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Abstract We deal with the Navier-Stokes equations set in a three-dimensional
axisymmetric bounded domain with non standard boundary conditions which
involve the normal component of the velocity and tangential component of
the vorticity. The axisymmetric property of the domain allows to reduce the
three-dimensional problem into a two-dimensional one. We write a variational
formulation with three independent unknowns: the vorticity, the velocity and the
pressure. For the discretization, we use the spectral element methods, which are
well-adapted here. We show the well-posedness of the obtained formulations and
we establish error estimates for the three unknowns which proves the convergence
of the method.

1 Introduction

We consider, in this paper, the Navier-Stokes problem set in a three-dimensional
axisymmetric bounded domain and provided with non standard boundary
conditions, which are given on the normal component of the velocity and tangential
component of the vorticity. This problem reads:
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8
ˆ̂
<

ˆ̂
:

���Qu C .Qu:r/Qu C r QP D Qf in Q̋ ;

divQu D 0 in Q̋ ;

Qu: Qn D 0 on @ Q̋ ;

curlQu ^ Qn D 0 on @ Q̋ :

(1)

where Q̋ is a bounded connected three-dimensional axisymmetric domain, the
generic point in Q̋ is given by cylindrical components .r; �; z/ 2 RC�� � �; �� �R.
� is the viscosity of the fluid, Qu D .ur ; u� ; uz/ the velocity, QP the pressure and
Qf is the data, which represent the density of body forces. When the data is

axisymmetric, problem (1) is equivalent to two decoupled systems [9]. In the first
one, the unknowns are the components ur and uz of the velocity and pressure P ,
we will focus on. The second is a Laplace problem where the unknown is the
velocity component u� .

At first, this problem was studied in [1] but in an unspecified bounded domain,
then it was taken again by Azaiez et al. [10] in a bounded domain included in R

2 or
R

3 in formulation .u; p/, though the formulation that we consider here deals with
three unknowns: vorticity, velocity and pressure. The first numerical analysis relying
on this formulation has been realized in [13] and [8] for finite element methods and
it has been extended to the case of spectral methods in [3] and [10], using analogues
of Nédélec’s finite elements [6].

The discretization method which we use here is the spectral element methods,
which are well adapted in domain decomposition. The main tool for the analysis
of the nonlinear discrete problem is the theorem of Brezzi, Rappaz and Raviart [5].
We first prove the existence of a discrete solution. Then, by combining the results
in [5, 11] and [7], we establish error estimates between the continuous solution and
the discrete one, for the three unknowns.

The paper is organized as follows. In the next section, we introduce the varia-
tional formulation corresponding to the Navier-Stokes problem and we derive the
existence of a solution. In Sect. 3, we study the discrete problem and we prove the
well-posedness of this problem. We derive error estimates between the continuous
solution and the discrete one in Sect. 4.

2 The Vorticity, Velocity and Pressure Formulation

The domain Q̋ is obtained by rotating a two-dimensional domain ˝ around the axis
fr D 0g. We note by �0 the intersection of the boundary @˝ with the axis r D 0,
� D @˝n�0 and by n the normal to � in the plane .r; z/. We introduce the vorticity
! as a new unknown: ! D curlu. The bidimensional problem resulting from (1)
reads:
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8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�curlr! C ! � u C rP D f in ˝;

divru D 0 in ˝;

! D curlu in ˝;

u � n D 0 on �;

! D 0 on �:

(2)

The operators divr, curl and curlr are given by: for u D .ur ; uz/,
divru D @r ur Cr�1ur C@zuz and curlu D @r uz �@zur . And for any scalar function ',
we define curlr' D �

@z'; �r�1@r .r'/
�
. We refer to [11], for details.

