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Preface 

These Proceedings form a record of the lectures presented at the interna
tional Conference on Functional Analysis and Approximation held at the Ober
wolfach Mathematical Research Institute, August 9-16, 1980. They include 33 of 
the 38 invited conference papers, as well as three papers subsequently submitted 
in writing. Further, there is a report devoted to new and unsolved problems, 
based on two special sessions of the conference. The present volume is the sixth 
Oberwolfach Conference in Birkhauser's ISNM series to be edited at Aachen *. It 
is once again devoted to more significant results obtained in the wide areas of 
approximation theory, harmonic analysis, functional analysis, and operator 
theory during the past three years. Many of the papers solicited not only outline 
fundamental advances in their fields but also focus on interconnections between 
the various research areas. 

The papers in the present volume have been grouped into nine chapters. 
Chapter I, on operator theory, deals with maps on positive semidefinite opera
tors, spectral bounds of semigroup operators, evolution equations of diffusion 
type, the spectral theory of propagators, and generalized inverses. Chapter II, on 
functional analysis, contains papers on modular approximation, interpolation 
spaces, and unconditional bases. In Chapter III, on abstract harmonic analysis, 
one may find results on approximation on compact abelian groups, minimal 
projections in LI, Wiener type distributions, and analysis on local fields, whereas 
Chapter IV, on Fourier analysis and integral transforms, comprises papers on 
polynomial inequalities, classical orthogonal expansions, multiple series, and the 
Hilbert transform. Chapter V deals with best approximation, in general Hilbert 
spaces, in the complex domain, as well as in the multipoint sense. Chapter VI, on 
approximation by linear operators, includes an estimate for the Lebesgue 
function of Lagrange interpolation, a uniform boundedness theorem with rates, 
slow and asymptotically optimal approximations. Strong and Muntz approxima
tion then follow in Chapter VII, whereas problems of asymptotic distribution of 
lattice points as well as two papers concerned with limit theorems of probabilty 
theory in Banach spaces appear in Chapter VIII. Chapter IX contains papers on 
spline functions and piecewise polynomial approximation as well as a paper on 
dominant integrability. The volume closes with a bibliography on Bernstein 
polynomials, as well as the section on 22 new and unsolved problems. 

One mathematician was sorely missed at the conference. Lionel Cooper, 
who had actively taken part in all but one of our conferences since 1963, was 
again on the list of distinguished speakers who were invited. But in August of 
1979 he passed away after heart operation. The loss caused by his death will 
surely be long felt by the scientific world, in particular by the community of 
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mathematicians and physicists. The participants and organizing committee of the 
Conference wish to dedicate these Proceedings to the memory of this distin
guished and independent scientist. Lionel Cooper also was a sincere friend to 
many of us. Two brief appreciations of his life and work appear in these Proceed
ings. 

The editors' warm thanks are due to all of the participants and contribu
tors: they made the conference the success it was; to Wolfgang Splettstosser for 
his competent handling of the greater part of the general editorial work; to Rolf 
1. Nessel for valuable advice during the preparations of the conference; to the 
coworkers and research assistants from Aachen for their help in organizing the 
conference, and to the secretaries of Lehrstuhl A fUr Mathematik for retyping 
many of the papers and for their aid in preparing this volume. To Carl Einsele of 
Birkhauser Verlag, Basel, we extend our thanks for his cooperation over the 
years. 

Aprill98l 

P.L. Butzer 
Aachen 

* The earlier volumes are: 

E. Gorlich 
Aachen 

B.Sz.-Nagy 
Szeged 

1. On Approximation Theory. Oberwolfach 1963. Eds.: P.L. Butzer and J. Korevaar. ISNM, 
vol. 5, Basel 1964 (second edition 1972), XVI + 261 pages. 
2. Abstract Spaces and Approximation. Oberwolfach 1969. Eds.: P.L. Butzer and B.Sz.-Nagy. 
ISNM, vol. 10, Basel 1969,423 pages. 
3. Linear Operators and Approximation I. Oberwolfach 1971. Eds.: P.L. Butzer, J.P. Kahane 
and B. Sz.-Nagy. ISNM, vol. 20, Basel 1972,506 pages. 
4. Linear Operators and Approximation II. Oberwolfach 1974. Eds.: P.L. Butzer and B.Sz.
Nagy. ISNM, vol. 25, Basel 1974,585 pages. 
5. Linear Spaces and Approximation. Oberwolfach 1977. Eds.: P. L. Butzer and B. Sz.-Nagy. 
ISNM, vol. 40, Basel 1978,685 pages. 
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ZurTagung 

Yom 9. bis l6.August 1980 fand im Mathematischen Forschungsinstitut Ober
wolfach eine Tagung tiber «Funktionalanalysis und Approximation» statt. Sie 
setzte die 1963 begonnene und inzwischen zur Tradition gewordene Reihe 
internationaler Tagungen tiber Approximationstheorie und angrenzende Gebiete 
fort. Djesmal stand sie unter der Leitung von Prof. P. L. Butzer (Aachen), Prof. 
E. Gorlich (Aachen) und Prof. B. Szokefalvi-Nagy (Szeged, Ungarn). Es nahmen 
54 Mathematiker aus 14 Nationen an der Tagung teil, darunter auch viele 
Kollegen, die zum ersten Mal eine Konferenz dieser Reihe besuchten, insbeson
dere mehrere jtingere Mathematiker. Zum Bedauern aller Teilnehmer muBten 
eine Reihe von Kollegen aus der UdSSR ihre Zusage in letzter Minute zurtickzie
hen. 
Das Vortragsprogramm bestand aus 38 Ubersichts- und Spezialvortragen, in 
denen ein breites Spektrum von Themen aus den verschiedensten Gebieten der 
Approximationstheorie, der harmonischen Analysis, der Funktionalanalysis und 
der Operatortheorie behandelt wurden. Zwei weitere Sitzungen waren aktuellen 
Problemstellungen gewidmet; hier wurden von den Teilnehmern 18 neue und 
ungeloste Probleme vorgestellt. (Der Programmablauf ist auf den Seiten 15-17 
ausfUhrlich wiedergegeben.) Der vorliegende Band enthalt den groBten Teil 
dieser Vortrage u~d Problemstellungen. 
Neben dem Vortragsprogramm fanden zwei gesellige Abende statt, und am 
Mittwochnachmittag das traditionelle Ausflugsprogramm nach Baden-Baden, 
Freiburg, Freudenstadt und in die nahere Umgebung. 
Die Tagung war gekennzeichnet durch eine kollegiale und freundschaftliche 
Atmosphare, wozu die Teilnehmer durch ihr spontanes und sympatisches 
Mitwirken in vielfaltiger Weise beigetragen haben. Allen Vortragenden, den 
Sitzungsleitern und besonders den Vorsitzenden der beiden «problem sessions» 
sei fUr ihr Engagement herzlich gedankt. 
An dieser Stelle ist besonders die Gastfreundschaft und Hilfsbereitschaft der 
Mitarbeiter des Oberwolfacher Instituts zu erwahnen, ohne die soleh eine 
Tagung kaum denkbar ware, und fUr die sich die Tagungsleiter bei den Damen 
und Herren des Oberwolfacher Hauses und insbesondere bei dem Direktor des 
Instituts, Herrn Professor Dr. M. Barner, herzlich bedanken mochten. 

Tagungsleiter: P.L. Butzer E. Gorlich B.Sz.-Nagy 
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3.50 W. Dickmeis: On Banach-Steinhaus theorems and uniform boundedness 

principles with rates 
Second afternoon session. Chairman: R.J. Nessel 
4.30 G. Lumer: Feller semigroups and evolution equations of diffusion type 
5.35 Ch. K. Chui: Best multipoint local approximation 
Evening session. Chairman: P. R. Halmos 
7.45 B. Sz. -Nagy: The functional model of a contraction and the space L1 



JACOB LIONEL BAKST COOPER - IN MEMORIAM 

P.L. Butzer 

Lehrstuhl A fUr Mathematik 

Rheinisch-Westfilische Technische Hochschule 

Aachen 

We are here together to pay tribute l)to Professor Lionel Cooper. He 

was born in Beaufort-West in the Republic of South Africa on 27. Dec. 

1915. After receiving his B.Sc. degree at the University of Cape Town in 

1935. he came to England as a Rhodes scholar. to study at Oxford University. 

He wrote his doctoral dissertation under the direction of Professor E.C. 

Titchmarsh. and received his D.Phil. in 1940. In 1939/44 he published three 

papers on Fourier integrals. and shortly thereafter he wrote three further 

papers on operators in Hilbert space. includi-ng one on semigrotlp"operators 

(Oxford Quart. J •• Ann. of Math •• PLMS~ t94"5-8h The latter-three'papers--are 

cited inmost books on functional analysis and established his early reputation. 

It was at Oxford University that he had the great luck to meet 

Kathleen Cooper. also studying at Oxford. They were married in June. 1940. 

During the early years of the last war he worked in the aircraft 

industry at Bristol before joining Birkbeck College. University of London. 

in 1944 as Lecturer in Mathematics. later becoming Reader. 

1) Professor J.L.B. Cooper died in London on 8. August 1979; he had been 
unconscious since a heart operation on 23. July. This is an address given 
on the occasion of the funeral service of Professor Cooper on 14. August. 
1979. The author would like to thank Kathleen Cooper. Tom Williams of 
London, as well as Wilhelmine Butzer, Rolf Nessel and Eberhard Stark, all 
of Aachen. for their help in its preparation. For an obituary emphasizing 
Cooper's contributions to mathematics the reader is referred to D.E. 
Edmunds: Jacob Lionel Bakst Cooper. 1915 - 1919, Bull. London Math. Soc. 
13 (1981) (in print). 
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In 1950· Lionel Cooper was appointed Professor of Pure Mathematics and 

Chairman of the Dept. of Mathematics at University College, Cardiff, Wales. 

There he built up a department which came to have the best reputation of any 

Welsh university college. 

It was during that time, in 1959, that I first wrote to Professor Cooper. 

I was stuck on a basic problem in Fourier transform theory which I needed to 

solve problems in trigonometric approximation theory. Within a few weeks he 

replied with the complete solution. Our contacts began then and have contin

ued ever since. In 1963 I organized my first conference on Approximation 

Theory at the Oberwo1fach Mathematical Research Institute which is located 

in the Black Forest of SOtiihe'rn Germany. Of course the first person I thought 

of inviting was Professor Cooper. He accepted my invitation; what a high 

honour for me considering I was pretty young at the time! It was also the 

first time I met him in person. 

He brought with him Kathleen and his family of four children; they came 

in a Commer caravan. Deborah was four years old at the time, David seven. 

What a pleasant time we had together I All of the participants lived for a 

week in the old, stately hunting lodge-which has since been demolished. Since 

that time I am most fortunate to say we have been good friends, not only on 

a professional but also on a personal and family basis. 

It was Lionel I turned to whenever I was stuck. This was not only in 

mathematical problems, but also in solving problems arising in contacts with 

other mathematicians, finding journals to publish articles, personal problems, 

etc. Lionel inspired me and my many students; a number of them are now 

Professors at various German universities. I can speak to you only of the 

great help I myself and my students received from Lionel, but I am sure this 

was the case with everyone who knew him. 

When we planned some of our most difficult scientific adventures, such 

as writing the book on Semigroup Operators of 1967 with my former student 

Professor H. Berens, or on Fourier Analysis and Approximation of 1971 with my 

former student Professor R.J. Nessel, we owed a good deal of our confidence 

to Lionel. We knew Lionel was there, we knew we could always turns to him for 

advice, not only because these projects lay in his central fields of interest. 
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Lionel himself wrote three further basic papers on Fourier analysis 

in 1960/64. These as well as many of the basic ideas we learned from him 

we incorporated into these books. 

Lionel came to all but the first of our subsequent triennial Ober

wolfach conferences from 1965 to 1977. Each time he gave inspiring lectures 

and was section chairman. He was a participant who made sure that the 

conference were a success. He was a guiding and unifying spirit! 

Lionel spent the years 1964/65 as visiting Professor at California 

Institute of Technology, Pasadena, and 1965 -67 as Full Professor at the 

University of Toronto in Canada. He returned to England in 1967 to become 

Head of the Mathematics Dept. at Chelsea College of Science and Technology 

of the University of London. 

In 1973 Lionel invited me to spend a month in Britain: he arranged 

a grand lecture tour which took me to ten universities in England and 

Scotland. My parents also came along - we were often at his home and had 

a wonderful time together. 

Allow me to say just a few words about his mathematical publications. 

He wrote at least 45 papers to my knowledge in various journals and 

conference proceedings throughout the world. These papers are mainly 

concerned with two broad fields in the wide area of mathematical analysis, 

namely Fourier analysis and integral transform theory on the real line and 

on groups, and with functional analysis, essentially operators in Hilbert 

space. Apart from these he wrote many papers in a variety of individual 

topics, including measure and set theory, differential equations, quantum 

theory, foundations of thermodynamics. 

All in all he was a mathematical analyst in the very broad sense of 

the word, with an international reputation. 

He was an editor ot the Proceedings of the London Math.Soc. and of the 

Russian Mathematical Surveys-Uspehi, and gave generously of his time on 

numerous committees. 

One can also characterize a scholar by the students he produced. Let 

me just mention two of them whom I know. Dr. Finbarr Holland of Cork 

University is one of the very active young Southern Irish mathematicians; 

just recently he founded the Irish Mathematical Society. Then there is 

Professor David Edmunds of the University of Sussex in Brighton. He is an 

international authority in differential equations. He studied under 
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Professor Cooper in Cardiff and became a university professor in Britain 

without ever having attended either Oxford or Cambridge. He seems to be 

one of the very few exceptions to the general rule. What an honour for 

Edmunds and Lionel! 

Cooper had a sharp intellect, always interested in the basic assump

tions of the problems studied. He was a scholar in the old sense of the 

word, widely read, having brilliant ideas, an inspiration to those who knew 

him. 

He did not seek the limelight, and was somewhat reserved in public. He 

worked in a quiet way but still with great influence. He radiated authority 

in every situation of life, an authority based on deep respect and justice. 

He had a healthy self - confidence which allowed him to be composed; there 

was no rushing about him. 

Lionel was of noble character, obliging and courteous; also in every 

day life, a true and reliable friend in every situation. He was encouraging 

and had a deep sense of humanity; he was a true gentleman. His greatness 

was accompanied by his real modesty. 

Apart from English he read or spoke many languages; German, French, 

Italian, Africaans (enabling him to converse with Dutch people); he could 

also speak and read Russian. He was a lover of music; he was fond of poetry, 

even read poems in German (Rainer Maria Rilke!). It is the German mathemati

cian Karl WeierstraB who said that a mathematician who is not a poet can 

never be a perfect mathematician. 

While in good company, for example at the traditional wine evenings at 

the Oberwolfach conferences, he was a most charming entertainer. Since he 

was somewhat shy, the fact that he could tell stories so effectively often 

came as a surprise. In addition he had a dry sense of humour! 

While at Oberwolfach he was a great hiker, an enthusiastic swimmer - at 

one meeting he was the only participant to go swimming in early spring in a 

lake with a temperature of about 10 degrees centigrade. He was also a 

determined tennis player. He had great staying power. 

Lionel was a true family man. Whenever he could he would always take 

Kathleen along on his many trips, and when they were young, his four children. 

I always felt he had a very deep affection for all of them. The Cooper family 

always radiated harmony, which was a pleasure to observe. The family has now 
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lost a dear husband and loving father. 

A testimony of the positive image that he projected to his family is 

that all four of his children followed him in his study of mathematics. 

In 1947 GodfreyH. Hardy of Cambridge died, in 1963 Edward C. Titchmarsh 

of Oxford, a short while ago John E. Littlewood of Cambridge, all three 

mathematical analysts belonging to an incomparable school of analysis, 

probably the best that Britain has ever produced. Today it is Lionel Cooper 

- he was brought up in this tradition of British analysis and he belongs to 

that category of mathematicians. 

The world has lost a great mathematician, and if I may add another 

personal word, I have lost a great, my best friend. 



A TESTIMONY FROM A FRIEND 

A.J.W. Hill, Esq., M.A. (Cantab.), 

Heinemann Publishers Ltd., 

22 Bedford Square 

London, WCIB 3HH, England 

I first met Lionel l ) in Oxford before the war, more than forty years 

ago. I was not a member of that university myself, but I used to visit my 

future wife there, and she and Lionel belonged to the same group of friends. 

He was a Rhodes Scholar over from South Africa, and he struck me at once as 

a man of outstanding and quite unusual qualities. 

Firstly, he was interested in everything. Every field of intellectual 

and cultural activity - from his own specialism, mathematics, right across 

to poetry, music, drama, languages, history, physical activities, and human 

beings - engaged his critical and discerning attention. 

In particular, he seemed to be very interested in politics. But I felt 

that this interest was really a m 0 r a I concern; he was less interested 

in the politics of power than in seeing that people were treated with 

decency and justice. And his high view of how mankind should be treated 

was exemplified in his own life - as his many colleagues and friends who 

received his unfailing kindness and consideration will testify. 

Lionel was a man of great intellectual power and integrity, and when 

required he could be forcible - even fierce - in his attitude. But his 

friends knew that beneath this exterior breathed one of the warmest-hearted 

of men. In fact, the longer one knew Lionel, the more one realised that his 

true gentleness was one of his most outstanding and endearing qualities. I 

I) An address held at the funeral service of Professor J.L.B. Cooper 
on 14. August 1979 in London. 



26 Hill 

used to play tennis with him regularly and I cannot remember any occasion 

on which I ever won a game. But always as we walked off the court he would 

soften the bitterness of defeat with some kind words about how well I had 

played. 

Lionel was a truly happy man - happy in his friends, and above all in 

his family. Together with Kathleen, whom he met at Oxford, he built an ex

ceptionally united family, and a visit to the Coopers was always one of 

life's rewarding experiences. He enriched the lives of those who were 

privileged to know him. We shall always remember him with admiration and 

deep gratitude. 

Let me close by reading to you one of the poems that Lionel cherished 

so much; it is one of the Holy Sonnets from John Donne's Divine Poems: 

Death be not proud, though some have called thee 

Mighty and dreadfull, for, thou art not soe, 

For, those, whom thou think'st, thou dost overthrow, 

Die not, poore death, not yet canst thou kill mee. 

From rest and sleepe, which but thy pictures bee, 

Much pleasure, then from thee, much more must flow, 

And soonest our best men with thee doe goe, 

Rest of their bones, and soules deliverie. 

Thou are slave to Fate, Chance, kings and desperate men, 

And dost with poyson, warre, and sicknesse dwell, 

And poppie, or charmes can make us sleepe as well, 

And better than thy stroake; why swell'st thou then? 

One short sleepe past, wee wake eternally, 

And death shall be no more; Death, thou shalt die. 
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FIXED POINTS OF CERTAIN MAPS 

ON POSITIVE SEMIDEFINITE OPERATORS 

T. Aodo 

Research Institute of Applied Electricity 

Hokkaido University 

Sapporo/Japan 

The usual addition A + B and the parallel addition A:B for pairs of posi
tive semidefinite operators are most basic operations; (A+B)/2 and 2(A:B) 
are considered as the operator versions of arithmetic and harmonic means res
pectively. An operator version of the geometric mean is characteriz.ed as a 
unique solution of the equation (A+X):(B+X) = X. 

1. Introduction and Theorems 

Motivated by parallel connection of electrical networks, Anderson and 

Duffin [lJ introduced the notion of parallel sum of positive semidefinite ma

trices. Subsequently Anderson and Trapp [2J extended it to the case of bound

ed positive semidefinite (p 0 sit i v e, for short) operators on a Hilbert 

space. Given positive operators A, B their par all e 1 sum, A:B 
-1 -1 -1 in symbol, is defined by lim {(A+£I) + (B+£I) } ,where I is the iden-

£~o+ -1 
tity operator; in particular, if A and B are invertible then A:B = (A 

+ B-1)-1. In electrical network theory the resistance of a mu1tiport network 

is considered to be represented by a positive operator (see [lJ, [2J). Given 

two networks, one with resistance A and the other with B, the parallel sum 

A:B is considered to represent the joint resistance of parallel connection. 

On the other hand, the usual sum A + B represents the joint resistance of 

series connection. 

The operators (A+B)/2 and 2(A:B) are considered the a r i t h m e -

tic and the h arm 0 n i c mea n s, respectively, of positive opera-
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tors A and B. Pusz and Woronowicz [9J introduced the notion of geometric 

mean. It is shown in [4J that the g e 0 met ric mea n, A#B in sym

boL can be defined by the formula: 

A#B = lim (A+£I)~{(A+£I)~B(A+£I)-~}~(A+£I)~. 
£-1-0 

If A commutes with B, then A#B coincides with (AB)~ as expected. From 

the view point of network theory, it is natural to seek realization of A#B 

by using only series and parallel connections, and there are already several 

approaches (see [3J, [7J). 
Here we take up a cascade-type synthesis. Given two positive operators 

A and B, let us consider the map ¢ defined by 

(1) ¢(X) (A+X):(B+X) 

in the set of positive operators. Starting with Xo' define successively 

Xn+l = ¢(Xn). We ask whether Xn converges to the geometric mean AJ.lB. This 

is true if, for instance, X = A + B, but not clear if 
o 

X .. O. 
o 

In this pa-

per we confine ourselves to determine the fixed points of ¢. 

THEOREM 1. The geometric mean A#B ~ ~ unique fixed point of the map 4>. 

Let us consider another map ~ defined by 

(2) ~(X) A:X + B:X. 

Though ~ has many fixed points, for instance 0, we can prove 

THEOREM 2. The geometric ~ A#B is ~ unique fixed point of the ~ ~ in 

the set {X I A:B':::; aX for some a. = aX > oL 

The proofs of these theorems will be given in the final section. 

2. Some Lemmas 

In this section A, B, C denote positive operators on a Hilbert space 
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H, and order relation A ~ B means that A - B is positive. We use ran(A} 

and ker(A} to denote the range and the kernel of A, respectively. The gen
-1 

eralized inverse A is, by definition, the (unbounded) operator defined on 
-1 

ran (A) by A (Ax) = Px where P is the orthoprojection to the orthocomple-

ment of ker(A}. In many cases, it is useful to extend the functional x~ 

IIA-lxll over whole H by setting IIA-lxll = 00 for x outside ran(A}. Thus 

a vector x is in ran(A} if and only if IIA-lxll < 00 The following for

mulas hold, with convention % = 0, 

(3) 

(4) II Ax II sup l(x,y}1 
y IIA-lyll 

The positive square-root of A is denoted by A~. For notational con

venience, we use A-~ instead of (A~}-l. If x is in ran(A), then obvi

ously A-~(A-~X)=A-1x. The following well-known lemma (see [6]) is a bridge 

between the order relation of positive operators and the inclusion relations 

of their ranges. 

It is known (see [2]) that parallel sum admits a variational description: 

(5) 

In this connection, the following two lemmas show that usual and parallel ad

ditions are dual notions. 

LEMMA 2. 

(6) 

and consequently 

(7) 



32 Ando 

PROOF. Introduce a new pre-Hilbert norm II'· II' in the algebraic direct sum 

K = H <±) H by 

For each Z E H, consider a linear functional $ on K defined by $ (x E8 
Z Z 

y) = (x+y,z). It follows from (3) that the functional norm of $, even in z 
the unbounded case, is given by 

We claim that "' $ "' coincides with II (A: B) ~z II. Since the linear maniz 
fold {u ® (-u) , u € H} is annihilated by $z' we have 

2 
"' $ 11,2 = sup ,(x+y,z) , 

z x'Yinfll'x<±)y _ u<±)(_u)II,2 
u 

On the other hand, it follows from (5) that 

inf ill xE')y - uE)<-u)1I1 2 = 
u 

= II (A+B)~(X+Y) 112. 

Now the claim results from (3), which completes the proof. 

LEMMA 3. 

(8) 

and consequently 

(9) ran«A+B)~) = ran(A~) + ran(B~). 

PROOF. Introduce a new pre-Hilbert norm ",. "' in the algebraic direct sum 
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K = ran(A~) ® ran(B~) by 

Since both' A and B are bounded, K is complete with respect to the new 

norm, that is, (K, III • III) is a Hilbert space. As in the proof of Lemma 2, 

consider for each z E H a linear functional (jl on K; (jl (x + y) = (x+y,z). z z 
It follows from (4) that the functional norm of (jl is given by 

z 

Then by (3) we have 
II (A+B) -\112 = sup I (x,z)1 2 

z II (A+B)~Z 112 

I (jl (x®x)/21 2 
z = sup -...::----;:--

Z III (jlz1112 

Since (K, III • III) is a Hilbert space, the last term in the above identity 

coincides with the distance from (x ® x) /2 to the subspace N consisting 

of all vectors that are annihilated by all (jl (z E H). Obviously this sub-
z 

space consists of all vectors of the form v ® (-v) where v runs over 

ran(A~) ("\ ran(B~) • Therefore 

which completes the proof. 

Remark that (6) and (8) give quantitative improvement of (7) and (9) that 

were proved in [2] and [6]. 

LEMMA 4. If A:C + B:C ~ C, then for all x,y E ran(C~) 
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PROOF. Since assumption means that for all z E H 

we have, for X,yE ran(C~) and I~I = 1, 

by (3) 

by (8) 

On the other hand, with suitable choice of ~, we have 

which together with the above yields 

Replacing x and 
-1 Y by Ax and A y respectively in the above inequality 

and computing the minimum of the right hand side with respect to A, we arrive 

at the assertion of the theorem. 

LEMMA 5. Suppose that the following conditions ~ fulfilled; 

(a) A:C + B:C ~ C 

(b) (A+C): (B+C) ~ exC for ~ ex > o. 
Then for all x,y in ran(c~) 

PROOF. Take X,y in ran(c~). By Lemma 4 it follows from (a) that for each 

u E ran(c~) 
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Since the first factor of the extreme right hand side is equal to II (A: B) -~x II 
by (6), the proof will be completed if 

II (A+B) -\ IF = inf { IIA -\ IF + II B -~(y-u) IF I u e ran(C~)} • 

To prove this identity, it suffices, by (8), to show that u is in ran(C~) 
whenever u is in ran(A~) and y - u is in ran(B~), or even more 

(10) 
1 1 1 ~ ~ 

{ran(A~) + ran(C~)}r\{ran(B~) + ran(C )} ~ ran(C ). 

But (10) is equivalent to (b) on the basis of Lemma 1, and (7) and (9). This 

completes the proof. 

3. Proof of Theorems 

Recall that ¢ and ~ are the maps induced by given A and B accord

ing to (1) and (2), respectively. Suppose that C is a fixed point of ¢ or 

that it is a fixed point of ~ and satisfies A:B ~ aC for some a > O. We 

claim that the conditions (a) and (b) of Lemma 5 are fulfilled in each case. 

Since (5) implies 

(11) A:C + B:C ~ (A+C):(B+C) 

(see [2J), this is immediate for the case of ¢, i.e. 

(12) (A+C):(B+C) = C. 

In the case of ~, i.e. 

(13) A:C + B:C = C 
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the condition (a) is immediately fulfilled. It remains to show (b) or its 

equivalent form (10). Remark that (13) implies, on the basis of Lemma 1, (7) 

and (9), 

while the additional assumption A:B ~ ac does 

These two inclusion relations yield immediately (10). 

With the claim established, in view of Lemma 5 we are in position to as

sume that for all x, y in ran(C~) 

(14) 

and further that 

(15) a(A:B) ~ C ~ (A+C):(B+C) for some a > O. 

Since (5) implies 

(A+C): (B+C) ~ (A+C+B+C) /4 

(see [2J), the right hand inequality of (15) implies C ~ A + B. A conse

quence is that the operators (A:B)~(A+B)~ and C(A+B)-~ are uniquely ex

tended to bounded operators, say K and L respectivelY,with the restric

tion that they vanish on the orthocomplement of ran«A+B)~) (see [6J). 

Take w € ran«A+B)~) and let z = (A+B)~. Since the left hand ine

quality of (15) implies ran( (A: B)~) C ran-(C~) by Lemma 1, it follows from 

(14) that 

Therefore we have by (4) 
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sup \(x,z)\ ~ II(A+B)-~czll 
x II (A:B) ~II 

II (A+B) -~C(A+B) -\'11. 

In terms of 

~ (L*L) 2. 

K and L the above inequalities are written in the form K*K 

Since the square-root function preserves order relation between 

positive operators (see [4J), we have (K*K)~~ L*L, hence 

(16) 

The left hand side of (16) is just the geometric mean of A + Band A:B 

that is known to coincide with A#B (see [4, 5, 9J) while the right hand side 

is equal to C by definition of L. Thus we have proved A#B ~ C. 

To prove the reversed inequality, remark that the right hand inequality 

of (15) is equivalent to an inequality between operator matrices 

[ C -c 1 
-c c 

[
A+C 0 l 

o B + cJ 
(see [2, 5J), hence the operator matrix ( AC CB J is positive. Since the 

geometric mean A#B is the maximum of all positive X for which the operator 

matrix (~~1 is positive (see [4,5J), we have C ~ A#B. This completes 

the proof of the theorems. 

That the geometric mean A#B is a fixed point of ~ was already pointed 

out by Nishio [8J. 
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GENERATOR OF SEMI GROUPS OF POSITIVE OPERATORS 

WITH APPLICATIONS TO STABILITY THEORY 
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Tiibingen 

In [3] we proved that the spectral bound of the generator A of a strongly 
continuous semigroup of positive operators is always contained in the 
spectrum of A. Here we apply this result to some problems in stability 
theory. Moreover we give an example of an irreducible group of positive 
operators on a Banach lattice of continuous functions such that its type 
differs from the spectral bound of its generator. This solves an open 
problem of [3] and serves as a counter example to some conjectures in 
stability theory. 

I. Introduction 

In the last few years the theory of strongly continuous semi groups of 

positive linear operators on ordered Banach spaces became more and more im

portant in its own right as well as in applications (see e. g. [I, 2, 3, 5, 6, 

7, 8, II, 12, 15, 16, 17]). 

One of the most interesting questions in this field is that one about the 

limit behaviour of the semi group ~ - (Tt)t~o (for t tending to infinity) 

which in turn is closely related to the size of the spectrum a(A) of the in

finitesimal generator A of t (see e. g. [7, 8, 13, 14]). 

As a major step towards the answer of this question we proved in [3], 

that for a strongly continuous semigroup 1 - (Tt ) of positive operators on a 

(non-pathologically) ordered Banach space the well known formula for the re

solvent of the generator A 

R (x) z 

00 

r -zt .. Je 
o 
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does not only hold for all z with Re z > Wo where 

w 
o 

:= lim t- l 

t-"" 

Wolff 

but for all z with Re z > s(A) where the spectral bound s(A) is given by 

s(A) = sup t Re z : z € cr(A)J 

Here cr(A) denotes the spectrum of A. 

In the present paper we will apply this theorem to stability theory. 

From the foregoing we get a feeling for the important question whether or not 

s(A) equals woo In fact in [5] this seems to be tacitly assumed. This, how

ever is not true in general for semigroups of positive operators as was shown 

by an example in [3]. But there the problem remained open whether s(A) = w o 
holds at least for all g r 0 ups of positive operators. 

This, however, is not true, too, as we shall show by an example. Sur

prisingly this example is quite easy and is furnished by the group of trans

lations on a suitable Banach lattice of continuous functions on E. (Note that 

in the nonpositive case examples of similar kinds are already well-establishe~ 

see [4, 18], but these examples are quite more complicated than our one. On 

the other hand the underlying space in these cases is the Hilbert space, and 

here our problem remains open.) 

The paper is organized in the following manner: In Section 2 we recall 

some notions and the most important results of [3]. Section 3 is devoted to 

stability theory whereas in Section 4 we give our counter-example. For notions 

not explained here we refer to [4] in the case of strongly continuous semi

groups and to [9] ([10], resp.) for ordered vector spaces (Banach lattices, 

resp.). 

2. A Formula for the Resolvent of the Generator 

2.1 Notations. In the following let E be a real Banach space ordered by a 

closed, normal cone E+ satisfying E+ - E+ = E. Denote by Et the complexific

at ion of E, i. e. E, = E ~ iE, equipped with an appropriate norm inducing the 

product topology and such that Et becomes a complex Banach space (e. g. 

Ix + iyl = sup{ Ix cost + y sintU 0 ~ t ~ 2rr}). Then E is called an 

o r d ere d Ban a c h spa ceo v e r t. 
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A linear operator T from one ordered Banach space Ee to another one Fe is 

called p 0 sit i v e (T ~ 0) if T(E+) C F+. Such an operator is necessari

ly bounded (apply [9], V.5.6 together with 5.5). We set S ~ T whenever 

S - T ~ O. As usual ( is ordered by R+. 

2.2 Examples. a) A complex Banach lattice is defined as the complexification 

of a real Banach lattice; in particular the classical Banach lattices of 

functions (or of measures) fit into our frame (see [10], 11.11). 

b) Every complexification of a real order unit space (see [9], V). 
* c) Every C -algebra A. The real space Ao consists of the selfadjoint 

elements, A+ consists of the nonnegative selfadjoint elements. 

The most important result of [3] now is the following one: Let 

t= (T ) ~ denote a strongly continuous semigroup of positive linear oper
t t::::o 

ators on the ordered Banach space E( over (. Let A be the infinitesimal 

generator of t and denote by o(A) its spectrum and by seA) the spectral 

bound. 

THEOREM 2.1. a) ~ o(A) is nonempty then sea) € o(A). 
-I 

b) For u> seA) the resolvent (u .- A) =: Ru(A) i.! positive. t, -zs 
for Re z >s(A) the ~ (Joe Ts dS)t~o converges.!£ Rz(A) with 

Moreover 

respect to 

the operator ~ (for t -+00). 

c) Let seA) be ~ pole of order ~ ~ the resolvent of A. ~ z .. seA) + iv 

(v € R) is another pole then its order is ~ m. 

An easy corollary is the following one: 

COROLLARY 2.2. Let ';f = (Tt)t€lR be ~ strongly continuous ~ of positive 

linear operators on EC' Then o(A) + ~. More precisely: o(A) () R+ ~. 

Note, that o(A) i ~ for uniformly bounded strongly continuous groups on 

an arbitrary Banach space. Thus the interesting case here is that the group 

may be unbounded. 

3. Applications to Stability Theory 

3.1 Basic Notions. Let 1 = (Tt)t~o denote a strongly continuous semi group on 
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the Banach space E. Let X denote a (not necessarily closed) linear subspace 

of E. 

DEFINITION 3.1. a) 4- is called weakly (s trongly, or uniformly, resp.) asymp

totically stable on X if (T t / X) ~verges to 0 with respect ~ the weak 

(strong, uniform) topology for t-..."oO. 

b) t is called exponentially asymptotically stable on X if there is 

o < u E :R such that for every x E X there exists M(x) ~ 0 satisfying 

1TtXf ~ e-ut M(x) for all-;-;O . .!!. sup ~M(~E X, Ixll = 11 = M <00 holds 

then '1 is called uniformly exponentially asymptotically stable ~ X. 

DEFINITION 3.2. f is called weakly (strongly, uniformly) integrable ~ X if 

( JTs ds/ X) converges with respect to the weak (strong, uniform) topology for 

t -,,00. 

3.2 Pre liminary Resu1 ts. Let ?, E, X be as in 3.1. The uniform bounded ness 

principle implies that ';/ is uniformly bounded if ';j is weakly asymptotically 

stable on the whole space E. Thus from now on w e m a k e the 

ass u m p t ion t hat 

We need the following 

'+ i sun i for m 1 y b 0 u n d e d. 

LEMMA 3.1. Let + = (Tt)t~o be ~ strongly continuous semi group ~ the Banach 

space E with infinitesimal generator A. ~ for ~ x E E and z E C 

(3.1) St -zs 
lim e T xds = Y 

t -)('41 0 S 

exists (in the weak topology) then y is in the domain D(A) of A and 

(z - A)y = x. 

The easy proof is omitted. 

The next proposition should be known, we have taken it from [8]. 

PROPOSITION 3.2. Let 1 = (T ), be a -=u~n~if~o~r-=m~lLY bounded strongly continuous t t;:;o - - - - -
semi group ~ the Banach space E with infinitesimal generator A. The following 

assertions ~ equivalent: 

a) ';l. is weakly (strongly) asymptotically stable ~ E. 

b) ~ image Im(A) ~ A is dense and ';j, is weakly (strongly) integrable 

1) T/ X: restriction of T to X 
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on Im(A). 

c) There exists ~ dense subspace X £E. which 7 is weakly (strongly) 

integrable. 

PROOF. a)~ b): Since '?- is weakly asymptotically stable, 0 is not an eigen

* genva1ue of the adjoint A of A, hence Im(A) is dense. For x E ImA there 

exists y E D(A) with Ay = x hence 
t J T xds o s 

which converges to -y by assymption. 

c) ~b): follows from LeRuna 3. I. 00 

b) ~a): By Lemma 3.1 for x E D(A) 5(-T Ax ds)= x holds, hence 
~ 0 s 

Tt x = tS Tx Ax ds converges to O. Since D(A) is dense and ? is uniformly 

bounded the assertion follows. 

In general weak stability does not imply strong stability. Thus the follow

ing corollary is of interest. 

COROLLARY 3.3. Let (T ) , be a strongly continuous semi group of positive t t "'0 - - '::"::":"':"':=::.L_ .::..::..:..:..::..;:.:..:..::..:....:.::. .::..::.;;.;;:.=..:...::.~ -

linear operators £E. the ordered Banach space Ea; ~ t. Let A denote the in

finitesimal generator. 

g + is weakly asymptotically stable and if Im(A) + : .. l y E ImA : y ... oj 
separates the points £E. the dual space E' then .. is strongly asymptotically 

stable. 

PROOF. Since Im(A) + separates the points of E', the linear hull X of 

Im(A)+ is dense in E. If x E Im(A)+ then the weak limit z := o~ Tsxds exists 

by Prop. 3.2 because of our assumption. But by the theorem of Dini-Schaefer 

([9], V.4.3) this implies that ( (t T xds) converges strongly to z. The oJ s t>o 
assertion now follows from Prop. 3.2. 

3.3 The Main Result. If a strongly continuous semigroup + = (T ), is 
t t"'o 

exponentially asymptotically stable on the whole space then by the uniform 

boundedness principle + is uniformly exponentially asymptotically stable 

hence its type Wo (see Sect. I) is strictly less than zero. So we turn to the 

following problem: under which conditions does there exist a dense subspace on 

which + is exponentially asymptotically stable? 
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First of all there may exist such a subspace even if seA) = w = 0 o 
happens. Consider the space E = C (R) of all complex-valued continuous 

o + 
functions vanishing at infinity. Define Tt by (Ttf)(x) = f(x + t). Consider 

X - {f e: E : /f(x)1 ~ ne -x for all x and a suitable n e: :N not depending on 1C}. 
Clearly X is dense in E with respect to the sup-norm, and for f e: X 

ITtf~ ~ M(f) e- t holds. Since every function eut (u < 0) is an eigenfunction 

of the generator A, seA) = w = O. 
o 

Fro m now 0 n w ere s t ric t 0 u r con sid era -

t ion s t 0 (c 0 m pIe x) Ban a chI a t tic e s 

call the notion of an ideal and related subject. 

