## Errata and Addenda to

## R. B. Burckel: <br> An Introduction to Classical Complex Analysis I

p. 101 lines -4 and -1 . " + " to " - "
p. 133 line -4. Change closed interval to open interval.
p. 161 line -12. "(iii)" to "(ii)"
p. 163 lines -4 and -3 . " $\gamma$ " to " $\left(\gamma \cap \bar{S}_{\mathrm{r}}\right)$ "
p. 183 line $5 . \quad$ Replace this remark with the following:

It is easy to show, using 5.33, that continuity of $F$ and existence of $D_{2} F$ already imply the continuity of the latter needed in 5.93 .
p. 186 line 17 5.27 was earlier noted by Lindelöf [1909], p. 10.
p. 187 line 8 ff . Fourier methods of deducing Cauchy's theorem were used much earlier. See, for example, A. Harnack Math. Annalen 21 (1883), 305-326. FM 15, p. 185.
p. 212 line 13. Theorem 6.34 is due to K. Löwner [1917].
p. 249 line 23. Wolff [1926a] is a very elegant proof of the theorem in full generality.
p. 255 line 4. A nice treatment may also be found in J. J. Andrews and R. C. Lacher Aequationes Math. 16 (1977), 137147. MR 57 \#6331.
p. 264 line 19. The proof based on Fubini occurs also in the 3rd edition (1978) of the book Ahlfors [1966a].
p. 265 line 10. This result occurs already in Walsh [1928].
p. 278 line 18. A direct proof of (ix), independent of (vii) and (viii), follows from 7.15.
For an alternative elegant proof of 8.33 see E. PhragMÉn Acta Math. 14 (1890-91), 225-232. FM 23, p. 890. An important precursor of Runge was P. Appell Acta Math. 1 (1882-83), 145-152 and Math. Annalen 21 (1883), 118-124. FM 15, pp. 323, 324.
p. 289 line -14 .

Add: See also Julia [1927a].
p. 292 line 1.
p. 292 line 19 .
p. 339 line 5.
p. 340 line -13 .
p. 341 line -5 .
p. 361 line -6 .
p. 408 line 17 ff .
p. 449 line -12 . Delete "149-151"
The integral representation is due independently to F. Riesz Ann. Sci. Ecole Norm. Sup. (3) 28 (1911), 33-62. FM 42, p. 374.
Add Maitland [1939].
"simply-connected" to "bounded, simply-connected" Add Besicovitch [1930].
For detailed history of this theorem see E. Neuenschwander Historia Math. 5 (1978), 139-166. Zbl 374 \#01010.
p. 457 line -15 .
p. 466 line -1 .
p. 495 line 28 .

Different treatments of the Fresnel integrals occur in Feyel and Pradelle [1973], problem [6.25] and in M. Godefroy Nouvelles Annales de Math. (3) 17 (1898), 205-206. FM 29, p. 245. Delete period.
The $(1-r)^{-1}$ dependence was shown earlier by H. Bohr and E. Landau Göttingen Nachr. (1910), 303-330. FM 41, p. 290.
Delete "and 1353."
"245-255" to " $246-266$ "
After "and" add: C. R. des Séances Soc. Math. France "(1899)" to "(1900)"
p. 519 line 14 .

Before "(1923)" insert volume numbers " 176 "
p. 519 line -3 .

Delete "(Russian)."
After "(1931)" add page numbers "18-38."
p. 526 line 6 .
p. 569 line 3 .
" $(-1)^{\mathrm{n}}$ " to " $(-1)^{\mathrm{k}}$ "