In order to write the variational formulation of problem (2), we define the
following weighted Sobolev spaces: For all s in Z and m in N:

L2
s .˝/ D

�

v W ˝ ! R measurable =

Z

˝

jv.r; z/j2rsdrdz < 1
�

H m
1 .˝/ D ˚

v 2 L2
1.˝/ = @l

r@
m�l
z v 2 L2

1.˝/ 80 � l � m
�

;

H1.curl; ˝/ D ˚
v 2 L2

1.˝/2 = curlv 2 L2
1.˝/

�
;

H1.divr ; ˝/ D ˚
v 2 L2

1.˝/2 = divr v 2 L2
1.˝/

�
;

H1̆ .divr; ˝/ D fv 2 H1.divr; ˝/= v � n D 0 on � g ;

H1.curlr ; ˝/ D ˚
' 2 L2

1.˝/ = curlr' 2 L2
1.˝/2

�
;

V 1
1 .˝/ D H 1

1 .˝/ \ L2�1.˝/ and V 1
1˘.˝/ D ˚

v 2 V 1
1 .˝/ = v D 0 on �

�
:

The spaces V 1
1 .˝/, H1.divr ; ˝/ and H1.curlr ; ˝/ are respectively provided with:

kvkV 1
1 .˝/ D .k@r vk2

L2
1.˝/

C k@zvk2

L2
1.˝/

C kvk2

L2
�1.˝/

/
1
2 ;

kvkH1.divr ;˝/ D
�
kvk2

L2
1.˝/

C kdivr vk2

L2
1.˝/

� 1
2

;

k'kH1.curlr ;˝/ D
�
k'k2

L2
1.˝/

C kcurlr'k2

L2
1.˝/2

� 1
2

:

We note that the two norms k:kH1.curlr ;˝/ and k:kV 1
1 .˝/ are equivalent on V 1

1 .˝/.
The variational problem reads:
Find .!; u; p/ 2 V 1

1˘.˝/ � H1̆ .divr; ˝/ � L2
1;0.˝/ such that:

8
<

:

a.!; uI v/ C K.!; uI v/ C b.v; p/ D hf; vi ; 8v 2 H1̆ .divr; ˝/;

b.u; q/ D 0; 8q 2 L2
1;0.˝/;

c.!; u; '/ D 0; 8' 2 V 1
1˘.˝/:

(3)
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where h:; :i is the duality pairing between H1̆ .divr; ˝/ and its dual space. The forms
a.:; :I :/, b.:; :/ and c.:; :I :/ are defined by:

a.!; u; �/ D �

Z

˝

.�:curlr!/.r; z/rdrdz; b.v; q/ D �
Z

˝

.divrv/q.r; z/rdrdz;

c.!; u; '/ D
Z

˝

!.r; z/'.r; z/rdrdz �
Z

˝

.u:curlr'/.r; z/rdrdz:

and K is the trilinear form given by: K.!; uI v/ D
Z

˝

.! � u/ :v.r; z/rdrdz:

Using density results, we first prove that problems (2) and (3) are equivalent. To
prove the existence and the uniqueness of the solution of problem (3), we define the
two following kernels V and W :

V D ˚
v 2 H1̆ .divr; ˝/; 8q 2 L2

1;0.˝/ = b.v; q/ D 0
�

;

W D ˚
.#; v/ 2 V 1

1˘.˝/ � V = 8' 2 V 1
1˘.˝/; c.#; vI '/ D 0

�
;

and the reduced problem: Find .!; u/ in W such that:

8v 2 V; a.!; uI v/ C K.!; uI v/ D hf; vi : (4)

By using standard arguments and properties on the linear forms, proven in [3]
and [11], we can prove the existence and uniqueness of a solution for problem (4).
So for any function f in H1̆ .divr; ˝/0 such that

c˘��2 kf kH ˘

1 .divr;˝/0

< 1; (5)

Problem (3) admits a unique solution .!; uI p/ in V 1
1˘.˝/�H1̆ .divr; ˝/�L2

1;0.˝/,
such that

k!kV 1
1 .˝/ C kukH1.divr;˝/ C ��1 kpkL2

1.˝/

� c��1 kf kH ˘

1 .divr;˝/0

�
1 C ��2 kf kH ˘

1 .divr;˝/0

�
: (6)

3 Discrete Navier-Stokes Problem

From now on, we assume that ˝ is the rectangle �0; 1Œ���1; 1Œ and admits a partition
without overlap into a finite number of subdomains:

˝ D
K[

kD1

˝k and ˝k \ ˝k0 D ; ; 1 � k < k0 � K; such that:
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1. Each ˝k , 1 � k � K is a rectangle.
2. The intersection between two subdomains ˝k and ˝k0 , 1 � k < k0 � K , if not

empty, is either a vertex or a whole edge of both ˝k and ˝k0 .