E. Let us re-

DEFINITION 3.4. a) ! linear subspace J of E is called ~ ideal if y e: E and 

jy\ ~ x for ~ x e: J always implies y e: J. 

b) ! linear subspace X of E is called positively generated if X is the 

linear hull of the set X := X ()E of its positive elements. 
--- --- - -- -- + + - -- .!.---'---- ----

c) Let X be ~ positively generated linear subspace. Then J(X) = (Y: there 

~ x e: X satisfying Iyj ~ x J is called the ideal generated Ex. X. 

Note, that J(X) is the minimal ideal containing X. 

The following lemma is nearly obvious but important. 

LEMMA 3.5. Let A denote the infinitesimal generator of ~ strongly continuous 

semi group ? of positive operators £!!. the Banach lattice E. Then the domain 

D(A) £! A is positively generated. 

PROOF. For u > s(A) we know by Theorem 2.1 that the resolvent Ru(A) > O. 

Since E is the linear hull of E and R (A) (E) = D(A) the assertion follows. 
+ u 

We need one further notion. In fact it looks a little bit strange at first 

glance but the examples and the theorem succeeding it may justify it. 

DEFINITION 3.6. Let E be ~ Banach lattice. ! linear operator A from D(A) c E 

into E is called inverse monotonously continuous (imc for short) if every in

creasing sequence (zn) in D(A) for which (Azn) is decreasing and convergent 

itself is convergent. 

EXAMPLES. a) Let A be the generator of a strongly continuous semigroup of 
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positive operators. If s(A) < 0 then A is imc, since then (_A)-l exists on 

E and is positive. 

b) Let '4 = (T t ) be the group of shifts on E '" Co(1R) = (f E t 1R : f is 

continuous and lim f(t) = oj. Then the generator A: f -Af = f' is imc 
Itl~oo 

though 0 E a(A). For if (f ) is increasing and (Af ) is decreasing then 
n n 

A(fn -f l ) ~ 0 hence fn = f) for all n. 

c} Let E = C (1R) and (T f}(x) = f(x + t}. Then Af '" fl, and A is not 
o + t 

imc. For consider f (x) = n(1 + x)-I/n. Then (Af ) is decreasing and conver-
n n 

gent, but (f ) increases and fails to converge. 
n 

These examples show the following: s(A) < 0 implies A to be imc, but not 

conversely. Example c) shows that ~ may be exponentially asymptotically 

stable on a dense ideal (see the paragraph at the beginning of 3.3), but 

neither A is imc nor s(A) < O. Nevertheless in this example f is strongly 

asymptotically stable (use Prop. 3.2). 

Thus in view of these remarks the following theorem is best possible. 

THEOREM 3.7. Let ? '" (T ) ~ be a uniformly bounded strongly continuous t t::oo - - ..::;;.;.;;:.;:..;--~- .::...;...== ..:..;..--"""-~- -'-;;.;;..;;..;;..;.;;.;--~ 

semigroup of positive operators ~ the Banach lattice E, and denote E1. A its 

infinitesimal generator. The following assertions ~ equivalent: 

a} The spectral bound s(A) is strictly less than 0, in particular ':I is 

strongly asymptotically stable. 

b) '+ is exponentially asymptotically stable ~ the domain D(A) of A 

and A is imc. 

c} A is imc and ':/ is exponentially asymptotically stable ~ the ideal 

J(D(A)} generated E1. D(A). 

d) A is imc and there exists .! positively generated dense subspace X on 

which t is exponentially asymptotically stable. 

e) A is imc and there exists .! dense ideal ~ ~ ';j. is exponentially 

asymptotically stable. 

PROOF. a)~ c): Let s(A) < u < O. To Y € J(D(A» there exists x E D(A) with 
1 -I + 

/yl ~ x; now x '" (u - A)- z for z '" (u - A)x. But (u - A) '" R (A) ~ 0 by 
u 

thm. 2. I, hence 

Iyl ~ x ~ R (A)(lzl) '" r- e-us T /z/ds 
u 0 s 

~ T Iyl ~ T R (A)(/zl) ~ eUs R (/zl), and thus s s u u 
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The only remaining nontrivial implication is e) ~a): Let J denote the 

ideal in question. There exists 0 < u such that ijTtX~' e-utM(x) for all 

x E J. Hence for v < u the integral 
.,. 

of evt Ttxdt =: SvX 

exists (even with respect to the norm), thus there is defined a positive 

linear operator S from J into D(A) satisfying (v - A)S = I (on J) (use 
v v 

Lemma 3. I). 

Hence f is strongly asymptotically stable by Prop. 3.2. Now Ax 0 

x for all t, hence x = 0, thus A is injective. 
-I 

We now prove that A is onto. Then A exists on E hence 0 ¢ o(A) and 

Theorem 2.1 yields seA) < 0, since w '0. 
o 

Now let 0 < x E E be arbitrary. Since J is dense in E, there exists a 

sequence (Yn) in J converging to x. 

Let w = inf(x,ly I). Then 0 'w 'Iy I, hence w E J and lim w • x, n n n n n n 
since the lattice operations are continuous. Then (v ) defined by 

n 
vn = sup (wl, ... ,wn), is in J, it is in~reasing and converges again to x. 

For zn SOvn (zn) is increasing in D(A), and AZn = -vn by Le~a 3. I. 

Now A is imc, hence y = lim z exists, and since A is closed, (-A)y • x. n ...... n 

COROLLARY 3.8. Let ~ be equal !£. the space C(X) of ~ complex-valued E£!!:. 

tinuous functions on !. compact space X, and ~ ,+, A be as before. Then 

the following assertions ~ equivalent: 

a) 4. is uniformly bounded, A is imc, and there exists !. positively 

generated dense subspace £!!. which .. is exponentially asymptotically stable. 

b) ~ is uniformly exponentially asymptotically stable on E. 

h . 1 . . . f 1 ( ~' ) ~ same equl va ence .!:!. true !E. ~ E .!:!. ~ ~ L X,L.,,11 . 

PROOF. In both cases seA) w holds ([2,3]). 
o 

4. A Group of Positive Operators with seA) < w~ 

First of all we point out that for a group t = (Tt\ElR of positive opera

tors seA) + -00 by Corollary 2.2. The idea behind our example is the follow-
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ing: the group will consist of all translations on the intersection of C(B) 

with three weighted function spaces. 

The weight functions are chosen in such a way, that (i) HTt "· 1 for 

t > 0, (ii) the space is translation-invariant, (iii) s(A) < 0, i. e. we 

eliminate the functions eut for -I ~ u ~ O. 

We give the construction in a series of particular steps. 

4.1 Construction of E. Let E consist of all complex-valued continuous func

tions f on B satisfying 

lim f(x) slim e3x f(x) • 0 and 
"""'00 "--00 

fe2xlf(x)~.: PI(f) <00 
-00 

Set P2(f) • sup { If(x)1 : x ~ O} and P3(f) • sup { e3x lf(x)1 : x ~ oj. Equipped 

with the norm BfU • PI(f) + P2(f) + P3(f) E is easily seen to be a Banach 

lattice. 

4.2 Construction of the Group. For fEE set (Ttf)(x) • f(x + t). Since 

-2t 
PI(Ttf) ~ e PI(f), and moreover lim f(x + t) • l(-'-

lim e3xf(x + t) • 0 we get 
"-')-00 

Tt(E) € E and all Tt are positive, hence continuous (see Sect. 2.1). In fact 

KTtO ~ 1 holds for t > O. 

To show that 1· (Tt)tEB is strongly continuous we choose w. 1. o. g. 

o < fEE. If £ > 0 is given then there exists a > 0 such that 

5 2x (f(x + t) + f(x»e dx < £/2 for It I ~ 1 
Ix! >a 

Since f is uniformly continuous on [-(a + I), a + I] there exists 0 < d < 1 

such that S 
If(x + t) - f(x) I < ( • (2 • e2x dx)-I for It I < d, Ixl ~ a. 

Ixl ~a 
But then PI(Ttf - f) < (. 

Similarly we prove that 1 is strongly continuous with respect to P2 

and P3' Obviously the domain D(A) of the generator A equals {f E E : f' € E}, 

and Af = f' (derivative of f). 

4.3 W '" O. More precisely we prove that liT I . 1 holds for all t > O. In 4.2 
o t 

we showed already IITt II ~ I. 
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Fix t > O. For ( > 0 there exists f E E+ with compact support contained 

in [t,oo[ and satisfying PI (f) < ( , P2(f) = I l (P3(f) .. 0). Now obviously 

P3(Tt f) .. 0, P2(Tt f) .. I, and PI(Ttf) , e-2t PI(f), hence I , ~Ttfn , I + (. 

Since ( > 0 was arbitrary, the assertion follows (because of I , If II 'I + (). 

4.4 s(A) < -I. Obviously for u ~ -I (u - A) is injective since PI(eu.) = 00. 
Hence it is enough to show that E+ C Im(u - A). 

For f E E and u ~ -I set + 
0<> 

F(x) .. S e -ut f(t + x)dt ux G(x) e 

where 0 

C1J 

G(x) .. S -us f(s)ds e 
x 

We show that FEE; obviously then (u - A)F .. f. 

(i) If a < b then using G' (x) .. -e -ux f(x) obtain via integration we 

by part 
rb e2x F(x)dx = __ 1 __ [e(2+u)x G(x)]b + Jb e2x f(x)dx. 
J 2+u a 

a a 

The second summand converges to PI(f) (for a -) -000, b....., (0). Now 
00 

e (2+u)x G(x) , J e2s f(s)ds, 
x 

hence the first summand converges, too, and we obtain PI(F) , 2P I(f). 

(ii) For t > 0 we have 

G(t) .. r e-us f(s)ds' SC1Je2S f(s)ds 
t t 

hence for -I , u < 0 lim F(t) .. O. The case u ~ 0 is obvious. 
t .... Oo 

(iii) e 3t F(t) .. t 1~ e2t+ut-us f(s)ds , t 
PI(f), thus e e 

t 

lim e3t F(t) .. O. 
t .... -oo 

Thus s(A) < -I is proved. 

4.5 Summary and Final Remarks. (i) The group '+ of translations on E is ex

ponentially asymptotically stable on the dense ideal generated by D(A), and is 

strongly asymptotically stable, but not e x p 0 n e n t i all y 

a s y m p tot i cal 1 y s tab leo n E. 

(ii) There is no nontrivial closed ideal J on E which is invariant under 
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~, in other words t is irreducible (see [10], 111.8). 

(iii) The following problem remains open: does there exist a group of 

positive operators on E = L2([0,1]) with property (i) above? 
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LOCAL OPERATORS, REGULAR SETS, AND 

EVOLUTION EQUATIONS OF DIFFUSION TYPE 

Gunter Lumer 

Institut de Mathematique 

Universite de l'Etat 

Mons, Belgique 

The purpose of the present paper is twofold, and correspondingly it is divided 
into two different but closely related parts. 
In Part I, which is expository, we give a very brief and sketchy account of 
- or merely indications on - some of the developments since around 1975 con
cerning the evolution equations of diffusion type associated to a local ope
rator A on a locally compact Hausdorff space n. We also mention some of the 
applications to parabolic partial differential equations. While quite incom
plete, this account, together with the bibliography at the end of the paper, 
should be useful in giving the interested reader a first idea and orientation 
on the mentioned subject. 
The local operators A which are considered in the developments mentioned above 
are assumed to have decisive potential - theoretic properties, i.e. to satisfy 
a "maximum principle" (local dissipativeness), and to have "enough regular 
sets" (open sets in n, regular with respect to A in some sense related to the 
usual potential - theoretic meaning of "regular open set"). 
Part II is not expository. In it we deal with several aspects concerning regu
larity. In particular, in section 1 of Part II, we discuss relations between 
restricting of "local" Feller semigroups and evolution equations of diffusion 
type as treated, respectively, in (21) and [ 3), and give improved results 
along such lines (somewhat better suited for applications to partial differen
tial equations). 

PART I: LOCAL OPERATORS. SOLVABILITY, AND STUDY OF THE 

SOLUTIONS. OF ASSOCIATED EVOLUTION EQUATIONS OF DIFFUSION TYPE 

In the brief survey below, we can by no means go through a general detailed 
recalling of definitions, notations, and terminology, but shall refer the 
reader instead to the appropriate references. However, we recall a few things 
explicitely to make Part I, as much as possible, directly readable "in a 
first approximation", and refer for the rest, concerning notions, notations, 
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and terminology, to (3], (4), (5), unless otherwise mentioned. 
Part I deal. with work by G. Lumer, L. Paquet, J.P. Roth, and L. Stoica. 

I. Local Operators and Associated Evolution Equations. 

A local operator A on n (n a locally compact Hausdorff space satisfying 

possibly some additional conditions I» will playa role somewhat similar to 

that of a differential operator (on, say, an open set of RN). We recall that 

a local operator A on n is a family of operators ("operator" meaning "linear 

operator") AV, indexed by V EeJ(n) (eJ(n) being the set of all non empty open 

subsets of n), with D(AV) -D(A,V) cC(V), AV : D(A,V) +C(V), and such that for 

VI' V2 E eJ(n), VI CV2 ' 

fED(A,V 2) .. f IV I ED(A,V I), 
( I ) 

V V 
(A 2f) IV I co A I(f Iv l ). 

(Here, as in (5), we always write D(AV) -D(A,V), while not assuming a priori 

A "completed" or "locally closed", see (5). We shall however assume hence

forth that our local operators are "semi - complete" in the sense of [ 5\ .) 2) 

Given a local operator A on n, one can associate to each V E o(n), or to 

each V E eJ (n) ( eJ (n) being the collection of all relatively compact c c 
V E 0 (n», certain basic evolution equations (initial -value problems with 

boundary conditions) of the type 

()u _ Au 
()t ' 

t>O,xEV, (u -u(t,x», 

(2) u(o,x) - f(x), x EV, 

u (t, .) I ()V • 0, t ;;;. 0 

or 

I) To simplify, we shall assume in any case below, that n has a countable 
base. 

2) A very similar notion of "local operator" was already introduced by 
E. Dynkin (2] p. 145, in 1965, in connection with the characteristic 
operator of a continuous Markov Process. 
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~ = Au 
3t ' 

t>O,xEV, 

(3) u(o,x) f(x) , x {V, 

u(t,·) : 3\' = f(·) : ~V,. t:"O, 

where in (2) VEl! (.";), u(t,·) : VEC (V) (Le. u(t,·) I V tends to 0 at infinity 
o 

in V) V t ;;'0, and in (3) \' E (!' (l~). These problems, loosely described in (2), 
c 

(3), are set up precisely (in sup - norm contel\t and with specific uniform 

convergence behavior) as Banach space Cauchy problems, respectively in Co(V), 

C(V), in the following way: 

(2') 

or 

(3' ) 

du 
dt .. ~u, t :"0, 

u(o) = f 

du --. ~-u dt --V' 

u(o) so f 

(f E D(Av», 

(u(t)E D(\,)CC(V» 

(fED(\,». 

where the boundary conditions (behavior on av) are now embodied in the way the 

operators Av' AV' associated to V, (operating in the Banach spaces Co(V), 

C(V», are defined. (Av, AV' will be described explicitely in the next sec

tion). 

By saying that the problem (2'), or (3'), "is solvable", we mean that it 

is uniformly well posed as a Banach space Cauchy problem, and assuming that 

~, or AV, respectively, is closed, this is equivalent to saying that Av' or 

AV, generates a semigroup on, respectively, Co(V), C(V). 

If T generates the semigroup (P(t»t;;'O (on some Banach space), we shall 

often use the symbolic notation exp{tT} instead of P(t), and also say merely 

"the semigroup P(t)" or "the semigroup exp{tT}". 

Given A on n, V E (!'( Q), we say that "the Cauchy problem for V (corres

ponding to A) is solvable" iff (2') is solvable. We abbreviate "Cauchy pro

blem" by "c.p.". Similarly, we say that "the Cauchy problem with continuous 

boundary values (c.p.c.) is solvable" iff (3') is solvable. 
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2. Operators Associated to V E l'I (n) (Given a Local Operator A on n). 

Given as in the previous section A on n, the following Banach space ope

rators, in Co(V), or C(V) , associated to V E f(r~), or V E ("'c (J), are of basic 

importance in the results we are concerned with: 

v V E (!) (n), ~ IS defined by 

D(~) 

(4) 
~f Af in V, forfED(~). 

v V E (!) c (n), ~ is defined by 

D(~) 
(5) 

{f EC (V) f I VED(A,V), 3gEC(V) with g I av 0, g = Af in V}, 

~f g, for f ED(~). 

v V E (!)c un, ~ is defined by 

D(~) {fEC(V) : f I av = 0, f IVED(A,V), 3 gEC(V) with g = Af in V}, 

(6) 
for f E D(\,). 

Moreover, given the local operator A, and A E G: (usually we consider the 

case). >0), we write A>. for the local operator A-A, and thus may also consi

der the operatorsA"v' A"V' A"V' 

As we have seen in Section I, the operators ~, ~, come up in connec

tion with problems of the type (2), (2'), (3), (3'); the operators ~ come up 

in problems of perturbation (see (6), and approximation of solutions (see 

[7]),as well as other related matters. 

3. The Potential - Theoret ic Assumpt ions on Local Operators, and the Potential

Theoretic Techniques. 

We make essential potential - theoretic assumptions on our local opera

tors A. 

A is assumed to be real and locally dissipative (see (3), and to have 

"enough regular open sets" (with precision we mean by this, unless otherwise 

mentioned, the existence of an exhaustive family 9t of open A - regular sub-
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sets of ~ such as in Theorem 5.4 of (3)}. We also assume, until further no

tice, A to be locally closed (although one can deal adequately with the case 

of non locally closed local operators satisfying the other assumptions above, 

as is shown in (5) ). Under these circumstances, A has strong potential - theo

retic properties; in particular global maximum principles are available 3), 

and A" - superharmonic functions playa fundamental role (see (3) , [4). Such 

local operators are also intimately connected with the theory of Markov pro

cesses (see (23). 

Necessary and sufficient conditions for solvability of the c.p. (or 

c.p.c.) for general open sets V, can be given in terms of the existence of a 

"Cauchy barrier" for V (we shall return to such results below). For the no

tion of Cauchy barrier see (4), Definition 3.1 4). 

4. Some Basic Results. 

The context and hypothesis are those described above, unless otherwise 

mentioned. 

Concerning solvability of evolution equations of diffusion type, we have 

THEOREM 4.1. Given any V E (' (O), the ~ for V (corresponding.!£ A) is.!£!.:. 

.!!!?!!. iff D(~) is dense (in Co(V» and 3 .!. Cauchy barrier (relative ~ A) 

for V. l! these conditions ~ satisfied, the solution u(t,f) corresponding 

to the initial value f € D(~) is given ~ u(t,f) • exp{ t~lf 

(u(t,x,f)·(exp{t~lf)(x), t:>O, x€V), and exp{t~} is.! Feller semigroup. 

A quite similar result holds also for the c.p.c., see Theorem 1.2 of 

(8) • 

Furthermore, it is often necessary to work with non locally closed local 

operators A. A very useful variant of 4.1 above, using the "closure" A of a 

non locally closed A, is given in (5) • Theorem 6. Whether A is assumed to be 

3) including "complex variants" of such maximum principles, useful for in
stance in estimating resolvents R(~.·} for complex ~, and thus studying 
the holomorphy of solution semigroups; see [ 14] . 

4) This is a less restrictive variant of the notion "V is quasi - regular 
at infinity with respect to I -A" used earlier in [3]; see (5.1) of 
[ 3). and (4) Theorem 2. II • 
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locally closed or not, Theorem 6 of (5) also gives a less restrictive variant 

of Theorem 4. I in another direction, by assuming only (instead of an 

exhaustiv~.~ as described in the previous section) the existence of an 

exhaustive family .~ of "A - Cauchy regular" open sets (with, correspondingly, 

the appropriate interpretation of "(A-I) - superhamonic" in the notion of 

Cauchy barrier). 

On the other hand, at least when considering concrete situations with 
N n E (' (R ), problems such as loosely described in (2), or (3), can be set up 

in an L2 -variational context (i.e. using appropriate Sobolev spaces and 

variational fomulation of the problems) instead of the sup - nom set up con

sidered above. The corresponding "variational problem" is a less stringent 

one, and the "variational solution" may exist when the sup -norm solution 

fails to exist (there are simple examples of this in R3 , involving non regu

lar V E (' (R3) and the Laplacian). Such matters are treated in (9) using both 
c 

variational and potential -theoretic teChniques. Results are obtained first 

of all in the general context of the previous sections, a measure ~ being 

given on n, and a "variational structure" defined on r'c(l1) (to each V E r'c(ll) 

is associated a subspace ~ of L2 (V), and a sesquilinear fom aV : HVX~"II:, 
sat isfying appropriate assumpt ions - see Sect ion I of ( 9) ). A "variat ional 

operator ,r:tIv in L2 (V) is then defined, and concerning the "comparison of the 

L2 -variational and sup-nom set ups", we have, with the terminology and 

assumptions described in (9)5). 

THEOREM 4.2. Assume ~ ~.! variational structure defined on (flC(II) , ~ 

patible with A, satisfying .! coerciveness condition. ~ for.!!!. V E (c(n) 

we have 

(7) 

A useful application of Theorem 4.2 to partial differential equations is 

described in (9) (Section 2), in which n is an open connected (non empty) 

subset of RN, and A is the local operator on Il induced 6) by the differential 

5) For the L 2 -variational operator ·r:tIv see (9) p. 551. See also (15) Chap. 
IV, and [I) p. 63-65, (except for a change of sign in the definition of 
the operator). 

6) In the way explained in [ 10), Section II. 
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operator 

(8) A{x,D) c (x)Da • 
Q 

N 

r 
i,j - I 

N 
a .. {x)D.D. + r b.{x)D. + c{x), 

1J 1 J j_1 J J 
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D .• a/ax., where one assumes the ca real, measurable and bounded on 0 for 
1 1 

lal <I, with c <0 on r., and for lal =2 continuous with distributional deri
o 

vatives belonging to L~{O). A{x,D) is moreover assumed to be elliptic in O. 

The variational structure is obtained here by taking for V E (' (O), 
c 

(9) 
1\1 - H!{V), 

N N 
av{u,v) - l J a .. D.uO:V dx - r J b~{D.u)v dx - f cuv dx , 

i, j - I V 1J J 1 j _I V J J V 

• rN ~ where b. - b. - . I D.a .. E L (V); and for f E D{.Q(V)' 
J J 1- 1 1J 

(10) 
I 

V v E H (V). 
o 

Theorem 4.2 is shown to apply yielding ~ c ~V' V V E ('lc (n). It follows that 

if the sup - norm Cauchy problem (the c.p.) is solvable for V E ~ (n) and we c 
are in the selfadjoint situation, (i.e., aV is a selfadjoint form), then the 

sup-norm solution u(t,f}, for fEO('\r), (considered as an element of L2(V» 

can be computed by a spectral expansion convergent in L2(V). of the form 

( I I) u{t,f} -

see ( 91 • 

). t r e n 
n-I 

, 

c • (f,IIl). 
n n 

Let us consider again the sup - norm set up only. Using potential - theore

tic and semigroup approximation techniques, rather strong results on approxi

mation of solutions (in sup -norm) can be obtained, seer 71. both in the gene

ral context, and in the classical context. It would be a somewhat lengthy 

matter to describe these results with any degree of precision, and we thus 

rather refer the reader to the paper just mentioned. Let us merely say that 

in the classical context one shows that, roughly speaking, solutions (of 

Cauchy problems in the sense of Section I) corresponding to second order 

elliptic operators with real -valued coefficients having little regularity, 

posed in regions with "bad boundaries", can be approximated in a strong sense 

by solutions corresponding to "approximating operators" having C~ coeffi

cients and very regular regions (with C~ boundaries). 
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J.P. Roth. (21). has treated evolution equations closely related to those 

considered above. in the following context (we keep our notations and general 

conventions from Sections I and 2 above7); but we mention that the results of 

Roth also hold without assuming a countable base for n): let pet) be a Feller 

semigroup on C (Q) with pregenerator A • where A is "local" as an operator 
000 

in C (Q) (this means that whenever fED(A). VE l!1(Q). f=O in V. we have 
o 0 

A f=O on V). and satisfies an additional condition on D(A ) (see (21) p. 55). 
o 0 

Interesting results are obtained in (21) concerning the "restriction" of the 

generator A to "regular" open subsets of Q (regular in a certain sense. spe-
o 8) 

cified in (21). Chap IV. p. 57 ). We state now such a result. after intro-

ducing some corresponding notations. (We follow directly (21) but adapt every

thing to the notations specified here above. This translation may cause a bit 

of trouble to the reader. but still it seems the best procedure. What we call 

here Q. Ao' V. C (V) ..... would be called X, A. Q,Jf'H~) .... , in (21). Also 
00 

in (21), to the pregenerator called there "A", one associates a fami ly of 

operators AQ which wewould call here AV. and which constitute a local opera

tor in the sense of Section I above; that local operator we shall call here A. 

Thus A is the local operator on ninduced by A , via 
o 

D(A,V) • (fEC(V) :VxEV, 3an open neighborhood of x, Vx' and 

g ED(A). with f -g in V }, x 0 x x 

and for f E D(A. V) (Af)( x) • (A g )(x). Now, V V E l!1 (n). f E C (V). let us denote 
o x 0 

by l the extension of f to n by 0 outside V. One defines V V E l!1(n), the fol-

lowing two operators. A • and A V 2' in C (V): o.V,l o. • 0 

D(A VI) - {fEC (V) : 3gEC (V) such that (P(t)f-f)/t"g 
o. • 0 0 

(12) uniformly on compacta of V. as t .. O}. 

A f • g, 
0, V, I for f ED(A VI); 

0, • 

7) Except that in the context of (21) all functions are real-valued, so we 
shall interpret, while dealing with that context here, C(V) as C(V,R)={real
valued functions in C(V)}, C (V) as C (V,R), etc ••.. ; see furthermore 
(3) p. 422 concerning comple~ificatiog. 

8) If V is regular in that sense. Roth says "V satifies the regularity 
hypothesis .11". 
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D(A v 2) - D(A,V) nc (V), 
0, , 00 

(13) 

A V 2f - Af in V, 
0, , for fED(A V 2)· 

0, , 

One has «( 21) , Chap. IV) 

THEOREM 4.3. Let V E (lc(n) satisfy the regularity hypothesis '~" of (21).~ 

( 14) 

(i) tB 
3 ~ unique ~ semigroup Q(t) - e on C (V), such that 

- 0 ----
V fE Co(V), K compact c V, we have (considering restrictions to K) 

IIP(t)1 - Q(t)fIlC(K) • oCt) (as t ... O); 

(ii) B -A V I -r:-v I - r:-V 2 ' where the closures (of !h!.~) are 
0, I 0, t 0" ----

taken in Co (V) X Co (V), !h!. first space being provided with the ~ 

sup-~ convergence, the second with uniform convergence ~ ~

pacta of V. 
-c t 

(iii) 3 constants c l ' c2 > 0, such that V fECo(V), IIQ(t)f1l <cle 2 IIfli. 

In connection with Theorem 4.3, an evolution equation of diffusion type, 

of the type (2) above, is solved; and a Dirichlet problem for V regular in the 

sense considered in Theorem 4.3 is also solved thereafter in (21) Chap. IV. 

From these results one can derive useful consequences concerning the above 
. d l' =-1 (S· I f consldere c.p., c.p.c., A-Cauchy regu arlty, Av ,etc. see ectlon 0 

Part II, where we consider such direct consequences, and also give improved 

results in such directions). 

Very recently, J.P. Roth, (22), has also proved a quite interesting and 

useful result on the "patching together of compatible local Feller semi

groups", and on "patching together" the corresponding generators. 

Also very recently another sort of intertying of local operators, the 

"connecting of local operators A. given on the branches 11. of a ramified 
1 1 

space 11, via connecting operators" has been taken up in ( II), ( 12) , ( 13) , 

where the results concern essentially "networks" (one-dimensional ramified 

spaces) except for a brief mention in (13) of the general theory (which is 

presently being written up). In this sort of intertying, the local operators 

A. live on disjoint open subsets of a "ramified space" 11 and the "connecting 
1 . 
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operators" have their "support" contained in n\ (u.n.) (which is the "ramifi-
1 1 

cation space of nil). The corresponding evolution equations of diffusion 

type, with respect to the local operator on n obtained by connecting the A., 
1 

constitute a certain type of generalized transmission problems. 

Some applications of the results obtained in the general context to 

partial differential equations have already been mentioned above, in con
nection with Theorem 4.2 ( (8),(11) ), and approximation of solutions corre-

sponding to second order elliptic operator problems in which little regularity 

is assumed. Other applications, to second order elliptic operators having 

merely continuous coefficients, are given in [ 101, [ 161, [171. Other results 

concerning the c.p. for degenerate elliptic second order operators with very 

regular coefficients, and second order operators on manifolds, are also given 

in the last two references just mentioned. L. Paquet also makes an extensive 

study of time-dependent local operators (on a "space-time" locally compact 

space ~. n X [O,TI) and the c.p. in that context; this is then applied to 

the c.p. corresponding to second order parabolic equations with merely con

tinuous coefficients depending now on time also, as well as to the inhomoge

neous Cauchy problem with continuous boundary values depending on time, [161, 

[ 181, [ 19], [201. 

Finally, without attempting to go into any detail, we mention again the 

interesting recent work of L. Stoica, [231, which deals with local operators 

A (in the sense of Section I above, but real-valued), locally closed, locally 

dissipative (that notion defined slightly differently), having a base of 

"Dirichlet" (0-) and "Poisson" (P-) regular open sets, (i.e. local operators 

with strong potential-theoretic properties, closely related to those con

sidered in Section 3 and thereafter), and studies these objects in connection 

with Markov processes and the potential theory of the "quasi-harmonic spaces" 

associated to such local operators A. The matter of existence of "enough 0-

and P-regular open sets" brings up, of course. problems directly related to 

the c.p. and c.p.c. considered above. 
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PART II: COMPARSION BETWEEN DIFFERENT TYPES OF 

REGULARITY, IN RELATION WITH THE CAUCHY PROBLEM 

FOR LOCAL OPERATORS 

Throughout Part II, we use unless otherwise mentioned, the notions, general 9) 
conventions, notations, and terminology, indicated in Sections 1 and 2 of Part I 

I. Cauchy Problems (c.p.) for Local Operators, and Restriction of Feller 

Semigroups whose Generators are Local. 

We consider first the context described in the paragraph containing 

Theorem 1.4.3; we show that under these circumstances the local operator A 

induced by A has a closure A, and if V E (n) is regular in the sense of 
o 

Roth (footnote 8» then the c.p. (corresponding to A) is solvable for V, and 

B -Av, so Q(t) -exp{t~}. These facts are rather easy to derive from Theo

rem 1.4.3, (211, and (51. Somewhat deeper and more useful are the facts we 

establish next, showing that one has similar results but with everything 

happening in terms of one a priori. given local operator A (which is what one 

wants in applications to partial differential equations), and under weaker 

hypotheses, applicable for instance to classical diffusion equations in open 

sets with boundary in RN (for which the assumptions of Theorem 1.4.3 are too 

restrictive). 

Let us thus first consider the already mentioned context of the paragraph 

containing Theorem 1.4.3. We are thus considering in C (n), (n locally com
o 

pact Hausdo~ff with countable base), an operator A which is local (i.e. for 
o 

f E D(A ), V E (!l(n), "fl V-O" implies "(A f) I V- 0"), pregenerates a Feller o 0 

semigroup, and is such that V f E D(A ), IP E COO (R) - {IP real-valued in Coo(R): 
o 0 

IP(O)-O}, lPo f ED(A ). Also as described in the mentioned paragraph of Sec
o 

tion 1.4, A induces a local operator (in the sense of Section 1.1) on n, A. 
o 

We have 

PROPOSITION I. I. ~ ~ operator A !! locally dissipative. 

9) To refer to Definition a.b, Theorem a.b, etc., of part I(part II), we 
say Definition I.a.b (II.a.b), etc. 
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PROOF. Let WE (; (n), aw"~, fEC(W) with fl WED(A,W) and 
c 

(15) max ; f I < sup If: . 
oW W 

We must show that 3 x E W with I f(x ) I = sup i r: and (Af) (x )f (x ) "0. Set 
o '0' Woo 

K={xEW: if(x)i zsup :fiJ. K is compact by (IS). By what is shown in [21) 
W 

(IV.I.3, Lemma I of IlLI.4, of (21),3 gED(A), g=f near K, say in 
o 

WI open C W, and 3 IjJ E D(Ao)' 0"'; ljJo( I, supp IjJcW l , 1jJ.1 near K. Then h-Wg 

E D(A ), max nlhl occurs necessarily on K, and A is dissipative as pre gene-
o .• 0 

rator of a Feller semigroup, so 3 xoE Kc w, Ih(xo)I=lf(xo)i" sUPI~ If:, 

(A h)(x )h(x ) - (Af)(x )f(x ) .,.; O. 
00000 

The case aw·~ is handled similarly since in that case W is both open 

and compac t • 

(We could also alternatively prove our proposition using for f, or -f, 

a gED(A) as above, and the local positive maximum principle of (21) p. 55). 
o 

LEMMA 1.2. A admits .! closure A in the ~ of (5) (which is again .! locally 

dissipative local operator, locally closed, semi-complete, extending A). 

PROOF. Since D(A ) is dense in C (0), and there exist for any K compact in 
o 0 

VE ~U!), some IjJED(A) 0"'; 1jI<; I, supp IjJcV, 1jJ-1 near K, it follows readily 
o 

that 3 a base for n of WE (! (0) such that D(L) is dense in C (W). In view 
c -" 0 

of this and Proposition 11.1.1 above, Theorem I of (5) applies to yield our 

statement. 

If a set V E (! (0) satisfies the regUlarity hypothesis ';11" of Roth (see 

footnote 8) above), we shall say henceforth, in order to avoid confusion 

with our own notations and terminology, that "V is regular (R)". 

THEOREM 1.3. Let V E (! (0) be regular (R). Then the "restricted" Feller 

semigroup Q(t) corresponding to V according to Theorem 1.4.3 is equal to 

exp {t\,}, i.e., the generator B of Q(t) is \, (defined .!! in (4». Thus the 

~. corresponding ~ A is solvable for V. ~ particular V is A-Cauchy 

regular in the ~ of (5) . 

PROOF. By (13), Theorem I.4.3 (ii),and Lemma 11.1.2, we have BC\" where 
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the latter is dissipative (and closed). Since B is a generator. we have by 

maximality B -\. 

There are. however. some serious difficulties in applying Theorem 1.4.3 

as stated here in part I. i. e. in [ 21) 10). or its above consequences. to 

partial differential equations. Actually. from the point of view o~ such 

applications. the natural thing is to look at a local operator given a priori 

on n for which Ar (playing the role of the A of Theorem t.4.3) is the pre-
" 0 

gener.!tor of a Feller semigroup. However the condition IP. f € D(An) if f €D(A~). 

IP € Co (R). wi 11 of ten not hold (for instance for n an open set wi th boundary in R ). 
co 

even if we have lPof€D(A. V) for f € D(A. V). IP € C (V); moreover the barrier condi-

tions for "V is regular (R)" are expressed in terms of the local operator A' 

induced by An • but should be expressed in terms of A rather than A'. The 

approach and results below tend to eliminate these difficulties. 

We shall now assume for the rest of this section that there is given on 

n a local operator A. completed (see (5) footnote 2». As above in this 

section. all functions. function spaces (C(V). C (V) •..• ) are real. 
o 

( 16) 
co 

~. (IP real-valued € C (R): 0 ,. supp IP). 

We assume: 

i) A is locally dissipative. 

( 17) ii) 3 a base B for n. of W€ (!1c(r.) such that D(~) • Co(W). 

(iii) V V € (' (n). f € D(A.V). IP € ~. implies IP. f € D(A.V). 

-LEMMA 1.4. Let V€ (n). f€D(A.V). supp fcV. Then f (extension of f to all 

of n ~ 0 off supp f) belongs to D(A.n). 

PROOF. f belongs locally to D(A •. ) in V; f is locally O. hence belongs to 

D(A •• ). in n\ V since supp fc.V. A being completed; we conclude that f€D(A,n). 

10) We mention that F. Hirsch has told us recently that - while it is not 
published - Roth has known for some time that his result. Theorem 1.4.3. 
is valid under weaker assumptions easier to apply to partial differen
tial operators. 
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LEMMA 1.5. Let VE £,/(n), K compact cV. Then 3 fED(An), OllO;fllO;l, f-I 

~ K, supp f compact c V. 

PROOF. (a). We assume first that V belongs to the base 8; K compact c V. 

For this case, the proof goes much like that of IV. I. 3. of (2 Jl. 3 IjI E C (V) , 
00 

0110; IjI 110; I, supp IjIC V, IjI • I near K; and by (17)-(ii) 3 IjII E D(~) with 

1I1jI-IjIIII C (V) 110; 1/4. Take Ij)E~ such that ()IO;1j)~ I, Ij)-O on )-00,1/4), Ij)-I on 
o 

(3/4,..-(.Then by (17)-(iii) fl-lj)oljl,E D(A,V), and OllO;flllO; Ion V, fl-I near K, 

and_supp fl c supp IjI compact c V. By Lemma 11.1.4, and supp fl compact, 

f - fiE D(An)and has the required properties. 

(b). Given now any V E £'/ (n), K compact c V, then V x E K, 3V E B, x 
x E V cli cV, and 3 f E D(A,.) constructed as in (a) corresponding to {x} and 

x x x" 
V ,with f - I on V. open, xE V*cV*c V ' Cover K with Vx*, , i-I,2, ... ,N. x X X X X X 

1 

Set W -yv ,W*-UV*. Then WcWCV, KCW*cW*cW. Set 
1 Xi i Xi 

( 18) 

Then supp 1/IcWcV, and .,,:;., on W*. Hence, if Ij)E ~ is the same as considered 

in (a) of this proof, f -Ij) 0 '" E D(A, n), and moreover f E D(An) since 

supp f csuppljlCW compact; supp f cV, f· I on W* hence near K. 

REMARK 1.6. If g E D(An), Ij) E~, then Ij) 0 g E D(An). Indeed, Ij) 0 g E D(A,n). 

30>0 such that Ij)-O on (-0,0), and since Igl <0 off some compact Kcn, 

Ij)og -0 off K, hence A(lj)o g) ECoo(n), and so lj)ogED(An). 

THEOREM 1.7. !!. f, g E D(A, V). (V Eo(n». then fg E D(A, V). 

PROOF. (a) Let V E £'/ (r.). f E D(A. V); let (> 0 be given. 3 Ij) E ~ such that 
( 

Ij) coincides with x ... x2 outside (-(. ( ) • Since Ij) 0 f E D(A. V). then if we 
( ( 2 

write V for the open set {xE V: If(x) I> d. we have f I V - (Ij) 0 f)1 V ED(A,V ). 
( (( ( ( 

Now U V -V -{xEV: f(x); O}, and therefore, since A is completed, 
(>0 ( 0 

f21 V E D(A. V ). 
o 0 

(b) Again let VE £'/(n), fED(A,V). Then V xEV, by Lemma 11.1.5, 

3 W E (; (l'l), xEW cW cV. and I/IED(A,.,), ()IO; IjlIIO; I, IjI -Ion Wx' Let 
x c X X " 
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IIflW "C(-W }"' M. Then if )1-0. flw -OED(A.W)j otherwise f+2M~>0 on W. 
I I 2I I 2 I 

so by (a) of this proof. (f+2MIjI) Iw ED(A.W). and similarly ~IIW ED(A.W). 
2I I 2 2 2I I 

while fljJlw =flW ED(A.W). hence f tw -(f+2MljJ) tw -4Mf1)lW -4M ~'IW E D(A.W). 
I I I2 I I I I I 

Since A is completed we have f ED(A.V). 
2 2 2 

(c) VVE {'"(fl). f.gED(A.V). we have by (b) above fg-(1/2)[(f+g) -f-g) 

E D(A.V). 

COROLLARY 1.8 • .!!. f.g E D(An). and fg has compact support. then fg E D(A,~)' 

THEOREM I 9 L K b . n UN V K b . f K ( . . . ~ ...!. compact 1n I.. i-I i:l ...!.!!! open covenng E..... ..!::..!.:. 
v. E 

1 
("(n). i .. I.2 ..... N). Then 3 a i ED(An). supp a i eVi' 0< a i <I. with 

,N a. a I near K. 
Li_1 1 

N 
PROOF. 3 W.E (" Ul). W.eW.eV .• Ke U. I W .• and by Lemma 1I.1.5.3f 1.ED(A,,). 

1 c 1 1 1 1- 1 " 

O<f. <I. f. -Ion W .• supp f. compacteV .. 3 IPE d>.0<1P<2.8uch that IP coin-
1 1 1 1 N1 

cides with I ... I/I on [I. +00 [. Set f -r. I f .• and 
1- 1 

( 19) fl. - f.g 
1 1 

for i·I.2 ••••• N. 

By Remark 11.1.6 and Collary 11.1.8. &. B. ED(A,}. Also.3 hED(A,,). O<h<l. 
N 1 I. " 

supp he U. I W .• h -I near K. Set finally 
1- 1 

(20) 

N 
Then a. ED(A n ). supp a. ev .• and on U. I W .• and in particular on SUI)P a .• 

1" 1 1 1- 1 N 1 

f>l. so g-I/f. La. -h(l/f)f-1 near K. a.-hf./ L. I f.<1 at all points 
1 1 1 1- 1 

where a. >0. 
1 

LEMMA 1.10. Let VE ['(n). K be compacteV. and fED(A.V). Then 3 gED(An). 

supp g compact ev. with g • f ~ K. 

PROOF. By Leonna II. I. 5. 3 hE D(An). 0 < h < I. supp h compact eV. h - I near K. 

So ga(hf)- will do in view of Leonna 11.1.4. and Theorem 11.1.7. 

LEMMA 1.11. Suppose gEC (n). VE ~ (n). K is compacteV. and glV ED(A.V). 
00 c 

Then 3f ED(An). f >g ~ n. f -g ~ K. 

PROOF. 3 IjI E D(An). 0 < tjI 0;; I. 1/1 - I near K. supp 1/1 C:V. Thus g 1/i-[(gl V)(I/II V») ED (An) • 



and (g - gw)1 v E D(A, V) and is 0 near K. Set h· g - gw. supp h is contained in 

some VI open, VCV I CVI compact; 3W open, so that KCWcWcV, h-O 011 W. Then 

VI \ W is compact and disjoint from K. So 3 a E D(A(1)' 0"; a ..; I, a = I near V1 \ W 

and a-O near K. Set IIhllC «(1) = M, and h'-Ma. Then it is easily checked 

that o 

(21 ) h' > h on all of (1. 

Thus f -g W+h' ED(A(1), f>g, f -g near K. 

Let us next look at the local operator A' on (1, induced by A(1 (via 

D(A',V) -{fEC(V): f coincides locally in V with elements gED(Ar.)}' and if 

fED(A',V), f coincides with g near IEV, then (A'f)(I) - (A(1g)(I». We have 

now 

THEOREM 1.12. A' - A. 

PROOF. The fact that A' cA is immediate from the defini tion of A' and the 

fact that A is completed. Conversely, if fED(A,V), VE l!!«(1), then V IEV 

3 W E l!! «(1), IE W CW cV, and by Lemma 11.1.103 gED(A,.,.), f -g near W-
I C I I •• I, 

so flw ED(A',W). It follows that fED(A',V) and A'f-Af. 
I I 

The definition of "V is regular (R)", as given in (21) p.57, is in 

terms of the local operator induced by the pregenerator A (in the notation 
o 

of Theorem 1.4.3). We shall recall now this definition but stated relative 

to any a priori given locally dissipative local operator. Thus: 

We shall say, given a locally dissipative local operator A on n, that 

VE l!!(rl) is "regular (R) relative to A", iff: VE (J «(1) and, 
c 

(I) V admits a barrier at every IE3V in the following sense: 3 W open 
I 

containing I, and a function h E C(W ) such that 
I I 

i) hI(I) - 0 

ii)h >Oon(VnW)\{I} 
I I 

(iii) h I vnw E D(A,VnW), Ah ";0 on vnw, 
I I I I I 

(2) 3 functions IjJ, a in D(A,W), W some open set containg V, 1/1, a, > 0 in W, 

and satisfying AW<O, Aa>O,in W. 

We have then the following result 
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THEOREM 1.13. Let A be! local operator ~ n. ~ satisfies the hypothesis 

(17) and is completed. Suppose An pregenerates ~ semigroup ~ Co(n) (which is 

then automatically! Feller semigroup). Let V E (' (n) be regular (R) relative 

to A. Then the E.!.P.!.. (corresponding ~ A) is solvable for V. i.e •• (3 the 

closure A of A and) Av generates! (Feller) semigroup ~ Co(V). 

Moreover. Q(t) -exp{t\'} satisfies (and is the unique Feller semigroup 

~ Co(V) satisfying): Ii fECo(V). K compactc:V. lIexp{t~}f -Q(t)fIlC(K) -o\t) 

~ t "'0. ~ exp{tAr.} -exp{tAn}. f being the extension ~ 0 of f ~ r.}I) 

PROOF. An plays here the role of A of Theorem 1.4.3. A' the role of the local 
• 0 m 

operator induced by A • Here ~replaces C (R)i but having shown under the pres-o 0 

ent assumptions the validity of the properties 11.1.4 to 11.1.12 concerning 

An' and A-A' (by Theorem 11.1.12). the rest of Roth's arguments in (21) 

Chap. IV needed for the above statement will then work in the present situa

tion yielding a Feller semigroup Q(t) of generator B. satisfying the con

clusions of Theorem 1.4.3. so that BC:~ -\.. and by the maximality of dissi

pative generators among dissipative operators. B -iv. (Also by maximality 

An -An)· The statement thus follows. 

Theorem II. 1.13 shows in particular that under the given assumptions on 
A. An. regularity (R) relative to A. for a V E {'(n). implies A - Cauchy regulari
ty of V. 

In the next section. we deal with several r~lations between basic oper

ators associated to a local operator. and the different types of regularity. 

(rel.tions rather easy to establish. but useful in clarifyin~ the situation). 

V -I 
2. H • ~~, i A-Regular. Dirichlet Regular. A-Cauchy Regular. and Poisson 

Regular. Open Sets. 

NOTATION 2.1. The context here is the general context of Sections I and 2 of 

Part I. For V E f!) (n). Ay. ~. are •• defined in the sections just mentioned. 
V 

"H ". "A-regular open set" are as defined in (3) i "A-Cauchy regular open set" 

has the meaning defined in 15) ; "Dirichlet-regular open set". "Poisson-regular 

II) As in the statement of 1.4.3. the ten. inside II lIe(K) are to be under

stood as being the corresponding restrictions to K. 
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open set", has the meaning defined in [23). Throughout this section, 

(22) A will be a local operator on n, real, locally dissipative. 

Since in [23) all functions considered are real, we shall when refering to 

that context - as already done for the context of Theorem 1.4.3 - consider 

our local operator A as restricted to the corresponding real functions. 

PROPOSITION 2.2. For VE CJ(Il) with aV ,¢, the following two are equivalent: 

( i) V is P-regular (with respect to A), 

(ii) 3 -x;1 O(C(V» and D(~) .. Co (V). 

Again, in another direction, the following ~ ~ equivalent, ,,> 0 being 

given: 

( i')V is A-regular and A,,-regular, 

(ii')V is D-regular with respect to A and A", 

PROOF. We need only to consider real functions. That (i) implies (ii) is 
--I 

proved using the codissipativeness of -~ , and the closed graph theorem in 

essentially the same manner as one procedes in the proof of 3.1, 3.6, of [3). 

Suppose now (ii) holds. Then all we need to check is that for f E C(V) , 

f >0, we have _~If >0 in the present situation. But by the usual perturba

tion argument (from ~ to \,-).) we have that 3 A~~EB(C(V» andll~1 -A~~II""O 
~I > 1 .. as ,\ .... 0; on the other hand -AW f 0 follows merely from the ocal d1ss1pa-

tiveness of A, ). being> 0; so we conclude that _-X;I f >0. 
V 

Next, in considering the equivalence (i')-(ii'), H" denotes the same 
• V " •. object as H but correspond1ng to A). 1nstead of A. For the ment10ned equ1-

valence, all that needs really to be checked is that under the present 

circumstances, if (i') holds, and fEC(aV), f>O, then HVf>O. Consider thus 
h f . V V f .. ... 

suc an ,and wrlte H f • u, H). • u'\' Slnce A 1S locally d lSSlpatl ve, the 

maximum principles for A,\ imply u,\ >0. Set w,\ • u - u,,' Then 

(23) 

so w). is A,\-superharmonic, and hence w). >0 in V, u>u,\ >0 in V. 

PROPOSITION 2.3. Suppose that A is locally closed (in addition ~ (22». Let 

V, V' E (!/c(rl), VcVcV'. Then, if V and V' ~ A-Cauchy regular, the fol

lowing two .!!.!. equivalent (.!! additional properties), given .!!!l ,\ > 0: 
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( i) v is A", - regular, 

(ii) 3 A",~ € B(C(V». 

PROOF. Suppose (ii) holds. Let E"{\P€C(3V):3g€D(A W ,)=D(\r,} with 

gl 3V s\p}, Since V' is A-Cauchy regular, 

(24) E is dense in C(3V}. 

Let \p€E, and g be as in the definition of E; set q, =-AAg in V. By the 
-I -

assumption (ii) 3v .. AW q,. Set usv+g in V. Then u€C(V}, uIV€D(A\,V} and 

ul3V • vl3V + glav • \p, 

since V€D(A W }' In view of this,(24}, and the maximum principle for A",

harmonic functions, we see that V is A",-regular. Thus (ii) implies (i). 

To show that (i) implies (ii), one has by a standard argument (as in 

3.1 of [31 for instance) that I(Aw} • C(V}, and the rest goes then as for 

"(i) .. (ii)" of the preceding proposition. 

REMARK 2.4. The argument in the preceding Proposition rT.2.3 also shows that, 
--I -(A being as in Proposition I1.2.3), if V€ (!)c(n) , A >0,3 AW€B(C(V}), then 

V is AA-regular whenever 

(25) 
E 

o 

is dense in C(3V}. 

{\p€ C(3V}: 3 g € C(V), gl aV -\p, gl V € D(A,V), Ag in V 

extends continously to V} 

Finally, let us simply mention that examples can be given where A on n is 

locally dissipative, real, locally closed, V € (!) (n) is A-Cauchy regular 
c 

but not P-regular. 
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A.~ OUTLIm: OF THE SPECTRAL THEORY OF PROPAGATORS 

P. Masani 

Departments of Mathematics 

University of Pittsburgh 

After indicating recent improvements in the propagator theory of Hilbertian 
varieties and some applications to Banach algebras, we outline the spectral 
theory of propagators. 

I. Introduction 

(I. I) 

In this paper 

A is a non - void set 

W is a Banach space over lF (IF- lR or It) 

"r'is a Hilbert space over IF. 

In many mathematical problems, pure and applied, we have to deal with 

.K-vector -valued functions x(·) on A, or with W to .11" linear operator -va

lued functions X(·) on A. Propagator theory is concerned with the changes in 

the functions x(·) and X{·) when a transformation semi -group (s.g.) r acts on 

A. Specifically, it is concerned with the case in which the changes are ex

pressible in the form 

x(t (j,)~) • Set) (x(~)}, X{t (j,)A) • set) ·X{~), 

where t E r, ~ E A, (j,) denotes the action of r on A, and S{·), called the pro

pagator, is a function on r whose values are linear operators from .". to .11". 

The need for a spectral theory of propagators stems from the realization that 

in many applications r is abelian and the S{t), t E r, form a cODmUting family 

of normal operators, and that a "spectral theorem" for the entire family would 

yield the integral representation encountered in various analytical problems. 

To provide the necessary background we shall begin with a resume of 

propagator theory in the "time domain" so - to - speak as developed by us in 



74 Masani 

[8,9] , but incorporating recent improvements (§2). It transpires that the main 

theorems in [8,9] are valid even when the involutory s.g. r is unitless, and 

that the Gelfand - Naimark representation theorem for C* algebras is a corol

lary of our generalized version [8:4.14] of Stinespring's Theorem. 

In treating the spectral theory (§3), it is fruitful at the outset to 

disregard the confines of propagator theory, and taking r to be an arbitrary 

set, to prove a "Kolmogorov extension theorem" for any commuting family 

(E t : t E r) of spectral measures for .if over a: with compact spectra. In con

junction with the spectral theorem for a single self - adj oint operator, this 

yields a general spectral theorem 3.6 for any commuting family (S(t) : t E r) 

of normal operators onJr to .if. Then assuming, as in propagator theory, that 

r has an abelian algebraic structure and that S(·) is the appropriate 

morphism on r, we show that the spectrum o(E) of the spectral measure E(·) of 

(S (t) : t E r) falls within the class of appropriate "characters" of r. For in

stance, for r =1., an abelian involutory Banach algebra, and S(·), a * repre

sentation of lA, we find that o(E) ~o(A) U {a}, where o(A) is the Gelfand 

spectrum of lA, and that for an abelian C* algebra A, we have o(E) = 0(11.) U {a}. 

The "commutative" version of the Gelfand - Naimark Theorem follows at once 

from the last equality. For an involutory abelian s.g. r with neutral ele

ment, our spectral theorem yields the integral representation for a positive

definite function discovered by Lindahl and Maserick [7], and rediscovered 

by Berg, Christiansen and Ressel [ I] • 

Space will allow the ennuciation of only very basic results, and permit 

only stray remarks on the proofs. A fuller version of the paper will appear 

elsewhere. 

2. Propagator Theory in the Time - Domain 

Since a vector in Jr can be regarded as an IF- to -Jr linear operator, 

the vectorial case x(·) mentioned at the outset of §I is subsumed by the 

operatorial case X(·). We shall accordingly deal only with the latter. 

More fully, let CL(W,Jr) be the space of continuous linear operators on 

W to Jr, cf. (1.1); then we are given that 

(2. I) 
(i) x(·) is a function on A to CL(W,Jr) 

(ii) EZ'X" U X(A) (W) c: Jr. 
d A E A 



Masani 75 

For brevity we refer to such functions X(·) as Hilbertian varieties. The line

ar manifold in .Yf spanned by ~X is denoted by -< Eid?, and its closu~e, called 

the subspace of X(·), by ~; thus 

(2.2) ,~ = cIs. < Eid? 

Also associated with X(·) is its covariance kernel KX(',') defined by 

(2.3) X(A')*,X(A), A,A'EA. 

It is a triviality that 

(2.4) KX("') is a PD kernel on A X A to CL(W,W*), 

where W* is the adjoint (not dual W') of W, and PD means "positive - definite" 

in the obvious sense as defined in [8:2.5] for instance. 1 Conversely, the 

Kernel Theorem of Kolmogorov, Aronszajn and Pedrick tells us that given a PD 

kernel on A XA to CL(W,W*), there exists a Hilbert space .Yf and a function 

X(·) on A to CL(W,.Yf) such that K(.,·) =KX(','); moreover K(',') determines 

X(·) up to unitary equivalence, cf. [8:2.10, 2.~. This theorem is crucial in 

several applications. 

Now let an additive semi - group r, possibly non - abelian and unitless, act on 

A in the sense that there is a binary operation ~ on r X A to A such that 

V s,t E A & VA E A, (s+t) ~A s~(t~), 

(2.5) 
when r has a neutral element 0, 0 ~A = A. 

It is convenient to regard the elements of r as moments of a (multidimensio

nal) "time ,,2 , and to think of t ~A as the phase of an evolving system t time

units after its phase is A. The assumption that r is a s.g. satisfying (2.5) 

then amounts to assuming that our system is deterministic and time-invariant 

("temporarily homogeneous") cf. [9:3.4]. As the phase of the system advances 

from A to t ~A, the variety X(·) attached to the system changes from X(A) to 

X(t ~A). When and only when this change is expressible in the form 

The definition of positive definteness rests on the concepts of a hermi
tian operator and a non -negative operator on W to W*, cf. [8:2.3]-.-
Throughout the sequel, "A~B" will mean that B-A is non-negative hermi
tian. 

2 Hence our use of the letters s,t, etc. for the elements of r. 
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(2.6) X(t<:9A) = S(t)'X(A), tEr, AEA, 

where the Set) are single - valued linear operators whose domains and ranges 

contain <£i)?, do we say that the variety X(·) possesses a (linear)3 propaga

~ S(·). 

Whether or not a given variety X(·) possesses a propagator S(·) and 

whether or not the Set) have other desirable properties such as continuity de

pends on the nature of X(·) and therefore on its covariance kernel Kx(·,·), 
cf. (2.4) et seq. Thus it is natural to seek conditions on KX("') which en

sure the existence of propagators of various sorts. In this paper we shall 

deal only with involutory semi -groups r, i.e. with s.g. 's r which admit a 

one - one function * on r onto r such that 

V s,tEr. s** = s, (s+t)* = t* + s*; 
(2.7) 

when r has a neutral element 0, 0* = O. 

For involutory s.g.'s r there are two sets of conditions on the propagator 

S(·) which are natural and important for the applications: 

Condition A. V t E r, Set) is a closed linear operator such that4 

S(t) ~ cIs. Rstr. S(t) and S(t*) C S(t)*. 
<9X> -

Condition B. Vt E r, Set) ECL( !l'X' yX) and S(t*) =S(t)*. 

The following theorem gives a complete characterization of these cases: 

2.8 MAIN THEOREM. Let A,W,Jt",X(') be as in (1.1), (2.1), and let the involu

tory s.g. r (possibly non-abelian and unit1ess) act on A in the sense of (2.5). 

Then 

(a) X(·) has a propagator S(·) satisfying Condition A, iff. KX("') has the 

transfer property: 

V tEr and V A,A' EA, 

(b) X(·) has a propagator satisfying Condition B. iff. Kx(·,·) has the 

transfer property and satisfies the mild translational inequality: 

3 The qualification "linear" will be omitted in the sequel, as non -linear 
propagators will not concern us in this paper. 

4 Rstr'SF means the restriction of function F to the domain S. 
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r 
3 y(.) E OR 0+) such that 

V t E r and VA E fl., 

The results 2.8 (a), 2.8 (b) are proved in [8:4.7 and 4.10] under the 

assumption that r has a neutral element O. But inspection of the proof shows 

that this assumption is redundant. For the many applications given in [8], 

in particular to dilation theory, a neutral element is required. The scope of 

propagator theory is wider, however, and the admission of unitless r is a 

necessary improvement. 

While Thm. 2.8 is deep, it is a triviality that the propagator S(·) has 

the semi - group property; more precisely 

V s,tEr, S(s+t) S cls.{S(s)·S(t)}, under Condition A. 
(2.9) 

S(s+t) = S(s)'S(t), under Condition B. 

Thus under Condition B, S(·) is a * homomorphism on r into the multiplicative 

* s.g. CL( 5I'X' 5I'xl; furthermore when r is abelian, (S(t) : t E r) is a commu

ting family of normal operators. 

In many applications lI.=r, Le. the s.g. r or II. acts on itself, the ope

rations ~ and + being identical, cf. [8: 4. 12-], [9: §5] and Szafraniec 

[ 13] , who discovered a new formulation of the Condition B for this case. A 

significant instance is the following generalized form of a theorem due ori

ginally to Stinespring [ 12] : 

2.10 THEOREM (Stinespring). Let 

(i) IA be a Banach algebra over IF (possibly non - abelian and unitless) 

with an isometric involution *, 

(ii) R(') EL(IA, CL(W,W*», 

(iii) the kernel K(','), defined by 

K(a,b) = R(b* • a), a,b EfA, 

be PD on fAXfA to CL(W,W*), 

(iv) X(·) be the Hilbertian variety with convariance kernel K(.,·). 

Then 

(a) X(·) possesses a propagator S(·) on IA to CL( ~, 5I'X); 

(b) S(·) is a contractive * homomorphism onlA into the C* algebra 
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CL( ~, YX); 

(c) when A has a unit I, R(t) =X(I)*S(t)X(J), tEA. 

This theorem follows from its unitized version given in [8: 4.14 and 

4. 15] by dint of the isometric * isomorphism between fA and its standard 

unitization. 

By associating with A a canonical Banach space W/A and a canonical func

tion \. (.) on /A to CL (WfA , W:), we can deduce the Gelfand - Naimark representa

tion theorem from Thm. 2.10. Since fA is trivially isometrically * isomorphic 

to its standard unitization, and this unitization preserves the C* property, 

cf. [3: §12, # 19], we may without loss of generality assume that IA has a unit 

I such that II I = I. The Banach space we associate with fA is the Bochner -

Legesgue class 

WfA = L2(.9,2~card; IA) = .t2 (Y;A) 
d d 

(2. II) 

of A - valued functions on the space Y of normalized states f/J of A, i. e. of 

f/J such that 

f/JEL(A,lF), If/JI = I, f/J(a*) = 0('8J, f/J(a*·a);> 0, aEA. 

We define the function ~(.) by 

(2.12) 

where a EfA and wI ,w2 E w,.. It is then a straightforward exercise to show that 

\. (.) is well - defined and fulfills the premises 2. I O(ii) , (iii), that IA 
is a non - negative hermitian contraction, and that for a C*a1gebra /A, 

1~(t*.t)1 = It1 2 , tEA. The conclusions 2.10 (b), (c) yield the following: 

2.13 THEOREM (Gelfand - Naimark representation). Let~ be a unital Banach 

algebra over lFwith an isometric involution *. Then 

(a) 3 a contractive * homomorphism S(·) on A into CL(K,Jf), where K is a 

Hilbert space over IF ; 

(b) whenlA is a C* algebra, S(·) is an isometric * isomorphism; 

(c) when IA is abelian, the S(t), t E r, form a commuting family of normal 

operators. 
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3. Spectral Theory of Propagators 

In the spectral theory of propagators, r is an abelian s.g. and (S(t):tEr) 

is a s.g. of normal operators. It is desirable, however, to commence with an 

arbitrary set r and a family of commuting spectral measures Et (.), t E r, with 

compact spetra O't' and to seek a single "Kolmogorov" spectral measure which re

presents the family. Accordingly our initial data will be: 

(3.1) 

Thm. 

(3.2) 

(i) r is a non-void set; 

(U) V t E r, at is a compact subset of 0:, 

(iii) 

(iv) 

(v) 

Tt is the To: -relative topology for O't' 

where To: is the standard topology for 0:; 

r= X O't; 
tEr 

V t E r, ~ is "evaluation at t" on f; 

-I .Ar= U Ct (T t ), T = the topology generated by.IV; 
d t E r d 

V t E r,!J4 =0' - ring(T ), !J4 = a - ring(T). 
Tt d t T d 

Thus T is the topology of pointwise convergence for r, and by Tychonov's 

(r,T) is a compact Hausdorff space. 

Also, ~ ,!J4 T are the 0' - algebras of Borel subsets of the topological spaces 
t 

(at,Tt ), (r,T), respectively. We now assert the following fundamental result: 

3.3 THEOREM. (Kolmogorov extension for spectral measures). With the notation 

(3. 1), let 

(i) .Yf be a Hilbert space over 0:, 

(ii) V tEr, Et be a strongly countably additive (s.c.a.) spectral measure 

(iii) 

for .'If on /1lJ such that 
VIiIT ' 

V s,tEr, 

t 

0' (Et ) = the spectrum of Et = at' 
d 

V A E!J4 and V BE!J4 E (A) and E (B) cOIlllllute. 
T T' S t 

s t 
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Then 3 a unique inner regular s.c.a. spectral measure E(') for Jr on &W such 
T 

that V f ini te L c r and V B E &W ,t E L, 
t T 

t 

The proof consists in affecting a Kolmogorov extension of the Et - family 

to &W..;V d a-alg.(K), and then (since in general ~;Y' c&WT ) a further extensi

on to &W • These extensions are made by applying the classical Kolmogorov and 
T 

Prokhorov theorems to the families (IEL(')xI 2 :L finite~r), where EL =lI tEL Et' 

and x E Jr, cf. Kolmogorov [5: p. 29, Fund. Thm.] and Bourbaki [4: Ch. 9, §4, 

Thm. 1]. 

We shall call the measure E(') given by Thm. 3.3 the Kolmogorov measure 

of the commuting spectral family (E t (.) : t E r). Its spectrum a(E) is obvious

ly a compact set: 

(3.4) a(E) ~ r = X D(O,r), 
tEr t 

where D(O,rt ) is the closed disk in ~ with center 0 and radius r t • The follo

wing simple corollary of Thm. 3.3 plays a central role: 

3.5 FUNDAMENTAL COROLLARY. With the notation of Thm. 3.3, let 

Then 

(a) 

(b) 

t E r, 

V t E r, S(t) = fr ~ (f)E(df), at = a{S(t)} = ~ (t) {a(E)}; 
d t a 

t (r) is a a(E) - separating subset of C(a(E) ,~); a 

(c) Ca·S-1 is an isometry on S(r) ~CL(Jr,Jt") onto the set C (r) cC(a(E) ,4:); a -

(d) The following conditions are equivalent: 

(n) a(E) is separating on r 

(8) ~a(') is one-one on r to C(a(E) ,(C) 

(y) S(·) is one - one on r to CL( Jr,Jt"); 

(e) The following conditions are equivalent: 

~ (r) is uniformly closed in C(a(E),~) a 
S(r) is uniformly closed in CL(Jt",Jr). 
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At this stage we have to invoke the spectral theorem for a single conti

nuous self adjoint operator H on .~ to Jf, referring to its direct proof ba

sed on the ~~uare-root and the explicit exhibition of the spectral measure 

of H, as given e.g. in [11: pp. 279-280].5 Now let T be a continuous normal 

operator on Jf to Jf, r = {J, 2} and E I'E2 be the spectral measures of the real 

and imaginary parts of T. Then the premisses of Cor. 3.5 are fulfilled, and 

from the conclusion 3.5 (a) we readily obtain the spectral theorem for T. 

Next, let (S(t) : t E r) be a commuting family of continuous normal opera

tors on Jf. to Jf, and Et be the spectral measure of S(t). Then the premisses 

of Cor. 3.5 are again fulfilled, and we arrive at the following conclusion: 

3.6 GENERAL SPECTRAL THEOREM. Let 

(i) (S(t): t E r) be a commuting family of continuous normal operators on Jf 

to Jf , 

(ii) at=a{S(t)},tEr, 
d 

(iii) Tt , r, % ,T,~, fJlT ,fJlT be defined as in (3.1). 
t 

Then 3 a unique inner regular, s.c.a. spectral measure for Jf on fJlT such that 

a(E) s r & S(t) = Jr8t (f)E(df), t € r, 

and all the conclusions 3.5 (a) - (e) hold. 

We shall call E('), given by 3.6, the spectral measure of the family 

(S(t) :tEr). 

An important theorem of Kuratowski asserts that if two complete, sepa

rable metric spaces!l, IlJI have the same cardinality, then there is a one - one 
-1 function (I) on !l onto IlJI such that both (I) and (I) are Borel measurable, cf. 

Parthasarathy [10: p. 14,#2.12]. The combination of this theorem with Thm. 3.6 

immediately yields the following explicit version of a theorem of von Neumann 
(cf. [11: pp. 358 -]): 

5 The deep intrinsical nature of this proof is revealed by its adaptibility 
to the general spectral theorems of H. Freundenthal and U. Krause, cf. 
G. Birkhoff [2: pp. 362-364] and U. Krause [6: 3.4]. 
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3.7 THEOREM (von Neumann). Let 

(i) r be a countable set, 

Masani 

(ii) (S(t) :tEr) be as in 3.6 (i), and E(') be its spectral measure, 
- 6 

(iii) ~ be the Kuratowski function on aCE) onto the closed unit disk D in ¢. 

Then 

V t E r, -1 Set) = {I(t)·~ }(T), 
a T ~ faCE) ~(f)E(df); 

i.e. all the Set) are the values of Borel measurable functions at the same 

normal operator T. 

Thm. 3.6 remains valid of course when, as in propagator theory, r has an 

algebraic structure and S(·) is the corresponding morphism whose values are 

commuting normal operators. But this additional structure together with the 

inner regularity of the spetra1 measure E(') allows us to infer that aCE) lies 

within the set of appropriate characters of r. There are many such speciali

zations of Thm. 3.6. It will suffice to state just two: 

3.8 THEOREM. Let 

(i) r be an involutory abelian s.g., 

(ii) S(·) be a *homomorphism on r into the multiplicative s.g. CL(~,~), 

where ~ is a Hilbert spcce over ¢, 

(iii) E(') be the spectral measure of (S(t) : tEr), 

(iv) 

Then 

r • {f: f Ea:r & V s,t E r, f(s+t) 
d 

aCE) ~ r n r & V t E r, 

and all the conclusions 3.5 (a)-(e) hold. 

3.9 THEOREM. Let 

f(s)f(t), f(t*) = TIt)}. 

(i) ~ be an abelian Banach algebra over ¢, with isometric involution *, 

6 Since r is countable, the compact Hausdorff spaces aCE) and D are com
pletely metrizab1e and separable, and have the same cardinality, viz. c. 
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(ii) S(·) be a * homomorphism onA into CL(Jf,Jf), where Jf is a Hilbert 

space over 11:, 

(iii) E(·) be the spectral measure of (S(t) :tEr), 

(iv) a(~) be the Gelfand spectrum of~. Then 

(a) aCE) ~ i\ n {a(A) U {O}} & V tEA, Set) 

and all the conclusions 3.5 (a) - (e) hold; 

fA It (f)E (df), 

(b) I (.) is a contractive * homomorphism on IA onto 
a 

the subalgebra I~) of 
a 

(c) 

C(a(E),a:); 

when IA is a C* algebra, we have aCE) = 0(1.) U {O}, and I (.) is an isoa 
metric * isomorphism on A onto the C* algebra C(a(A) U {O},¢). 

If in Thm. 3.9 we take the Jfand the S(·) given by the Gelfand

Naimark Thm. 2.12, then the conclusion (c) gives the so - called "COllllllutative" 

Gelfand - Naimark Thm., cf. Bonsall & Duncan [3: p. 189, Thms. 4,5]. 

As an application of Thm. 3.8, consider a bounded a: - valued PD function 

~ on an additive abelian involutory s.g. r with a neutral element O. By de

finition, the kernel K(.,·) such that 

K(s,t) .. 0(t* + s), s,t E r 

is PD on r x r to a:, and is therefore the covariance kernel of a vectorial 

variety x(.) on r to Jt'. It follows easily that the conditions of the Main 

Thm. 2.8 (b) are fulfilled and that y( t) <; 1, and consequently that x(·) ·has 

a propagator S(.) whose values are normal contractions. Since, cf. (2.9) et 

seq., S(·) is a *homomorphism on r into the multiplicative *s.g. CL( Sf, Sf), 
x x 

therefore Thm. 3.8 applies. Thus Set) =fa(E) It(f)E(df), and so 

~(t) • K(t,O) = (S(t)x(O),x(O» = faCE) It(f)~(df), 

where ~(.) = \E(')X(O)\2. This establishes the result of Lindahl & Maserick, 

and of Berg et al, mentioned in §1, which they prove by appeal to Choquet 

theory. 
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ON GENERALIZED INVERSES AND OPERATOR RANGES 
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Aspects of the theory of operator ranges, factorization and range in-
clusion are brought to bear on some operator and approximation-theoretic 
problems for generalized inverses on infinite dimensional Banach and Hilbert 
spaces. Several criteria are given for an operator to have a bounded outer 
inverse with infinite rank. It is also shown using one of these criteria that 
the set of all bounded linear operators with a bounded outer inverse is open. 
The set of all bounded linear operators with a bounded inner inverse is dense 
in the space of all bounded linear operators. Comments on related topics in 
generalized inverse operator theory and some open problems are given. 

1. Introduction 

A unified approach to the operator theory of generalized inverses has 

been developed in recent years; see .Nashed and Votruba [17]. Within this 

framework, the algebraic, topological, extremal and proximina1 properties have 

been separately considered and analyzed. Although the a 1 g e bra i c 

theory of generalized inverses is virtually complete, there are still a number 

of operator-theoretic questions and approximation-perturbation aspects that 

merit further investigation. 

The purpose of this paper is to show that close relationships exist 

between 0 per a tor ran g e s (specifically the notions of majoriza

tion, factorization, range inclusion, and topological complements) and the 

operator theory of g e n era 1 i zed i n v e r s e s on infinite dimen

sional spaces (specifically, bounded outer inverses with infinite rank, the 

structure of all bounded operators with a bounded outer (or inner) inverse). 

By an 0 ute r i n v e r s e to a linear operator A: X ~ Y we shall 

mean a non z e r 0 1 i n ear operator B: Y ~ X such that BAB = B. 

For other notations and properties of generalized inverses which are used, 

but not specifically defined or established, see [17]. 
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2. Outer Inverses and Operator Ranges 

Let X and Y be (real or complex) Banach spaces and let L(X,Y) 

be the space of all bounded linear operators on X into Y. The range 

and null space of A E L(X,Y) are denoted by R(A) and N(A) respec-

tively. Let V ::;) R(A). A linear map B: V C Y + X is called an 

inn e r in v e r s e of A if ABA = A. If B is an inner inverse 

with domain Y, then 

(2.1) x = N(A) + R(BA) , Y = R(A) + N(AB) , 

where + denotes algebraic direct sum. Similarly, a linear map B is an 

out e r i n v e r s e of A if BAB = B. Each outer inverse induces the 

direct sum decompositions 

(2.2) x = R(B) + N(BA) and Y = N(B) + R(AB). 

It is well known that A has abo u n d e d inner inverse on Y if 

and only if N(A) and R(A) have topological complements in X and Y 

respectively (see, e.g., [17]). The same result holds if A is a closed 

linear operator with dense domatO. 

Henceforth by a complement we shall mean a topological complement. A 

topological direct sum will be denoted by CD • 

REMARK 2.1 If A has abo u n d e d outer inverse B then the alge

braic decompositions (2.2) are also topological decompositions. Various 

necessary and sufficient conditions for a linear operator B to be an 

outer inverse of a given linear operator A are collected in [17; Propo

sition 1.13]. 

We are here interested in conditions under which there exists a bounded 

outer inverse with a given nullspace and a given range. The following two 

remarks address this question. 

REMARK 2.2 Not every closed complemented subspace Yl of Y can be the 

null space of an outer inverse (of A) which has the given range Xl' If 

Xl = R(B) then R(AB) = AXI . So Yl must be a complement to the given 

subspace AXI in Y. 
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REMARK 2.3. If Xl is a closed complemented subspace of X such that 

Xl n N(A) = {a} 

outer inverse 
-1 

By = (A/Xl) y 

and Yl is a complement to AXI then there exists a bounded 

B of A such that R(B) = Xl' N(B) = Yl . For y E AXI define 

and extend B linearly to all of Y such that N(B) = Yl . It 

then follows that B is an outer inverse with the prescribed properties. 

Combining Remarks 2.1 - 2.3 we have 

THEOREM 2.1. Let X, Y be Banach spaces. A E L (X, Y) has ~ bounded outer 

inverse with given range Xl and given nullspace Yl if and only if the 

following conditions are satisfied: 

a) Xl is ~ closed complemented subspace of X and Xl n N(A) {a}; 

b) Yl is ~ complement for the subspace AXI • 

An excellent survey on operator ranges is given by Fillmore and Williams 

[7J. They consider a number of elegant but little-known results concerning 

the ranges of bounded linear operators in Hilbert space. As Fillmore and 

Williams remark there is reason to believe that the results and techniques 

of the theory of operator ranges will find increasing applications, for 

instance in formulating and proving infinite-dimensional versions of finite

dimensional theorems. Here we shall use some results on operator ranges to 

establish criteria for the existence of bounded outer inverses and related 

properties. The following result is due to Douglas [4J; since it plays an 

important role in what follows we include a proof using in part the notation 

of generalized inverses. 

THEOREM 2.2. Let A and T be bounded linear operators on ~ Hilbert space 

H. The following statements are equivalent: 

a) 

b) 

c) 

R(A) c R(T). 

A = TC for some bounded operator C on H. 

AA* S A2 TT*--;:r some A ~ O. -----
PROOF. Suppose that (a) holds. Set C = TtA. Then C is bounded and 

TC = TTtA = A, where Tt is the generalized inverse of T. That (b) implies 

(a) is trivial. If A = TC then 

thus (b) implies (c). Finally if (c) holds, then I IA*xl I $ AI IT*xl I for 

all x E H. Therefore, the linear map D: R(T*) + R(A*) defined by 
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* * D(T x) = A x is bounded. Extend D to * the closure of R(T ) by continuity 

and put D = 0 on R(T*)~ = N(T), then * = A* DT , so A = TD* • • 
If we consider operators A and T with domains being the Hilbert spaces 

HI and H2, respectively, but with ra?ge in a common space, then the operator 

C in the statement of Theorem 2.2 is defined from HI to H2. In [4] Douglas 

remarks that the equivalence of statements (a) and (b) in Theorem 2.2 persists 

in Banach spaces; however this is false since (a) does not imply (b) in Banach 

spaces. A counterexample (due to Douglas) is published in a paper by M. Embry 

(Proc. Amer. Math. Soc., 38 (1973), 587-589). 

THEOREM 2.3. Let X,Y be Hilbert spaces. An operator A € L(X,Y) has a 

b 0 u n d e d outer inverse of i n fin i t e ran k (Le., with in---- -
finite dimensional range) if and only if the range of A 

complemented subspace of infinite dimension. 

contains a closed ----

PROOF. Suppose B is a bounded outer inverse with infinite rank. Then AB 

is a projector and R(AB) is a closed complemented subspace of infinite dimen

sion which is contained in R(A); compare with (2.2). 

Conversely, suppose M is an infinite dimensional closed subspace contained 

in R(A). Let Y = M $ S and let p. be the projector on M along S. Since 

R(p) c R(A) it follows from Theorem 2.2 that there is a bounded linear operator 

C such that P = AC. Then p2 = P implies CP = CPACP, so that B := CP is a 

bounded outer inverse of A of infinite rank. • 

COROLLARY 2.4. If A is ~ bounded linear operator on an infinite-dimensional 

Hilbert space, then A has ~ bounded outer inverse of infinite rank if and only 

if A is not compact. 

PROOF. This follows from Theorem 2.3 and the fact that a bounded linear 

operator on a Hilbert space is compact if and only if its range contains no 

closed infinite-dimensional subspaces (see, e.g., [5 ; Corollary 5.10] or 

[7 ; Theorem 2.5]; a simple proof is given in [8 ; p. 294]) .• 

REMARK 2.4. Let A be an mxn matrix of rank r. For all integers s,t with 

o $ s $ rand r $ t $ min (m,n), A has outer inverses of rank s and inner 

inverses of rank t. For operators with infinite rank, we can similarly con

struct outer inverses with any rank. 
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EXAMPLE 2.1. Let H1 and H2 be Hilbert spaces and let K: 

compact linear operator with infinite dimensional range. Let 

be a sin g u 1 a r s y s t e m for K, i.e., 

* v ""P K u n n n 

89 

H1 -+- H2 be 

{p;u,v} 
n n n 

where 0 < P1 ~ P2 ~ ... ~ Pn ~ ... 

and {vn}~ are orthonormal systems. 

with Pn -+- m. We assume that 

Then (see, e.g., [14]) 
DO 

-1 
Kx = E P (x,v) u 

n=l n n n 

and 
m 

1: P (y,u ) v 
n=l n n n 

for y E V(Kt ) := R(K) + R(K)~, where Kt is the (Moore-Penrose) genera

lized inverse of K. 

Let n be a fixed positive integer and define the operator 

It follows that 

and 

B KB Y n n 

n 
Bn y:= 1: p. (y,uj ) Vj • 

j=l J 

KB Y n 

n 
1: (y,u.) u. 

j=l J J 

~ Pj r ~ (y,ui )Ui,Uj ) vJ' 
j=l ~=1 

B by 
n 

Thus for each positive integer, B is an outer inverse of K, dim R(B ) = 
n t n 

n, and IIBn yll ~ rn IIYII. Also for each y E V(K ), I I BnY-Kty I I -+- 0 as 

n -+- m, but not uniformly, since Kt is unbounded. Thus the operators B n 
are not uniformly bounded: I IBn II -+- m as n -+- m. 

COROLLARY 2.5. ! bounded operator A on an infinite dimensional Hilbert 

space has .!!. bounded outer inverse with infinite dimensional range if and only 

if for each positive integer n there is an ou ter inverse B 
n 

with 
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dim R(B) = n and the operators B are uniformly bounded: I IB I I $ Y for 
n n n 

all n. 

REMARK 2.5. In the case of Banach spaces, the existence of an infinite

dimensional closed complemented subspace M contained in R(A) is necessary 

for the existence of a bounded outer inverse of infinite rank. In addition, we 

need that N(A) is topologically complemented in the Banach space {x : Ax EM}. 

Details and related topics will be discussed elsewhere. A partial result was 

also given by R. Khalil [9J using the fact that every closed subspace of a 

Banach space has a bas i c sequence. 

REMARK 2.6. A E L(X,Y) has a bounded inner inverse if and only if N(A) and 

R(A) are complemented in X and Y, respectively. If X and Yare Hilbert 

spaces, these conditions are satisfied if and only if R(A) is closed. Comparing 

these conditions with the necessary and sufficient conditions for the existence of 

a bounded outer inverse (Theorem 2.3 and Corollary 2.4) it follows immediately 

that if an operator has a bounded inner inverse then it has a bounded outer in~ 

verse, but not conversely. This last assertion is known and has been established 

directly. For if A has a bounded inner inverse B, then it follows immediately 

B A B is a bounded outer inverse (as well as an inner inverse) of A. To 

prove directly that the converse is false, one has to construct (in view of our 

criteria for the existence of bounded inner, respectively outer, inverses) an 

example of a noncompact operator with nonclosed range. Such examples abound, 

for instance, in the theory of singular integral equations and Fredholm integral 

equations of the first kind on the whole line. A rather technical example, 

based on a construction due to E. Asplund, is given in Caradus [2J. Now that 

the set of all bounded operators which have bounded outer inverses has been 

characterized in the above simple manner in both Banach and Hilbert spaces, 

more transparent examples can be given. 

REMARK 2.7. Theorem 2.3 is also valid if A is a closed densely defined 

operator. The modification of the proof is only in the use of the following 

immediate extension of a part of Theorem 2.2. If R(P) c R(A), then there 

exists a densely defined operator C such that P = AC and C is bounded 

in the graph norm of A. Moreover, if P is bounded, then C is bounded. 
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3. Topological Properties of the Set of All Operators with Bounded Inner 

(Outer) Inverses 

Let Gl(X,Y) denote the class of all A E L(X,Y) which have a bounded 

inner inverse and G2(X,Y) the set of all A E L(X,Y) which have a bounded 

outer inverse. The set of invertible operators (which is a proper subset of 

Gl n G2) is open. What can we say about Gl and G2? 

Using Corollary 2.4 we obtain a simple proof that G2(X,Y) is open in 

the (uniform) operator topology. This result was first established by the 

author in [12] for Banach spaces and used in [13] for the stability of inverse 

mapping theorems when the derivative operator is non inver tib Ie. The analysis 

in [12], [13] provides also perturbation bounds. 

THEOREM 3.1. The set G2 of all bounded linear operators on an infinite

dimensional Hilbert space with ~ bounded outer inverse is open. 

PROOF. By Corollary 2.4 the set G2 is the complement in the space L(X,Y) 

of the set of all compact operators. Now the latter set is closed (see, 

e.g., [ 8]), so G2 is open. • 

THEOREM 3.2. Let H1 and H2 be Hilbert spaces. The set G1 (H1 ,H2) of 

all bounded linear operators with .!!. bounded inner inverse is dense L(H1 ,Hz)' 

PROOF. Let A E L(H1 ,H2) and write its polar decomposition A = VP where 

V is a maximal partial isometry and P is a positive operator (see, e.g., 

[ 8]). For any E > 0 there exists an invertible positive operator Q 

such that IIQ-pil < E Thus I IA-VQI I Ilvp-vQII 2. IIp-QII < E 

* Since V is a partial isometry if and only if VV V = V and since V is 

maximal, it follows that V has a bounded inner inverse. But Q is inver

tible, so VQ has a bounded inner inverse. This proves that G1 is dense 

in L(H1 ,H2). • 

Graves has shown that the set of all bounded linear operators of X 

o n toY, where X and Yare Banach spaces is open in the Banach space 

L(X,Y). Dieudonn€ has shown that the set of all right (left) boundedly in

vertible operators in L(X,Y) is an open set in L(x,Y). Clearly if A is 

onto a Banach space, or if A is right (left) bounded1y invertible operator 

then A has a bounded outer inverse (see also [13] for references to the 

literature). 
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4. Related Topics, Comments and Problems 

4.1 Invariance Properties of Inner, Outer and Generalized Inverses. If A 

is a linear operator acting between two vector spaces V and W, then every 

inner inverse of A determines a 1 g e bra icc 0 m pIe men t s to 

N(A) in V and R(A) in W, and conversely. What properties of inner in

verses (or expressions) are invariants under all choices of inner inverses to 

a given operator (or equivalently all choices of algebraic complements to 

N(A) and R(A»? Although fragments of results of this nature are given in 

several contexts, there does not seem to be a systematic study of invariance 

properties under choices of projectors or complements, either in the algebraic 

context or in Banach space. We mention some examples of invariants of inner 

and generalized inverses. 

(i) The transformation B - BAB is invariant under change of projectors 

(or complements); this transformation is a "measure" of the departure of an 

inner inverse from being an outer inverse. See [17; Corollary 1.9]. 

(it) In the theory of so-called "alternative problems" or operator equa

tions of the form Fx = Lx where F is a nonlinear operator and L is a 

linear operator with closed range and nontrivial nullspace, some topological 

complements to subspaces R(L) and N(L) are used to "split" the operator 

equation into a pair of equations (equivalent to the problem ), or to study 

existence of solutions based on topological degree or coincidence degree. For 

operators in a certain class, Mawhin has shown that coincidence degree has the 

invariance properties under choice of different complements to N(L) and 

R(L). See [11] and references cited therein. 

(iii) For a bounded linear operator A on a Banach space, the generalized 

inverse At depends on the projects P and Q (see [12J). Continuity of 

At is invariant under these projectors. Bounds for the norm of the difference 

of two generalized inverses of the ~ame linear operator, but corresponding to 

two different pairs of projectors are given in [12J. 

4.2 Extremal Characterizations and Operator Ranges. Engl and Nashed [6J 

have recently established new extremal characterizations of generalized in

verses of a closed or bounded linear operator between Hilbert spaces, which 

generalize the extremal characterization in the Frobenius norm for matrices 

due to Penrose (see [lSJ for a comparison of all extremal properties). The 
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generalization utilizes Hermitian order and Schatten norms. For example, 

for A E L(~,H2} with closed range, then for any Y E L(Hp H3), where Hi 

are Hilbert spaces, the set {OU\-Y) OU\-Y}*: X E L0l2,H.3}} has a smallest 

element with respect to the Hermitian order on L(H3) and the set of all such 

smallest elements has a unique element which minimizes XX* with respect to 

the He~itian norm; this element is X = BAt. Theorem 2.2 on range inclusion, 

factorization, and majorization of operators can be used with the results 

in [6] to provide equivalent "extremal-like" characterizations. For example, 

wi th X = BAt, we have 

(4.1) R(XA-B) c R(ZA-B) 

(4.2) 

for all other X that satisfy (4.1). 

4.3 A Problem on Drazin Inverse. Find a direct extremal characterization of 

the Drazin inverse. For definitions and literature on the Drazin inverse, see 

[16], [2], [17]; some operator-theoretic properties are developed in [16]. 

4.4 An Operator Equation of the Invariant Subspace Problem. The open ques

tion whether every operator on an infinite-dimensional Hilbert space has an 

invariant subspace other than the zero subspace and the whole space is called 

the invariant subspace problem. Since this problem deals with an infinite 

dimensional extension of a problem whose answer is well known in finite di

mensional space, operator ranges play an important role in various formula

tions. The invariant subspace problem can be equivalently formulated in 

terms of an innocent looking operator equation, namely, a bounded linear oper

ator A on a Hilbert space H into H has a non-trivial invariant subspace 

if and only if XAX = AX has a solution in L(H) other than zero and the 

identity operator (see, e.g., [18]). Although this equation is quite dif

ferent from the equations defining various generalized or approximate in

verses, some connections might exist. 
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4.5 Topological Complements as Operator Ranges. The theory of generalized 

inverses for a bounded operator acting between Banach spaces X and Y 

hinges on the existence of topological complements to NeA) and R(A) , in 

X and Y, respectively. In the case of Hilbert spaces, such complements 

always exist, and among them the complements N(A).!. '" R(A*) and R(A).!. = 
N(A*) are especially distinguished. In particular, when R(A) is closed, 

these complements are, respectively, the range and nullspace of another dis

tinguished operator, A*. No analogous situation exists in Banach spaces. 

If topological complements can be chosen in Banach spaces so that 

(4.3) x '" N(A) e R(B) and Y '" R(A) e N(B) , 

then the generalized inverse of 
t can be defined as usual: AB is 

of Y such that N(A;) '" N(B). 

A relative to complements induced by B 

the linear extension of (A/R(B»-l to all 

Of interest is the study of properties of 

operators B that satisfy (4.3), together with additional restrictions on 

B so that analogues of results on generalized inverse operator theory in 

Hilbert space can be immediately constructed in Banach spaces (e.g., itera

tive methods, spectral approximations, etc.). A restricted attempt is given 

in [10]. 

4.6 Quasicomplementation, Quasi-Regularizers and Metric Generalized Inverses. 

There are still open problems and useful directions for investigations on 

relationships among these topics; see, e.g., [3], [151. 
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MODULAR APPROXIMATION BY A FILTERED FAMILY 

OF LINEAR OPERATORS 

Julian Musielak 

Institute of Mathematics 

A. Mickiewicz University 

Poznan 

There is introduced the notion of boundedness of a filtered family (Tv) of 
linear operators in a modular space. This notion is used to get a general 
theorem on modular convergence TVX+x. Applications in cases of generalized 
Orlicz spaces of functions and sequences are given. 

1. Introduction 

Let X be a real vector space. A functional p:X+[O,ooj is called a 

mod u 1 a r on X, if p(x) =0 iff x=O, p(-x) =p(x) and p(ax+by) 

.;;; p(x) +p(y) for a,b~O, a+b= I, x,y€X. If p(ax+by) ';;;ap(x) +bp(y) for a,b~O, 

a+b = 1, then p is called a con vex mod u 1 a r on X. The 

mod u 1 a r spa c e X generated by p is defined as X ={x€X: p(ax) +0 
p x p 

as a+O+}. The formula Ixl =inf{u>O:p(-)';;;u} defines an F-norm in X, and pup 
in case of p convex, IIxll =inf{u >O:p(~)';;;1} defines a norm in X equivalent pup 
to I I • Convergence x +0 in norm in X is equivalent to the condition p n p 
p (ax ) + 0 as n +00 for every a > o. Besides this, there is defined in Xp a 

n p 
mod u 1 arc 0 n v erg e nee (p - con v erg e nee) xn + 0 by the 

condition: there exists an a> 0 such that p(ax ) +0 as n +00. The p - c 1 0 -
n 

sur e 
p 

of a set S eX is defined as the set of all elements x € X such that 
p p 

x - x + 0 for a sequence of 
n 

x € S. Obviously, norm convergence implies p -
n 

convergence but not conversely. Let us remark that if X is a normed space 

with norm II II, then p(x) = II xII is a convex modular in X, X = X and II II = II II, p p 
p - convergence and norm convergence being thus equivalent. 

An important example of a modular space is provided by a generalized 

Orlicz space L~=L~(n,r,~), defined as follows. Let (n,r,~) be a measure 

space with a nonnegative, nontrivial rJ - finite and complete measure ~, and 
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let X be the space of all extended real - valued, L - measurable functions 

x=x(·) over n, finite Il-almost everywhere; two functions equaill-a.e. will 

be treated as the same element of X. Let ~ be a ~ - fun c t ion wit h 

par am e t e r ,i.e. ~:nxlR+IR+=[O,oo), ~(t,u) is an even, continuous 

function of u, equal to zero iff u = 0 and nondecreasing for u;;;' 0 for every 

tEn, and is a measurable function of tEn for every u EIR. If, moreover, 

~(t,u) is a convex function of u ER for all tEn, then it is called a convex 

~ - function with parameter. Now, taking 

(I) p(x) = J~(t.x(t»dll, 
n 

p is a modular on X (convex modular, if ~ is convex). The respective modular 

space X is denoted by L~(n,L'Il)(or briefly, L~) and is called age n e -
p 

r ali zed 0 r 1 i c z spa c e. In case when n is the set of nonnega-

tive integers, L is the (J - algebra of all subsets of nand Il(A) is equal 

to the number of elements of the set A, the respective generalized Orlicz 

space of sequences x = (t.) defined by the modular 
1 

co 

(2) p(x) = L 
i=o 

~. (t.) 
1 1 

is denoted byf~ and is called the g e n era 1 i zed 0 r 1 i c z 

seq u en c e spa c e (for definitions, see e.g. [3]). 

We shall be concerned with problems of approximation by singular inte

grals (convolution operators) and of moduli of smoothness in modular spaces. 

It is quite natural to consider approximation with respect to p - convergence; 

the respective theorems concerning convergence in norm I I or II II are then 
p p 

easily deduced making the number a >0 in the condition p(ax ) +0 variable. 
n 

Also, as a norm is a special case of a modular, the results may be inter-

preted as theorems for normed spaces. Problems of the above type were investi

gated in [I] and the present paper may be considered as a further contribu

tion in this direction. 

In order to put together theorems on convolution operators and on 

moduli of smoothness, there will be adopted here the technique of filters 

which makes possible to give a uniform treatment of seemingly different 

problems. 
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2. A General Theorem 

Let p be a modular on a real vector space X and let X be the respective 
p 

modular space. Let V be an abstract nonempty set and let 'f" be a filter of 

subsets of V. A function g:V .... R tends to zero with respect to'Y,g(v) 'fo• if 

for every e: > 0 there is a set V E 1'" such that I g(v) I < e: for all v E V • A 
oro 

function G: -r .... R tends to zero with respect to 1'" .G(V) +0. if for every 

e: > 0 there is a set V E 1'" such that IG(V nv ) I < e: for every V E 1"'. 
e: e: 

A family T" (T) E V of linear operators T :X .... X will be called v v v p p 
1'" - b 0 u n d e d (briefly: b 0 u n d e d). if there exist positive numbers 

k l .k2 and a function g:V .... IR+ such that g(v) 'fo and for every x E Xp there is 

a set V E 1'" for which 
x 

for all vEV • 
x 

Let us remark that if p is convex. then the constant kl may be always 

taken equal to 1 and. moreover. if p is convex and linear operators T :X .... X v p 
are -r-bounded. then T :X .... X for every v E V. 

v p P 
If X is a normed space with norm II II and we take p(x) = II xII • then the 

family (T) e: V of linear operators T :X .... X is 1'" -bounded. iff there vv v 
is a constant M > 0 such that for every. x E X there exists a V E 1'" for which 

liT xli o;;;Mllxll for all v EV. 
v 

The following theorem is a general tool in various approximation problems: 

THEOREM I. Let T" (Tv)v E V be .! -r-bounded family of linear operators 

T :X .... X and let S c::X satisfy the following conditions: v p p---- 0 --- -

(a) for every xESo there is.!!!. a>O such that p(a(Tvx-x»'fo • 

(b) XS is the p - closure in X of the set of all finite linear combinations 
p -- - p ----------------

of elements of the set S • 
- --- 0 1'" 

Then for every XEX~ ~ exists.!. b >0 such that p(b(Tvx-x» .... 0. 

PROOF. First. let us remark that the thesis holds for all xES. since 

supposing X" clx l+ ••• +c x with x. E S we have, writing c - LI?- II c.l. n n 1 0 1= 1 

n 1'" 
p(b(T x -x»';;; L p(bc(T x. -x.» .... 0. 

v i=1 v 1 1 
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if we take b > 0 sufficiently small. Now, let e: > 0 be arbitrary and let x E xS 
p 

be given. Then there· exists a b > 0 and an element s E S such that 

e: 
p (3bk2 (x - s» < 6k and 

I 

"1/ p(3b(T s-s»+O, 
v 

where we may assume k l ,k2 ;;;'1. Let vEV3b(x_s)' the set V3b (x-s) being chosen 

according to the definition of "1/- boundedness of (Tv)v E V corresponding to the 

element 3b(x - s). Then we have 

p(b(T x-x»';;; p(3bT (x-s» + p(3b(T s-s» + p(3b(s-x» 
v v v 

';;;k1P(3bk2(x-s» + g(v) + p(3b(Tvs-s» + p(3b(s-x» 

Now, let v1,V2 E"I/ be so that g(v) <e:/3 for vEV I and p(3b(Tvs-s» <e:/3 for 

vEV2• Taking V=V1 nv2 nv3b (x_s)' we obtain P(b(Tvx-x» <e: for all vEV. 

Hence p(b(T x-x» t" o. v 

REMARK. If we assume (a) for every a > 0, then the thesis of Theorem I holds 

for every b > O. 

One may define the T - m 0 du Ius 0 f s moo t h n e s s of an 

element x E Xp by means of the formula 

~(x,V) 

"1/ 
It is easily seen that WT(x,V) +0, 

reformulated in terms of T -moduli 

= sup peT x -x) 
v EV v 

for every V E "1/ • 

iff peT x -x) roo Hence Theorem 1 may be 
v 

of smoothness in the following way: 

THEOREM 2 • .!&! T = (Tv) v E V be A "1/ -bounded family .2!. .li.nul: operators 

Tv:Xp+Xp and let SokA~of X. If for~xESo~..iJi..ana>O 

such that wT(ax, V) t" 0, then the ~ holds for every x E X~ • 

These results will be applied below to cases of generalized Or1icz 
. . S 1'" h spaces, where S is p -dense 1n Xp ' 1.e., Xp =Xp' app 1cat10n 1n case were 

p is the norm in a normed space X is left to the reader. 
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3. Application to Generalized Or1icz Function Spaces 

In this Section p will be given by formula (I), limiting ourselves to 

the case of Lebesgue measure over an interval [O,b). We shall investigate 

two families of operators in X =L~: the translation operator and the con
p 

vo1ution operator (singular integral operator). 

Let n =[ 0, b) clR, 0< b <00, I.L = Lebesgue measure in the cr - algebra E of 

all Lebesgue'measurab1e subsets of [O,b). The t ran s 1 a t ion 

ope rat 0 r t :X+X will be defined by the equality t x(t) =x(t+v), v v 
where x is extended to the whole JR b - periodically. Also, the ~ - function 

with parameter generating the modular p by formula (I) will be extended 

periodically with respect to the variable tE[O,b) to the whole JR, i.e., 

~(t+b,u) =~(t,u) for u,t ER. 

We shall say that the function ~ is ~ - b 0 u n d e d, if there exist 

positive constants k l ,k2 such that 

for u,v, t EJR, 

where the function f:lRxlR+lR+ is measurable and b-periodie with respect to the 

first variable and such that writing h(v) = fb f(t,v)dt for every v ER, we have 
a 

H = sUPv ER h{v) <00 and h{v) +0 as v +0. 

Let us remark that if ~ is convex with respect to u, then we may take in 

the above definition kl =1. The above condition was introduced in [21 in 

connection with the investigation of the translation operator in a generalized 

Orlicz space. A trivial example of a t - bounded function is obtained taking 

~ independent of the parameter t, as in case of usual Or1icz spaces; non

trivial examples are given e.g. in [ 11 • 

Now, taking V =R and denoting by "f/' the filter of all neighbourhoods of 

zero in IR, we prove first the following statement, writing t = (tv)v ER: 

PROPOSITION I. (a) If ~ is t - bounded, then the family t of translation 

operators is "f/'-bounded. (b) If 1 EL~, then the linear combinations of the 

set So of all characteristic functions of Lebesgue measurable subsets of [O,b) 

form .! p - dense ~ in L ~ and for every x E So there is .!!!. a > 0 such that 
~ ---

p{a{Tvx -x» '+0. 
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PROOF. 1/ - boundedness of T follows from the inequality 

b 
P(TvX) = f ~(t,x(t+v»dt ~ k IP(k2x) + g(v), 

o 

where g(v) =h(v) = f~ f(t,v)dt. P -density in L~ of linear combinations of So' 

i.e. ,of simple functions, is easily proved first for positive functions, 

applying Lebesgue's dominated convergence theorem, and then for arbitrary 

x E L~ by splitting x in positive and negative part. Now, if x is the charac

teristic function of a set A c[ 0, b), we have for every v ER, 

p(a(T x-x» = f ~(t,a)dt, where A = (A-v) !..A. 
v A v 

v 
But fb ~(t,a)dt <00 for sufficiently small a> 0, since I E L~, and Il(A ) +0 as 

o v 
v+O. Hence p(a(T x-x» +0 as v+O. 

v 
From Proposition I we deduce easily, applying Theorem 2, the following 

THEOREM 3. If ~ is T - bounded and I E L~, then for every x E L~ there is ~ c > 0 

such that 

w (cx,tS) = 
T 

b 
sup f~[ t,c(x(t+v) -x(t»] dt+O 

Ivl ~tS 0 

as tS +0+. 

Let us still remark that the same holds with respect to the norm of L~, 

if we restrict ourselves to x from the clo~ure E~ in L~ of the set of simple 

functions. 

Now, we are going to investigate the convolution operator T , where w 
wE W, W is an abstract set and 11' is a filter in W • Let Kw:[ 0, b) +R+ for 

wEW be integrable in [O,b) and sin g u I a r, i.e. 

cr(w) 

and let us 

(3) 

b 11' f Kw(t)dt + I, cr tS(w) 
o 

b-tS 11' 
f K (t)dt +0 
tS w 

b 
cr = sup f K (t)dt <00, 

wEW 0 w 

extend K b - periodically to the whole R. Let 
w 

b 
T xes) = J K (t - s)x(t)dt. w w o 

We prove first 

b 
for every 0 < tS <'2' 
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PROPOSITION 2. Let II> be.!~, t -bounded II>-function with.! parameter, 

and let (K) E W be singular. Then T :LII> +LII> for every wE W and T = (T ) 'E W is 
---- w w - -- w -- -- w w -
"IY - bounded. 

PROOF. It is sufficient to prove that T is "IY - bounded; henceforth follows 

that T :LII> +LII>. Applying b - periodicity of 11>(' ,u) and x(·), Jensen's inequali
w 

ty and t-boundedness of II> with kl =1, k2 =k:>I, we obtain for xELII>: 

where 

p(TwX) f lI>(s'a(~) f Kw(t)a(w)X(s+t)dt} ds 
o 0 

1 b b 
OS;;; a(w) J J Kw(t)lI>(s,ax(s+t»dt ds 

o 0 

1 b b 
= O(w) J Kw(t) J lI>(u - t,ax(u» du dt 

o 0 

OS;;; p(kax)+g(w), 

1 b 
g(w) = --( ) J K (t)h(t)dt. 

a wow 

Splitting the last integral in three integrals over intervals [a,a+~, 

[a+~,b-~ ,[b-~,b] and applying the usual procedure concerning singular inte

grals, we obtain g(w)~O. 
Now, we are able to prove the following 

THEOREM 4. ~ II> be .!~, t - bounded II> - function with !. parameter, 1 E L 11>, 

and let (Kw)wEW be singular. Then the operators Tw defined ~ (3) satisfy 

the condition 

"IY 
p(a(T x -x» +0 

w 

for every x ELII> (with a dependent 2!!. x). 

for ~ a >0, 

PROOF. By Proposition 2, T xELII> for xELII>.' Let xELII>, then, by Theorem 3, 
w 

III (cx,~) +0 as ~+O+ for 'sufficiently small c >0. Now, let us choose a >0 so 
t 

small that 2aa<c and p(4akax) <00, where k is equal to the constant k2 from 

the definition of t - boundedness of 11>, k) being taken equal to I; we may 

suppose k:> I. We estimate now 
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b ( 1 b \ 
p(a(Twx-x» = ftp s'cr(w) fKw(t)cr(w)ax(s+t)dt-ax(s») ds 

o 0 

1 b ( I b ) ";;2" f tp s'cr(w) f Kw(t)2cr(w)a(x(s+t) -x(s»dt ds 
o 0 

I b 
+ '2 f tp(s,2a(a(w) -I)x(s»ds 

o 

I b b 
";;2cr(w) f Kw(t) f tp(s,2cra(x(s+t) -xes»~ )ds dt 

o 0 

I + 2" p (2a(cr(w) - I )x). 

Now, we split the first of the integrals on the right - hand side of this 

inequality into three integrals over intervals [0,8] ,[8,b-8] [b-8,b], where 

0<8 < b/2 is arbitrary. The first integral is estimated as follows: 

8 b 
f K (t) f tp(s,2cra(x(s+t) -x(s»)ds dt 
o w 0 

8 
..;; f K (t)p(2cra(T t x -x»dt ..;; cr(w)w (2aax,8). 

o w T 

and the third one, by substitution t = b-u, 

b b 
f K (t) f tp(s,2aa(x(s+t) -x(s»)ds dt 

b-8 w 0 

8 
..;; f K (b-u)p(2cra(T x-x»du";; cr(w)w (2crax,8). 

w ~ T 
o 

Finally, the second integral 

b-8 b 
f K (t) f tp(s,2cra(x(s+d -x(s»)ds dt 
8 w 0 

b-8 ..;; t J K (t)[p(4craT x) + p(4aax)]dt 
8 w t 
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b-o 
~ ! J K (t)[p(4oakx) + h(t) + p(4oax)]dt 

2 0 w 

b-o 
~ (p(4oakx) +! H) J K (t)dt. 

2 0 w 

Hence 

(4oakx) + H/2 b-o ) 
p(a(T x -x» ~ w (2oax, 0) + p ( ) J K (t)dt +-2 P (2a(o(w) -) )x). 

W t ow 0 w 

Let us take any £ >0. By Theorem 3, taking 0 >0 sufficiently small, we may 

make the first term on the right - hand side of the above inequality smaller 

than £/3. Then, by singularity of (K ), the second term may be made less than 

£/3, taking wEW) with an appropriat: W) E1II. Since xELIp and o(w)'!), the 

third term becomes less than £/3 for wEW2 with some W2 E1II. Thus, 

p(a(Twx -x» < £ for wEW) nw2• 

Let us remark that taking as W the set N of all nonnegative integers 

and as 111 the filter of all sets of the form IN\ A with A finite, AcN, we 

obtain an approximation theorem for a summability method defined by the 

kernel (K (u», n = 0,) ,2, ••• Taking as W an interval on R and a point _ n 
w E W (may be also 00) and as 111 the filter of all (may be also one - sided) 

o 
neighbourhoods of w , we get an approximation theorem for summability method o 
defined by the kernel K(u, w), where u E [0, b), wE W. In the next Section we 

shall investigate the case of matrix summability methods. 

4. Application to Generalized Orlicz Sequence Spaces 

We are going now to apply Section 2 to the case of the space X of all 

sequences x = (t.) and to a modular of the form (2), where Ip = (Ip.) is a 
J . 1 

sequence of Ip-functions, i.e. Ip:NxR-+R+. We shall investigate two families 

of operators: a sequence of translation operators and a family of convolu

tion operators in the generalized Orlicz sequence space tip. Here, V will be 

the set fi of all nonnegative integers and the filter 1f will consist of all 

sets VcV which are complements of finite sets. The set Wand the filter 

1IIof its subsets will be abstract, as previously. 

The translation operator t m,m=0.).2 ..... willbe 
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defined by the formula T X=«T x).). where (T x). =t. for i";;m and (T x). = 
m m1 m11 m1 

ti+m for i>m. x=(t j ). Hence Tmx-x=(0 ••••• t2m+l-tm+l. t2m+2-tm+2 •••• ) with 

zeros on the first m+1 places. and the T -modulus of smoothness of x = (t.) is 
] 

equal to 

w (x.V) = L (j).(t ....... -t.); 
T iEV 1 1~ 1 

we shall write w (x.r) for V = {r+l.r+Z •.•• }. 
T ~ 

In the sequel we shall say that (j) = «(j).) . is T_- b 0 u n d e d. if there 
1 1=0 

exist constants kl.kZ ~ 1 and a double sequence (n .) such that 
n.] 

(j) (u) ,.;; kl(j) +' (k2u) + n • 
n n ] n.] 

for u ER.n > j ~O. 

where n . ~O. n = O. Ln. < ~ uniformly with respect to j. We shall 
n.] n.o n=o n.] 

say that (j) is T+ - b 0 u n d e d. if there are constants kl.kZ ~ 1 and a 

double sequence (E .) such that 
n.] . 

(j) +' (u) ";;kl(j) (k2u) + E . 
n ] n n.] for· uER;n,j =0,1,2, ••• , 

where E . ~O, E =0, E. = L E . +0 as j +~, s = sup]. E",TE]. <~. 
n,] n,o ] n=o n,] " 

Let us still write en = (<5. 0>''':_ • where <5. 0 is the Kronecker symbol. 
.(.. 1.,-{. 1.-0 1,.(.. 

PROPOSITION 3. (a) If (j) is T_ - bounded, then the family T = (T)~ of 
---- m m-=o-

translation operators is j/' - bounded. 

(b) The set of linear combinations of sequences eo,e),eZ"" is 

p - dense in i(j). 

(c) p(a(Tmei -ei» +0 ~ m+~ for every i and every a >0. 

PROOF. (a) is obtained, because for x Ei(j), 
m m ~ 

peT x) = I (j). (t.) + I (j). (t'+m) ,.;; L (j). (t.) +k) I (j). (k2t.) +c·, 
m i=o 1 1 i=m+1 1 1 i=o 1 1 j=Zm+l] 1 m 

where c· = r +1 n· + 0 as m +~. (b) is obvious and (c) follows from the 
m 1=m 1,m 

fact that Tme.e. -el =0 for m~.e.. 

By Proposition 3 and Theorem Z, there holds the following 

THEOREM 5. If (j) is T _ - bounded, then for every x E l(j) there is ~ a > 0 for 
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which (j) (ax,r) +0 as r +00. 
-- 'II -

In order to investigate the 

filter of subsets of an abstract 

sin g u 1 a r, i.e. 

convolution operator T in t~, let 
w 

set Wand let K :N +IR for wE W be 
w + 
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"III be a 

cr(w) 
"H' K . "III 

~ K ~cr<oo K +1 w,J+ O 
L. w,j , w,o ' cr(w) forj=I,2, ... 

j=o 

Let T x = «T x).) ~ , where (T x). = L~ K • • t.. We prove first 
w w 1 1=0 W 1 J=O W,1-J J 

. 00 
PROPOSITION 4. Let (K) E W be singular, ~ = (~.) . t - bounded and let ~. 

-- w w - - 1 1=0 + -- -- 1 
be ~ for i = 0, 1 ,2, ••• Then Tw:t~ +t~ for every wE W and T = (Tw)w E W is 

"H' - bounded. 

PROOF. It is enough to show that T is "H' - bounded. We have for every x E t~ 

00 Li L~=o K .cr(w)t .. 

~i( 
• K • ) p(T x) L J=o W,J w,J 1+J 

W i=o L~=I cr(w) K w,j 

~ cr(~) I IK . I ~.(cr(w)t·_·)l~ k IP(k2ox) +c(w) 
j=o) W,J i=j 1 1 J 

where c (w) =_(1) r: 1 K . E:.. But taking any 11 > 0 one may choose an index r 
cr w J= W,J J 

such that sup. E:. < 11/2. Then 
J > r J 

rK. 1 rK. 
o <;c(w) ~ L w(,J) s +-() L K . I<;s L w(.J) +1' 

j=1 cr w cr w j=r+1 W,J j=1 cr w 

Now, taking WE 1f" so that the first term on the right - hand side of the 

last inequality is less than 11/2 for all wE W, we obtain c (w) < 11 for wE W. 
1Y Thus, c(w) + 0 and so T is "/I'-bounded. 
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00 

THEOREM 6. Let 1/>=(1/>.). be a t+-bourtded sequence of convex I/>-functions 1/> .• 
-- 1 1=0 -- 00 ---- 1 

Let (K) E W be singular, K = (K .). ,where the family of elements 
-- w w - w W,J J=o --------

x.e = (0, ••• ,O,K I,K 2' ••• ) with zeros on the first .e places satisfies the 
w w, w, -- --- - -- --- --- --

.e 1JI I/> 
condi tion p (a.exw )+ ° for ~ a.e > ° for': = 0, 1 ,2, • •• Then for every x E .e 

there is an a> ° such that p (a(T x-x» -+ 0. 
---- ---- w 

PROOF. By Theorem 1 and Proposition 4, it is sufficient to show the theorem 

for x=e.e,.e=0,1,2, ••• However, it is easily calculated that 

p(a(T eo-eo» = 1/>1 (a(K -I» +p(ax.e) 
w ~ ~ w,o w 

.e "IY 
Choosing a > ° so small that p (ax ) -+ 0, we obtain the theorem. 

w 
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INTERPOLATION BETWEEN Hl AND Lm 

1 Colin Bennett and Robert Sharpley 

Department of Mathematics 

University of South Carolina 

Columbia 

The purpose of this article is to provide a simple proof of the result 
of N. M. Rivi~re - Y. Sagher that the real interpolation spaces between H 
and Lm can be identified with the Lorentz LPq-spaces. In contrast to exist
ing proofs, which make heavy use of Hl-structure, the proof given here 
relies only on the well-known result of E. M. Stein-G. Weiss characterizing 
the distribiti0~ of the Hilbert transform of an arbitrary characteristic 
function of a set of finite measure, and a simple technique for applying 
that result due to R. O'Neil-G. Weiss. 

1. Introduction 

For simplicity only the case of ~he circle group T will be considered 

here. When T is equipped with normalized Lebes.gue measure, the decreasing 

rearrangement f* of a measurable function f on T is the unique nonnegative, 

decreasing, right-continuous function on the interval (0,1) that is equi

measurable with I fl. Recall that the Lorentz space LPq (l~p<~, l~q~~) 
consists of all measurable f on T for which 

(1.1) 

is finite. 

The per i 0 d i cHi 1 b e r t t ran s for m, or con j u -
1 gat e - fun c t ion 0 per a tor, H is defined on L (T) by the 

principal-value integral 

~he research of both authors is partially supported by National Science 
Foundation Grant MCS80-0l94l. 
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(Hf)(x) = £(x) = 1- IW f(x-t) co~ dt. 
2w -1T 2 

1 1 ~ 
The (real) Hardy space H (T) consists of those f in L for which f belongs 

also to L1: it is a Banach space under the norm 

(1.2) II f II 1 = II f II 1 + II £11 1· 
H L L 

The Pee t r e K - fun c t ion a 1 K(f,t,XO'Xl ) for a com

pati&le couple (XO,X1) of Banach spaces is defined for every f in XO+Xl and 

every t> 0 by 

(1.3) 

The following result is well-known (cf. [2, p. 184]). 

THEOREM 1.1. 
1 

(J. Peetre) For each f in L (T), 

(1.4) 1 CD It K(f;t;L ,L ) = 0 f*(s)ds = tf**(t) (t> 0). 

The real interpolation space (XO,X1)6,q between Xo and Xl consists of 

those f in XO+Xr for which 

(l.5) II II _,...:-6. • q d." lil q 
f (X X) - ( JO[t, K(f,t,XO'Xl )] ~) 

0' 1 6,q 

is finite (cf. [2, p. 167]). Hence, in view of Theorem 1.1 it is a simple 

matter to use the classical Hardy inequalities to identify the real interpo
l CD 

1ation spaces between L and L as follows: 

COROLLARY 1.2. If 0<6<1, l~qSa>, and 6 = I-lip, then 

(1.6) 1 CD = LPq (L ,L )6 ,q 

with equivalent ~. 

The purpose of this note is to establish by simple methods the ~~e 

result but with Ll replaced by H1. The following well-known result 
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(cf. [4, p. 197]) will be crucial. 

THEOREM 1.3. (E. M. Stein-G. Weiss). ~ E be ~ arbitrary measurable 

subset of T and let XE denote its characteristic function. Then 

(1. 7) 

2. 

(XE~)*(t) = 1 sinh-1 (sin IEI/2 ) 
n tan nt/2 

1 co 
Interpolation between H and L 

(O<t<l). 

Let f be a measurable function on T. For each t > 0, define the trun

cates ft and f t of f by 

(2.1) (ft) (x) f(x) ~ f*(t) sgn f(x) 

(2.2) 

The decreasing rearrangements are given by 

(2.3) 
t 

(f )*(s) = 
1 f*(.) - f*( t) • O<s<t, 

0, t:S:s<l, 

and I f*(t) • 
O<s<t, 

f*(s), t:S:s<l, 
(2.4) 

so, in particular, for each t> 0, 

(2.5) f*(s) (O<s<l). 

1 1 If f belongs to H , then since f' is bounded and hence belongs to H • 
ttl 1 

it is clear that f = f-ft is also in H. The H -norm may be estimated 

as follows. 

LEMMA 2.1. 

(2.6) 

If f 1 b,elongs to H • then 

(O<t<l) , 
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where c is ~ constant independent of f. 

PROOF. It follows directly from (2.3) that 

(2.7) I Iftl I - ft[f*(s) - f*(t)]ds - t[f**(t) - f*(t)J. 
Ll 0 

1 t "" In order to estimate the L -norm of (f) we use a technique employed by 

R. O'Neil-G. Weiss [4, p. 192]. Let 

t "" t "" 
E - {x: (f ) (x) ~ O}, F - {x: (f ) (x) < O}. 

Then 

Hence, by (2.3), and the monotonicity of sinh-I, 

$ ~ f~(f*(S) - f*(t» sinh-1(cot us/2)ds 
u 

$ ~ f~ f*(s) sinh -l(~ )ds 
u 

An integration by parts gives 

I t ""1 1 ft 1 ds 1 ft I (f) I $ - sf**(s)T;£ - $ - f**(s)ds 
1 2 0 2+1 s 2 0 u S u 

= ~ t(f**)**(t). 
u 

Combining this with (2.7) we obtain 
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~ ct[f**(t) + (f**)**(t)] ~ ct(f**)**(t). 

THEOREM 2.2. If 0<6<1, l~q~w and 6 = l-l/p, then 

(2.8) 
1 w pq 

(H ,L )6 = L ,q 

with equivalent ~. 

PROOF. Since the L1-norm is dominated by the H1-norm it is clear that 
1 w 1 w 

K(f;t;L ;L ) ~ K(f;t;H ,L ) so by Corollary 1.2, 

with a continuous embedding. Thus it remains only to show the reverse 

inclusion. 

Fix t > 0 and write t f = f +f t as in (2.1) and (2.2). Then 

so from (2.4) and (2.7) we obtain 

1 w 
K(f;t;H ,L ) S ct(f**)**(t) + tf*(t) 

(2.9) 

S ct(f**)**(t) 

Hence from (2.5) 

I If I I 1 w ~ c(f~ [tl - 6 (f**)**(t)]qdt/t)l/q 
(H ,L )e ,q 

whence two applications of Hardy's inequality yields 
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This establishes the reverse inclusion LPq c (Hl,L~)e and hence completes 
,q 

the proof. 

Rivi~re and Sagher [5] were the first to establish (2.8). Shortly 

thereafter Fefferman, Rivi~re, and Sagher [3] discovered the K-functional 

for HP and LW within constants for O<p<w by making heavy use of the then 

newly developed Fefferman-Stein HP theory. In [1] equation (2.9) was 

established using L log L estimates and was incorporated into the framework 

of weak type inequalities. The proof presented in this paper, although 

simple, does not extend to O<p<l, but does have an easy generalization to 

Hl(Rn) by using the analogous estimate for Riesz transforms that we stated 

in Theorem 1.3 [4, p. 193-196]. 
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THE FRANKLIN ORTHOGONAL SYSTEM 

AS UNCONDITIONAL BASIS IN ReH I AND VMO 

Zbigniew Ciesielski 
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Sopot 

The aim of this lecture is to present a simplified proof of P. Wojtaszczyk'sl 
theorem that the Franklin orthogonal system is an unconditional basis in ReH • 

I. Introduction 

The Hardy space HP, I';;p <00, on the unit disc {z E t: I z I < I} is a separable 

Banach space. The question of constructing a basis or unconditional basis in 

HP spaces can be considered. According to the celebrated result of M. Riesz 

[13] (on the boundedness of the Hilbert transform) HP with I <p <00 is linearly 

isomorphic to LP, and therefore in this case positive answers to the above 

questions can be given. The case p= I is more difficult. P. Billard [I] in 1971 

constructed in HI a basis by means of the Haar orthogonal system. It was shown 

in 1976 by S. Kwapien and A. Petczynski [10] that Billard's basis is not un

conditional. In the same paper the authors pose the question of existence of an 

unconditional basis in HI. A positive but non - constructive answer to this 

question was given by P. Maurey [II] in 1979. He simply proved that HI is 

linearly isomorphic to the dyadic (martingale) HI in which the Haar system is 

an unconditional basis. In 1980 L. Carleson [3] constructed an unconditional 

basis in HI, and recently P. Wojtaszczyk [14] proved simply that the orthogo

nal Franklin system is an unconditional basis in ReHI. For the sake of comple-
00 

teness we mention that H is non - separable and the basis questions make sense 

only in separable subspaces, e.g. in A, the space of functions analytic in the 

unit disc and continouus on its boundary. S.V. Bockariov [2] in 1974 construc

ted an orthogonal basis in A by means of the Franklin system. On the other 

hand it is known that A has no unconditional basis (cf. A. Petcz~ski [ 12] , 
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p. 65). 
I 

Our contribution concerns the ReH space. We simplify the ''most delicate" 

place in the proof of P. Wojtaszczyk [14], Lemma 2 (see also L. Carleson [3], 

Lemma 4). 

It is apparent (cf. [6] and [7]) that the method of proof is such that 

it can be extended to obtain simultaneous unconditional bases in HI. i.e. the 
m 

closure of po~ynomials with respect to the Sobolev norm in w7 on a given 

polydisc. 

2. Preliminaries 

The main tools in this note, as well in Wojtaszczyk [ 14]. are the 
I 

Franklin orthogonal system and the atomic characterization of the space ReH 

In both cases we recall the basic properties and the relevant results. More

over. we shall use elementary properties of the Haar and Schauder bases which 

we recall below as well. 

The dyadic partitions lIn of I :=<0, I> are defined as follows:lI l = {O.I}, 

I! ={s ., j=O, •••• n} forn=21l+k, 1l~0. l';;k';;21l ,with 
n n,J 

s . 
n,J 

...L I • j=O, •••• 2k 
21l+ 

j-k . , J=2k+I ••••• n. 
21l 

It is also convenient to have the following notation: 

and (n)=«k-I)/21l .k/21l>. ClearlylI ={t •••• ,t} and non 

2k-1 t = 0. t = I t =--
o I' n 21l+1 
I (n) I ~ lin. The 

spaces of all step functions (splines of order I), say right -continuous. and 

of all polygonals i.e. piece - wise linear continuous functions (splines of 

order 2) corresponding to I! are denoted by SI(I) and S2(I). respectively. 
r r 2 n . r n n 

Clearly S (I)CS I(I)CL (I) and dlm S (I) "'n+r-I. r=I,2. n n+ n 

Using the L2(I) scalar product 

(f,g) '" J fg 
I 

we now define, for given r = 1,2, an orthonormal system {f(n), n~2-r} such 
n 

f(r)=1 f(r)ESr (I) f(r) is orthogonal to Sr(I), and IIf(r)1I 2 =1. Now 
r-2 ' n+1 n+1 • n+1 n n 

that: 

{h , n;;' J} :'" (t(l) n;;' J} is the 
n n • 

o r tho nor mal H a a r s y s t e m 
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(2) 
and {f , n :>O} := {f ,n :>O} is the 0 r tho nor mal F ran k 1 i n 

n n 
s y s t e m. 

The properties of the Haar system we are going to use later on are the 

following: 

H.1. 

H.2. 

H.3. 

H.4. 

{h , n:> I} is a basis in L 1 (I) • 
n 

For f ELI (I) let 

Then 

H f 
n 

n 

~ 
j=1 

s , 

(f,h,)h, • 
l l 

H f(t) 
n 

nIl 
sn,l' - sn,l' -I s 

n,j-I 

f(s)ds for s 'I < t<;s " n,l- n,l 

and (cf. [5] , Theorem 7) 

II f fll <; 6W(11) (f "-nl), -Hn 1 n:> I; 

where 

I-h 
sup f If(t+h)-f(t)ldt. 

supp h .. (n). 
n 

O<h<~ 0 

If n=2P+k, p:>O, 1 <;k<;2P , then 

{ 

2P/2 

h (t) = 
n _2P/ 2 

for 2k-2 < 2P+1t <;2k-I, 

j=I, ... ,n. 

Introducing the integration operator Gf(t) = r f we now define the o 
S c h a u d e r s y s t e m as follows: 

s := Gh, n:> 1. n n 

These functions have the following properties: 

S.1. {s, n :>O} is a Schauder basis in C(I) and for f E C(I) we obtain 
n 

00 

f = f(Oh + ~ (f h df)s • 
o n=1 Inn 

S.2. Let f EC(I) and let 
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n 
S f := f(O)s + L (J h.df)s .• 
n 0 j=1 I J J 

Then S f(t.)=f(t.) for j=O, ••. ,n. 
n J J 

S.3. If f is absolutely continuous on I and D denotes the differentiation 

operator, then 

DS f = H Df. 
n n 

{ (2) . O} f 1· d· Let N ., J= , ••. ,n be the set 0 B - sp 1nes of order 2 correspon 1ng 
n!J (2) 2 (2) _ 

to II , 1.e. N . ES (I), supp N . -<s . I's .> with s 1=0, n n,J n n,J n,J- n,J n,-

S.4. 

(2) 
S I .. I and N . (s .) = <5 ••• Then, for f E C(I) ft,n+ n,J n,1 1J 

n (2) 
S f = L f(s .)N .• 
n. n,J n,J J=o 

It is now time to pass to the F ran k 1 ins y s t e m. For later 

convenience let, for a given dyadic interval (n) and an interval J c: I, t E I, 

r(t,(n» - dist (t,(n» - I (n) I 

Now, Theorem I of [4] and Theorem I of [5] imply: 

F 1 {f ;;0O}· b·· I ( ) •• n' n 1S a aS1S 1n L I. 

F.2. There are constants q, 0< q < I, and C > ° such that for n;;ol, t, t l , t2 E I 

we have 

(i) 

(ii) 

(iii) 

It should be noticed that (i) implies both (ii) and (iii). 
I In order to construct a basis (unconditional basis) in the Hardy space H 

over the unit disc it is sufficient to do this in ReH I and then by conp1exifi-
I cation to pass to H It has been shown by Wojtaszczyk [14] that the Franklin 

system is an unconditional basis in ReHI, and consequently the basis construc

ted by s.v. Bo~kariov [2] in the disc algebra A is an unconditional basis in HI. 



Ciesielski 121 

Following the work of R.R. Coifman and Guido Weiss [~ we recall their 

new real variable characterization of ReHI. A function aCt), tEl, is called 

an a tom if either aCt) II 1 or if it is measurable and such that: 

A. (i). supp a is contained in an interval J el, 

A.(ii). la(t)I.;;IJI-1 for tEl, 

A. (iii) (a, I) .. O. 

ReHI can be identified with the set of functions in HI with imaginary 

part vanishing at zero. The space ReH I with the norm induced from HI is a 

Banach space. This Banach space has the following description: 

f E ReH I if and only if 

(2. I) f = L 
j 

A.a. , 
J J 

where the a. 's are some atoms. Moreover, the infimum of rlA.1 taken _over all 
--- J ------- -- - L J 
such decompositions defines .!!l equivalent .!!Q!!!! in ReH I and it is denoted 1rl 

IIfll I' 
ReH 

I I * The dual -space to ReH , i.e. (ReH ) , was characterized by C. Fefferman 

[9] as the space of B 0 u n d e d Mea nOs c ill a t ion (BMO) 

functions. A function .e. ELI (I) is said to be in BMO if 

n.eJl BMO = 1(.e.,I)1 + sup ,j,- I I.e.-m/.e.)I <00, 
J 1"'1 J 

where the sup is taken over all 
I * to each L E (ReH) there exists 

subintervals Jel, and mJ(i.) = IJI-Ili. Now, 

a unique .e. E BMO (the correspondence L -+i. is 

linear) such that 

L(f) = (i.,f), 

holds for f EL2(1) eReH I • The extension of L to ReH I is denoted by the same 

symbol (t,f). Finally we define the space of Van ish i n g Mea n 

o sci 1 1 a t ion (VMO) as a subspace of BMO of those i. for which 

I 1i.-mJ(i.)I-o(IJI) as IJI-+o. 
J 

The norm in VMO is the one induced from BMO. In this setting we have 

(VMO)*.ReH I (cL [8], Thm.4.1). 
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3. Characterization of the BMO and VMO spaces. 

It is convenient to introduce for a given sequence of real numbers 

(ao,a l , ••• ) the quantities 

An := (n I laml2f/2, n;;>2. 
(m) c (n) 

THEOREM 1. (P. Wojtaszczyk [14]). Let fEL1(I) and let 

(3. I) 

Then, 

00 

f = L 
n=o 

f E BMO iff A = 0(1). 
n 

fEVMO iff A 0(1). 
n 

a f • 
n n 

Following Wojtaszczyk we know that this result follows from the following 

three lemmas. 

LEMMA 1. ..!! An =0(1)[0(1)] and f is given Ex. (3.1), then fEBMO(VMO]. 

LEMMA 2. For the Franklin functions we have -- ---
-1/2 

II f II I = O(n ) • 
n ReH 

LEMMA 3. If fEBMO(VMO], then A =0(1)[0(1)]. 
- -- n 

The proofs of Lemmas I and 3 as given in [14] are simple and they will not 

be repeated here. We mention only that following Carleson' sway [3] of decom

posing the sum (3.1) into three parts one finds that Lemma I essentially 

follows from F.2.(ii). Similarly, using Lemma 2 and F.2.(ii), one proves 

Lemma 3. 

PROOF OF LEMMA 2. Let N= l(n)I-1 for n;;>2. Then by H.I 

(3.2) 
00 

f = R_f + L (f ,h.)h .• 
n --N n j=N+I n J J 

Since (f ,1)=0 it follows that Gf (O)=Gf (1)=0. Thus properties S.3 and n n n 
S.4 give 
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(3.3) 
N-I (2) N-I 

= ~ Gf (sN .)DNN . = ~ A.a., 
j=1 n ,J ,J j=1 J J 

where A ... 2f (sN .) and a ... ..!.DN(2) These a.' s are atoms. Property F .2. (iii) 
J n ,J J 2 N,r J 

now implies 

(3.4) 
N-I 
~ IA.I=O(N- I/ 2). 

j_1 J 

The second sum of the right hand side of (3.2) can be written as 
00 

(3.5) A.a. 
J J 

with A. -(f .h.)I(j)II/2 and a. =h.l(j)I-I/2. It now follows by H.3 and H.4 
J n J J J 

that these a.'s are atoms. On the other hand, by H.2, F.2.(i), 
J 

00 00 2\1+IN 

(3.6) 

L IA·I .. L X IA.I 
j-N+I J \1-0 j=2\1N+I J 

00 

- ~ IIH +) f -H f II) 
\1=0 2\1. N n 2\1N n 

< C Y w~I)(fn;I/2\1N) 
\1=0 

O -1/2 < C'(var f )/N = (N ). 
n 

To obtain the last but one estimation we have used the inequality 

w~l) (f;l'i) <31'i v~r f. Combining the formulas and estimates (3.2)-(3.6) we 

complete the proof. 

4. Unconditional basis in ReH I and in VMO, 

THEOREM 2. The Franklin orthonormal system is ~ unconditional basis both 

in ReH I ~ in VMO. 

PROOF. Using the notation of Section 3 and applying Theorem I we obtain 
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uniformly in n 

n n 
II L ±b.f.1I I"" sup { L b.a.: la I <I, lall <1, A <I, m:>2} 
j-o J J ReH j-o J J 0 m 

and 
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BESSEL POTENTIAL SPACES AND GENERALIZED LIPSCHITZ SPACES ON LOCAL FIELDS 

H. Ombe and C. W. Onneweer1 

Department of Mathematics 

University of New Mexico 

Albuquerque, NM 87131 

In this paper we prove an embedding theorem for Bessel potential spaces and 
generalized Lipschitz spaces in L (K), 2 < r < m ,where K is a local 

r field. This theorem complements a result of the second author who has 
proved a similar embedding theorem for such spaces in L (K) when 
1 < r ~ 2 • r 

1. Notation and Definitions-

In this paper N, Z and R will denote the natural numbers, the 

integers and the real numbers, respectively. Let K be a local field, that 

is, K 

field. 

is a locally compact, non-discrete, totally disconnected topological 
+ Let dx denote a Haar measure on K ,K considered as an 

additive group. For each a E K with a ~ 0 the measure d(ax) is again 

a Haar measure on K+. Thus d(ax) = lIall dx for some lIall E R. If 

110 II is defined by 11011 = 0 then it can be shown that the function 

a -+lIall from K to R defines a (non-archimedean) norm on K. This 

norm has the properties that Ilabll = lIall • Ilbl! and Ila+bll ~max{IIaH, 1Ib11} 
for all a,b & K • 

Next, let Po = {xEK;lIxlI ~ 1} and P1 = {xEK;lIxlI < 1}. Then Po is 

a ring in K, P1 is a maximal ideal in Po and PO/P1 ~ GF(q) , the finite 

field of q elements, where q is a power of some prime number p. For 

each k E Z let 

1 The research of the second author was partially supported by NSF grants 
MCS 79-01957 and MCS 80-01870. 
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c Then (i) each Pk is a compact open subgroup of K, (ii) Pk+l ~ Pk ' 

(!ii) (\kez Pk = {oJ and Ukez Pk = K , (iv) _!f m is the Haar measure on 

K normalized by m(PO) = 1 then m(Pk) = q for each k e Z. From 

here on m or dx will denote this particular Haar measure on K+. 
~ + 

~o describe the dual group K of K ,choose a character X e K, so 

that X(x) = 1 for x e Po and X(x) ~ 1 for some x e P-1 • Then 

K = {X ;y e K}, where X (x) = X(yx) • If f(x) is defined the notation 
A YAY Y 
fey) will be used for £(xy) • For each k e Z let the function 6k on 

K be defined by 

[ 
k if x e Pk ' q 

6k(x) 
0 if x t Pk 

Then 116kli1 = 1 and 

-[ : if y e P-k ' 
(6k) A (y) 

if y t P-k 

We now present the definitions of two spaces of functions which were 

given first by Taib1eson in [3]- and [4], respectively. These definitions 

can also be found in [5]. We first observe that for each a > 0 there 

exists a function Ga e L1(K) such that IIGalil = 1 and 

(G) (y) = 
a 

DEFINITION 1. For a' > 0 and 1 S r < m the Bessel potential space 

L(r,a) is defined EI 

L(r,a) = {f e L (K);f • G * g for some geL (K)} • 
r a --- r 

If we set IIfIlL(r~a) = IIglir when f = Ga * g then L(r,a) is a 

Banach space with respect to the norm 11'IIL(r,a) • 

In order to study the smoothness properties of the ,functions in L(r,a) 

we introduce the generalized Lipschitz spaces (or Besov spaces) A(a,r,s) 

on K. 

DEFINITION 2. Let 1 S r S m , 1 S s < m and a > O. Then 
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A(a,r,s) = {f E L (K) ;Kf( II y II-a II f - f II ) Slly 11-1 dy < "'} • r y r 

Here f denotes a translate of f: f (x) = f(x-y) . In [4] Taibleson 
y y 

proved that the following two expressions define equivalent norms on 

A(a,r,s) : 

(a) 

(b) 

Ilflir + (Kf( Iiyll-all fy - fllr)s Ilyil-ldy)l/s , 

Ilfllr+(Illka(L\ -L\ )*flls)l/s 
k=-o:> q k k+1 r 

We shall denote the second of these norms by 11·11 A(a,r ,s) 

2. The Embedding Theorem. 

In [1, Theorem 7] we proved that for 1 < r ~ 2 we have 

A(a,r,r) c L(r,a) c A(a,r,2) , 

where c denotes a continuous embedding mapping. In this paper we will 

prove the following complement of this result. 

THEOREM. If a > 0 and 2 < r < '" then 

A(a,r,2),c L(r,a) c A(a,r,r) 

Before giving a proof of the theorem we review some results needed 

later on. We begin by stating the relevant facts about the generalili ed 

Littlewood-Paley function G (f) of a function f E L (K) For 
r r 

fELl 1 (K) and 1 ~ r ~ '" let , oc 

Then we have the following. 

(1) If f E Lr(K) , 1 < r < '" , then G2(f) E Lr(K) and the norms Ilflir 

and IIG2(f) IIr are equivalent. 

(2) If fEL(K) ,2~r<""then G(f)EL(K) and IIG(f)11 ~cl~ll. r r r r r 'r 
A proof of (1) and (2) can be found in [4] or [5]. 

We now prove that the Bessel potential spaces L(r,a) can be identified 

with the spaces V(D [a]) of strongly differentiable functions in L (K) 
r r 

of order a > O. We repeat here two definitions that can be found in [1] 

and [2], respectively. 
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DEFlNITION 3. For f E L (K) , 1 ~ r 
r 
m-1 

E f(x) = L (q(i+1)a 
m,a i=-oo 

< 00 , a > 0 , mEN and X E K let 

ia 
- q )(f - ~i * f) (x) • 

If lim~ Em,af exists in Lr (K) the limit is called the strong derivative 

of order a of f, _the limit will be denoted.£y Dr Calf • 

Also, ~e set V(D [a]) = {f E L (K);D Calf exists}. 

(3) 

(4) 

(5) 

r r r 
For later reference we now state some results that were proved in [1]. 

If 1 < r < 00 then V(D [a]) is dense in L (K) • 
r r 

If 1::;; r ::;; 2 then f E V(D [a]) if and only if there exists a 
r 

such that g(y) = Ilylfi(y) a.e.; moreover g = D Calf 
r 

gEL (K) 
r 

If 1::;; r 

V(D [a]) 
r 

::;; 2 then D [a] is a closed linear operator and, hence, 
r 

is a Banach space with respect to the norm 

DEFINITION 4. If for f E L (K) , 1 ::;; r < 00 ,and a > 0 and r' satis-
--- r 

~ r + r' = rr' there exists ~ g E Lr(K) so that for all 

4> E V(Dr , [a]) ~ have 

KJ f(x)Dr , [a]4>(x)dx = KJ g(x)4>(x)dx , 

~ say that f is differentiable of order a in Lr (K) in the weak ~. 

We call g the weak derivative of f, denoted E1. g = W-Dr[a]f 

Also, we set V( w-D [a]) = {f E L (K)' W'-D IaJ f exists} 
r r ' r 

In [2] we proved that if a > 0 and 2 ~ r < 00 then 

V(D [a]) V(w-D [a]) • Moreover, if f E V(D [a]) then its weak and 
r r r 

strong derivatives of order a are equal a.e. As a simple consequence we 

can prove that (5) holds for all r with 1::;; r < 00 

LEMMA. Let a > 0 and 1 ::;; r < 00 • Then V(D [a]) = L(r,a) 
r 

and the norms ------
in these spaces are equivalent. 

PROOF. For 1 ~ r ::;; 2 the lemma was proved in [1, Theorem 6J. So we shall 

assume that 2 < r < 00 Let f E L(r,a) and assume f = G * f for a a 
some f E L (K) a r 

For any 4> E V(D ,IaJ) ,where r + r' = rr' , we have 
r 

4> E L(r',a) and, hence, 4> G * 4> for some 4> E L ,(K) • Also, in II, a a a r 
page 16lJ it is shown that D Ia] '" = 4> * Jl where Jl = 6 _ ~ + DIa] ~ r' ~ a a' a 0 0 1 0 
and 60 is the Dirac 6-measure concentrated at 0 E K. Therefore, since 
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both Ga and ~a are inversion-invariant, we have 

f f(x)D ~a]~(x)dx = f G * f (x)~ * ~ (x)dx 
K r K a a a a 

= f G * ~ (x)f * ~ (x)dx 
K a a a a 

= f ~(x)f * ~ (x)dx • 
K a a 

Since f * ~ £ L (K) , we see that . a a r 
D [a]f = f * ~ In addition, 

r a a 

IIfllD(r,a) = Ilflir + IIDr[a]fll r 

IIGa * fallr + Ilfa * ~allr 

!> C Ilf II = C Ilfll L( ). a r r,a 

Conversely, let f £ V(D [a]) • Define the function h by 
r 

h = Dr[a]f + (~O - Dl[a]~O) * f . 

133 

Clearly. h £ L (K) • We shall show that f £ L(r,a) by proving that 
r 

f = Ga * h. Take any ~ £ V(Dr!a]) . Using the characterization for 

V(D ,~l) given in (4) we can easily show that G * ~ £ V(D ~a]). Further-r a r 
more, we have 

f G * h(x)~(x)dx 
K a 

= f h(x)G * ~(x)dx 
K a 

= f D [a]f(x)G * ~(x)dx + f (~ - D [a]~ ) * f(x)G * ~(x)dx 
K r a K 0 lOa 

= f f(x)D ~a](G *~)(x)dx+ ff(x)(~O - Dl[a]~O) * G * Hx)dx . 
K r a K a 

A computation of the Fourier transform, in which we use (4), and an ap

plication of the Uniqueness Theorem shows that 

D ~a](G *~) + (~ - D [a]~ ) * G * ~ ~. 
r a 010 a 

Therefore, 
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f G * h(x)~(x)dx = f f(x)~(x)dx • 
K a K 

Since, according to (3), V(D ~a]) is dense in L (K) , we may conclude that 
r r' 

G * hex) = f(x) a.e., that is, f € L(r,a) • Finally, we observe that 
a 

IIfllL(r,a) = IIhllr !> IIDr[a]fll r + 11(1\0 - Dl [a]I\O) * f/l r 

!> II Dr [a]f/l r + 111\0 - Dl [a]I\Olll IIflir 

!> C IIf/lD(r,a) • 

This completes the proof of the lemma. 

PROOF OF THE THEOREM. Let f € A(a,r,2). For each n € Z define f by n 
f = f * 1\ • Then lim f = f in L (K) • Also, according to n n ~~ n r 
[1, Theorem l(b)], f € V(D [a]) and 

n r 

For m < n let 

D [a]f 
r n 

f = D [a]f - D [aJf • Then according to (1), we have 
m,n r n r m ' 

IIf II !>cIlG2(f )11 . m,n r m,n r 

Also, a simple computation, compare [1, page 163J, shows that 

Therefore, it follows from the generalized Minkowski inequality that 

Since f € A(a,r,2) , we see that for each € > 0 there exists an M € N 

so that for all m,n> N we have II G2(f )/1 < €. Hence m,n r 
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{D [al f } N is a Cauchy sequence in L (K) • Consequently, lim D [alf r m me: r m-+<><> r m 
exists in L (K) and, because D ral is a closed operator, we may conclude 

r r 
that f e: V(D [all Furthermore, since 

r 

D [alf = lim f 
r n m+-oo m,n 

we see that for each n e: Z 

liD [al f II 
r n r 

::; c(lIf II A( 2) -llfll ) a,r, r 

Therefore, 

liD [alfll ::; C(li f Il A( 2) -llfll ) r r a,r, r 

and, hence, IlfIlL(r,a) ::; C IlfIlA(a,r,2) • 

Conversely, assume f e: L(r,a) • We first show that for each k e: Z we have 

(6) 

Take any 

Therefore, 

ka -a [al 
q (Llk -Llk+1) * f = q (Llk - Llk+l) * tM)r f. 

$ e: V(D ~al) • A comparison of the Fourier transforms shows that 
r 

* $(x)dx 

= / f(X)Dr~a] (q -a (Llk-Llk+1) * $) (x)dx 

= f W-D;aJf(x)q-a(Llk-Llk+1) * $(x)dx 
K 

= Kf q-a(Llk-Llk+1) ~ ~Dr[aJf(X)$(x)dx 
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An application of the Hahn-Banach theorem implies that (6) holds. Next, 

applying (6), Fubini's Theorem and (2), respectively, we see that 

Il fll Ilfllr + (~ II R.a(6. -6. ) * fllr)l/r A (a , r , r) = R.~-oo q R. R.+ 1 r 
ex> 

IIflir + q-a( I II (6.R.-6.Hl) 
R.=_ex> K 

ex> 
IIflir + q-a( II L (6.R.-6.R.+1) * 

K R.=-oo 

::; IIfll + c II w-D [aJfll r r r 

Thus f E A(a,r,r) • This completes the proof of the theorem. 

REMARK. The first author recently proved that the inclusion relations 

stated in the main theorem are sharp. .For each k E Z let y(k) denote 
-k the element p in K where p is a fixed element of Pl\P2 The 

following holds. 

(i) Assume 2::; r < ex> and a > O. Let f be defined by 

~ -R.a -1/2 
f(x) = 6.0 (x) R.~lq R. Xy(R.) (x) 

Then f E A(a,r,s) for s > 2 ,but f i L(r,a) Thus 

A(a,r,s) ¢ L(r,a) for s > 2 

(ii) Assume 2::; r < ex> and a > O. Let g be defined by 

ex> -1-1 
g(x) = L q-R.(a+l-r )R.-S (6.R.-6.R._l) (x) 

i=l 

Then g E L(r,a) and g i A(a,r,s) for s < r. Thus L(r,a) ¢ A(a,r,s) 

if s < r . 

A detailed proof of (i) and (ii) will appear elsewhere. 
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ON THE MINIMUM NORM PROPERTY OF THE 

FOURIER PROJECTION IN LI-SPACES 
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B - 36 10 Diepenbeek 

Let G be a compact abelian group, e its dual, N a finite part of e, and EN the 

(complex) linear hull of the characters ey, y EN. The Fourier projection 

x +x *k, where k is the Dirichlet kernel Ly EN \' has minimum norm among all 

projections LI(G) +EN• We proved in [~ that the Fourier projection is the 

unique minimum norm projection L I (G) +EN' whenever the kernel k is determined 

up to a constant factor as an element of EN by its roots in G. Hence if G.~s 

the circle group T and EN the space of trignometric polynomials ~~ c.e~Jt, LJ=-n J 
t E T, the Fourier projection is characterized by its minimum norm. On the 

other side we also showed there that the convex set C~ of minimum norm projec

tions L I (G) +EN can have arbitrarily large dimension by suitable choices of G 

and EN' In this paper we prove a partial converse to those results: if the 

kernel k is real and if the Fourier projection L I (G) +EN is characterized by 

its minimum norm, then the kernel k is continuously determined up to a con

stant factor as an element of EN by its roots in G; moreover, when the real 

kernel k does not satisfy this condition, we give a lower bound for dimension 

(C~), which can reach the power of the continuum. These results as those in 

[4] are valid and written for more classes of operators then only the class of 

projectors. 

I. General Setting and Generalization of D.L. Berman's Relation 

DEFINITION 1.1. We ~ that the compact abelian To-group G operators conti

nuously ~ the Banach space E, when .! mapping: 
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(1. I) (j) : (g,x) +gx: GXE+E 

is given, which is separately continuous in g and x and such that g + (x + gx) 

is ~ representation of G in Lin Aut (E) • .!! furthermore for each g the mapping 

(j)g : x +gx is ~ isometry, ~ ~ that G operates continuously and isometri

cally ~ E. 

REMARK 1.1. It is a corollary of the Banach - Steinhaus theorem that these 

assumptions imply the continuity of (g,x) +gx. 

DEFINITION 1.2. For every y EG, where e is the dual of G, the subspace Ey of 

E is defined !?1.: 

(1. 2) E = {xEE :gx=(-g,y)x for every gEG}. 
y 

The mapping Sy : E +Ey is then defined !?1.: 

(1. 3) S x := x := x * e := f (gx) (g,y)dm(g) 
y y y G 

strongly, where m is the normalized Haar measure of G and e is the charactery 
- - y--

considered ~ ~ mapping G +11:, i.e., e/g)' = (g,y). 

REMARK 1.2. x EE : first of all the integral converges strongly, furthermore y y 

hx = h f (gx)(g,y)dm(g) 
y G 

= f (fx)(f-h,y)dm(f) 
G 

f (hgx)(g,y)dm(g) 
G 

(-h,y)x 
y 

if hE G. 

DEFINITION 1.3. For a finite subset N of e and a finite subset {c : yEN} of 
-------- - -------- y -

0:\ {O} let EN=LyEN Ey and k=LYEN cly ' We then define the mapping 

Sk : E +EN by 

(1. 4) 

i.e. 

L c S , 
yEN Y Y 

L cx =x*k 
yEN Y Y 

f (gx)k(g)dm(g) 
G 



Lambert 141 

REMARK 1.3. The spaces Ey are linearly independent. i. e. the sum Ly ENE j is 

a direct sum: the S are projections with ranges E • and S vanishes on E , • 
Y Y Y Y 

for y' #oy • 

THEOREM 1.1 • .!!. the C.A. group G operates continuously ~ the Banach space E. 

then any cont~nuous linear extension S : E -+EN of the transformation 

sk : x -+x * k of EN (see Def. 1. 3.) satisfies the relation: 

(J .5) J -1 
V x EE : Skx = (g Sgx)dm(g). 

G 
strongly. 

COROLLARY. If furthermore G operates isometrically ~ E. then the ~ of Sk 

is minimum among those of the continuous linear extensions E -+EN of sk' 

PROOF OF THEOREM 1. 1. AND OF ITS COROLLARY. The relation (J .5) is first proved 

when x E E • The relation (J .5) will then be true if we can show that ~ E is y y 
dense in E. 

The complex linear hull >f< := > {e : y Ee} < of the characters is a 
y 

self-adjoint complex algebra. which vanishes nowhere in G and which separates 

the points of G. Hence by the Stone - Weierstrass theorem> e< is dense in 

C (G) = C(G). It follows thus 
o 

(*) >fi< contains a continuous approximation of the identity. i.e •• a family 

of positive continuous functions Ya' with J G Yadm = 1. and such that for 

every neighbourhood U of the origin in G. and every E > O. a YCi can be 

found such that [y (g) I < E for g tU. 
a 

Let U denote the set of all neighbourhoods of OEG. A={(U.E) :UEU. E>O}. 

A is a directed set with respect to the partial ordering 

(U. E) < (V. E ').. V cU and E' <; E. 

For each a = (U.E) EA let 

F -{y: y E>e'< and y meets all the conditions of (*) with respect to (U.E)}. 
a 

Then F' = {F : a E A} is a filterbase in > e<. which approximates the iden-a . 
tity. One obtains a directed family associated with f' by choosing precisely 

one y in each F and setting y <Yo" a < a. a a a p 

Let now x E E. a E A and y E F • It follows then from the definition (1. 3): 
a 
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x*( I 
finite 

a e ) 
y y L 

finite 
L 

finite 
a S xE@ E 

y Y Y 

Hence for every 

is a filterbase 

xEE H :={Hx 
x a 

in @ E • One 
y 

: a EA}, with HX={x*y :yEF } for every aEA, 
a a 

then ends the proof of Thm. 1.1 by showing 

(**) If G operates continuously on E then for every x EE the filterbase H 
x 

converges to x in E. 

We now prove the corollary. 

If x+gx is an isometry it is also a bijective isometry of E. Hence 
-I 

x + Sgx has the same norm as Sand S (g) : = x + g Sgx has the same norm as S g' 

i.e. as S. Hence from 

strongly,it follows 

Comments 

J S(g) x dm(g) 
G 

f II SII II xii dm(g) 
G 

II SII II xii 

I. If cy = I for each yEN, then k = dN = Ly EN ey is the Dirichlet kernel, 

sd is the identity transformation of EN' and its natural extension 
N 

Sd : x +x * dN to E +EN is the Fourier projector: 
N 

(1.6) FN :x+x*dN, where x*dN = I f (gx) (g,y)dm(g). 
yEN G 

The continuous linear extensions of sd are the projectors E+EN• 
N 

2. In the future we shall be concerned with the case where G operates on 

C(G) or on LP(G) , I";;p<"", in the following way: 

(I. 7) (hx) (g) = x(g-h) • 

The operation is continuous, the representation operators are isometric. 

Theorem 1.1, its corollary,and Comment 1 are applicable. The convolution con-
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sidered above is the usual convolution of functions. Furthermore, for any 

y E e, the space E = {x E E : gx = (-g, y)x for every g E G} is the one-dimens ional 
y 

space spanned by the character e : if, for every gEG, gx=(-g,y)x, i.e.,if, 
2 y 

for every (g,h) E G , (-g,y)x(h) = (gx) (h) =x(h-g), then it follows in particu-

lar for h =0 that (-g,y)x(O) =x(-g), i.e. x =x(O) e • 
y 

3. Michael Golomb in his lectures on Theory of Approximation at the 

Summer School on Numerical Analysis in "Le Breau-sans-nappe" France in 1963 

mentioned the original D.L. Berman's relation in the special case of C(T) and 

LP (T), I"; p ";00, where T is the circlegroup, and where Sk is the Fourier pro

jection FN, in a~dition to which EN is the linear span of the classical set 

of characters {e1kt :-n";k";n} of T. He mentioned also the then open problem: 

it was not known whether FN is the unique projection of minimum norm C(T) -+EN' 

resp. LP(T) -+EN' i.e. whether other continuous projections, having the same 

norm as FN, might not also exist. 

Of course the case p = 2 is trivial. 

The general case Sk :C(G) -+EN has been most satisfactorily settled in 

1969 in the one side by a group of five mathematicians: E.W. Cheney, 

C.R. Hobby, P.D. Morris, E. Schurer and D.E. Wulbert, and in the other side 

by our previous work (see § 2). The purpose of this paper is to settle the 

general case Sk :L1(G) +EN• In 1969 (see § 3) we gave a sufficient condition 

in order that Sk should be the unique minimum norm extension LI (G) +FN of sk' 

In § 3 of this paper we shall prove that if this condition is slightly weak

ened, it is also necessary. The case LP(G) -+EN with 1 <p <2 or 2 <p <'" is 

still an open problem. 

4. Let us assume that G operates continuously and isometrically on E. 

The set of minimum norm extensions E-+EN of sk is then convex. It is a facet 

of the sphere with radius IISkll of the complex normed space L(E;EN): this facet 

consists of the common points of this sphere with the complex affine subspace: 

of L(E;EN), i.e., the complex affine subspace of continuous linear extension 

E-+EN of sk' We denote this facet by Ck , and dim(Ck) will be the complex 

dimension of the complex affine subspace of Vk generated by Ck • 
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2. The Case of Spaces of Continuous Functions 

We first consider again the circle group T and for any nEN the linear 
ikt span En of the classical subset of characters {t -+e : -n";k ";n} of T: It 

was proved in an outstanding work in 1969 by E.W. Cheney. C.R. Hobbey. 

P.D. Morris. ,F. Schurer and D.E. Wulbert [I]. that Fn is the unique minimum 

norm projection 1R(T) -+En' The proof of this uniqueness is based on the 

peculiar form of the Dirichlet kernel d • i.e. is based on the facts that 
n 

a) a trigonometric polynomial vanishing at the 2n alternating points of d 
n 

in T is determined up to a constant factor. 

b) the Fourier coefficients 

are"* 0 for k({-2n.-(2n-I) ••••• O ••••• (2n-I).2n}. The proof that these 

Fourier coefficients are indeed "* 0 is difficult. 

Let us now return to the general case E -+ EN of § 1 when E = C (G). G being 

any compact abelian group. Simultaneously and independently of the above 

result we proved in 1969 [3] the following general theorem. 

THEOREM 2.1. Let t\ be the symmetric ~ {x Ee: X EN -N and <iki>X =O}. Then 

dim(Ck) ~ card (t\). More precisely the real parts and the non-zero imaginary 

parts of the characters eX' X Et\. yield linearly independent mappings 

R :x-+x(Re e ) *k and R :x-+-x(Im e ) *k. R (E) =R (E) ={O} such that 
X X - -X Y X N -X N • ----

the mappings S = Sk + R • S = Sk + R are all minimum norm extensions 
- -- - X X -X -X - -
C(G) -+EN..Q! sk' 

For examples see [ 3] • 

We now specify G =T in order to be able to combine Theorem 2.1 with a 

slight extension of results of [ I] • This combination leads to a criterion for 

uniqueness of the minimum norm extension C (T) -+- EN of sk' whenever the kernel 

k has a special form. 

DEFINITION 2. I. The point gET will be called ~ alternating point of ~~

tinuous real function x : T -+R iff x vanishes and changes sign at g. 
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DEFINITION 2.2. We ~ that ~ element x of EN is determined, ~ ~ ~~

~ factor, ~ ~ ~ H of {g EG : x(g) =O} if ~ only if ~ element 

y E EN' which vanishes !!. every point of H satisfies, y = cx for ~ cEO:. 

COROLLARY OF THEOREM 2.1. Assume G = T and the kernel k real and determined, 

~ to ~ constant factor, ~ the ~ of its alternating points. Then 

Sk : x -+x *k is the unique minimum ~ extension C(T) -+EN of its restriction 

skto EN if and only if the symmetric set J\={xE'f:xEN-N and (lkl>x=O} is 

empty. Furthermore dim(Ck ) ;;. card (J\) • 

REMARK 2.2. (Connection with approximation theory.) Our C.A. groups G are at 

least To-spaces, so they are also T4-spaces (normal and separated). Let now P 

be the set of all continuous linear projections P :C(G) -+EN• We look for a 

projection PEP, which minimizes the maximal normalized approximation error 
o 

of any xEC(G) by its projection Pox in EN' Le., we look for a PoEP such 

that 

(2. I) II I-P II = inf II I-pil 
o PEP 

inf 
pEP 

sup II (I-P) (x)1I • 
x EC(G) 
II xii 00= 1 

The solutions are given by the minimum norm projections because 

v PEP: II I-Pil = 1 + II Pil , 

if either G has no isolated point (Thm. of D aug a vet - Are n s , 

using the fact that G is T4 and that the linear operators P are of finite 

rank) or G is metric (Thm. of K r a s nos e l's k ii, using the fact that 

the operators P are compact linear operators). 

1 
3. The Case of L -Spaces 

We now cons ider Sk : x -+ x * k : L 1 (G) -t EN and the bounded 1 inear extens ions 

S :L1(G) -+EN of sk :"SkIEN' In 1969 we proved (see [4]) that if k is deter

mined, up to a constant factor, by the set of its roots in G, (see Def. 2.2), 

then Sk is the unique minimum norm extension LI(G) -+EN of its restriction sk 

to EN' We shall now first weaken this condition. 

DEFINITION 3. I. We say that ~ element x of EN is continuously determined, ~ 
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to ~ constant factor, by the ~ of its ~ in G, iff: 

v Y E EN: Z. continuous on G"y E a: x. 
x -

REMARK 3.1. Of course if xEEN is determined, up to a constant factor, by the 

set of its roots in G (see Def. 2.2), then it is also continuously determined, 

up to a constant factor, by this set. 

LEMMA 3. I. If x E EN \ {O} is ~ continuously determined, ~ to ! constant 

factor, ~ the ~ of its ~ in G, then there is ~ y E EN such that y/x is 

continuous ~ G, dima:(>x,y<) =2 and fG y(g) (sgn i) (g)dm(g) =0. Moreover, if 

x is ~ real function and if N is symmetric, the function y may be assumed to 

be real. 

LEMMA 3.2. The kernel k = Iy EN cly ' V yEN: cy *0, it real if and only if N 

is symmetric and V yEN: c =c. 
- - - -y y 

LEMMA 3.3. ~ continuous linear mapping 2f finite rank S :LI(G) +LI(G) of ~ 
special form s=I~ 1 x!®y. EC(G)®LI(G), nEIN, satisfies 
.;L..;;';:';;~ -- 1= 1 1 

IISIl I = sup ilKS (h,·)11I 
hEG 

where KS(h,g) :=L~=I xi(h)Yi(g) for all h and~all g and KS(h,o) is the 

L I-function g +l); (h,g). 

00 I 
PROOF. We know that C (G)::L (G) = (L (G»' and we use the known inclusions: 

Loo(G) ®e: L1(G)::L(L I (G); LI(G»=.(LI(G) ®1T Loo (G»' and the fact that the unit 

ball BI(G) of L1(G) is o(M(G), C(G» dense in the unit ball BM(G) of M(G). We 

also use the following: 

Let e be the neutral element of G and 0 the Dirac-measure on G i.e. , 

o(E) =1, if eEE, and o(E) =0 if eliE, for any Borel set E of G. The Borel 

measure go, g E G, on G is then defined by go (E) = 0 (E-g) for any Borel set E 

of G. Then it is known that {cgo : g EG, cET} are the extremal points of the 

unit ball BM(G). 

This, together with Krein - Milman, yields: 

n n 

II SII I = sup II I < x! ,x> y .11 I 
xEBI(G) i=1 ilL (G) 

I <x! ,x>y.1I I 
i=1 ilL (G) 
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n n 
sup 

hEG,cET 
lie l. <xi,hO>Yl,1I 1 = sup II L x! (h)y,1I 1 

i=1 L (G) hEG i=1 1 1 L (G) 

= sup II KS(h,o)1I1 
hEG 

THEOREM 3.1. If ~ kernel k is ~ and if Sk is the unique minimum ~ 

extension L1(G) +EN of its restriction sk ~ EN' and if C\ (N-N) *~, then k is 

continously determined, ~ to ~ constant factor, Ex. the ~ of its ~ in G. 

PROOF. Assume that G\ (N-N)*~ and that k=L EN c e , c *0, is real and not y y y y 
continuously determined, up to a constant factor, by the set of its roots inG. 

Then N is symmetric (LellDlla 3.2) and there is a real y E EN such that y Ik is 

continuous in G, dima:(>k,y<) =2 and fG y sgn k=O, (Lemma 3.1). Consequent

ly a : = II y Ikli 00 is defined and> 0, and of course: 
y 

(3.1) '1a:O";;a< 
a 
y 

.. sgn(k +ay) sgn k • 

Consider now a function u E CR (G) such that u *0 andY yEN - N : 

fG u(h) (h,y)dm(h) =0, i.e. a non-zero continuous real function on G such that 

(since N - N is symmetric) its Fourier-coefficient u(y) vanishes whenever 

yEN - N. Such a function u of course exists and there is no restriction in 

assuming that 

(3.2) o <lIuJl <....!.... 
00 a 

y 

The function y has the form y = LEN de, dEl:; consider then the kernel y y y y 
H(h,g) =u(h)y(g-h) = Ly EN dyu(h) (-h,y) (g,y) and the continuous linear mappings 

R 
u 

LI(G) +EN 

x+fG x(h)H(h,o)dm(h) = L EN d <ue' ,x>e , y y y y 

where e' is the character e-y considered as an element of the dual space 
y 1 

L~(G) of L (G), and 

According to Lemma 3.3 and to (3.2) and (3.1) this yields 
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II S II = sup II (k+H)(h,o)1I 1 = sup f !k(g-k) +u(h)y(g-k) !dm(g) 
u hEG hEGG 

= sup f [keg-h) +u(h)y(g-h)] (sgn k)(g-h)dm(g) 
h EG G 

sup f !k(g-h) Idm(g) = II Skll = IIklll • 
h EG G 

So S has minimum norm. It remains to show that 
u 

{O} , 

and that 

First according to the choice of u, we have 

v X EN V g EG : (R (e »(g) = f L d u(h)(h,X-y)(g,y)dm(h) = O. 
u X G yE N Y 

Hence Ru(EN) ={O}. 

Not let h be a point of G where u(h ) *0, and consider the extension 
o 0 

Ru to M(G) +EN or Ru' Then 

R (h 0) = u (h) l d (h , -y ) e * 0 E EN ' 
u 0 0 yEN Y 0 Y 

since there is a d *0 and since the e ' s are linearly independent. Then 
y y 

Lemma 3.3 yields 

IIR II = sup IIH(h,e)1I1 ~ IIH(h ,e)1I1 = IIR (h 0)11 1 > O. 
u hEG 0 u 0 

Let now Ck be again the convex facet of the sphere with radius IISkll of LI(G) 

consisting of the minimum norm extensions LI(G) +EN of sk' Then we have 

COROLLARY. Assume that the real kernel k is· not continuously determined, ~ 

~.! constant factor, EI the ~ of its roots in G. ~ ~~: 
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PROOF. We keep the notations of the proof of Theorem 3.1. Let first' 

~ :=Ih (N-N) and Ar = {y E~ : ey is real}. Then ~ \ Ar can be written as a 

disjoint union A U (-A) i.e.,we use the disjoint union k =A UA U (-A ). c c -K r c c 
Choose then a fixed aER s.t. O<a<l/a and let for each XEAI :=A UA: 

y r c 

Q := Re(e ) = 1 (e +e ) 
X X 2 X -X' 

R 
X 

s 
X 

x -+-(aa x) *y 
X 

s 
-X 

Q 

-X 
:= Im(e ) = J,. (e -e ) 

X 21 x-x 

R 
-X x -+-(aa x) *y 

-X 

It follows from the proof of Theorem 3.I.that both Sand S are minimum 
X -X 

norm extensions L 1 (G) -+- EN of sk' It remains to show that the elements of 

{R :XEAI} U {R :XEA} 
X -X c 

are linearly independent. In order to show this let NJ be a finite subset of 

AI such that 

(3.3) l (A R + A R ) = 0, where A, A E a: and A = 0 if X EA. 
X E NIX X -X -X X -X -X r 

We put again y = l EN de. Then (3.3) yields y y y 

a ~ [A ~ (a e ® de) + A ~ (a e ® de)] = 0 
L X L X -y Y Y -X Y EL N -X -y Y Y 

xENI yEN 

which is equivalent to: 

(3.4) 

-iA (e( )-e(+»])®de =0. -X - y-X - Y X Y Y 

Let N :={yEN:d ¢O}. We know that N ¢f/J. Then, since the e IS are linearly 
o y 0 y 

independent, (3.4) is equivalent to 
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(3.5) v yEN : '\ [(A -iA )e ( ) + (A +iA )e ( )1 
o L X -x - Y-X X -x - y+X 

X ENI 
0, 

i.e., since A =0 for X EA , -x r 

(3.6) 

VyEN: '\ (Ae( )+Ae( » o L X - y-X X - y+x 
XENI nAr 

+ '\ [ (A -iA )e ( ) + (A +iA )e ( )1 0 • 
L X -x - y-X X -x - Y+X 

xENI'Ar 

Of course Y-X I "*Y-X2 and Y+X I "*Y+X2, whenever XI "*X2• But also, by the defi

nition of A' it can not occur that Y-X I =X+X2' Le. that X2+X2 =0, whenever 

XI "*X2• Hence it follows from (3.6) and the linear independence of the charac

ters that A =0, whenever XEN I nA, and A -iA =O=A +iA , Le.,A =A =0, 
X r X -X X -X X-X 

whenever X ENI'Ar • 

This achieves the proof, since then we have 

~ dim ... (>{R :xEA'}U{R :XEA }<) 
~ X -~ c 

Card (e, (N-N». 

REMARK 3.2. If the set J\ is infinite, i.e. if G is infinite, one can of course 

find a set of algebraically linearly independent vectors a , which has the 
v 

power of the continuum and which is in the closed convex hull of 

{ae : X EA}, 0 <a < I/a. If follows easily from the preceeding proof that X ~K Y 
these vectors a can be chosen such as to define linearly independent elements v 
of the facet Ck , the dimension of which has hence the power of the continuum. 

Furthermore it is easily seen that Sk is the center of the facet Ck • 

EXAMPLE 3.1. (Uniqueness) 

a) (This is the first example of (41) • Let G be the circle group T ~R/271L 

and N the classical part {-n,-(n-I), ••• ,O, ... ,(n-I),n} of T =L. The Dirichlet 

kernel dN is then given by: 

+n 
I 

k=-n 

ikt 
e 

sin(2n+l)t/2 
sin t/2 

I +2n 

if 0 < t < 271 

if t =0 
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and has the 2n distinct roots x. = 2jll/(2n+1), j = 1,2, ••• ,2n, in T. It is easy 
J 

to show that any element y E EN vanishing at these roots satisfies 

y = <y(O)/dN(O»dN• Hence the Fourier projection 

I 
x + x * dN : L (G) + EN 

is the unique minimum norm projection L I (G) +EW 

b) Let again G=T and for any n, kE.IN, k~I, let N be as in a) and M=kN. For 

any yE~ there is precisely one y*EEN with V tET :y(t) =y*(kt), Le., 

~=dN' 

Hence, if y vanishes at the roots of ~, then y* vanishes at the roots 

of ~ =dN• It follows by a) that 3 c Ea: : y* =cdN, Le. y =c~. Hence the 

Fourier projection is the unique minimum norm projection L I (G) +~. 

c) Other examples of uniqueness are given in [4]. 

EXAMPLE 3.2. (Non-uniqueness) Let again G be the circle group T and 

N ={-4,-3,-2,O,2,3,4}' Putting a. =cos t, we know that t +cos kt is also a 

function of a. for each kEN. We denote this function by Tk (= the kth 

Tchebyshev polynomial of the first kind). 

It follows that t+dN(t) is also a function of a., i.e. 

4 
dN ( t) = I + 2[ L Tk (a.)] = 16a. 4 + 8a. 3 - 12a. 2 - 6a. + I = : P (a.) • 

k=2 

Some study of the signs of P shows that P has only two distinct roots a. 1 and 

a.2 in [-1,1]. A study of the derivative p' shows then that these roots are 

simple. Hence, since V :=> To' T2, T3 , T4 < is four-dimensional, it is not 

difficult to find a real QEV such that dima:(>P,Q<) =2 and Q(a. I) =Q(a2) =0. 

Since the roots a. 1 and a2 of P are simple, the function Q/p is continuous in 

[-1,1]. The element y of EN' defined by V tET :y(t) =Q(cos t), satisfies 

then: dim,(>dN,y<) =2 and y/dN continuous on T. The corollary of Thm. 3.1 

then yields dima:(Cd ) ="". 
N 
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In the parallel pa~ [9] we have introducerl "spaces of Wiener's type", a fa
mily of Banach spaces of (classes of) neasurable functions, measures or di
stributions on locally carpact groups. The elenents of these spaces are cha
racterizerl by - what we call - the global behaviour of certain of their local 
properties. In the present pa~ it is to be shown that interpolation rrethods 
can be applierl to these spaces in a very natural way. Using the results on 
interpolation it is not difficult to extend various theorems of analysis to 
the setting of Wiener- type spaces. As illustration we present a version of 
the Hausdorff - Young inequality for locally canpact abelian groups. As a 
consequerx:e, one obtains a sharpenErl version of Sobolev's erberlding theorem. 

1. Definitions and Basic Properties 

Throughout G will be a locally c::crcpact group with left Haar rreasure dx. 

We shall mainly be interestErl in non-discrete, non-c::crcpact groups (e.g. 

G =:rn.m). K(G) denotes the space of all continuous, canplex-valuErl functions 

on G with c::crcpact support (supp), endowed with its natural inductive limit 

topology. (LP, II II p), 1 ~ P ~ 00 , denotes the usual Lebesgue spaces . Given a 

subset M~G we write ~ for its characteristic function. The space L~oc(G) 
consists of all (classes of) rreasurable functions f on G such that f~s L 1 (G) 

for any c::crcpact subset KS,G. It is a topological vector space with the family 

of seminonrs f + Ilf~ II . A BF-space on ,G is a Banach space (B, II II B) which 

is continuously anbeddErl into Lioc (G), As usual we shall speak of "functions" 

in such spaces, identifying two neasurable functions in B, if they are equal 

locally al.rrost everywhere (l. a, e ,), A BF-space is called solid if arr:J rreasura

ble function g, for which there exists fs B such that I g(x) I~ I f(x)1 l.a.e. 

halongs to B, with IlglIB~ IlfllB' A BF-space B is called left translation 
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invariant ~anslation invariant) if the left (left and right) translation 

operators, given by 

Lyf(x) := f(y-'x), Ayf(x) := f(xy) 

act boundedly on B. Their operator nonn is written as "' "' B. Corresponding 
tenninology is applied to spaces of measures or distributiOns, to which the 

translation ,operators are extended by transposition. A left invariant BF-space 

will be called aharogeneous Banach space on G if G acts (by left translati

ons) isanetrically on B, and if translation is continuous in B, Le. if 

lim "L f - f" B = 0 for all fEB. The harogeneous Banach spaces which are 
y~ Y1 

dense in L (G) are exactly the Segal algebras in the sense of Reiter ([15J). 

A triple (B 1 ,B2,B3) will be called a Banach convolution triple (BCI'), 

if convolution, given by 

1 2 J 1 -1 2 i i . f *f (x) := G f (y x)f (y)dy for f E K(G) B, 1. = 1,2, 

extends to a bounded, bilinear map (of nonn 1) fran B' X B2 into B3. Clearly 

(A,A,A) is a BCI' for sane ASL' (G) iff A is a Banach convolution algebra. 

Any weighted L1-space 

L1 (G) = { f' fwE L1 (G)}, IIfil 1 := IIfwll, 
w "w 

is a BeA, called Beurling algebra, if w is a continuous function satisfying 

w(x).:;;, 1, and w(xy)~ CW(x)w(y) for all x,yE G. (cf. [15J ). Such functions are 

called weight functions. A Banach space B is a (left) Banach convolution n0-

dule over the Banach algebra A iff (A,B,B) is a BCI', and a (left) Banach 

ideal in A if furthemore B SA. Any harogeneous Banach space is knCMl1 to be 

a left L 1 (G) Banach convolution IIDdule. Constants without lirp)rtance will be 

denoted by C,C" •.• 

General lfle?thesis. 

As a standing assumption we suppose throughout this paper that for any 

Banach space B used belCM there exists sane "nice" Banach algebra A acting 

on B by "pointwise" multiplication. 

M::lre precisely, we suppose that there exists a harogenebus Banach space 

(A, II II A)' continuously €!!bedded into the Banach algebra with respect to 
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pointwise multiplication (i.e. separating points frcm closed sets), and 

ruch is closed under CCllplex conjugation, and that B is a Banach nodule over 

A with respect to "pointwise" multiplication, i.e. 

Here sare CCl'Ct'C¥:mt concerning the tenn "pointwise" multiplication is in 

order. Of course, there is no problen of interpretation, if B happens to be 

a BF-space on G (which covers the rrost ilrq:x:>rtant exan;:>les). In this case the 

pointwise product of a continuous function with a locally integrable ftmction 

is to be taken in the ordinary sense. In order to cover rrore general si tu

ations (which occur naturally in the investigations) we assune in the sequel 

that the following situation is given: 

B is continuously anbedded into the topological dual A~ of Ao := AnK (G) 

(endONed with its natural inductive limit topology). On A~ an action of A by 

"pointwise multiplication" is given in a natural way, Le. by transposition 

of the operation of A on ~ by ordinary multiplication (rananber the defi

nition of a "pointwise product" of a test ftmction and a distribution). Since 

the assurrptions .i.rcq?ly that Ao is always a dense subspace of K(G), R(G) (the 

space of all Radon measures on G) and in particular L ~oJG) (identified with 

the closed subspace of all absolutely continuos measures) is alway continuo

usl y embedded into A~ in a natural way. Since the action of A on a subspace of 

L ~ 0 c defined in the way just mentioned coincides of course with the natural 

action mentioned above we gain flexibility in adopting our assumptions con

cerning the definition of pointwise products. We define B l 0 c to be the space of 

all eleoonts a of A' such that ha e: B for all he: A . (Otherwise we would have o 0 
to restrict our attention to spaces of locally integrable ftmction, which 

would sanet:i.roos be a quite tmnatural restriction ). 

EXl\MI?LES. The rrost ilrq:x:>rtant exan;:>les of algebras A which are defined for 

arbi traty' locally cx::npact groups are the spaces (Co (G) ,,, It.,) of continuous 

functions vanishing at infinity, and Eymard's Fourier A(G), which coincides 

with lL1(G) := {lflfe:L1 (G)} if G is a locally cx::npact abelian group with 
... ~ dual group G (lj is identified with G). Therefore any solid BF-space B on G, in 

particular the spaces LP (G), 1~ P ~ co , is included in our consideration 

(considered as CO (G)-m:x:1ule) , but may take B = C°(G) itself. If G is abelian, 
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one nay oonsider B = 'F LP(G), 1 <P < 00 (the Fourier transform being taken in 

the sense of tarq:lered distributi~ == or as a quasimeasure, cf. [8] or [12 J) as 

a m::xlule over A(G). As further exanples we only mention here the spaces of 

Besov-Hardy-Sobolev type BS and ~ ,s E JR, 1 < p,~ 00 , as oonsidered by p,q p,q "" 
H. Triebel (see [18J, [19]) including Lipschitz and Bessel potential spaces 

(cf. [16J). For further examples cf. [91. The Wiener type spaces W(B,C) are 

IlCM defined as follCMS: 

DEFINITIOO 1.1. Let B satisfy the general hypothesis, and let C be ~ solid, 

translation invariant !!:-space on G. Given ~ ~ subset Q of G with 

carq:act closure and fEBloc we set: F := Ff : 2+-"~IB(zQ)' with 

IlfIIB(zQ) := inf {II gliB Is EB, g coincides with f ~ zQ, Le. 

hf = hg for all hE Ao with supp hS zQ} • 

The ~-~ space W(B,C) with local c::cmp:>nent B and global CXl1!pOnent C !§.. 

then defined E:L 

(1.1) W(B,C) :={ flfEB loc ' FEC}. 

~ natural ~ ~ W(B,C) is given !?x 
(1.2) 

THEDREM 1.1. Let B,C be as in Definition .1.1. Then W(B,C) is ~ Banach ~, 

continuously €!ltledded into Bloc. It does not ~ on the particular choice 

Q, !.~. two different ~ subsets of G with canpact closure define the ~ 

space and equivalent nonns. 

It should be mentioned here that good examples of solid translation inva-

riant BF-spaces are weighted LP-spaces LP(G) ={ flfwELP(G)}, II fll := w p,w 
= II fw II I for w being a continuous weight function on G. 

P 

In the present paper we shall oonsider rrainly spaces of the form 

W(LP,Lq) or W('F LP,Lq), 1 ~p,q ~ 00 • Practically all spaces of Wiener's type 

that have been oonsidered in a number of IroStly recent papers (only to mention 

[ 2-4, 6-11 , 13, 15, 17,20]) arise as special cases of the above families, IroSt of 

than are even of the first kirrl. In order to give the reader sane orientation 

concerning inclusions annng these spaces we state the follCMing lemna: 



Feichtinger 157 

i} W( LP ,LP } = LP(G}; 

P q P q 
ii} W( L 1 L 1} c W(L 2 L 2 if P1 ~ P2, q1~ q2; , - ' 

P q P q 
iii} W(rr.. 1 L 1} C W(fL 2 L 2} if P1~ P2, q1~ q2; , = ' 

iv} W( LP ,Lq } ; W(fLP ' ,Lq } for 1~ P ~ 2 , and 

W(rr..P ' ,Lq } ;; W( LP ,Lq } for 2~ P ~ co , for all q,1.::.q~co 

and 1/p' := 1 - 1/p. 

m1ARK 1.1. If G is norrliscrete and noncc.npact it can be shCMn that equali

ty holds in ii} and iii} only for P1 = P2 and q1 = q2' and in iv} only for 

P = 2. 

m1ARK 1.2. One also has W(M(G} ,Lq}~ w(nco ,Lq} for all q (here M(G) = 
(Co (G) )' denotes the space of bounded measures on G}. The spaces 

W(M(G},Lq}, q> 1, arise as dual spaces of the spaces W(Co(G},Lq '} (cf. [10, 
11,13,17]). 

2. The Abstract Main Result 

The following theorem is the basic result of this paper: 

'IHEX)REM 2.1. Let A,B,C be as in Definition 1.1. Assume furthenrore that C is 

!! left Banach ~volutio;;-roodule over ~ Beurl~ebra L~(G}. Then W(B,C} 

is !! retract of the vector-valued function space C(B}, !.~. there exist 

bounded linear operators T: W(B,C} 1+ C(B} and S: C(B} 1+ W(B,C} ~ that 

SoT = I~(B,C} • 

m1ARK 2.1. It can be shCMn that C satisfies the above corrlition for a solid 

translation' invariant BF-space containing K (G) as a dense subspace, or if C 

is of the fOnt! C = LP(G}, 1< P < co,for saoo weight function w. w == ... 

ProoF. The proof is given in four steps. 

Step 1. In order to define a mawing T in a suitable way we choose saoo g e: Ao 
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satisfying 

(2.1) 

f -1 
g(x )dx = 1, and supp g;Q. '!hen we set: 

G 

Tf(z) := (L g)f, z E G. z 

Feichtinger 

We ShCM first that z + (L g)f defines a continuous mapping fran G into B, z 
for g as above and for f!!Ilery fE W(B,C) :;'Bib: • In fact, let x E G and sare 

relatively cx::rrpact neighbourhood V of x be given. Then there exists hE Ao 

such that h(x) = 1 on V(supp g). This inplies for X,YE V: 

for Y + x (in V), since translation is continuous in A. It therefore remains 

to give an estimate of z 1+ II(Lzg)fll B in the space C. Making use of the 

follCMing inequality 

(2.3) 

we cbtain 

(2.4) IITfIIC(B) ~ IlgliAllfIIW(B,C) for all fEW(B,C). 

This carpletes the proof of step 1. 

Step 2. Having defined T as above we are l1CM looking for the corresponding 

operator S: C(B) 1+ W(B,C). ChOOSing g1 E Ao' satisfying g1 (x) =. 1 on supp g 

(g as above) we shall define SF (at first fonnally) by 

(2.5) SF := I (L g1)F(Z)dz for fEC(B). 
G z 

Before we can verify that S satisfies all requirements we have to make (2.5) 

precise: At a first stage we claim that it makes sense to interprete SF as 

the element of Ab ' given by 

(2.6) <SF,h> := I < (L g1)F(Z) ,h>dz, hE A • 
G z a 

We have nt:M to verify that the right hand expression is well defined as an 

element of A~ (Le. as a measure, quasimeasure or distribution in our appli

cations). In order to shCM continuity of the functional defined in (2.6) let 

sare cx::rrpact subset K of G, and any he: A with supp he K be given. Writing 
1 a 1 --1 

K1 for supp g and using the fact that (Lzg ) h = 0 for z ~ KK1 first, and the 

continuous E!1beddings B~ AI and CC+L1 (G) then, we obtain a ,-oc 
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(2.7) I J;(Lz91)F(Z) ,h> dz I ~ 1-'1 dLz91)F(Z) ,h >, dz ~ 
1 

~ c1 11hllA J"(Lz9)F(Z)1 Bdz~ C2I1g1I1AllhIlAIIF(Z)1I C(B)' 
-1 

KK1 

159 

where C2 denotes a constant depending on the space C and on K (and K1) only. 

Step 3. We intend to prove na-r the boundedness 0:1; S as a mapping :l;ran C (B) 

into W(B,C). That SF belongs to Bloc' Le. that h(SF) e: B :l;or all he: Ao can be 

ShCMn 'as follONS: Since multiplication of h e:Ao with SF e:A~ is to be understood 

in the usual sense, Le. as being defined by <h(SF) ,h1> = <SF,hhf for all 

h1 e:~, one has h(SF) = JG h(Lzg1)F(Z)dZ. But the last integral is convergent 

in B, since the integrand is an integrable function on G with values in B and 

~ct support (recall C + L! (G) !) • 
<-oc 

In order to ShCM that SF belongs to W(B,C) let us look for an estimate 
2 2 

for Y~IISFIIB(ZQ)/for Fe:C(B). Let 9 e:~ be choosen such that 9 (x) =1 on Q. 

'!hen one has (as in step 2) for arr:r y e: G: 

J 1 2 1 J (2.8) IISFIIB(YQ)~II(Lyg) G (Lzg )F(z)dzIlB~lIg IIAlig IAyN"F(Z)IBdZ, 

if we set N ;= (supp g2) (supp g1) -1. Noting that the function <1>; z + IIF(z) II B 

belongs to C, and that C is a left Bana,ch convolution m:x1ule over sore Beur ling 

algebra ~(G) we obtain, as a continuation of (2.8) 

(2.9) 

CcJlbining (2,8) and (2.9) we arrive at 

(2.10) II SFII W(B,C) ~ C3 II <I> /I C = C3 11 F IIC(B) for all Fe:W(B,C). 

step 4. In thi,s last step it is shown that under the assunq:>tions made the re

lation SdI'W = f holds true for all fe: W(B,C). Since W(B,C) is continuously 

€!!bedded into BloC" and hence into Ab, it will be sufficient to veri:t;y that 

this identity holds in Ab. Given arr:r he: Ao one has (using the identity 

g1 = g2g1 and applying Fubini's theoran): 
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(2.11) <S(Tf) ,h> = < J(L g2) (L g1)f,h> = t(L g1)f,h> dz = 
G Z Z fc;z 

= f f g1 (Z-1Y)f(Y)h(Y)dzdy=(f g1 (x-1)dx )<f'h>= <f,h>,q.e.d. 

GG G 
This carpletes the proof of Theorem 2.1. 

REMARK 2.2. There is also a nore elementaJ:y I but sareNhat longer proof shCMing 

that the spaces W (B IC) can be represented as retracts of vectorvalued sequence 

spaces. In this case one I1'akes use of the characterization of W(B,C) by means 

of unifonn, bounded partitions of unity (cf. [9J, Theorem 2). 

1 2 'IHEDREM 2.2. Suppose that the same algebra A ~ Q!!. B and B , and ~ 1 2 .~.~-.-.. - ..... 
that C or C ~ absolutely continuous ~ (Le. that fn(x) + ° for n+ <Xl 

and I fn (x) I ~ I f(x) I a.e. :implies IIfn "c+O). Then one has for ado, 1): 

[ 1 1 2 2) [ 1 2 1 2 ) WeB ,C), W(B ,C) [a] = W (B ,B )[e]'(C ,C lee] • 

PIO:)F. As a consequence of Theorem 2.1 and general interpolation principles 

the interpolation results fo1101.\7 fran the corresp)nding interpolation results 

for the vector-valued function spaces Ci(Bi) (cf. [1], § 6.4). The needed 

"canplex" result is then found in § 13/6 of calderon's paper ([5J). 

REMARK 2.3. '!here are of course corresp:mding results for real interpolation 

spaces, based on the real interpola.tion results for"" sCl¥ "" weighted vector

valued LP-spaces (cf. [1J, [18]). Since we do not need these results here we 

leave it to the reader to CCIlbine known results to new explicit statanents, 

if they should be useful to him. 
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3. Applications 

As in related fields interpolation results for a family of functional spaces 

imply a number of results concerning operators (convolution operators, Fourier 

trans fonn , etc.) on these spaces. A typical application of this kind is the 

follOWing one: 

THIDREN 3.1. Let f E:L~ (G) be given, such that sup G yQJlf(X-1)\dx < C 
,,-DC - ---- , yE: = 

for sane ~ set Q with carpact closure. If Tf : k + k ... f acts boundely 

fran (K (G)," "p) into LP (G), then Tf defines 2. bounded operator fran 

W(Lr,Ls) into LS(G) for an¥ r E: [l,p] ,with s = r'(p-l). 

PID)F. It is easily checked that the first ass11mntion 1lI1J?' lies" L h * f " < 
00 -''!:' Y 00-= 

;i. C Ilh II 00 for any yE: G and any hE: L (G) with supp h ~ Q. Consequently Tf 
is bounded operator fran W (L 00 ,L 1) into Loo = W (L 00 ,L 00 ). Ccrnplex interpo

lation between W(L 00 ,Ll) and LP(G) yields just the spaces W(Lr,Ls ) with 

s = r' (p-l), while interpolation with the same parameter e E: (0,1) between 

L 00 and LP gives exactly LS (G) . 

The following result is an extension of the usual Hausdorff-Young 

inequality: 

THIDREN 3.2. Let G be ~ locall¥ canpact abelian~. For 1 ;i.r;i. P;i. 00 the 

Fourier transfonn defines ~ bounded linear mapping fran W( nP,Lr ) into 

W ( '1 L r ,LP). In particular, W ( '1 LP ,LP) on G is ~ onto the corresponding 

space ~ G !?y the Fourier transfonn. 

The theoran will follow essentially by means of canplex interpolation 

fran the following proposition, which is of interest for itself. 

ProPOSITION 3.3. For 1 ;i.P;i. 00 the Fourier transfonn ~ W( '1 LP,L 1) into 

W( t L 1 ,LP) • 

PID)F. It is known (see [ 9], Theoran 2, ,cf. also [7J) that there exists sane 

carq;act set K ~G and C> ° such that any f E: W ( '1 LP ,L 1) has a representation of 

the form f = r a L f, with t' I a I ~ C " f " 1 ' supp f = K and 
1 n Yn n 1 n - W('1LP,L) n-

"f" ~ 1 for all n. 
n '1LP= 
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Applying Theoran 5 of [9] to tfn (take B = t L 1 (G), C = LP (G) there) one 

obtains 

and 
00 

IIfll 1'" p~C1 L laJI/(Ly fdll ~C211fll P 1 . 
W(tL (G),L) k=1 n tL W(tL ,L) 

POCOF (of Theoran 3.2). We first consider the case r = p. By Proposition 3.3 
-1 1 1 t (and also t ) map W( t L ,L ) onto the corresponding space on the .dual 

group (cf. also [8J, Theoran A2 i), W( tL1 ,L1) = So(G) 1). By Plancherel's 

theoran the sarre assertion is true for W( tL2,L2) = L2(G) , hence for all 

p e: [ 1 ,2 ] by canplex interpolation. For p > 2 it can be proved by transposi-
=-

tion (Le. as in the case of tarpered distributions, as we shall prove in de-
r s r' S' tail elsewhere one has W( t L ,L ) I = W( tL ,L ) for 1 ~ r ,s « 00). The general 

case is then derived by means of further canplex interpolation between the 

"diagonal" case and the result of proposition 3.3. 

REMARK 3.1. The above result is in various direction best possible. We shall 

ShON belON that the Fourier transform does not map W ( t L 1 ,LP) (which is 

contained in W(Lr,LP) and W(rLr,LP) for any r~ 1) into W(rLq,LOO ) nor into 

W ( r L 00 ,L q) for any q < p. In particular, the assertions of Theoran 3.2 break 

down for r< p. It also follONS therefran that the Fourier transform is never 

surjective in Theoran 3.2 for r :/= p. 

REMARK 3.2. CcJlbining Theoran 3.2 with Lemna 2.2 one obtains the main result 

of [3], which has been proved by F. Holland for the case G = E. 'Iheorans 3.4, 

3.5 and 4.2 of [17] (cf. Remark 1.2) also arise as consequences of our result. 

POCOF (of Remark 3.1). It will be sufficient to ShON that for any p< 00 , and 

q < P there is a bounded sequence (fn) n:1 in W( 1'L 1 (G) ,LP) for which ('f f n);1 

is unbounded in W( fL 00 ,Lq ) or W( 'fLg,Loo ) respectively. Given any fo fa, 
fo e: W ( r L 1 ,L 1) let us consider expressiOns of the form gn = L ~ Ly Mt . fo (re

call that Mt'te: G, denote the operator of pointwise multiplicationkwifh the 

character t). 
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Since K(G) fI W( rL 1 ,LP) is a dense subspace of W( rL 1 ,LP) for P < 00 it is 

possible to choose (Yk)~1 ("sufficiently large") such that 

n A . 

for an arbitrary sequence (1<\=1;G. On the other hand one has 

rg =L~M Lt. rf ,which implies 1I1g II ~ (1/2)n1/ q llf II 
n ~ -k 0 n \v( 1L ,Lq ) 0 W( rL ,Lq) 

for an appropriate choice of (1<\~1 e: G. Hence fn := n-1/ p gn is a suitable 

sequeJ).ce for our first assertion. If r f 0 has sui table ccrcpact support, then the 

second assertion follCMS if 1< = to for all k, because then 

IIrfll = lin II =IIfil ~(1/2)n1/q-1/Pllfll. 
n W(1Lq ,LOO ) n 1Lq n q 0 q 

As the last application to be IlEl1tioned here we give a version of 

Sovolev's anbedding theorem (cf. [16J Chap. V, § 2.2) for the (fractional) 

potential spaces L P in the setting of Wiener type spaces: s 

THEOREM 3.4. i) For s> m/2 one has the follONing continuous anbeddings: 

L 2 (If!) c..- W(! L 1 ,L2) ~ W(Co ,L2)&+. CO (If! ) . 
s 

ii) r-bre generally, ~ has for P e: [1,2J and s>rn(1/q-1/p) ~o the enbedding 

LP(lfl) ~ W( Lq ' ,LP). 
s 

PRX)F. (i) By definition one has TL 2 = L2 (JIf1) :={ hi hw e: LS } ,with 
s w2 s Ws 

w (x):= (1+Ixl2)s/2. Sincew-1e:L2 (lfl) fors>m/2, Holder's inequality 
s s 

implies L 2 = W (L 2 ,L 2 ) 4 W (L 2 ,L 1). Assertion (i) follCMS nON fran 3.3. w w s s 

(ii) We apply cailplex interpolation to the pair of inclusions given by (i) 

and LP + W( rLP ' ,LP) (cf. Ianna 2.2). Using the fact that 

(L~'L~)f8] =L~for 8e:(O,1), 1/~= (1-8)/r+8/randu= (1-8)s+8t. 

(cf. [14, Chap. 5, Theorem 5). 

Further results concerning Wiener-type spaces, in particular on their multi

plier spaces, Tauberian theorans, as well as a characterization of the Banach 

dual of W(B,C) will be given in subsequent papers. 
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APPROXIMATION THEORY ON THE 

COMPACT SOLENOID 

Walter R. Bloom 

School of Mathematical and Physical Sciences 

Murdoch University 

Perth 

The compact solenoid r is the a-adic solenoid with a • (2,3, ••• ). It is a 
compact connected metrisable abelian group with dual the group of rational 
numbers. We give an analogue of the M. Riesz theorem on the boundedness of 
partial sums of the Fourier series of functions in LP(r), and use this to 
characterize the Lipschitz functions on r in terms of the rate of con
vergence of their Fourier series. In addition we prove a factorization 
theorem for these functions. 

I. Introduction 

We write R, T, Q, Z and 6 for the groups of reals, complex numbers of 

modulus one, rationals, integers and a-adic integers respectively, where 

a = (2,3, ••• ). For U = (1,0, ••• ) let B denote the cyclic subgroup of Rx 6 

generated by (I,U), and put r = (Rx 6)/B. Then r is the a-adic solenoid 

described in [9], (10.12). It is a compact connected metrisable divisible 

torsion-free abelian group with character group isomorphic to Q; to each 

rational number of the form mIn!, where mE Z and n is a non-negative 

integer, there corresponds a character y of r given by m,n 

y «~,X) + B) • exp [ 2w~~,(~~(x. + 2! XI + ••• + (n-I)! xn- 2» ] m,n n. 

for t E R and X = (xo'x l , ... ) E 6. 

