

were of interest to other open-source projects. Some of these open-source contri-

butions have been completed, while others are still in progress. Additionally, results

of the ROLE framework will be reused and extended in other research projects. For

instance, the ROLE Widget Store will be reused in the Go-Lab project25 as a

repository of apps and online laboratories to enable teachers to assemble learning

environments with online laboratories for inquiry-based learning. Additionally,

Go-Lab will also use Graasp and the OpenSocial Spaces specification to enable

inquiry-based learning spaces for STEM education at school. On the other hand,

researchers of the Learning Layers project26 are using and extending the ROLE

SDK as their learning platform (Kovachev et al. 2013). As mentioned, the ROLE

SDK is mainly meant for developers to extend their existing learning environments

23 Strophe.js, http://strophe.im/strophejs/
24WebSocket, http://www.websocket.org/
25 Go-Lab, http://www.go-lab-project.eu/
26 Learning Layers, http://learning-layers.eu/

Lessons Learned from the Development of the ROLE PLE Framework 213

http://dx.doi.org/10.1007/978-3-319-02399-1_4
http://dx.doi.org/10.1007/978-3-319-02399-1_5
http://dx.doi.org/10.1007/978-3-319-02399-1_6
http://dx.doi.org/10.1007/978-3-319-02399-1_7
http://strophe.im/strophejs/
http://www.websocket.org/
http://www.go-lab-project.eu/
http://learning-layers.eu/


or extend the ROLE SDK itself to support their requirements. To support this,

developers can easily contribute or fork the ROLE SDK GitHub repository.27 We

hope that in this way large parts of our efforts will be used beyond the end of the

ROLE project.

Acknowledgments This research is funded by the European Commission’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement no 231396 (ROLE). Katrien Verbert is a

Postdoctoral Fellow of the Research Foundation—Flanders (FWO).

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

References

Ashley H, Corbett J, Jones D, Garside B, Rambaldi G. Change at hand: Web 2.0 for development.

Participatory Learning and Action. 2009;59:8–20(13).

Birman KP, Joseph TA. Exploiting virtual synchrony in distributed systems. In: ‘SOSP’87:

Proc. of the 11th ACM Symp. on Operating Systems Principles; 1987. p. 123–38.

Bogdanov E, Salzmann C, Gillet D. Contextual spaces with functional skins as OpenSocial

extension. In: 4th International conference on advances in computer-human interactions;

2011. p. 158–63.

Bogdanov E, Limpens F, Li N, El Helou S, Salzmann C, Gillet D. A social media platform in

higher education. In: IEEE Global Engineering Education Conference (EDUCON); 2012.

Bogdanov E, Ullrich C, Isaksson E, Palmr M, Gillet D. From LMS to PLE: a step forward through

OpenSocial apps in Moodle. In: The 11th International Conference on Web-based Learning

ICWL; 2012.

Butoianu V, Vidal P, Verbert K, Duval E, Broisin J. User context and personalized learning: a

federation of contextualized attention metadata. J Univers Comput Sci. 2010;16(16):

2252–2271. https://lirias.kuleuven.be/handle/123456789/289802

Caceres M.Widget packaging and configuration, W3C working draft 22March; 2011 (n.d.). http://

www.w3.org/TR/widgets/

Chudnovskyy O, Nestler T, Gaedke M, Daniel F,Fernández-Villamor JI, Chepegin V, Fornas JA,

Wilson S, Kögler C, Chang H. End-user-oriented telco mashups: the omelette approach. In:

Proceedings of the 21st international conference companion on World Wide Web, WWW’12

Companion. New York: ACM; 2012. p. 235–38. http://doi.acm.org/10.1145/2187980.2188017

Dalsgaard C. Social software: E-learning beyond learning management systems. Eur J Open

Distance E-learn (n.d.). 2006(2).

David P-C, Ledoux T. Wildcat: a generic framework for context-aware applications. In: Pro-

ceedings of the 3rd international workshop on Middleware for pervasive and ad-hoc comput-

ing, MPAC’05, ACM, New York; 2005. p. 1–7. http://doi.acm.org/10.1145/1101480.1101483

DCMI Usage Board. DCMI metadata terms, DCMI recommendation. Dublin Core Metadata

Initiative; 2006. http://dublincore.org/documents/2006/12/18/dcmi-terms/

Dragunov AN, Dietterich TG, Johnsrude K, McLaughlin MR, Li L, Her-locker JL. Tasktracer: a

desktop environment to support multi-tasking knowledge workers. In: IUI; 2005. p. 75–82.

