Skip to main content

Ein Problem Über die Beste Approximation in Hilberträumen

  • Chapter
Functional Analysis and Approximation

Abstract

In the beginning sixties V. L. Klee conjectured that there exist nonconvex Chebyshev sets in an infinite dimensional Hilbert space. Up to today no real progress has been made in proving or disproving the conjecture. The author wants to discuss a modified version of Klees’s conjecture which seems to be of some independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Asplund, E., Chebyshev sets in Hilbert space. Trans. Amer. Math. Soc. 144 (1969), 235–240.

    Google Scholar 

  2. Berens, H., Best approximation in Hilbert space. In “Approximation Theory III”, ed. by E. W. Chenéy, Academic Press, Inc., New York 1980, 1–20.

    Google Scholar 

  3. Berens, H.-Westphal, U., Kodissipative metrische Projektionen in normierten linearen Räumen. In “Linear Spaces and Approximation”, ed. by P. L. Butzer and B. Sz. Nagy, ISNM Vol. 40, Birkhäuser Verlag, Basel 1978, 119–130.

    Google Scholar 

  4. Brezis, H., Opérateurs Maximaux Monotones. Math. Studies Vol. 5, North-Holland Publ. Co., Amsterdam 1973.

    Google Scholar 

  5. Klee, V., Remarks on nearest points in normal linear spaces. In “Proceedings of the Colloquium on Convexity, Copenhagen 1965”. Universität von Kopenhagen 1967, 168–176.

    Google Scholar 

  6. Stečkin, S.B., Approximationseigenschaften von Mengen in normierten linearen Räumen. Rev. Roumaine Math. Pures Appl. 8 (1963), 5–18 (Russ.).

    Google Scholar 

  7. Suryanarayana, M.B., Monotonicity and upper semicontinuity. Bull. Amer. Math. Soc. 82 (1976), 936–938.

    Article  Google Scholar 

  8. Vlasov, L.P., On Čebyšev sets. Dokl. Akad. Nauk SSSR 173 (1967), 491–494

    Google Scholar 

  9. = Soviet Math. Dokl. 8 (1967), 401–404.

    Google Scholar 

  10. Zarantonello, E.H., Dense single-valuedness of monotone operators. Israel J. Math. 15 (1973), 158–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Berens, H. (1981). Ein Problem Über die Beste Approximation in Hilberträumen. In: Butzer, P.L., Sz.-Nagy, B., Görlich, E. (eds) Functional Analysis and Approximation. ISNM 60: International Series of Numerical Mathematics / ISNM 60: Internationale Schriftenreihe zur Numerischen Mathematik / ISNM 60: Série internationale d’Analyse numérique, vol 60. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9369-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9369-5_23

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9371-8

  • Online ISBN: 978-3-0348-9369-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics