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Abstract In order to solve the potential issues caused by network induced delays

and dropouts which could arise the performance degradation and system instability,

this paper studies the stochastic stability problem of Networked control systems

(NCSs) with arbitrary time delays and packet dropouts by using an active time-

varying sampling method. The random time delays and successive packet dropouts

are driven by two separately Markov chains and NCSs are modelled as a discrete

time Markovian jump linear systems. Based on Lyapunov approach, sufficient

conditions for the stochastic stability of the networked control system are derived

and stabilization controller is designed in terms of linear matrix inequalities (LMIs)

correspondingly. Gridding approach is introduced to guarantee the solvability of the

LMIs with finite jump modes. A numerical example is given to illustrate the

effectiveness of the proposed method which stabilizes the NCS with random time

delays and packet dropouts.

Keywords Networked control system • Stochastic stability •Markov chain • Linear

matrix inequality • Time delay • Packet dropouts

1 Introduction

Due to the advantages of low installation cost, reduced wiring, easy maintenance

and good system flexibility, NCSs have been widely used in manufacturing

systems, monitoring system and vehicle highway systems. Despite lots of
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advantages and potentials network brings to the control system, potential issues

arise to degrade a system’s performance and even cause system instability, such as

delays and packet dropouts [1].

Many researchers have studied stability criteria and stabilizing controller design

for networked control systems with delays and packet dropouts. Time-based time-

delay analysis of the NCS is provided to explain how it affects network systems and

an adaptive Smith predictor control scheme is designed [2]. A switched system

approach was used to study the stability of networked control systems and optimal

gain is calculated for stabilizing controller design [3]. The network-induced random

delays are modelled as Markov chains such that the closed-loop system is a jump

linear system with one mode [4, 5]. NSCs with packet dropouts are modelled as

discrete Markov jump system [6, 7]. So far, the stability synthesis for the NCSs with

time delays and packet dropouts as a Markovian jump system with two Markov

chains has not been fully investigated.

In this paper, the stochastic stability problem of NCSs with random time delays

and packet dropouts is investigated. The closed-loop NCS is modelled as a discrete-

time jump system characterized by driving two separately Markov chains. An

active time-varying sampling method is proposed to make sure time delay always

less than one sampling period [8]. Based on the Lyapunov stability theory, suffi-

cient conditions for the stochastic stabilization of the NCS are obtained and the

mode-dependent stabilizing controller for the closed-loop NCS is designed in the

linear matrix inequalities (LMIs) formulation via the Shur complement theory. A

“gridding” approach is introduced to obtain the finite combination of time delays

and packet dropouts which ensures the feasibility of the constructed LMIs [9].

Notation: The notation used throughout the paper is fairly standard.AT represents

the transpose of matrix A, the notation P > 0 means that P is positive definite, λmax

ðPÞðλminðPÞÞ denotes the maximal (minimal) eigenvalue of matrix P ; diagf� � �g
stands for a block-diagonal matrix; E½�� stands for the mathematical expectation;

�k k denotes the standard norm.

2 Problem Formulation

Consider a linear time-invariant plant described by

_xðtÞ ¼ AxðtÞ þ BuðtÞ (1)

where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rp is the input vector. A;B are constant

matrices of appropriate dimensions.

In this paper, the sampling period will be set time varying to make sure time

delay is less than one sampling period. In order to achieve this goal, sensor is

assumed both time-driven and event-driven. Actuator and controller are event-

driven. Suppose time axis is partitioned into equidistant small intervals and the
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length of each interval is l. Define tk as the kth updating instant of actuator, and

assume that total transmission delay from sensor to actuator of the updating signal

at the instant tk is τk. Then the next sampling instant can be selected as

skþ1 ¼ sk þ al tk 2 ½sk þ ða� 1Þl; sk þ alÞ
sk þ τ tk � sk þ τ

�
(2)

where sk is the kth sampling instant, τ is the allowable maximum delay from sensor

to actuator (τ ¼ ηl, η is the bound positive integer of delay), a is a positive integer

and 0 < a < η.
Figure 1 shows the sampling and updating conditions of NCS. if the transmission

time of sampled signal at time sk is less than τ, the actuator will be updated by the

signal and the sensor will be driven to do the next sampling, which is called an

effective sampling instant because the signal at this sampling instant is successfully

transmitted from sensor to actuator, such as s1 and s2 marked in Fig. 1; if the

signal sampled at time sk has not arrived before the maximal allowable updating

time sk þ τ, which means the total transmission delay is out of τ, the signal will be
discarded and the sensor will adopt time-driven mode, such as s3 marked in Fig. 1; if

packet dropout happened to the sampled signal, which can be seen as a long delay

packet, the time-driven mode will adopted by sensor to do the next sampling, such

as s6 marked in Fig. 1.

Suppose hk as the length of interval between two successive effective sampling

instants ik and ikþ1, the discrete time representation of Eq. 1 can be described as

xðikþ1Þ ¼ ΦkxðikÞ þ Γ0ðτk; hkÞuðikÞ þ Γ1ðτk; hkÞuðik�1Þ (3)

where Φk ¼ eAhk , Γ0ðτk; hkÞ ¼
Ð hk�τk
0

eAsBds; Γ1ðτk; hkÞ ¼
Ð hk
hk�τk

eAsBds

Let us introduce a new augmented state zðkÞ ¼ xðikÞ uðik�1Þ½ �T . Therefore, we
can get the following augmented closed-loop system

Fig. 1 Sampling and updating conditions of NCS
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zðk þ 1Þ ¼ ΨkzðkÞ (4)

where Ψk ¼ Φk þ Γ0ðτk; hkÞKðikÞ Γ1ðτk; hkÞ
KðikÞ 0

� �

3 Stochastic Stability Analysis and Controller Design

Define dk as the number of dropped packet between two successive effective
updating instants ik and ikþ1, then we can get ikþ1 � ik ¼ dk þ 1; ik 2 I ¼ fi1; i2;
i3; . . .g. If assume the bound of consecutive dropped packets is d, we can conclude

that dk takes value from a finite set Ω ¼ f0; 1; � � � ; dg.
In Sect. 2, we defined the bound of τk (τ ¼ al ) is τ (τ ¼ ηl ) and a takes value

from a finite set M ¼ f1; 2; � � � ; ηg , and then τk takes value from the finite set

T¼ f1l; 2l; � � � ; ηlg.
In this paper, we assume that random delays τk and packet dropouts dk are two

independent Markov chains that take values inΩandMwith the following transition

probabilities

ωmi ¼ Prðτkþ1 ¼ iljτk ¼ mlÞ; 8i;m 2 M :¼ f1; 2; � � � ; ηg
λnj ¼ Prðdkþ1 ¼ jjdk ¼ nÞ; 8j; n 2 Ω :¼ f0; 1; � � � ; dg (5)

where ωmi; λnj � 0; and
Pη
i¼1

ωmi ¼ 1;
Pd
j¼0

λnj ¼ 1

The transition probability matrixes are defined by Υ and Π.
Based on the above assumptions, the effective sampling period hk can be written

into: hk ¼ τk þ τdk
Therefore, the values ofΦk, Γ0ðτk; hkÞ and Γ1ðτk; hkÞ are finally determined by τk

anddk, system (4) can be seen as a discrete-time Markovian jump linear system with

finite jump modes varying in a finite set which is combined by sets T andΩ. Define
Âðm; nÞ as the jump modes determined by τk ¼ m and dk ¼ n, Kðm; nÞ as the mode-

dependent state feedback controller gain, then augmented system (4) can be written

into

zðk þ 1Þ ¼ Âðm; nÞzðkÞ; 8m 2 M; n 2 Ω (6)

where

Âðm; nÞ ¼ Φðm; nÞ þ Γ0ðm; nÞKðm; nÞ Γ1ðm; nÞ
Kðm; nÞ 0

� �
(7)
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Definition 1 The system (6) is stochastically stable if for every initial state z0 ¼ z
ð0Þ and initial distributions τ0 ¼ τð0Þ 2 T and d0 ¼ dð0Þ 2 Ω, there exists a finite

matrix Q > 0 such that EðP1
k¼0

zðkÞk k2jz0; τ0; d0Þ < zT0Qz0 holds.

Theorem 1 If there exists symmetric positive definite matrices Xðm; nÞ > 0;m 2 M;
n 2 Ω satisfying

Xðm; nÞ � � � � �
Ξ01 ω�1

m0λ
�1
n0 Xð0; 0Þ

..

. . .
.

ΞðηdÞ1 0 � � � ω�1
mηλ

�1
nd Xðη; dÞ

2
666664

3
777775 > 0;

m ¼ 1; 2; . . . ; η; n ¼ 0; 1; 2; . . . ; d

(8)

where Ξ01 ¼ Ξ21 ¼ � � � ¼ ΞðηdÞ1 ¼ Aðm; nÞXðm; nÞ
Then the system (6) is stochastically stable.

Proof Consider the following form of the Lyapunov function:

VðkÞ ¼ zTðkÞPðm; nÞzðkÞ (9)

where Pðm; nÞ ¼ X�1ðm; nÞ > 0

Then we have

EðΔVÞ ¼ EðVðk þ 1Þ � VðkÞÞ

¼
Xd
j¼0

Xτ

i¼0

λnjωmiz
TðkÞÂTðm; nÞPðm; nÞÂðm; nÞzðkÞ � zTðkÞPðm; nÞzðkÞ

¼ zTðkÞVðm; nÞzðkÞ
(10)

where Vðm; nÞ ¼ Pd
j¼0

Pη
i¼0

λnjωmiÂ
Tðm; nÞPði; jÞÂðm; nÞ � Pðm; nÞ

DefineHðm; nÞ ¼ diagfPðm; nÞ; I00; . . . ; Iηdg, and pre-multiply and post-multiply

Eq. 8 by Hðm; nÞ, we get

Pðm; nÞ � � � � �
Aðm; nÞ ω�1

m0λ
�1
n0 P

�1ð0; 0Þ
..
. . .

.