A metric on r will be given al follows. Write A = 6 and, 
o 

for n • 1,2, ••• , put 
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A = {x E t:.: x = 0 for k<ti}. 
n k 

Then (An) is a neighbourhood basis at zero consisting of a strictly de

creasing sequence of compact open subgroups of t:.. Let (a ) be any strictly 
n 

decreasing sequence of positive numbers tending to zero, and define d' on 

t:.xt:.'by d'(x,x) = 0 and 

(J .1) d'(x,Y) = an+1 ' x-Y E An\ An+1 • 

Then d' is a translation-invariant metric on t:. compatible with the given 

topology. The real line will be given its Euclidean metric, and then a 

(translation-invariant) metric d on r will be specified by 

d( (~,X)+B,B ) = inf {max {lnl,d(y,O)}: (n,y) E (~,X)+B}; 

this is just the metric assigned in the usual way to products and 

quotients. 

We are interested here in how the classical approximation theorems 

carryover to the solenoid, and in particular the properties of Lipschitz 

functions on r. Some results in this direction have been obtained already 

by Walker [II] and Bloom [I], [2] and [3]. In Section 2 we give an analogue 

of the M. Riesz theorem on the uniform boundedness of partial sums of the 

Fourier series of a pth-integrable function, < p < -. Section 3 will be 

concerned with the characterization of Lipschitz functions on r by the rate 

of convergence of their Fourier series, and in Section 4 we consider their 

factorization properties. 

2. M. Riesz Theorem for r 

The classical theorem of M. Riesz holds for R, T, Z and finite products 

of these three groups; see [6], Chapter 6. To extend the result to r we define 

for positive integers t,n the (t,n)th partial sum St,nf of the Fourier series 

of f ELI (r) by 

A 

St f .. E { f(y)y: y E Tt }, ,n ,n 
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where To = {y : Im/n! I 'tl. For each p E (1,-) the operators So will -lo,n m,n -lo,n 
be shown to be uniformly bounded on LP(E), the proof using results from 

multiplier theory on locally compact abelian groups. 

Let G be any locally compact abelian group, with character group rG. 

Given p E [1,2] a function ~ on rG will be called a ~ltip~ier of LP(G) if 

for every f E LP(G) there exists T~f E LP(G) with Ttf = ~f. The smallest 

admissible K for which IT~fn 'Klfl for all f E L (G) will be denoted by 
't' P P 

n~n , and termed the multiplier norm of ~. p,p 
A bounded measurable function h on G is called regulated if there 

exists an approximate unit (k\) in LI(G) such that Mk\11 = I and 

lim k\ * h = h pointwise. Finally, given any non-empty set E C G, ~ will 

denote its characteristic function and A(rG,E) its annihilator in rG; for 

the latter see [9], (23.23). 

THEOREM 2.1. For each p E (1,-) there exists ~ constant Kp such that 

ISo fn 'Klfn forallfELP(E) • .{..on p p p--

PROOF. First consider p E (1,2]. The M. Riesz theorem for R shows that 

there exists K' independent of ! such that n~[_O 11" = K'· see [6], 
p -lo'~ p,p p' 

Theorem 6.2.2. Then 

(2.2) 

is regulate!! 

~L ' where Ln = A(r ll"\)' from which it follows that ~·L E Mp (r ll) and 
n n 

I~L R = I. Note also that since r ll is discrete, ~L is regulated. 
n p,p ~ n 

Define 1/I1,n on R x r ll by 1/I!,n = ~[_!,!] ® ~·Ln_1 (the tensor product). 

Then 1/1, E M (R x r.) ([5], Lemma I, p. 375) and 1/1 0 is regulated. Hence, 
~n p u ~,n 

appealing-to [10], Corollary 4.6, the restriction ~o of 1/10 to -lo,n -lo,n 
A(R x r ll,B) satisfies 

n ~ n , 11/1 a . = n t( 11 0] n n L n = K' • 't'.e.,n p,p .e.,n p,p .-U-lo PiP ~n-I p,p . p 
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Under this identification we can write 

([-t.t]x Ln_l ) n A(R x r ~.B) - {Ym•n: Im/nll't}; 

see [9]. (25.3). Furthermore ({-t,t} x Ln_l ) n A(R xr~.B) '"' {-t.t} so that. 

by (2.2). 't.,n .. tor - 1/2 ~·-t.t}. It follows that for any f E LP (1:). 
t.n 

This takes care of the case p E (1.2]. A standard duality argument 

gives the same result for q E [2.-) with constant K' + I. where p-I + q-I - I. 
P 

COROLLARY 2.3. For p E (1.-) the Fourier series of f E LP(1:) converges in 

the ~ that St.nf-+ f in LP(1:) ~t.n -+ - • 

For p - I or - the convergence no longer holds. This is a standard 

result once the unboundedness of the Lebesaue constants I Dt.nlI is 

established. where Dt • tT ; see also Hawley [8] • 
• n t.n 

THEOREM 2.4. -2 ID l,nll ,.. 4w log(nl,t). 

PROOF. Let i: Z -+ Q denote the inclusion map and define p on Q by _ _ n 

p (r) .. (nl)-I r • Then D. .. D', • i. p • where D~ is the Dirichlet 
n "".n .... .n n ,,-,n 

polynomial on T of order nit and t. p are the adjoints ([9]. (24.37» of n 
i. p respectively. The result now follows by appealing to [9]. (28.54) (v). 

n 

COROLLARY 2.5. There exist functions in L 1 (1:) ~ C (1:) whose Fourier series 

do ~ converge in ~. 

3. Lipschitz Spaces 

For p E [1.-] and a E (0.1) the Lipschitz space Lip(a;p) is defined by 
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Lip(a;p) = {f E LP(r): n f - fl = O(d(a,O)a), a ~ O} , a p 

where f: x ~ f(x - a); when p = - the members of Lip(a;p) are taken to be 
a. 

continuous. It is known ([2], Theorem 5) that for certain choices of ($ ) in 
n 

(1.1) the members of Lip(a;p) can be characterized by the rate of decay of 

~ 

Eo (p;f) .. inf {If - tI : supp (t) C TD }, 
""n p ""n 

the best approximation in LP(r) of f by trigonometric polynomials of degree 

(f.,n). Important in this characterization is the following analogue of the 

classical approximation theorem of Jackson (for a proof see [I), Theorem 4). 

THEOREM 3.1. The Banach algebra LI(r) admits! bou~ded positive approximate 

unit (k.t.n) such that for eachf.,n, kt,nE C(r), k.e..n(O) * I, 
~ 

supp(k~ ) C TD and 
""n "',n 

IkD * f-fl ~ K sup {I f - fl : a E 'IIB«-f.-I,r l ) x A I)} 
""n pap n-

for every f E LP (r) if p E [1,-), ~ for every continuous f g P ... -. Here 

'liB denotes ~ natural homomorphism of R x Il onto r and K is ! constant. 

In particular 

E I (p;f) .. O(aa). 
- n 

Sn ,n 

if f E Lip(a;p) and a:1 is an integer then 

The converse of this result holds for a = 2-n (see [2], 
n 

Theorem 5). Using Theorem 2.1 we can give the characterization in terms of 

the partial sums of the Fourier series of f. 

THEOREM 3.2. Take an = 2-n and let p E (t ,-). Then f E Lip(a;p) if and only 

if Is f - fn • O(2-na). 
2n,n p 

PROOF. Since supp(S f) 
2n ,n 

C T , one implication follows immediately from 
2n ,n 

[2], Theorem I. Conversely if f E Lip(a;p) then, by the remark following 

Theorem 3.1, E (p;f)" O(2-na). Now let t be any trigonometric polynomial 
2n ,n 

with supp(t) C To • Then So t· t and 
4,n ""n 
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n S " f - f n ~ I S D f - S D t n + I f - to ~ (K + I) n f - tI , 
~n p <-,n -L,n p p p p 

where K is the constant of Theorem 2.1. Since t was chosen arbitrarily 
p 

we have 

(3.3) ISD f - fO ~ (K + I)ED (p;f), <-,n p p <-,n 

and the result follows on putting .e = 2n. 

4. Factorization of Lipschitz Functions 

The problem of factorizing Lipschitz functions on Euclidean space or 

the torus was first considered by L.-S. Hahn [7]. More recently Bloom [4] 

has given a factorization theorem for Lipschitz functions on an arbitrary 

locally compact metrisable zero dimensional group; see also the references 

cited there for other results in this direction. 

~2 P THEOREM 4.1. Take B = 2 and let p E (1,2]. There exists gEL (E) such 
-- n -->-q-I -- --h-E Lq(",) 

that for all f E Lip(a;q) with a there corresponds ~ with 
-- -- -- -I -1--
f = g * h, where p + q = 1. 

-I PROOF. Choose B €(q ,a) and put 

D + ~ • 2-n2B (D D ) g = I L... n=1 n+1 - n' 

-2 n2 
where D = D 2 • Now, from Theorem 2.4, ID II ~ 4~ log(nl2 ) 

n 2n ,n n 
n 2+ 1 and Plancherel's theorem gives RDnl2 = (n!2 * I )1/2. Using Holder's 

inequality we obtain for some constant K 

which is finite for B > (p - I)/p ~ q-I Thus g E LP(E). Write 
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As the Fourier transforms of the (D I - D ) * f are pairwise disjoint, n+ n 
we have 

g * h = D * f + L • (D - D ) * f = lim D * f f, I n=1 n+1 n n-+- n 

the last equality following from Corollary 2.3 since S n2 
2 ,n 

Also, by (3.3) and the remark following Theorem I, 

I hn ~ IDI * fl + L :=1 2n2BID * f - D * fl 
q q n+1 n q 

~ IDI * fa + L :=1 2n2B(K + I )K2-n2a+1 < • 
q p 

since a > B, so that hE Lq(E). 

f = D 
n * f. 

It should be noted that a version of Theorem 4.1 holds also when p 

since in this case for a > 0, 

by [9], (32.45)(b). 

-n2 I COROLLARY 4.2. Take Bn = 2 and p E [1,2]. Then for a> q-

Lip(a;q)A C lr, where r = 2p/(3p - 2). 

The proof of Corollary 4.2 just uses Theorem 4.1, the Hausdorff-Young 

theorem and Holder's inequality. This result has been obtained previously 

([3], Theorem 3 and the remarks following it), where it was also shown that 

the range of values of a could not be extended. In particular the same is 

true of Theorem 4.1. Corollary 4.2 is also given in [II], Theorem I in the 

case p = 2, but for the smaller Lipschitz space obtained by taking 

-(n+I)! 
Bn = e . 
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BERNSTEIN AND MARKOV TYPE ESTIMATES FOR THE DERIVATIVE 

OF A POLYNOMIAL WITH REAL ZEROS 
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Budapest 

Starting from an old result of P. Erdos [I]. we give Bernstein and Markov type 
estimates for the derivative of algebraic and trigonometric polynomials with 
real zeros. As for the order of magnitude. in some cases these estimates turn 
out to be optimal. 

I. The Algebraic Case 

Denote by P(n.k) (O";;k ";;n; n - 1.2 •••• ) the set of those algebraic poly

nomials p(x) of degree n which have only real roots. k of them in the interval 

(-1.1). and for which maxlxl";;llp(x)I";;I: P. Erdos [I] proved that if 

p(x) EP(n.O) then 

I p , (x) I < t en (lxl";;l); 

and this is the best possible estimate in the sense that there exists a se

quence of polynomials p (x)€P(n.O) (1l·1.2 .... )such that lim ~ n p'(I)-e/2. n n~ n 
In a joint paper with A.K. Varma [3] we generalized this result by showing 

that if p(x) €P(n.l) then 

(Ixl";; I) 

with an absolute constant c i >0 I). Later I was able to further extend 

I) In what follows. ci' c2 •••• will denote absolute positive constants. 
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this to 

whenever p(x) E P(n,k). Nevertheless, I did not publish this result because 

meanwhile A. Mate [2] has shown that 2) 

(I) 

provided p(x) E P(n,k). First I would like to state the following 

PROBLEM I. Is it true that 

(2) (lxl';;;I), 

if p(x) EP(n,k) ? 

I think the answer is yes, but even the ingenious method of Mate cannot 

give (2). (He used a result of D. Newman on rational approximation of Ixl 

which cannot be further improved.) Being rather far from the best estimate, 

I can only show that (2) already cannot be sharpened, by the following 

Example I: Let 

meters a,S) 

(denoting by p~a,B)(x) the kth Jacobi polynomial with para-

1 
( I_X)n-k (2n - 2k -Z,O) 

P(x) = --- P (x). . 2 k 

Then by Szego [4], (7.21.2), p(x) EP(n,k). Further, by Szego [4], (4.21.7) 

and (4.1.4) 

3n-2k+~ k-I 
p' (-I) = (n-k)( -~) (-1) k + 2 (-I) k 

= (_I)k+1 (n 3kt _ k 4k:l) 

2) Actually, he proved (I) even under somewhat weaker restrictions for the 
roots of p(x), and extended the result for higher derivatives and Lp-metric. 
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i.e., 

.!..;;; 
2 

max Ip' (x) I 
.lx;;..\I_.;;;..;..I-:--__ .;;; 2 

nk 
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To finish this section, I mention a problem concerning the pointwise 

estimate of derivatives of polynomials from the class P(n,O). 

PROBLEM 2. Is it true that 

whenever p(x) € P(n,O) ? 

I p' (x) I .;;; cs V n 2 
I-x 

(Ixl < I) 

A slightly different form of this inequality (when p(x) has no root in 

the unit circle, and ~is replaced by (l_x2)2) has been proved in the 

cited paper of Erdos [I]. 

2. The Trigonometric Case. 

It is easily seen that the obvious transformation x' • cos x reducing the 

trigonometric case to the algebraic one does not work in our case. Therefore 

we make a direct approach to the problem similar to the method of Erdos [I]. 

Denote by T the set of all trigonometric polynomials of degree n, and 
n 

by T (00) (C:T , 0';;;00 < '11') that subset which contains those trigonometric poly-
n n 

nomials of degree n which have only real roots, outside of the interval 

(-00,00) ,3). Generalizing the classical Bernstein's inequality 

max It'(x)l.;;; n( max It(x)l) 
-m<x<m -m<x<m 

(t(x)€T ), 
n 

3) For 00.0, T (0) denotes the set of trigonometric polynomials of degree n 
n 

which have only real roots. 
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V.S. Videnskii [5] proved that 

(3) max It'(x)l.;;; 2n2 cotI max It(x)1 
Ixl';;;w Ixl';;;w 

and 

(4) 1 t' (x) 1 .;;; n 
I + cos x 

cos x- cos W max I t(y) I 
Iyl';;;w 

The polynomial 

cos ( 2n arc cose:: !) ) 
2 
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(t(x) ET ,0<w<7r) 
n 

(t(x)ET ,lxl<w<7r). 
n 

shows that these inequalities are sharp. It is our purpose to show that for 

the class Tn(W), the order of magnitude in (3) and (4) can be essentially 

improved. 

THEOREM I. If t (x) E T (w) then 
- n--

max 1 t' (x) 1 .;;; cl_n -) max 1 t (x) I. 
Ixl';;;w \sin I Ixl';;;w 

For the proof we need some lemmas. 

LEMMA I. If O<S-a';;;7r,t(x) ET (O),t(x)t'(x) >0 in (a,S) and 
- n --

(5) 

then 

I t(x)1 .;;; e 

x-x 2n-1 . I( a-x) Sin -2- c0s---r-

S-x 
. I 

Sin -2-

Of course, similar statement holds when t(x)t'(x) <0 in (a,S). Then 

denoting 
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we have 

I t(x) I < e 

PROOF OF LEMMA I. Let 

(6) 

then 

x2 .. inf{x : t(x) -0, x:>a} 

x -x 2n-1 
. 2 ( x-a) Sin -2- cos-2-

x -a, 
. 2 

Sin -2-

2n x-~ 
t(x) = c II sin--' 

k .. 1 2' 

It(a)1 

181 

2n 
o < t(x) - II 

tea) k=1 

. x-~ 
Sin -2-

. a-~ 

x-x 
sin __ I 2n-1 2n( a-x.) 
--a--=~- (co s 6;X ) II 1- tan _6;X- cot ---2-it • 

• I k~ 
Sln -2- Sin -2-

-u 
Here, using that I - u <e and 

we get 

2n ( f3-x a-Xk) I a-x 2n a~ ! 
II I-tan Tcot-2- < exp - tan-2- L cot-2-

k-2 k-2 

\ a-x a-xI! 
< exp )tanT cotZ-\<e 

which proves the lemma. 

(x)<x<a) 

LEMMA 2. If t(x) €T (w) (0<w<1I'/2) and x € (-w,w) is such that t'(x )"0 
- n - 0 0 

then with the notation (6) we have 
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2n x -~ 
L 1 cot --1-1 .;;; 2n cotI . 

k=1 

PROOF. t' (x ) = 0 implies 
o 

(7) 

i. e., 

We have 

def 
A = 

2n xo-~ 
L cot -2- = 0, 

k=1 

x -x 
L cot~ = 

xk-xo 
L cot-2-· 

xo-xk 
cot-2-;;'O 

~-xo 
cot--2->O 

A';;; max min(l cot xo;w , (2n-l) cot W-;o) • 
I.;;;.&;zn 
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Here the maximum is attained when l is one of the two integers nearest 

Thus 

Q.E.D. 

w-x 
o 2n cot-2-

w+x w-x 
o 0 cot-2-+ cot-2-

w+x w-x 
2 . 0 0 n sln-2-cos-2-

sin w 

w+x w-x 
o 0 cos-2- cos-2- w 

A .;;; 2n .;;; n cot"'2 • 
sinw 

PROOF OF THEOREM I. First we prove the theorem when w';;;7T/8. We distinguish 

two cases. 
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Case I: t'(x) *0 in (-w,w); say t(x)t'(x) >0. Let xI be defined as in 

(5), provided -(t = e = w. Then evidently 

(8) 
'() 2n x-xk 0<;2~= '\ t(x) k~1 cot -2-

x-xk 2n 
<; L cot -2- <; -;:;;;;.....-x-x 

x-1T C;~ <;x l . I 
sln-2-

Thus·we have by Lemma 

It'(x)1 <; It(x)1 _--.;;;n __ <; e 
. x-xI 

sln-2-

. x-xI ( W_x )2n-1 
sln-2- C07 

w-x 
. I sln-2-

<; ~ max It(x) I. 
sinI Ixl <;w 

The proof is similar when t (x) t' (x) < 0 in (-w, w). 

(Ixl <;w). 

I t(w)I--~_-x-
• 1 Slt-z 

Case 2: t'(x) =O,x E(-w,w). We may assume that t(x) >0 in (-w,w). 
o 0 

Apply Lelllllla I with a = -w, S = x : 
o 

(9) 

• x-xI 
91n-2-

o <; t(x) <; e --~
• Xo -xI 

sln-2-

We now distinguish two subcases. 

t(x ) 
o 

(-w<;x<;x ). 
o 

Subcase 2a: xo -x1 ;;;.w. Then similarly as in (8), we get from (9) 

o <; t' (x) <; ~ max I t (x) I • 
sinI Ixl<;w 

Subcase 2b: xo-x i <w. The function 



184 

X-u cot-2-
\p(u) • ---x -u 

cot_O-
2 

x+x 
being monotone increasing for I + -u I .;;; f' we get by Lemma 2 

2n x-~ x~ 
l cot -2- < l cot --r 

k-I X-11'<~ <XI 

Thus by (9) 

X-XI 
11' cot-2- 2n X ~ 

.;;; 2n cot '8 + X -x l I cot T I 
o I k-I cot-2-

.;;; 2n ( coti + 

<c _n_ 
7 • III 

S1n2' 

• Xo -xI 
s1n-2- ) 

----.-.;;'--- cot'!!!2 • 
III • x-xI 

cos2's1n-2 -

max I t(x) I . 
Ixl<1II 

The interval [x ,III] can be treated analogously. o 
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(-III<X<X) 
o 

Finally, if III> 11'/8 then the interval (- 111,(11) can be divided into sub-

intervals of length < 11'/8 and repeated application of the just proved part 

of the theorem gives the desired result. Q.E.D. 

Apart from the constant Cs in Theorem I, the estimate given there is 

asymptotically best possible when III"" 0 or n........ This can be seen from 



Szabados 

Example 2: Let 

() ( ' , )n-I ( , ') tl x = S1nOO-S1nx S1nOO+S1nx 

Indeed. then tl (x) E Tn (w) and 
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1T 
(0 <00 <2')' 

max It) (x) I 
Ixl~w 

2n , n 
5!! - S1n w. 

en 
I I n-) n-) 
ti(-w)5!!2 sin wcosw, 

thus 

max Iti(x)1 
!x!~w ~ n 

I t ( ) I cs s1'n w cos w • max ) x 
Ixl~w 

The following problem remains open. 

PROBLEM 3. What is the ~ constant c6 in Theorem) ? 

2n-I 
So far we have not used the (cose;I) factor in the estimate of 

Lemma 1. This will be done in the proof of the next pointwise estimate. 

THEOREM 2. If t(x) E T (w) then 
- n--

vn cot(w/4) 
!t'(x)!~ c9 ----- max !t(y)! 

, w-x , w+x I I" s1n-2- s1n-2- y .... w 
(Ix! < w). 

PROOF. First we prove the statement when w~1T/2. Just like in the proof of 

Theorem I, we distinguish two cases. 

Case 1: t' (x) +0 in (- w.w); say t(x) t' (x) > O. Then applying Lemma I 

with -a" e = wand using 

(10) 
2n-1 c iO 

sin w;x (cosw-;,X) ~ vn 
we obtain 
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It(x)1 

. x-xI 
ec lO Sln-2-

<; -----:- I t(w) I 
~ r-. . w-x v n Sl.n w sl.n-2-

Hence by (8), 

o < t' (x) <; t(x) __ n __ 
. x-xI 

sl.n-2-

C II" ~ 
w-x 

sin -2- sinw 
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(-w<x <w). 

(Ix I < w) • 

Case 2: There exists an x E ( - w, w) such that t' (x ) = o. We may assume 
o 0 

t (x) > O,X E ( - w, w). Using (7) and Lenuna 2 we get with ~o - xk I <; TT 

2n x-~ 2n (X-X x -~) o < L cot -- = L cot __ k - cot-O_-

k=1 2 k=1 2 2 

x -x 2n ( x-x x -X.) • 0 • k. 0 k 
= Sl.n -2- L Sl.n -2- sl.n-2-

k=1 

x-xl -I (X_X)-I .0 .w+x .ok 
Sl.n -2- (Sl.n -2-) L sm-2-

x <;-w 
k 

-I 

-I (X -x )-1 .w-x . ko 
+ (Sl.n-2-) L Sln--z-

x?w 

x -x 
• 0 

sl.n-2-
<; c l3 ------:-. w-x . w+x sl.n-2-sl.n-2 

x -x 
• 0 w 

n sl.n-2-cot2" 

. w-x . w+x sl.n-2- sl.n-2-

x -x 
• 0 sl.n-2- 2n x -~ -I 

I Isin~2 I . w-x. W+Xkl Sl.n -2- Sl.n -2- = 

(-w<xC;;;;x ). 
o 



Szabados 

Thus Lemma I with a· -w, B = x yields 
o 

I 2n x-xk 
o <; t' (x) = '2 t(x) L cot -2-

k=1 

x -x 
e ( Xo _x)2n-1 n sin-o- cot~ 

2 2 I t(x ) I <; 2' cos-2- c l4 

Vn cot (w/2) 
. w-x • w+x 

s1n-2- s1n-2-

.w-x.w+x 0 
s1n-2- s1n-2-

The proof for the interval x <;x < w is analogous. 
o 

It remains to settle the case 11/2 <w <11. If t(x) €T (w) then 
n 
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t(2x) € T2n (00/2). Applying the just proved statement for t(2x) we get 

Le. , 

..;n codoo/4) 
It'(2x)1 <; c l6 • oo/2-x . oo/2+x max It(2y)1 

s1n-2-s1n-2- lyl<;oo/2 

.;n cot(w/4) 
. w-x . oo+X 

s1n-4- s1nT 

Vn codCII/4) 
• w-x . oo+x 

s1n-2-s1n-2-

I maxi I t(y) I 
y <;w 

max I t(y) I 
Iyl<oo 

Thus Theorem 2 is completely proved. 

(Ixl < 00/2) 

(Ixl < 00). 

The following example shows that Theorem 2 cannot be essentially improved. 

Example 3: Let 

( . w-x . w+x)n s1n-2-s1n-2-

sin2n (oo/2) 
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. w-x. w+x 'C) S1n-S1n-t x =n 2 2 

Szabados 

( . w-x . W+x)n S111--=- S1n- n 
2 2 . n (COS x - cos W) . S1nx a - S1nx. 

2 sin2n(w/2) 2 I - cos w 

Put here x'" y defined by 
o 

cos Yo 
2 sin(w/2) sin y '" --"~~...;;.:.. 

o Vii 

then 

w-y w+y 
. o. 0 '( ) or-. W S1n -2- S1n -2- t Yo '" v n S1n '2 • 
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PROJECTIONS WITH NORMS SMALLER THAN THOSE OF THE 

ULTRASPHERICAL AND LAGUERRE PARTIAL SUMS 

E. GOrlich and C. Markett*) 

Lehrstuhl A fUr Mathematik 

Rheinisch - Westflilische Technische Hochschule 

Aachen 

Norm estimates from above and below for partial sum operators of ultraspheri
cal and Laguerre expansions on a class of weighted Lebesgue spaces are esta
blished, using ultraspherical and Laguerre weights with parameters different 
from the parameters of the orthogonal expansions. It turns out that a suit
able shifting of the parameters leads to a considerable reduction of the 
rate of growth of the operator norms. In this way projection operators on 
weighted Lebesgue spaces can be constructed, the norms of which are smaller 
than those of the corresponding partial sums. Thus first upper estimates for 
the minimal projections in these spaces are obtained. 

I. Introduction and Main Results 

As is well known, the Fourier partial sums are the minimal projections 

from C2~ onto the trigonometric polynomials, but the Chebyshev partial sums 

S-I/2 do not have the corresponding property with respect to C[-I,I] and the 
n 

algebraic polynomials. The latter fact has been established by Cheney and 

Rivlin [3] for each n by showing that the Lebesgue function of S-I/2 attains 
n 

its maximum at the two end points of the interval only, a fact which contra-

dicts a necessary condition for minimal projections due to Morris and Cheney 

[ 10] • 

In the present paper it will be shown that a 

holds for the ultraspherical partial sum operator 

similar negative statement 

Sa for a > -1/2 as well as 
n 

for the Laguerre partial sums Sa for 
n 

a> -I /3. In both cases we explicitely 

give projection operators on the corresponding spaces with norms smaller than 

those of the partial sums. Indeed, it will be shown that, on a fixed space, 

*) This author was supported by a DFG grant (Ne 171/4) which is gratefully 
acknowledged. 
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such "better" projections consist e.g. in partial sum operators corresponding 

to a weight with parameter shifted. The main purpose of this paper is to give 

a quantitative description of this effect. Concerning the convergence of par

tial sums on weighted LP - spaces, Muckenhoupt already tried to enlarge the 

p -interval of convergence by a variation of the weight parameters. In the 

Jacobi case [II] he succeeded, while in the Laguerre case [12,1] he could 

prove that the p - interval cannot be enlarged this way. 

Let P be the set of algebraic polynomials of degree ~n, n E IP= {O, I ,2, ••• }, 
n 

:IN the set of naturals. By Mn we always denote ami n i m a I pro j e c-

t ion from the given space onto Pn . By L~(a) and L~(a) we mean the Lebes

gue spaces with ultraspherical or Laguerre weight, respectively, as indicated 

below (cf. (2.3), (2.11». Denoting further by C a positive constant which 

may have different values at each occurrence and writing a ~ b for two se-
n n 

quences {a }, {b } with the property that a = O(b ) and b = O(a ) as n -)-00, our n n n n n n 
main results are as follows: 

THEOREM I. (Ultraspherical case) Let a> -I. For each n E:IN there exists ~ pro
I j ection operator P : L ( ) -)- P such that 

n wa n----

(I. I) II M II 1 ~ II P II 1 ~ Clog (n + 1) • 
n [Lw(a)l n [Lw(a)l 

In particular, for a> -1/2 the II Mnll 1 ~ asymptotically smaller than 
[ Lw(a)] 

the Lebesgue constants of the partial sums II S~II I 

[ Lw(a) 

a + 1/2 ,...., n , n -:;'00. 

THEOREM 2. (Laguerre case) 
1--

Let a> -I. For each n E:IN there exists ~ projec-

tion operator P : LW( ) -)- P such that nan ----

(I. 2) 

In particular, for a > -1/3 the II M II I are asymptotically smaller than the 
- n [LW(a)] 

a a + 1/2 
Lebesgue constants IISnll I ~ n , n -)-00. 

[ Lw(a)] 

These results will be obtained as corollaries of Theorems 3 and 4 below which 

describe the asymptotical norm behaviour of the partial sums with parameters 
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ex;;>a. The latter two theorems generalize results of Rau [13] and Lorch [7] in 

the ultraspherical case and of the authors [5] , [8] , [9] in the Laguerre 

case, respectively. 

REMARKS. i) Theorem I was formulated for convenience only for the ultraspheri

cal case, but it can be extended to general Jacobi weights. Moreover, Theorems 

I and 2 may be extended to L!(a) - and L~(a) - spaces for p > I (cf. the remark 

following Thm. 4). 

ii) In contrast to the ultraspherical case, the Laguerre results are gi

ven here in terms of spaces L~(a) which have not been customary so far. But 

these spaces appear to be particulary suited for Laguerre expansions under se

veral aspects which will be discussed in a subsequent paper. In particular, 

they lead to a marked similarity between the statements in the ultraspherical 

and the Laguerre case. 

iii) Besides the upper bounds of the IIMnll given, it would of course be 

of interest to have lower bounds, too. In this context let us only mention 

that the usual tool for lower bounds of minimal projections, namely a Berman

Marcinkiewicz - type identity, does not yield any new information here. In 

fact, there exist generalizations of this identity to Jacobi and Laguerre ex

pansions. Instead of the ordinary translation operator, they contain the ge

neralized translation which corresponds to the respective orthogonal system 

(see [2], [4] for the Jacobi case and [6] ,[ 9] for the Laguerre case). But for 

reasons of normalization an additional multiplier operator appears, so that a 

straightforward generalization of the argument used in the trigonometric case 

only yields 

IISex'~1 .;;; C n2ex + 111M II 
n [LI] n [L I ] 

w(ex, s) w(ex, s) 

(1. 3) 

where Sex,s are the Jacobi partial sums, ex;;>s;;>-1/2, ex>-1/2, and 
n 

(J .4) 

(n E IN ) , 

(n E 1N ) , 

where sex are the Laguerre partial sums, ex;;>O. In both inequalities, however, 

the lef~ hand sides behave like n ex + 1/2 as n -+-00 (cf. Thms. 3 and 4 below), 

so that one is still far from obtaining a non - trivial lower bound for IIMnll • 
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More sophisticated adaptations of this device yield minor improvements only. 

2. Pre liminaries 

The following definitions and formulas will be used (cf. [I~). Denoting 

the Jacobi polynomials by 

(2.1) 

where cx,13 > -I, x E [ -I , I] , n E lP, the partial sums of the Jacobi expansion of 

a function f are defined by 

(2.2) 

2cx+13+1 f(k+cx+l) f(k+13+I) 

(2k+a+i3+I)r(k+l)r(k+cx+i3+I) 

Here f is supposed to belong to one of the spaces 

I 
{f;{ J If(x) IPwa,b(x)dx}l/p <oo}, 

-I 
(2.3) LP 

w(a,b) 
{f; ess sup If(x) I <oo}, p =00 

-1";x";l 

I";p<oo 

where a,b >-1. In particular, cx +a, 13 *b are admitted, as far as (2.2) makes 

sense for such f (further restrictions will be made in Thm. 3). One of the 

two parameters will be dropped in order to denote the ultraspherical case of 

(2.2) and (2.3), thus SCX = Scx,cx , LP() =LP( )' etc. According to [ 14; nnw a w a,a 
(4.1.3). (7.32.5). (8.21.18). (7.34.1)]. the Jacobi polynomials satisfy 

(2.4) 

(2.5) 

-1/2 -cx/2-1/4 In (I-x) , 

..; C n cx -2 I-n <x";l (n E :N ) • 
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(2.6) 

(2.7) 

max 
O";x";l 

I 
Ipa ,8(x) I (I-x)lldx ~ J n 

0 

a-211 n , 

-1/2 
n , 

na- 211- 2 

-1/2 n log n, 

n -112 
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211 < a+1 12 

211;;;'a+1/2 

211 < a-3/2 

211 = a-3/2 

211 > a-3/2 (ll>-I, n-+oo). 

The Laguerre polynomials and functions will be written as 

n k 
La(x) = l (n+a) (-x) 
n k=o n-k k! 

(2.8) 

(2.9) 

respectively, where a>-I, x;;;'O, nElP,and the partial sums of the Laguerre 

expansion of an f are defined by 
00 

a 
= J a -t a S (f;x) f(t)K (x,t)e t dt, 

n n 
(2.10) 0 

n 
k' a a K(l(x,t) = L r(k+~+I) Lk(x)Lk(t). n k=o 

as far as (2.10) makes sense. For properties of the Laguerre polynomials to 

be used we refer to [9] • 

3. Norm Estimates for Partial Sums, Proof of Theorems I and 2 

The following theorem describes the asymptotic behaviour of the ultra

spherical partial sums s: as operators on L!(a) for a;;;' a > -I. 
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THEOREM 3. (Ultraspherical ~) For each a;;;'a > -lone has ---- ----
2a-a+I/2 

n , a';;;a<2a+I/2 

(3. I) IIS~II I log n 2a+ 1/2';;; a';;; 2a+3/2 

[ Lw(a)l a-2a-3/2 
a > 2a+3/2 (n +00). n 

In particular, for a = a this covers the known rates of increase of the 

Lebesgue constants obtained by Szego ,Rau, and Lorch (cf. [13] ,[ 7] ), namely 

(3.2) 
2 (4/rr ) log n +0(1), a = -1 /2 

The counterpart of Thm. 3 for the Laguerre system is 

THEOREM 4. (Laguerre~) For each a;;;' a > -I ~ has 

(3.3) 

2a-a+l/2 
n 

n 
1/6 

1/6 n log n 

a-2a-4/3 
n 

, a';;;a <2a+I/3 

,2a+I/3';;;a<2a+3/2 

, a = 2a+3/2 

, a > 2a+3/2 

(n +00). 

(n +00). 

The similarity between the ultraspherical and Laguerre cases mentioned 

above, which is due to the particular norm L~(a) chosen here, can be read off 

from the exponents in the first lines of Thms. 3 and 4. Thm. 4 also includes 

an estimate for the usual type of norm, as employed e.g. by Askey and Wainger 

[I], i.e., the case a = a/2 ;;;'0, namely 

(3.4) IIS~II I 
1/2 (n +00) "'n 

[ LW(a/2)1 

(cf. [8]). The particular case a=a/2-1/4;;;'-1/2 has been treated in [ 9]; here 

(3.5) II Sail 1 ~ n 1/6 

n [Lw(a/2-1/4)] 

The analogues of Thms. 3 and 4 for LP - spaces, p> 1, are easily derived by the 

familiar interpolation and duality methods, by making use of Muckenhoupt's re-
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suIts on norm convergence [II] , [12,II] . 

PROOF OF THEOREM 3. We use the representation of the operator norm via the Le

besgue function A (t): 
n 

(3.6) 

II SClIl I 
n [Lw(a)] 

I 
A (t) = A (t;Cl,a) = J 
n n -I 

sup 
-I ";;t";; I 

A (t), 
n 

In case cl = a ~-I /2, as a consequence of the positivity of the Jacobi transla

tion operator [4], the supremum is attained at t =±l. Hence, in view of [14; 

(4.5.3)] , 

(3.7) A(l) 2-2a- 1 r (n+2a+2) IIpa +1 '~I 
r(a+l)r(n+a+l) n LI 

w(a) 
a+1 a . 

and by (2.7) an evaluation of the norm of Pn ' Ylelds (3.2). 

In the remaining cases we need an estimate of A (t) for all t E [ -I , J) • 
n 

For the u p per est i mat e we use (cf. (2.4» 

(3.8) 
I 

A (t)";; sup 2 f \KCl(x,t) \ (1 _x2)a dx (J - t 2)Cl-a 
n -1";;t";;l 0 n 

and represent the kernel by means of the Christoffel - Darboux formula [ II; 

(2.6-10)] as 

cl cl 
hl(n,x,t) = (n+l) P (x) p (t), n n 

(3.9) 

where the an' bn are uniformly bounded in n. Since h2 and h3 contain singula

rities at x = t, we split up th~ integral into 

I 
J \KCl (x,t)\(l_x2)a(l_t2)Cl-a dx = { J 
o n u€(t) 

(3.10) 
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where 

{x~O; Ix-t I < d, 

(t-e:, I] 

-2 tE[-I,I-n ) 

-2 tE[l-n ,I), 

I -2 
e: = £(n) = 2 n • 

Gorlich/Markett 

The first integral in (3.10) is now easily seen to be uniformly bounded with 

respect to t, in view of (2.5-7). Using (3.9), the second integral in (3.10) 

may be estimated by 

3 
dx ..; C l 

j=1 

3 
= C l 

j=1 
1., 

J 

say, the first term of which having the upper bound 

n2a-a+I/2 a";a<2a+I/2 

log (n+l) , 

a-2a-3/2 
n . , 

2a+ 1/2"; a < 2a+3/2 

a = 2a+3/2 

CI > 2a+3/2, 

uniformly in t, tE[-I,I]. A careful estimation of IZ and 13, carried out by 

means of (Z.5-7), separately on the t-invervals [-I,-I/Z], (-1/2, I-n-Z), 

[I_n-Z,I], then yields the same bound as obtained for II' except for the fact 

that the number I in case Za+ I /Z ..; a < 2a+3/Z has now to be replaced by 

log (n+I). 

For the lower est i mat e the inequality 

(3. II) ~ II Sa,-I /211 
[ n/Z] [L I ] 

is used, which may be established as 
I 

xE[-I,I], for some gELw(a,_I/Z) one 

a a,-I/Z 
from [14; ThIn. 4.1], Sn(f;x) =S[n/Z] 

a,-I/Z 
II S[ n/2J gil L I 

w(a,-I/Z) 

w(a,-I/Z) 

follows. Setting f (x) = g(2xZ - I), 
I 

has f E Lw(a) and, by the first identity 

2 (g;Zx - I). Then 
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which proves (3.11). The right hand side of (3.11) can now be estimated from 

below in several different ways. In order to verify the middle line of (3.1) 

we show that the right hand side of (3.11) is always bounded from below by 

C·log (n+I). Indeed, 

II Sa,-I/ZII = IIS-I/Z,all 
[n/Z] [L 1 ] [·n/Z] I 

w(a,-I/Z) [Lw(_I/Z,a)l 

fl I -I/Z a I -I/Z a a-a sup Krn/Zi (x,t) (I-x) (I +x) dx (I +t) 
-I";;t";; I -I 

(3.IZ) 

= Z-a-I/Z r([n/Z] +a+3/Z) IIpl/Z,a ll 
r(l/Z)r([n/Z] +a+l) [n/Z] [LI ] 

w(-1/2,a) 

(n +00) 

where in the last step an asymptotic expansion due to Lorch [7,11] has been 

used. 