The discrete spaces DN , CN and MN which approximate, respectively,
H1̆ .divr; ˝/, V 1

1˘.˝/ and L2
1;0.˝/ are defined from local discrete ones, for an

integer N � 2 and 1 � k � K , by:
DN D ˚

vN 2 H1̆ .divr; ˝/I vN j˝k
2 PN;N �1.˝k/ � PN �1;N .˝k/; 1 � k � K

�
,

CN D ˚
'N 2 V 1

1˘.˝/I 'N j˝k
2 PN .˝k/; 1 � k � K

�
and

MN D ˚
qN 2 L2

1;0.˝/I qN j˝k
2 PN �1.˝k/; 1 � k � K

�
:

where Pn;m .˝k/ is the space of restrictions to ˝k of polynomials with degree � n

with respect to r and � m with respect to z, for any nonnegative integers n and m.
To calculate the integrals involved in the discrete forms, we define .�i ; 	i /,
0 � i � N the nodes and weights of the Gauss-Lobatto quadrature formula on
Œ�1; 1� for the measure d
 and .
j ; !j /, 1 � j � N C 1 their analogues for the
measure .1 C 
/d
, see [9] for a more explicit definition, we need two different
quadrature formulas. The quadrature formula on Œ�1; 1� is given by:

8� 2 P2N �1.Œ�1; 1�/;

Z 1

�1

�.�/d� D
NX

iD0

�.�i /	i ; (7)

and by setting r D 1
2
.1C
/, we define the quadrature formula with the measure rdr:

8� 2 P2N �1.Œ0; 1�/;

Z 1

0

�.r/rdr D 1

4

N C1X

j D1

�.rj /!j : (8)

We denote by .˝k/1�k�K0 the rectangles such that @˝k \ �0 ¤ ¿ and by
.˝k/K0C1�k�K those such that @˝k \ �0 D ¿. Denoting by Fk the affine mapping
that sends �0; 1Œ�� � 1; 1Œ onto ˝k, 1 � k � K0 and sends � � 1; 1Œ2 onto ˝k ,
K0 C 1 � k � K . We define the discrete scalar product: For all functions u and v
such that uk D uj˝k

and vk D vj˝k
are continuous on ˝k , 1 � k � K , by:

..u; v//N D
K0X

kD1

mes.˝k/

4

NX

iD0

N C1X

j D1

u ı Fk.rj ; �i /:v ı Fk.rj ; �i /	i !j :

C
KX

kDK0C1

mes.˝k/

4

NX

iD0

NX

j D0

u ı Fk.�j ; �i /:v ı Fk.�j ; �i /	i 	j :

We denote by I k
N , 1 � k � K , the Lagrange interpolation operators associated with

the nodes Fk.rj ; �i /1�j �N C1;0�i�N for 1 � k � K0 and with Fk.�j ; �i /0�j;i�N

for K0 C 1 � k � K , with values in PN .˝k/, 1 � k � K . For each
function � continuous on N̋ , IN � denotes the function such that IN �j˝k

D I k
N �,
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1 � k � K . Using the Galerkin method with numerical integration, we build from
the continuous problem (3) the following discrete problem:

Find .!N ; uN I pN / in CN � DN � MN such that

8
ˆ̂
<

ˆ̂
:

aN .!N ; uN ; vN / C KN .!N ; uN ; vN /;

CbN .vN ; pN / D ..f; vN //N ; 8vN 2 DN ;

bN .uN ; qN / D 0; 8qN 2 MN ;

cN .!N ; uN ; 'N / D 0; 8'N 2 CN :