27 The ROLE GitHub repository is available at https://github.com/organizations/ROLE

214 S. Govaerts et al.

https://lirias.kuleuven.be/handle/123456789/289802
http://www.w3.org/TR/widgets/
http://www.w3.org/TR/widgets/
http://doi.acm.org/10.1145/2187980.2188017
http://doi.acm.org/10.1145/1101480.1101483
http://dublincore.org/documents/2006/12/18/dcmi-terms/
https://github.com/organizations/ROLE


Ebner M, Taraghi B. Personal learning environment for higher education a first prototype. In:

World conference on educational multimedia, hypermedia and telecommunications 2010.

Chesapeake: AACE; 2010. p. 1158–66.

Eugster PT, Felber PA, Guerraroui R, Kermarrec A-M. The many faces of publish/subscribe.

ACM Comput Surv. 2003;35(2):114–31.

Friedrich M, Wolpers M, Shen R, Ullrich C, Klamma R, Renzel D, et al. Early results of

experiments with responsive open learning environments. J Univers Comput Sci. 2011;

17(3):451–71.

Fruhmann K, Nussbaumer A, Albert D. A psycho-pedagogical framework for self-regulated

learning in a responsive open learning environment In: Proc. of the International Conference

eLearning Baltics Science (eLBa Science 2010), Rostock, Germany; 2010.

Gillet D, Bogdanov E. Personal learning environments and embedded contextual spaces as

aggregator of cloud resources. In: Proceedings of the 1st International workshop on cloud

education environments (WCLOUD 2012); 2012.

Glahn C. Using the adl experience api for mobile learning, sensing, informing, encouraging,

orchestrating. In: 2013 Seventh international conference on Next generation mobile apps,

services and technologies (NGMAST); 2013. p. 268–73.

Govaerts S, Verbert K, Dahrendorf D, Ullrich C, Schmidt M, Werkle M, Chatterjee A,

Nussbaumer A, Renzel D, Scheffel M, Friedrich M, Santos Odriozola JL, Duval E, Law

EL-C. Towards responsive open learning environments: the ROLE Interoperability frame-

work. In: Delgado Kloos C, Gillet D, Crespo Garcia RM, Wild F, Wolpers M (eds) Towards

ubiquitous learning—Proceedings of 6th European conference of technology enhanced learn-

ing, EC-TEL 2011. Berlin: Springer; 2011. p. 125–38. https://lirias.kuleuven.be/handle/

123456789/319048

Guo Y, Rui J, Zhou H. Pervasive and personal learning environment using service-oriented

architecture: a framework design. In: International conference on networking and distributed

computing; 2010. p. 153–5.

Health T, Bizer C. Linked data: evolving the web into a global data space (book) (n.d.). http://

linkeddatabook.com/editions/1.0/

Henricksen K, Indulska J. Developing context-aware pervasive computing applications: models

and approach. Pervas Mob Comput 2006;2(1), 37–64. http://dx.doi.org/10.1016/j.pmcj.2005.

07.003

Hickson I. HTML5 web messaging. Working draft, W3C; 2011.

Hickson I. The web sockets API, Technical report, W3C. W3C Working Draft; 2009.

Isaksson E, Palmer M. OpenApplication specification (n.d.). https://docs.google.com/document/d/

1VReR5Aod7HyIAhBXRB_u9mY3vKdUHR9uXk7_w6KBGX0/preview

Isaksson E, Palmer M. Usability and inter-widget communication in PLEs. In: Proceedings of the

3rd Workshop on Mashup Personal Learning Environments; 2010.

Kovachev D, Renzel D, Nicolaescu P, Klamma R. Direwolf—distributing and migrating user

interfaces for widget-based web applications. In: Daniel F, Dolog P, Li Q (eds) Web engi-

neering, vol. 7977, Lecture notes in computer science. Berlin: Springer; 2013. p. 99–113.

http://dx.doi.org/10.1007/978-3-642-39200-9_10

Ladas C. Scrumban—essays on Kanban Systems for Lean Software development. Seattle: Modus

Cooperandi Press; 2009.