Aðm; nÞ 0 � � � ω�1
mηλ

�1
nd P

�1ðη; dÞ

2
666664

3
777775 > 0;

m ¼ 0; 1; 2; . . . ; η; n ¼ 0; 1; 2; . . . ; d (11)

By Schur complement, we can get Vðm; nÞ < 0.since Vðm; nÞ < 0, then
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EðΔVðkÞÞ ¼EðVðk þ 1Þ � VðkÞÞ
� �λminð�Vðm; nÞÞ zðkÞk k2 < 0 (12)

For any integer M � 1, we have

EðVðzðM þ 1ÞÞ � EðVðz0ÞÞ � �λminð�Vðm; nÞÞE
XM
k¼0

zðkÞk k
( )

Thus, from Definition 1, if Vðm; nÞ < 0, the system (6) is stochastically stable.

Theorem 2 If there exists symmetric positive definite matrices Gðm; nÞand V(m, n),
matrices Rðm; nÞ (8m 2 M; n 2 Ω) satisfying

Gðm; nÞ � � � � � � �
0 Vðm; nÞ � � � � � �
Π0 Λ0 ω�1

m0λ
�1
n0 Gð0; 0Þ � � � � �

Rðm; nÞ 0 0 ω�1
m0λ

�1
n0 Vð0; 0Þ � � � �

..

. ..
. ..

. ..
. . .

. �
ΠðηdÞ ΛðηdÞ 0 0 � � � ω�1

mηλ
�1
nd Gðη; dÞ

Rðm; nÞ 0 0 0 � � � 0 ω�1
mηλ

�1
nd Vðη; dÞ

2
6666666666664

3
7777777777775
> 0; 8m 2 M; n 2 Ω

(13)

where

Π0 ¼ Π1 ¼ � � � ¼ ΠðηdÞ ¼ Φðm; nÞGðm; nÞ þ Γ0ðm; nÞRðm; nÞ
Λ0 ¼ Λ1 ¼ � � � ¼ ΛðηdÞ ¼ Γ1ðm; nÞVðm; nÞ

Then the system (4) is stochastically stable and the mode-dependent state

feedback controller is given by

Kðm; nÞ ¼ Rðm; nÞG�1ðm; nÞ; m 2 M; n 2 Ω (14)

Proof Denote the following matrixes:

~Aðm; nÞ ¼
Φðm; nÞ Γ1ðm; nÞ

0 0

2
4

3
5; ~Bðm; nÞ ¼

Γ0ðm; nÞ

I

2
4

3
5;

~Kðm; nÞ ¼ Kðm; nÞ 0½ � (15)

Rewrite system (6) into: zðk þ 1Þ ¼ ½ ~Aðm; nÞ þ ~Bðm; nÞ ~Kðm; nÞ�zðkÞ; then by

applying Theorem 1, we can easy proof this theorem.
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4 Numerical Example

Consider the following system

_x ¼ 0 1

�2 �3

� �
xþ 0

1

� �
u (16)

where u is the control input for the continuous-time linear plant. According to the

driven mode and active time-varying sampling method proposed in this paper, the

state feedback controller for discrete-time plant in the NCS should be uðtÞ ¼
uðikÞ ¼ KðikÞxðikÞ; tk � t < tkþ1

Suppose the length of gridded equidistant small interval l is 0:05 ms, τk ¼ f0:05
ms; 0:1 ms; 0:15 msg, dk 2 f0; 1; 2g, the transition probability matrices are given by

Υ ¼
0:6 0:3 0:1
0:5 0:3 0:2
0:7 0:2 0:1

2
4

3
5; Π ¼

0:2 0:5 0:3
0:5 0:4 0:1
0:6 0:3 0:1

2
4

3
5 (17)

The state feedback controller gains will be calculated by Matlab LMI Control

Toolbox, the results are as follows:

Kð1; 0Þ ¼ -3:9926 -4:1845½ �;Kð2; 0Þ ¼ -4:5639 -4:9267½ �;Kð3; 0Þ ¼ -5:3038 -5:9421½ �;
Kð1; 1Þ ¼ -2:4297 -2:8355½ �;Kð2; 1Þ ¼ -2:4823 -3:0359½ �;Kð3; 1Þ ¼ -2:5342 -3:2598½ �;
Kð1; 2Þ ¼ -1:5838 -2:1412½ �;Kð2; 2Þ ¼ -1:5801 -2:2609½ �;Kð3; 2Þ ¼ -1:5824 -2:3977½ �;

(18)

The state trajectories of NCS with the feedback control law are proposed in

Fig. 2, which shows the networked control system is stochastically stable even if

there exist time delays and packet dropouts.

Fig. 2 States trajectory of NCS
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5 Conclusion

This paper studies the stochastic stability problem of networked control systems by

modeling NCS as a two mode Markovian jump linear system. The random time

delays and packet dropouts are driven by two Markov chains. Sufficient conditions

of stochastic stability for the jump linear systems are given in terms of a set of

LMIs. To solve the LMIs for obtaining feedback gains, the “gridding approach” is

adopted to guarantee the LMIs set for the jump linear systems with finite jump

modes. Numerical examples illustrate the effectiveness of the proposed strategy for

the stochastic stabilizing controller over NCS.
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