(9)

where the bilinear forms aN .:; :I :/, bN .:; :/ and cN .:; :I :/ are defined by:
aN .!N ; uN I vN / D �..curlr!N ; vN //N , bN .vN ; qN / D �..divrvN ; qN //N ,
cN .!N ; uN ; 'N / D ..!N ; 'N //N � ..uN ; curlr'N //N , while the trilinear form
KN .:; :I :/ is given by: KN .!N ; uN I vN / D ..!N � uN ; vN //N . In order to prove
the well-posedness of the discrete problem, we need to introduce the kernels:

VN D fvN 2 DN =8qN 2 MN ; bN .vN; qN / D 0g ;

WN D f.!N ; uN / 2 CN � VN =8�N 2 CN ; cN .!N ; uN ; �N / D 0g :

We observe that, for any solution .!N ; uN ; pN / of problem (9), the pair .!N ; uN / is
a solution of the reduced problem: Find .!N ; uN / 2 WN such that:

8vN 2 VN ; aN .!N ; uN I vN / C KN .!N ; uN I vN / D ..f; vN //N : (10)

We recall from [4] and [7] that the bilinear form aN .:; :I :/ satisfies, on the discrete
spaces, a positivity property and an inf � sup condition with constants independent
of N . We also refer to [4], for a discrete inf � sup condition on the form bN .:; :/.
Using the fixed point theorem of Brower, we can prove the wellposedness of
problem (10) and then derive the:

Theorem 1. For any data f continuous on ˝, the discrete problem (9) admits a
solution .!N ; uN I pN / in CN � DN � MN . Moreover,.!N ; uN / satisfies:

k!N kL2
1.˝/ C kuN kL2

1.˝/2 � c��1 kIN f kL2
1.˝/2 : (11)

4 Error Estimates

We now intend to prove an error estimate between the solutions of problems (3)
and (9). Since the error analysis of the discrete problem relies on the theory of
Brezzi, Rappaz and Raviart [5], we express both problems (4) and (10) in a different
form and we set X D V 1

1˘.˝/ � .V \ H1.curl; ˝//. We denote by S the linear
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operator of Stokes which for any f in the dual space of H1̆ .divr; ˝/, associates the
solution .!; u/ of the following reduced problem:
Find .!; u/ 2 W such that 8v 2 V; a.!; uI v/ D hf; vi.
We introduce the mapping G defined from X into the dual space of H1̆ .divr; ˝/ by:
8.!; u/ 2 X; 8v 2 H1̆ .divr; ˝/; hG.!; u/; vi D K.!; uI v/ � hf; vi.
Then, problem (4) can be equivalently written as: Find .!; u/ 2 X such that

.!; u/ C SG.!; u/ D 0: (12)

Similarly, we define the discrete space XN D CN � .VN \ H1.curl; ˝//. We thus
define the discrete Stokes operator SN : for any f in the dual space of H1̆ .divr; ˝/,
SN f denotes the solution .!N ; uN / of problem: Find .!N ; uN / 2 WN such that

8vN 2 VN ; aN .!N ; uN I vN / D hf; vN i : (13)

The well-posedness of problem (13) is proven in [4], for a slightly different right-
hand side. Finally, we consider the mapping GN defined from XN in the dual space
of DN by 8.!N ; uN / 2 XN ; 8vN 2 DN

hGN .!N ; uN /; vN i D KN .!N ; uN I vN / � ..f; vN //N : (14)

Problem (10) can equivalently be written as: Find .!N ; uN / 2 XN such that

.!N ; uN / C SN GN .!N ; uN / D 0: (15)

Using analogous arguments to those in [4], we easily derive that the operator
SN satisfies a stability property, with a constant independent of N and that, the
following error estimate holds for all f in H sC1

1 .˝/ � H s
1 .˝/2, s > 1,

k.S � SN /f kX � cN�s kSf k
H

sC1
1 .˝/�H s

1 .˝/2 : (16)

We are led to make the following assumptions. Here, D is the differential operator.

Assumption 1. The triplet .!; u; p/ is a solution of the problem (3) such that the
operator Id C SDG.!; u/ is an isomorphism of X .