Maness JM. Library 2.0 theory: Web 2.0 and its implications for libraries. Webology. 2006;3(2).

Millard P, Saint-Andre P, Meijer R. XEP-0060: publish-subscribe. Technical report. XMPP

Standards Foundation; 2010. Draft Standard. http://xmpp.org/extensions/xep-0060.html

Mitchell-Wong J, Kowalczyk R, Roshelova A, Joy B, Tsai H. Opensocial: from social networks to

social ecosystem. In: Digital EcoSystems and Technologies conference, 2007. DEST‘07.

Inaugural IEEE-IES. p. 361–6.

Moffit J, Cestari E. An XMPP sub-protocol for WebSocket. Technical report, Internet engineering

taskforce; 2010. Draft Standard. http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-

00

Lessons Learned from the Development of the ROLE PLE Framework 215

https://lirias.kuleuven.be/handle/123456789/319048
https://lirias.kuleuven.be/handle/123456789/319048
http://linkeddatabook.com/editions/1.0/
http://linkeddatabook.com/editions/1.0/
http://dx.doi.org/10.1016/j.pmcj.2005.07.003
http://dx.doi.org/10.1016/j.pmcj.2005.07.003
https://docs.google.com/document/d/1VReR5Aod7HyIAhBXRB_u9mY3vKdUHR9uXk7_w6KBGX0/preview
https://docs.google.com/document/d/1VReR5Aod7HyIAhBXRB_u9mY3vKdUHR9uXk7_w6KBGX0/preview
 http://dx.doi.org/10.1007/978-3-642-39200-9_10
http://xmpp.org/extensions/xep-0060.html
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-00
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-00


Nussbaumer A, Berthold M, Dahrendorf D, Schmitz H-C, Kravcik M, Albert D. A mashup

recommender for creating personal learning environments. In: ICWL; 2012. p. 79–88.

Oliver N, Smith G, Thakkar C, Surendran AC. Swish: semantic analysis of window titles and

switching history. In: Proceedings of the 11th international conference on intelligent user

interfaces, IUI‘06, ACM, New York; 2006. p. 194–201. http://doi.acm.org/10.1145/1111449.

1111492

Paterson I, Smith D, Saint-Andre P, Moffitt J. XEP-0124: bidirectional-streams over synchronous

HTTP (BOSH), Technical report, XMPP Standards Foundation; 2010. http://xmpp.org/exten

sions/xep-0124.html

Pierce ME, Singh R, Guo Z, Marru S, Rattadilok P, Goyal A. Open community development for

science gateways with apache rave. In: Proceedings of the 2011 ACM workshop on gateway

computing environments, GCE’11, ACM, New York; 2011. p. 29–36. http://doi.acm.org/10.

1145/2110486.2110491

Rath AS, Devaurs D, Lindstaedt SN. Uico: an ontology-based user interaction context model for

automatic task detection on the computer desktop. In: Proceedings of the 1st Workshop on

context, information and ontologies’, CIAO‘09, ACM, New York; 2009. p. 8:1–8:10. http://

doi.acm.org/10.1145/1552262.1552270

Rensing C, Schwantzer S, Faltin N. Integration selbstgesteuerten ressourcen-basierten lernens in

eine durch instruktion geprägte lernumgebung. In: Andreas Breiter CR, Meier M

(ed) Proceedings der Pre-Conference Workshops der 11. e-Learning Fachtagung Informatik-

DeLFI 2013. Berlin: Logos. p. 69–70. ftp://ftp.kom.tu-darmstadt.de/papers/RSF13-1.pdf

Renzel D, Behrendt M, Klamma R, Jarke M. Requirements bazaar: Social requirements engineer-

ing for community-driven innovation. In: Proceedings of the 21st International requirements

engineering conference; 2013. p. 326–7.

Saint-Andre P. RFC 3920—ExtensibleMessaging and Presence Protocol (XMPP): Core, Technical

report; 2004a. Jabber Software Foundation. http://www.ietf.org/rfc/rfc3920.txt

Saint-Andre P. RFC 3921—Extensible Messaging and Presence Protocol (XMPP): instant mes-

saging and presence, Technical report; 2004b. Jabber Software Foundation. http://www.ietf.

org/rfc/rfc3921.txt

Saint-Andre P. XEP-0045: Multi-User Chat, Technical report. XMPP Standards Foundation; 2008.

Draft Standard. http://xmpp.org/extensions/xep-0045.html

Schmitz H-C, Kirschenmann U, Niemann K, Wolpers M. Contextualized attention metadata. In:

Roda C, editor. Human attention in digital environments. Cambridge: Cambridge University

Press; 2011. p. 186–209.

Schwaber K. Agile project management with scrum, best practices; 2004. Redmond: Microsoft

Press. http://books.google.be/books?id¼dJlqJfm8FM4C

Sire S, Paquier M, Vagner A, Bogaerts J. A messaging API for inter-widgets communication. In:

Proceedings of the 18th International Conference on World Wide Web, WWW’09. New York:

ACM; 2009. p. 1115–6.

Ullrich C, Borau K, Luo H, Tan X, Shen L, Shen R. Why Web 2.0 is good for learning and for

research: principles and prototypes. In: Proceedings of the 17th International world wide web

conference. New York: ACM; 2008. p. 705–14.

Ullrich C, Shen R, Borau K. Learning from learning objects and their repositories to create

sustainable educational app environments. In: IEEE International Conference on Advanced

Learning Technologies. Los Alamitos: IEEE Computer Society; 2013.

Vozniuk A, Govaerts S, Gillet D. Towards portable learning analytics dashboards. In: International

Conference on Advanced Learning Technologies; 2013. Los Alamitos: IEEE

Wilson S, Sharples P, Popat K, Griffiths D. Moodle wave: reinventing the VLE using widget

technologies. In: Proceedings of 2nd workshop mash-up personal learning environments

(MUPPLE’09). Workshop in conj. with 4th European Conference on Technology Enhanced

Learning (EC-TEL 2009): Synergy of disciplines; 2009. Berlin: Springer, p. 47–58.

216 S. Govaerts et al.

http://dx.doi.org/http://doi.acm.org/10.1145/1111449.1111492
http://dx.doi.org/http://doi.acm.org/10.1145/1111449.1111492
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://dx.doi.org/http://doi.acm.org/10.1145/2110486.2110491
http://dx.doi.org/http://doi.acm.org/10.1145/2110486.2110491
http://dx.doi.org/http://doi.acm.org/10.1145/1552262.1552270
http://dx.doi.org/http://doi.acm.org/10.1145/1552262.1552270
ftp://ftp.kom.tu-darmstadt.de/papers/RSF13-1.pdf
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3921.txt
http://www.ietf.org/rfc/rfc3921.txt
http://xmpp.org/extensions/xep-0045.html
http://books.google.be/books?id=dJlqJfm8FM4C
http://books.google.be/books?id=dJlqJfm8FM4C


Wolpers M, Martin G, Najjar J, Duval E. Attention metadata in knowledge and learning manage-

ment. In: Proceedings of I-Know 2006: 6th International Conference on Knowledge Manage-

ment; 2006. p. 1–8.

Wolpers M, Najjar J, Verbert K, Duval E. Tracking actual usage: the attention metadata approach.

Educ Technol Soc. 2007;3(10):106–21.

Yuan J. Liferay Portal 5. 2 Systems development, from technologies to solutions; 2009. Birmingham:

Packt Publishing. http://books.google.be/books?id¼OaR3JEZJz5EC

Lessons Learned from the Development of the ROLE PLE Framework 217

http://books.google.be/books?id=OaR3JEZJz5EC
http://books.google.be/books?id=OaR3JEZJz5EC

	Lessons Learned from the Development of the ROLE PLE Framework
	Introduction
	The Interoperability Framework
	The Architecture
	Inter-widget Communication
	Contextualised Attention Metadata
	Spaces
	Authentication and Authorisation

	ROLE Platforms
	The ROLE SDK
	Graasp
	OpenSocial Moodle Plugin
	The ROLE Widget Store

	Widgets and Tools
	ROLE and Open-Source Developer Communities
	The ROLE Developer Community
	Contributing ROLE Software to Open-Source Projects

	Discussion and Conclusion
	References