This assumption can equivalently be written as: For any data g in H1̆ .divr; ˝/0, the
linearized problem
Find .#; w; r/ in V 1

1˘.˝/ � �
H1̆ .divr; ˝/ \ H1.curl; ˝/

� � L2
1;0.˝/ such that:

8
ˆ̂
<

ˆ̂
:

a.#; w; v/ C K.!; w; v/C K.#; uI v/

Cb.v; r/ D hg; vi ; 8v 2 H1̆ .divr; ˝/ \ H1.curl; ˝/;

b.w; q/ D 0; 8q 2 L2
1;0.˝/;

c.#; w; '/ D 0; 8' 2 V 1
1˘.˝/:

(17)
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has a unique solution with norm bounded by a constant times kgkH ˘

1 .divr;˝/. It yields
the local uniqueness of the solution .!; u; p/ but is much less restrictive than the
global uniqueness condition. We need to prove a few technical results in order to
derive the error estimate. For this, we make the:

Assumption 2. The solution .!; u; p/ of problem (3) satisfying Assumption 1,
belongs to H sC1

1 .˝/ � H s
1 .˝/2 � H s

1 .˝/, s > 1.

Then, we prove:

Lemma 1. For any .!N ; uN I vN / in CN � DN � DN ;

jK.!N ; uN I vN /j � c1N k!N kV 1
1 .˝/ kuN kL2

1.˝/2 kvN kL2
1.˝/2 ; (18)

jKN .!N ; uN I vN /j � c2N k!N kV 1
1 .˝/ kuN kL2

1.˝/2 kvN kL2
1.˝/2 : (19)

the constants c1 and c2 are independent of N .

Proof. According to the Cauchy-Schwarz inequality we have:

jK.!N ; uN I vN /j D
ˇ
ˇ
ˇ
ˇ

Z

˝

.!N � uN /:vN rdrdz

ˇ
ˇ
ˇ
ˇ � k!N kL4

1.˝/ kuN kL4
1.˝/2 kvN kL2

1.˝/2 :

Using the inclusion of V 1
1 .˝/ in L4

1.˝/ and inequality:

8zN 2 PN .˝/; kzN kL4
1.˝/ � cN kzN kL2

1.˝/ ; (20)

see [2], we have the first previous result. For the second one, we have with obvious
notation,

KN .!N ; uN I vN / D ..!N uNr ; vN z//N � ..!N uN z; vNr//N

D ..IN .!N uNr/; vN z//N � ..IN .!N uN z/; vNr//N :

By combining the Cauchy-Schwarz inequalities with inequality .3:7/ in [7],
we obtain

jKN .!N ; uN I vN /j � kIN .!N uN /kL2
1.˝/2 kvN kL2

1.˝/2 :

Then, we use the following result which can be derived from its one-dimensional
analogue [7],

8'M 2 PM .˝k/;
	
	I k

N 'M

	
	

L2
1.˝k/

� c.1 C M

m.N /
/2 k'M kL2

1.˝k/ ;
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with m.N / D E..1 C ı/N / and ı a real number between 0 and 1. We conclude,
by using the inequalities (20) and k!N uN kL2

1.˝/2 � k!N kL4
1.˝/ kuN kL4

1.˝/2 , together

with the continuous inclusion of V 1
1 .˝/ in L4

1.˝/, that

k!N uN kL2
1.˝/2 � cN k!N kV 1

1 .˝/ kuN kL2
1.˝/2 :

Remark 1. Similar arguments lead to estimate (18), if at most two of the three
functions !N , uN and vN are replaced by their analogues ! in V 1

1˘.˝/, u and v
in D.˝/.

Remark 2. Under Assumption 2 and taking QN D E.2ıN �1/, we can find . Q!N ; QuN /

in C QN � V QN such that:

k.! � Q!N ; u � QuN /kX � c QN �s k.!; u/k
H

sC1
1 .˝/�H s

1 .˝/2 ; s > 1: (21)

Note that estimate (21) makes sense only when QN � 2.

Lemma 2. If Assumptions 1 and 2 hold, there exists an integer N0 such that, for all
N � N0, the operator Id C SN DGN . Q!N ; QuN / is an isomorphism of XN . Moreover,
the norm of its inverse operator is bounded independently of N .

Proof. We can write that:

Id C SN DGN . Q!N ; QuN / D Id C SDG.!; u/ � .S � SN /DG.!; u/

� SN .DG.!; u/ � DG. Q!N ; QuN // � SN .DG. Q!N ; QuN / � DGN . Q!N ; QuN //: (22)

It follows from the definition of G and GN that, for all .�N ; !N / in XN and vN

in VN :
hDG. Q!N ; QuN /:.�N ; wN /; vN i D K. Q!N ; wN I vN / C K.�N ; QuN I vN /; and
hDGN . Q!N ; QuN /:.�N ; wN /; vN i D KN . Q!N ; wN I vN / C KN .�N ; QuN I vN /:

Thanks to the choice of . Q!N ; QuN /, the term SN .DG. Q!N ; QuN / � DGN . Q!N ; QuN //

vanishes. Then, using the stability of SN , we can derive that:

kSN .DG.!; u/ � DG. Q!N :Qu//:.�N ; wN /kX

� c sup
vN 2VN

K.! � Q!N ; wN ; vN / C K.�N ; u � QuN ; vN /

kvN kL2
1.˝/2

:

By Lemma 1, we have:

kSN .DG.!; u/ � DG. Q!N :QuN //:.�N ; wN /kX

� cN
�
k! � Q!N kV 1

1 .˝/ kwN kL2
1.˝/2 C k�N kV 1

1 .˝/ ku � QuN kL2
1.˝/2

�
: (23)
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Estimate (21) leads to

lim
N !C1 kSN .DG.!; u/ � DG. Q!N :QuN //kL.XN / D 0: (24)

Finally, it follows from Assumption 2 that, when .�; w/ runs through the unit ball
of X , DG.!; u/.�; w/ belongs to a compact subset of L2

1.˝/2. So, the next property
is derived from the stability of SN and from inequality (16) by standard arguments:

lim
N !C1 k.S � SN / DG.!; u/kL.XN / D 0: (25)

Thanks to Assumption 1, for � D
	
	
	.Id C SDG.!; u//�1

	
	
	

L.X/
, and by choosing N

large enough so that the quantities in (24) and (25) are smaller than 1
4�

, we obtain

the desired property with
	
	
	.Id C SN DGN . Q!N ; QuN //�1

	
	
	

L.XN /
< 2�:

Lemma 3. The following Lipschitz property holds: 8.!�
N ; u�

N / 2 XN ,

	
	SN

�
DGN . Q!N ; QuN / � DGN .!�

N ; u�
N /

�	
	

L.XN /
� cN

	
	
� Q!N � !�

N ; QuN � u�
N

�	
	

X
:

(26)

Proof. We just note that

˝�
DGN . Q!N ; QuN / � DGN .!�

N ; u�
N /

�
: .�N ; wN / ; vN

˛

D KN . Q!N � !�
N ; wN I vN / C KN .�N ; QuN � u�

N I vN /:

Lemma 1 leads to the desired property.

Lemma 4. Assume that the data f 2 H 

1 .˝/2, 
 > 3

2
. Under Assumption 2,

k. Q!N ; QuN / C SN GN . Q!N ; QuN /kX

� c.!; u/
�
N �s k.!; u/k

H
sC1
1 .˝/�H s

1 .˝/2 C N �
 kf kH 

1 .˝/2

�
;

for a constant c.!; u/ only depending on the solution .!; u/.

Proof. From (12), we derive

k. Q!N ; QuN / C SN GN . Q!N ; QuN /kX � k.! � Q!N ; u � QuN /kX C k.S � SN / G .!; u/kX

C kSN .G .!; u/ � G . Q!N ; QuN //kX C kSN .G . Q!N ; QuN / � GN . Q!N ; QuN //kX

The bound for the first term in the right-hand side obviously follows from (21).
From estimate (16) with Assumption 2, we also derive

k.S � SN / G .!; u/kX � cN�s k.!; u/k
H

sC1
1 .˝/�H s

1 .˝/2 :
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On the other hand,

K.!; uI vN / � K. Q!N ; QuN I vN / D K.! � Q!N ; uI vN / C K.!; u � QuN I vN /

� K.! � Q!N ; u � QuN I vN /:

So, we have from the stability property on SN

kSN .G .!; u/ � G . Q!N ; QuN //kX � c sup
vN 2VN

hK.!; uI vN / � K. Q!N ; QuN I vN /; vN i
kvN kL2

1.˝/2

;

From (21), Remarks 1 and 2, we have

kSN .G .!; u/ � G . Q!N ; QuN //kX � c.!; u/N �s k.!; u/k
H

sC1
1 .˝/�H s

1 .˝/2 :

We note that 8vN 2 DN , the quantities K. Q!N ; QuN I vN / and KN . Q!N ; QuN I vN /

coincide. Then, if ˘N �1 denotes the orthogonal projection operator from L2
1.˝/

onto the space of functions such that their restrictions to all ˝k , 1 � k � K , belong
to PN �1.˝k/, and by adding and subtracting the quantity ˘N �1f in
kSN .G . Q!N ; QuN / � GN . Q!N ; QuN //kX , we can prove that

kSN .G . Q!N ; QuN / � GN . Q!N ; QuN //kX � c
�
kf � ˘N �1f kL2

1.˝/2 C kf

�IN f kL2
1.˝/2

�
:

Finally, the standard approximation properties of the operators ˘N �1 and IN ,
lead to

kSN .G . Q!N ; QuN / � GN . Q!N ; QuN //kX � cN�
 kf kH 
 .˝/2 :

The desired bound is then derived by combining the previous estimates.

We are now in a position to prove the error estimate.

Theorem 2. We assume that the data f is in H 

1 .˝/2; 
 > 3

2
, and that the

solution .!; u; p/, of problem (3) satisfies Assumptions 1 and 2.
Then, there exists an integer N˘ and a constant c˘ such that for any N � N˘, the

problem (9) has a unique solution .!N ; uN ; pN / satisfying the following estimate:

k! � !N kV 1
1 .˝/ C ku � uN kH1.divr;˝/ C kp � pN kL2

1.˝/

� c.!; u/
h
N 1�s

�
k!k

H
sC1
1 .˝/

C kukH s
1 .˝/2 C kpkH s

1 .˝/

�
C N �
 kf kH 


1 .˝/2

i
:

(27)

Proof. Combining Lemmas 2–4 with the Brezzi-Rappaz-Raviart theorem [5], yields
that, for N sufficiently large, problem (10) has a unique solution .!N ; uN /.
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Moreover, thanks to the discrete inf-sup condition of bN .:; :/, there exists a unique
pN in MN such that

8vN 2 DN ; bN .vN ; pN / D ..f; vN //N � aN .!N ; uN I vN / � KN .!N ; uN I vN /:

Hence, the existence and local uniqueness result follows. Moreover,

8qN in MN ; bN .vN ;pN � qN / D b.vN ; p � qN / � hf; vN i C ..f; vN //N

C a.! � !N ; u � uN I vN / C .a � aN /.!N ; uN I vN /

C K.!; uI vN / � KN .!N ; uN I vN /:

(28)

so that the estimate for kp � pN kL2
1.˝/ follows from the discrete inf-sup condition

of bN .:; :/, a triangle inequality and the same arguments as in the proof of Lemma 4.

To conclude, the vorticity-velocity and pressure formulation allows to decouple
the calculus of the velocity and the pressure, to handle easily non standard boundary
conditions and leads to a more accurate approximation of the pressure. The
axisymmetric property of domain allows to move from a three-dimensional problem
to a two-dimensional one, which reduces the cost of the resolution. In addition, the
tensorization properties of the polynomial spaces, which characterize the spectral
methods, enable to inverse the obtained system matrix with a raisonable cost.
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