The first line of (3.1) is obtained by an application of the partial 

t Sa,-I/Z to the functions sum opera ors n 

(3. 13) flJ (x) = r(Zn +a +lJ +3/Z) paZn+lJ + I,-I/Z(x) 
Zn r(Zn + I/Z) (lJE:N), 

which, according to [14; (9.4.3)], may also be written as 

Zn 
flJ (x) = L 

Zn k=o 
(Zn+k+a+Il+3/Z) All (Zk+ +1/Z)r(k+a+I/Z) pak,-I/Z(x), 
(Zn+k+a+3/Z) Zn-k a r(k+I/Z) 

k n+k . b' where A = ( ). After a ]J fold partial summat~on one 0 ta~ns 
n n 

(3.14) sa,-I/Z(flJ 'x) 
n Zn' j=o 

¥ r(3n-j+a+lJ+3/Z) AlJ-jf(n+a+3/Z) pa+~+I,-I/Z(x). 
l r(3n+a+3/Z) n+jf(n-j+I!Z) n-J 
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Set ting fl = [ 2a - a + 1/2] + I, it can be shown that the term for j = 0 is the 

principal one. So, in view of (2.7), 

IISa ,-1/211 ;;'IISa ,-1/2f fl II /lIffl2nll 
n [L1 ] n 2n 

w(a,-1/2) 

(3.15) ;;. c r(3n+a+fl+3/2) Afl r(n+a+3/2) IIpa+I ,-1/211 /lIfflll 
r(3n+a+3!2) n r(n+I!2) n 2n 

;;. C n2a-a+I/2 (a 0;;;; a <2a+I/2, n+oo). 

The third entry in (3.1) is obtained in a similar way, using the test 

functions fin (x), fl =[ a - 2a - 3/2] + I, and the dual norm 

II Sa,-1/2(f·x) (I _x)a- all 
n' 00 

L 
a-a 

IIf(x)(1 -x) II 00 
L 

(3.16) 

;;. C n a - 2a - 3/2 (ex > 2a + 3/2, n +00) • 

This completes the proof of Theorem 3. 

PROOF OF THEOREM 4. Proceeding as in the ultraspherical case, we start with 

the representation of the operator norm by means of the Lebesgue function, 

which we denote by A (t) again, thus 
n 

(3. 17) 

a 
liS II I = sup A (t), 

n [LW(a)] t;;'O n 

A (t) = A (t;a,a) 
n n 

00 
J IKa( )1 -x/2 ad -t/2 t a-a n x, t e x x e • 
o 

As for the ultraspherical system, the case when the parameters a and a coin

cide (a ;;'0) is exceptional in the sense that the Lebesgue function attains its 

supremum at the end point t = 0 of the interval. (This is one of the properties 

to be proved in the forthcoming paper mentioned.) Hence 

(3.18) 
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Using [9; (2.9)] for the rate of increase of the latter term, the aS$ertion 

for a =a follows. 

In the general case, we have to proceed as in [9; Thms. I and 3] where 

the particular case a=a/2-1/4, a~-1/2, has been treated (note that 
I I 

Lu(a) = LW(a/2))' We indicate the main steps only. The Lebesgue function in 

(3.17) may be written as 

(3.19) OOf I ~ Jla a I a - a/2 A (t) = L .k(x) lk(t) (x/t) dx. 
n 0 k=o 

In order to deduce an u p per b 0 u n d of A (t) for each t~a we use 
n 

the Christoffel - Darboux formula for the kernel I~=o i~(x) ~(t), as well as 

estimates of Il~(x)1 and I t~+I(x) - t~_I(x)1 and of their norms, which can 

be found in [9; (2.11), (2.5-6), (2.9-10)] (cf. also [12,II]). 

For t>3v/2, v=4n+2a+2 one immediately obtains 

A (t)';;;; I II t~(x)xa - a/211 I' sup I i~(t)ta/2 - al .;;;; c. 
n k=o L t >3v/2 

For a.;;;; t .;;;; 3v /2, in view of the singularity at x = t in two terms of the 

Christoffel - Darboux formula, we make the decomposition 

(3.2a) 

say,where 

U (t) 
€ 

\ 

{x~a; Ix-tl<d, t>l/v 

[a, t+E), a';;;;t';;;;l/v, 

eU (t) = [0,00) \ U (t), 
€ € 

€ = 1/(2v). 

Now a rough estimation shows that LI(t) is uniformly bounded for tE[a, 3v/2]. 

In L2(t), we represent the kernel by the Christoffel - Darboux formula and 

make estimates for the resulting three terms, the first of which already fur

nishes the final upper bound as given in (3.3), by (2.6-7). The other two 

terms have to be treated separately for tE[a,I/v], (I/v,v/2], (v/2,3v/2]. 

Since the Laguerre functions show a different behaviour on each of these in

tervals, also the integrals have to be split up accordingly. The upper esti

mate given in Thm. 4 then follows by carefully estimating the various terms 
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obtained. 

As to the lower est i mat e, the second and third entry of (3.3) 

can be obtained as in [9; (5.9)] by estimating the Lebesgue function in (3.19) 

at the particular point t = v(a), and using asymptotic expansions of the 

Laguerre functions. The first entry in (3.3) follows by an application of Sa 
n 

to the test functions 

(3.21) (IlElN), 

by observing that (cf. (3.13-14» 

(3.22) 

For Il = [ 2a - a + 1/2] + I, the first term is the principal one again, and thus 

with [9; La. 1] it follows that 

(3.23) ;;;'CAIlIILa+11I 
n n LI 

W(a) 

2a - a + 1/2 ;;;'Cn (aE;;;a<2a+I/2, n+oo). 

The last entry in (3.3) is obtained by estimating the dual norm from below by 

means of the test functions f~n' 1l=[a-2a-4/3] +1, as in (3.22-23): 

(3.24) 

a - 2a - 4/3 
;;;'C n 

II Sa(f 'x)e -x/2xa-all 
n ' 00 

L 

(a> 2a + 4/3, n +00). 

I 
PROOF OF THEOREM I. If in Theorem 3 the parameter a of the space Lw(a) is 

fixed, the Sa, for the various a admitted, form a particular set of projec
n 

tions, containing several elements which lie much closer to the minimal pro-

jection than the Sa. For example, choosing a = 2a + I for a> -I, Thm. 3 gives 
n 
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"S2a+l" < Clog (n+l) 
n [L I ] 

w(a) 

which, for (l >-1/2, increases less rapidly than the Lebesgue constants 

" S~I I (cf. (3.2». 
n [Lw(a)] 

(n E IN ) , 

. 2a+1 PROOF OF THEOREM 2. Choos1ng P =S for some a >-1, assertion (1.2) follows 
n n 

immediately by Theorem 4. By Theorem 4 again, the behaviour of the Lebesgue 

constants is 

a+I/2 
n 

1/6 
n 

a>-1/3 

-I <a<-1/3 

2a+1 . 
which increases more rapidly than "S n "I ,proV1ded a > -1/3. 

[LW(a)] 
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THE REGULAR CONVERGENCE OF MULTIPLE SERIES 
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Denote z~ the set of d - tuples 1 = (k l ••••• kd) with positive integers for coor

dinates. A d - mul tiple series ! uk = 1: {uk: 1 E Z~}. where the summation is exten

ded over 1 E z~. is said to converge reg;'larly if for every positive n there 

exists a number N=N(n) so that II{uk : 1ER}1 <n for every rectangle 

R={1EZ~: £~1~~} provided max(lI7 .... l d ) >N and ~;;;.£. Convergence in 
Pringsheim's sense follows from regular convergence, but the converse implica
ti~n is; not true in case d;;;' 2. A benefit of the notion of regular convergence 
is that it makes possible to extend the validity of Kronecker's lemmas from 
single series to multiple series and these extensions meet a number of appli
cations. among others. in the theory of mUltiple orthogonal series and of 
random fields. 

I. The Notion of Regular Convergence 

Consider a single numerical series \~ I u .• The statement that it converL1= 1 

ges to a finite number s. roughly speaking means the following: 

(i) The partial sums sm = 1:~=1 u i are as close to s as we wish if m is 

large enough; 

(ii) The remainder sums \r; I u. (= S -8 I) are as small as we wish if 
L1= 1 n m-

nand m are large enough. n ;;;'m. 

It is well - known that (i) and (ii) are equivalent to each other. But the 

situation is different in the case of multiple series. 
d 

Let Z+ be the set of d - tuples 1 = (k l ••••• kd) with positive integers for 

coordinates. where d is a fixed positive integer. As usual. we write ~±~ = 

(kl±ml ..... kd±md). k~m iff k.~m. for each j. and N=(N ..... N) for N=O.I .... ,...,... J J '" 
Finally. we set k* =max l ~j ~d kj and k* =minl ~j ~d kj • 

We shall consider the d -multiple numerical series 
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(I) 

with the rectangular partial sums 

s 
m 

00 00 

d More generally, given a rectangle R = {k E Z :.t O>;k O>;m}, set 
I'"oJ +~t"'oJ'" 

s (R) - L u. 
~ER ~ 

M6ricz 

It is clear that s(R) = s in case .t = I, further, s(R) can be considered as a 
m "" 

remainder sum of series (I) in case .t* is large enough. 

We remind that the mUltiple series (I) is said to be con v erg e n t 

i n P r 'i n g she i m 's sen s e to the sum s if for every positive 

number n there exists a number N =N(n) so that 

or equivalently, if 

Is -sl <n m 
"" 

Is -s I <n m n 
"" "" 

whenever m* > N, 

whenever m* > Nand n* > N. 

In other words, convergence in Pringsheim's sense means that the rectangular 

partial sums sm are as close to s as we wish if each coordinate of ~ is large 

enough. 

We shall say that the multiple series (I) reg u I a r I y con v e r

g e s if for every positive number n there exists a number N=N(n) so that 

Is (R) I < n whenever .t* > Nand m;> L 
"" "" 

We recall that .t is the bottom left - hand corner of the rectangle 

R={kEZd+ :.to>;k:m}, while m is its top right-hand corner. Thus, regular 
'" ,....,,...,,,...., 10 

convergence means that the remainder sums s(R) are as small as we wish if at 

least one of the coordinates of the bottom left-hand corner ~ of the rectang

le R is large enough. 
It is not hard to see that convergence in Pringsheim's sense follows 

from regular convergence. The converse statement is not true in general. For 
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example. the double series indicated in Fig. 1 converges to 0 in Pringsheim's 

sense. since its rectangular partial sums smn = L:=I Ll=l 'le! = 0 if m> 2 and 

n>2; but it fails to converge regularly. even its terms are not bounded. We 

note that if the terms 'le of series (I) are of constant sign. then these two 

notions of convergence c~incide. 

3 -3 0 0 0 

2 -2 0 0 0 

-I 0 0 0 

0 0 -I -2 -3 

0 0 2 3 

k 

Fig. 1: ~! (k.! = 1.2 •••• ) 

The definition of regular convergence is due to Hardy [3] in case d=2. 

and to the present author [5] in case d > 2. The former paper. unfortunately. 

had escaped the attention of the present author. and this is the reason why 

this kind of convergence of multiple series was rediscovered and called in 

[5] convergence in a restricted sense. 

We remark that in [3] regular convergence is defined by an equivalent 

condition which is true only for d = 2. namely: "A (double) series is said to 

be regularly convergent ·if it is convergent in the ordinary sense (i.e. in 

Pringsheim's sense) and all its rows and columns are also convergent." The 

treatment of the case d>3 is not clear from here. In fact. the triple series 

~=I Lt=1 L:=1 'leim whose terms 'leim for m = 1.2 are indicated in Fig. 2 and 

'leim=O for m=3.4 •••• is such that it converges to 0 in Pringsheim's sense 

and all the single series I;=1 ukim (for each l.m=I.2 •... ). Lt=1 ~lm (for 

each k.m=I.2 •.•• ). and C=1 ~lm(for each k.!=1.2 •••• ) converge. but the 

triple series in question fails to converge regularly. 

The reason why this triple series does not converge regularly is that the 

double series ~=I L;=I '\.em does not converge even in Pringsheim's sense for 

m .. 1 and 2. Indeed. the following theorem holds. 
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l l 

0 0 0 0 -I I ••• 0 0 0 0 

0 0 0 0 -I •.• 0 0 0 0 -I 

0 0 -I 0 0 ••• 0 0 -I 0 

0 0 t -I 0 O ••. 0 0 -I 0 

-I 0 0 0 0 ••• ' -I 0 0 0 

-I 0 0 0 0 ••• -I 0 0 0 

k 

Fig.2: 
mool; 

~t (k.l=1,2 •••• ) m=2: ~l2 (k.l=l.2, ••• ) 
--'----

THEOREM I. The d -multiple series (I) re~ularll converges if and onll if 

(i) it converges in Pringsheim' s ~,and 

(ii) the (d-I) -multiple series 
00 00 00 00 

L··· L L ···La k kk k 
k I k. =1 k. =1 k =1 k l ,···· ·-1' ., ·+1'···· d 

1= J-I J+I d J J J 

regularll converges for each fixed value of k j = 1,2, ••• and for each 

j=I,2, •••• d. 

The following corollary hence follows by induction. 

-I. .. 

I ••• 

0 ••• 

0 ••• 

0 ... 

0 ... 

k 

COROLLARY I. Let U .. {j I, ••• ,j } and V = {l +1' ••• ,ld} be two disjoint subsets 
- e - e ---

of {J, ••• ,d}. where I"jl < ••• <je"d and I "le+1 < ••• <ld"d with I"e"d 

(V is ~ in ~ e = d). The d - multiple series (I) regularll converges if 

and onll if the e -multiple series 

00 OQ 

converges in Pringsheim' s ~ for each choice of U with I" e '" d and for each 

fixed value of kl "'1,2, ••• ; ••• ; kl -1,2, •.•. 
e+1 d 

In addition, if series (I) regularll converges and 
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00 00 

L L u 
ski , ... ,k! ' k. =1 k. =1 kl,···,kd 

J 1 J e e+1 d 

then 
00 00 00 

L l s L u1 (I';;;;e';;;;d-I). 
k! =1 k! =1 

kt , ... ,k! k E Zd 
e+1 d '" + e+1 d 

The main goal of the present paper is to point out that the notion of re

gular convergence is more appropriate in the study of convergence properties 

of multiple series than the notion of convergence in Pringsheim's sense. 

2. Kronecker's Lemmas for Multiple Series 

Beside series (I) we shall consider the tranformed series 

(2) 

with the rectangular partial sums 

where A = {Ak : k E Zd} is a given d -mult"iple sequence of positive numbers. 
'" + 

As usual, the finite differences ~EAk and VE~ are defined as follows, 

where ~=(EI, ... ,Ed) is ad-tuple with"'Ej=O or"'I"'for coordinates. In case 

~ =£ set 

while in case ~*£ let Ej =1 iff j =jl, ••• ,je with I';;;;e';;;;d and set 

where 

a.A =A -A 
J ~ kl,· .. ,kj_l,kj+l,kj+I, ... ,kd kl' ••• ,kj_l,kj,kj+I, ... ,kd 

finally set 
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Observe that the order of succession of the "operators" C. , ••• ,15. is .indiffe-
J I J e 

rent. 

The use of the forward and backward Abel transformation formulas leads to 

expressions for the rectangular partial sums s of series (I) in terms of the 
m 

remainder sums 

d (l,m E Z , .e. ';;;m) 
-- + - -

of series (2), in particular, in terms of the rectangular partial sums 5 , 
m 

and in terms of the differences of the sequence A. 
Indeed, the forward Abel transformation formula can be given as 

(3) 

where the sum! is extended over all 
e 

2d possible choices of E with E. =0 
"" J 

or I for coordin~tes; Lk(£) means the single term 5 A in case E = 0, while in 
m m '" -

case £*£ with E. =1 iff j =jl, ... ,j 
J e 

it means the £' :'fold sum 

5k~E~ with k.e.-m.e. for .e.*jl, ••• ,je' 
"" "" ,.. 

Ij mj = 1 for at least one j = j 1 ' ••• ,j e' then this e - fold sum is neglected. For 

instance, in case d = 2 

s 
mn 

m-I n-l 
L L 5k.e.().k+l • .e.+I-\+I,.e.- Ak,.e.+l +\.e.) 

k=l .e.=1 

m-l n-I 
- L 5 (). -).)- L 5_ o(). 0 1-)._D)+5 ). 

k=1 kn k+l,n kn .e.=1 UK. m,.{..+ Ill.{.. mn mn 

provided that m;;;;'2 and n;;;;'2, while if, e.g., m;;;;'2 and n=l, then 

m-I 
sml =-kL 5kl (Ak+I,1 -~I) +5ml ).ml· 

The backward Abel transformation formula is the following: 

(4) s = L m 
£ 

where the sum Le is again extended over all 2d possible choices of £ with 

e. =0 or I for coordinates; (£>Ik means the single term 5(1'~»).1 in case £=£, 
J "" "" 
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while in case £*£ with Ej =1 iff j =jl, ••• ,je it means the E-fold sum 

m. 
Je 
I S(k,m)V Ak with k9=1 for l*jl •••• 'je. 

k. =2 I'V'" £,..., .(.. 
J e 

If m.=1 for at least one j = j I' ...• j • then this e - fold sum is also neglected. 
J e 
These Abel transformation formulas in case d= 1 are wellknown (see, e.g., 

[ I, p. 7 J] ), and their various forms in case d;;;' 2 have been used by a lot of 

authors. We only mention here that formula (3) in another notation occurs in 

[2] , while in this form it is in [6] • As to formula (4), see also [6] . 

After these preliminaries we turn to the Kronecker lemmas. A benefit of 

the notion of regular convergence is that it makes possible to extend the v.ali

dity of Kronecker's lemmas from single series to multiple series and these ex

tensions meet a number of applications. among others, in the theory of multiple 

orthogonal series and in probability theory (see [6]). 

One of the Kronecker lemmas in case d = 1 states that if {\: i = 1 .2 •.•. } 

is a non-decreasing sequence of positive numbers. tending to infinity, then 

the convergence of the series l7=1 ui/Ai implies the estimate sm=I:=1 ui = 

= O(A ) as m +00 (see. e.g., [I, p. 72]). The generalization of this lemma m . 
whose proof is based on (4) reads as follows. 

THEOREM 2. Let A be .! d -multiple sequence of positive numbers such.!h!!. for 

each E *0 with E. =0 or for coordinates, E. = 1 iff j =jl, ••• ,j where 
--'" "'-- J J -- e--
1 ~e ~d, ~ have 

non - negative if e = I. 

(5) !:J. Ak is 
£ -
'" '" of constant sign in t if e;;;' 2 • 

and 

(6) 

If the d -multiple series (2) regularly converges, ~ 

(7) s = I a = O(A ) 
~ I"k~m ~ ~ 

'" '" '" 
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Another Kronecker lemma in case d=1 asserts that if {~.} and {v.} are two 
1 • 1 

non - decreasing sequences of positive numbers. ~. tending to infinity as i +00. 
1 

then the estimate S =r~ I u./~. =o(v) implies the estimate s =t: I u. = . m 1- 11m m 1- 1 
=o(~ V ) as m +00. Making use of (3) this leIlDD.a can be generalized in the fo11omm 
wing form. 

THEOREM 3. ~ ~ .. {Ak :~EZ!} and v={vk :~EZ!} be ~ d-multiple sequences 

of positive numbers ';uch that ~ ~ conditions (5) and (6) .!!!. satisfied. and 

for v we have -- ---

If 

(8) 

then 

= o(v ) 
m .... 

whenever ~ <;~. 

Theorems 2 and 3 seem to be new and a detailed proof of them will appear 

in a forthcoming paper [6] of the present author. 

We are going to make a few remarks. Conditions (5) are obviously satis

fied. among others. if \. =n!"'1 A~~) or Ak -lIk• or ~k =lIk*. where each 
{Ak(j) :k. -1.2 •••• } and {ll.: 1.2 •• ~.} are .... non-decre'ising sequences of posi-

• J 1 
J 

tive' numbers. 

It is somewhat striking that Theorem 2 is no longer true if series (2) 

converges in Pringsheim's sense only. This is' illustrated by the following 

example. Let d .. 2 and 

(k • .e.. 1.2 •••• ). 

where ['J means the integral part. Conditions (5) and (6) are clearly fulfilled. 

Let 

(_I)k+.e. 22[(k-I)/2J A for .e.=1.2; k.I.2 .... ; 
kl. 

o for .e.-3.4 .... ; k-I.2 ..... 
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On the one hand, 

m n ~ 
S = L L - =0 

mn k=1 !=1 \! 
for m=I,2, ... ; n=2,3, ••• 

(see Fig. 3). Consequently, the double series f;=1 ~=I uk!/Xk! converges in 

Pringsheim's sense. On the other hand, 

2m n 
s . L L u 0 = ..!.( Sm - I) 

2m,n k=1 !=I k~ 7 
for m = I ,2, ••• ; n = 2,3, ••• 

(see Fig. 4). Thus 

0 0 0 0 0 0 ••• 0 0 0 0 0 0 ••• 

0 0 0 0 0 o ... 0 0 0 0 () 0 ••• 

-I -4 4 -16 16 ••. -2 4 -16 32 -12S 256 ••• 

-I 4 -4 16 -16 ••• -2 S -16 64 -12S ••• 

k 

Fig.3 ~.e'Xk! Fig.4 uk! 

s , Sm_1 I' 2m,2m h.m __ '" 00 l.m X '" m ' 
m~OO 2m, 2m m ~oo 7'4 

i. e. statement (7) does not hold even in the special case m '"' n. 

The same example shows that Theorem 3 becomes also false if condition (S) 

is required in the less restricted case when m* ~oo. To be more concrete, since 

S =0 for n~2, we have (S) with v -I as min(m,n) ~oo. On the other hand, 
mn 1/3 mn 

even with v' '" X mn mn 

lim s2m, 2m 
X vi 

m ~oo 2m, 2m 2m, 2m 

Sm_1 
lim = 00 

. 7 4m 4m/3 m -+-00 • • 

which is opposite to statement (9). 

k 
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3. Regular Convergence of Multiple Orthogonal Series 

Let (j)= {tpk(x) : k E Zd} be a multiple orthonormal system (in abbreviation: 
~ + 

ONS) on rd=[071]d, the unit cube in the d-dimensional Euclidean space, i.e., 

o if ~*~, 

J tpk (x)tpm (x)dx = 
d ~ ~ 

r if k =m 
~ 

We shall consider the d - multiple orthogonal series 

(10) I d aktpk(x), 
~EZ+ ~ ~ 

d 
(k,m E Z ). 
~~ + 

where a = {a. : k E Zd} is a d -multiple sequence of numbers (coefficients). The 
It ~ + 

rectangular partial sums of (10) will be denoted by 

sm(x) = L ak~(x) 
~ .L ..;;~..;;~ ~ ~ 

and more generally, if R is a finite rectangle in z~, then set 

rn this section we follow the definitions and arguments due to Tandori 

[9], [10] in the special case d = 1. Denote by M the class of those d -multiple 

sequences a for which series (10) regularly converges a.e. for every d-multip

Ie ONS tp on rd. The set of measure zero of the divergence points may vary with 

every \1>. 

The embedding Mc,t2 follows from the fact that the d -multiple Rademacher 
d 

system {r~(x) =IIj=1 rk.(xj ), x=(xl' ... ,xd)} is such that the series 
J 

LkEZd ~rk(x) diverges in Pringsheim's sense a.e. for every a with 
t'OJ + __ 

I;' 2 -00 
L.k E Zd ~ - • 
~ + ~ 

For any given d - multiple sequence a of coefficients set 

(II) II all 2 = sup sup J (max I s(Q;x) I )2dx 
R tp rd Q cR 

( ";;00) , 

d 
the first supremum being taken over all finite rectangles R in Z+' the second 

supremum over allONS tp on r d , and the maximum over all rectangles Q contained 
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in R. 

The main result which is proved in [7] reads as follows. 

THEOREM 4. (i) aEM if and only if lIall <00, and 

(ii) M endowed with the ~ 11·11 is.! separable Banach space. 

Part (i) 'of this theorem says, roughly speaking, that the a.e. regular 

convergence of series (10) for every ONS on rd is equivalent to the following 

"boundedness" property: the sums s(R;x) are majorized by some square integrab

le function on rd, the square integral of which depends only on the sequence 

a of coefficients. 

Using the d - dimensional generalization of the famous Rademacher - Mensov 

inequality (see, e.g., [5, Corollary 2]), it is not hard to give an upper 

bound for II all. Namely, for arbitrary a we have 

(12) 

where CI is a constant depending only on d. 

An exact lower bound for lIall is not known in general. But in the special 

case when {I ~ I : ~ E z~} is non - increasing in the sense that I ~ I ;> I am I when-

ever k<m, an"'opposite inequality to (12) is true: t'OtJ,..., 
"" "" 

2 d 2 1/2 
llall ;> C2( ~ ak IT (log 2k.» , 

k E Zd "" J·=I J 
"" + 

where C2 is a positive constant also depending on d. This lower estimate 

follows from the results of [8] in a routine way. 

This approaching method which uses the notion of Banach space in the stu

dy of convergence of orthogonal series, makes it possible to deduce the follo

wing theorems (for the case d=l, see also Tandori [10]). 

THEOREM 5. Let a = {ak : ~ E z:} and b = {bk : ~ E z:} be ~ d -multiple sequences 

of numbers for Which""I~1 <:lb~l, ~EZ:.""If bEM, then aEM and llall <:lIbli. 

THEOREM 6. (i) If aEM, then there exists.! d-multiple sequence ).I=h1k :£EZ; 

of positive numbers, ).Ik tends to infinity!!!. k* +00, such that {~).Ik : fe: Z~} EM. 
"" """" 
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(ii) If a ElM, then ~ exists ~ sequence J.l with the ~ properties as 

in (i) and such that {~/J.lk : 1 E Z~} tM • 
..., ..., 

It is a remarkable thing that Theorem 4 remains valid if regular conver

gence is replaced by convergence in Pringsheim's sense in it. This can be simp

ly motivated by the fact that the norm defined by (II) is equivalent to the 

following one: 

where 

max Isk(x) I = max 
.L ~~~.IB"" I ~kl ~ml 

Thus we can obtain the following 

COROLLARY 2. Let!. d -multiple sequence a is given. If the .!.:.!.:.. convergence of 

series (10) is considered for every ~ ~ Id, then regular convergence and ~
vergence in Pringsheim's ~ ~ equivalent. 

For individual ONS the notions of a.e. regular convergence and a.e. con

vergence in Pringsheim's sense may es~entially differ from each other. We pre

sent a simple example in case d = 2. Let {r. (x) : i .. 1,2, ••• } be the Rademacher l. 
system and divide it into two disjoint infinite subsystems: {r. (x) :k-I,2, ••• } 

l.k 
and {r. (x) :p=I,2, ••• }.It is well-known that the series r: I a.r.(x) conver-

J l.= l. l. 
P r 2 

ges a.e. whenever l~ I a. <~. It is clear that every subsystem {r. (x)} also 
l.- l. l.k 

possesses this property. Further, let {1jI. (x) : i = I ,2, ••• } be an ONS such that 
l. 

there exists a sequence {A. : i = 1,2, ••• } of coefficients in l2 such that the 
l. 

series r; I A.1jI. (x) diverges a.e. on 1. Then we set for k = 1,2, ••• l.= l. l. 

r. (2x) for 0~x~I/2, 

<1\1 (x,y) 
l.k 

1jIk(2x-l) for 1/2<x~l; 

\ 

r. (2x) for 0~x~I/2, 

1I\2(x,y) = 
l.k 

-~(2x-l) for 1/2 <x~l; 
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and for i = 3 , 4, ••• 

Vi. r. (2x) 
Jp(k,i) 

o 

215 

for O";;x";; 1/2, 

where p=p(k,i) is a one-to-one mapping of {(k,i) :k=I,2, .•. ; i=3,4, ... } 
onto {p : p = 1,2, ••• }. It is easy to check that {tl\clx,y): k,i = 1,2, ••• } is an 

2 ONS on I . If we set 

(k = 1,2, ... ) else, 

then the double series 4=1 ~=I akitl\ci(x,y) converges a.e. in Pringsheim's 

sense, but does not converge regularly on a set of measure at least 1/2. It is 

only a difficulty of technical character to modify this example so as the re

sulting orthogonal series converge a.e. in Pringsheim's sense and do not con

verge regularly a.e. 

This phenomenon cannot occur in the case of double Fourier series of 

functions from L2(I2). In fact, if f(x,y)EL2(I2) and 

( 13) f(x,y) 

is its Fourier series (for convenience we use complex notation), then 

4=-- L~= __ iaki i2 <00. Therefore, by the celebrated result of L. Carleson, 

all rows and columns of the double series on the right of (13) converge a.e. 

It is an open problem whether the a.e. regular convergence and the a.e. 

convergence in Pringsheim's sense are equivalent to each other or not for the 

multiple Fourier series of functions f(xl, ... ,xd) EL2(Id) in case d;;;'3. 

Finally, we remark that for double Fourier series of functions 

f(x,y) EL(I2) the above two kinds of convergence no longer coincide. Let us 

take two functions: g(x) and h(y), g(x) is drawn in Fig. 5, while h(y)EL(I) 

is such a function that its Fourier series boundedly diverges a.e. (see, e.g., 

[II, p. 308]). Then f(x,y) =g(x)h(y) EL(I2), whose double Fourier series (13) 

converges to 0 in Pringsheim's sense a.e. on (1/4,3/4) X(O,I), but the columns 

of (13) diverge a.e. on 12. 

It is a further open question what is the situation in connection with the 

double Fourier series of functions f(x,y)ELP(I2) in case I <p<2. 
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o x 

Fig. 5 g(x) 

4. Moore - Smith Convergence and Regular Convergence 

In this concluding Section we briefly sketch a possible definition of the 

notion of regular convergence in the case when the index set is a general di

rected one (instead of Z~). We begin with the repetition of the definitions of 

the notion of directed set and Moore - Smith convergence (see, e.g., [4, Ch.2j). 

A binary relation "..;;" d ire c t s a set D if D is non - void and 

(i) ";;is transitive on D, 

(ii) ";;is reflexive on D, 

(iii) if k and m are members of D, then there is an element p in D such that 

k";;p and m";;p. 

A d ire c ted set is a pair (D,";;) such that ..;; directs D. A 

net is a pair (S,";;) such that S is a function and ..;; directs the domain 

of S. If S is a function whose domain contains D and D is directed by";;, then 

{S ,mED,";;} is the net (SID,";;) where SiD is S restricted to D. 
m 

A net {S ,mED,";;} is eve n t u a I I y in a set V if there is an 
m 

element p of D such that if mE D and p ";;m, then S E V. A net (S,";;) in a topo
m 

logical space (X,J) con v erg e s to s relative to J (in the Moore -

Smith sense) if it is eventually in each J - neighbourhood of s. 

Now let (X,+) be an Abel group endowed with a topology (X,J). Given a 

formal series 

(14) (ak E X), 

consider its all possible partial sums 
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(mED) 

for which the number of those ak with k~m which differ from 0, the neutral 

element of X with respect to "+", is finite. Denote by D' the subset of D for 

which this is the case. If D' is non-void and the net {s :mED',~} conver-
m 

ges to s relative to J, then we may say that series (14) converges and its sum 

is equal to s. 

After these preliminaries, our proposed definition of regular convergence 

reads as follows. Series (14) is said to be reg u 1 a r 1 yeo n v e r -

g e n t if for each neighbourhood V of 0 there exists an element p of D such 

that for every m,n ED for which m'f, p, m ~n and the number of those ak with 

m~k~n which differ from 0 is finite, we have LkED,m<k~n ~EV. It may 

happen, of course, that a series (14) converges regularly, but it does not 

converge in the Moore - Smith sense, and so we cannot attribute any sum s to 

it. 

There are a lot of natural questions arising in connection with these two 

very general kinds of convergence of series. For instance, for which directed 

sets (D,~) and for which Abel groups (S,+) endowed with a topology (X,J) the 

following statements hold: 

(i) regular convergence implies Moore - Smith convergence, 

(ii) Moore - Smith convergence implies regular convergence, 

(iii) these two kinds of convergence are equivalent, and 

(iv) they are incomparable. 
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NORM INEQUALITIES RELATING THE HILBERT 

TRANSFORM TO THE HARDY-LITTLEWOOD MAXIMAL FUNCTION 

Benjamin Muckenhoupt1 
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New Brunswick, New Jersey 

R. Coifman and C. Fefferman have shown for 1 < P < 00 that the weighted 

LP norm of the Hilbert transform is bounded by the weighted LP norm of the 
Hardy-Littlewood maximal function if the weight function satisfies the 
condition Aoo' It is shown in the first part of this paper that Aoo is not 
a necessary condition by deriving a large class of weight functions not in 
Aoo for which the norm inequality holds. The rest of the paper consists of 
the derivation of a necessary condition for the norm inequality; this con
dition closely resembles the Aoo condition. 

1. Introduction 

The problem considered here is the determination of all non-negative 

functions W(x) such that 
00 

(1.1) J If(x)IPw(x)dx ~ AJ [f*(x)]PW(x)dx, 
_00 _00 

where A is independent of f, 

f(x) = 1im+ I f(X;Y) dy 

€~ Iyl>€ 

is the Hilbert transform of f, 

1) Supported in part by N.S.F. Grant MCS 80-03098. 
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* f (x) 

y 

sup ~I If(t)ldt 
y"'x y-x x 

Muckenhoupt 

is the Hardy-Littlewood maximal function of f and p is a fixed number 

satisfying 1 < P < 00. The principal known result concerning this problem 

is one by R. Coifman and C. Fefferman that appeared in 1974 in [3]. Theorem 

III of [3] proves (1.1) for any p satisfying 1 < P < 00 provided W(x) is 

non-negative and there are positive constants C and E such that 

IWdX 2 C(IEI/III)EIWdX for every interval I and subset E of I. This 

E I 

condition on W, known as the Aoo condition, has been a popular condition 

on weight functiorssince that time. It has been used in various norm in

equalities between Littlewood-Paley functions and the Lusin area function 

and in the theory of weighted HP spaces. 

Coffman and Fefferman did not consider whether Aoo was a necessary 

condition for (1.1); in fact Aoo has not been shown to be a necessary con

dition for any of the norm inequalities for which it has been shown sufficient. 

It is shown here that Aoo is not a necessary condition for (1.1). Theorem 

2.1 in §2 describes a large class of Wls not in Aoo for which (1.1) 

holds; in particular, X[O,oo) is such a function. 

The rest of this paper consists of the derivation of a necessary con

dition for (1.1). This is done by proving the following theorem. 

THEOREM 1.2. If 1 < P < 00, W(x) is non-negative and W(x) satisfies (1.1), 

then there ~ positive constants C and E such that for every interval I 

and every subset E of I 

The necessary condition of Theorem 1.2 will be referred to as the C 
P 

condition and is clearly condition. It does, of course, resemble the Aoo 

weaker since the integral on the right is larger. We conjecture that the 

C condition is also a sufficient condition for (1.1). p 
The proof of Theorem 1.2 is fairly long and is broken into several 

lemmas that are discussed and proved in§§j-5. The proof is completed in §6. 
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The following notation will be used throughout this paper. For a set 

E, lEI will denote the Lebesgue measure of E and Xl the characteristic 

function of E. If a > 0 and I is an interval, aI will denote the 

interval with the same center and with I aI I .. a I I I. If 1 < P < co, p' will 
-1 -1 denote the number such that p +(p') = 1. The letter C will denote 

constants, not necessarily the same at each occurrence. 

2. ~ Is Not Necessary for (1.1) 

Here we show that Aco is not a necessary condition by deriving 

functions W that satisfy (1.1) but are not in Aco. Since translations, 

reflections and sums of weight functions satisfying (1.1) also satisfy (1.1), 

a great many weight functions can be generated by use of theorem-2.l. 

We will need the following definition. If 1 < P < co, then a non

negative function U(x) is in A if for every interval I p 

[liIIU(X)d~ [rhI [U(X)]-l/(P-l)d~P-l ~ C, 

I I 

where C is independent of I. 

THEOREM 2.1. If 1 < P < co and W(x) = U(x)X[O,co) (x) , where U(x) is in 

Ap ' then (1.1) holds~ 
Except for the case U(x) • 0 almost everywhere, the functions W of 

Theorem 2.1 are not in Aco as is shown by the following reasoning. First, 
N 

observe that I Udx > 0 for sufficiently large N. Since U is in Ap' 

-N 
then u-l/(p-l) must be locally integrable. Therefore, U(x) > 0 almost 

h 

everywhere and I Udx > 0 for all h > o. Then with h > 0, I = [-l,h] and 

o 
E = [O,h], the definition of 

e: 
Aco for W would require that 1 ~ C[h/(l+h)] 

with C and e: independent of h. Since this is impossible, W is not in 

Aco· 
The proof of Theorem 2.1 will use various weighted norm inequalities. 

By taking U(x) = 1, the better known unweighted versions can be used and 

this is, of course, sufficient to show that (1.1) does not imply that W is 
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in A~. To prove Theorem 2.1, it is sufficient to show that 

~ ~ 

(2.2) J 1 (f(x>x[O,oo) (x» -I P U(x)dx ~ CI [f*(x) ]PU(x)dx 

o 0 

and 

(2.3) 

By theorem 9, p. 247. of [4], the left side of (2.2) has the bound 
GO 

CJ IfX[O,oo)IPUdX. This is bounded by the right side of (2.2) since 

* If (x) I < f (x) almost everywhere. 

To prove (2.3), use the definition of the Hilbert transform to show 

that the left side is bounded by 

000 cx>-x 

cJIJ ;~~) dtlPU(x)dx + CJIJ ;~~)dtIPU(X)dX. 
o -x 0 -00 

Since x and t have opposite signs, this is bounded by the sum of 

~ 0 

(2.4) cJ[~ J If(t) Id~P U(x)dx 

o -x 

and 

(2.5) 

Now (2.4) is bounded by 

* by the definition of f (x). To estimate (2.5), it is sufficient to show 

that (2.5) is bounded by (2.4). With get) = f(-t), this is equivalent to 

showing that 
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(2.6) 

With U(x) = xa for x > 0 and -1 < a < p-1, (2.6) is a result of 

Boas [1]. To prove it for all U in A , 
P 

observe that the left side of 

(2.6) is bounded by 

(2.7) 

Boas' result now follows by an application of Hardy's inequality, see [7], 

vol. I, p. 20. For general U in A, observe that for r > 0 
P 

(2.8) 
OOJ -1/(p-1) Jr U(x) , dx < ~ U(x)-1/P-1)dx 

xP - rP 
r 0 

by use of Lemma 1 p. 232 of [4] since U(x)-1/(p-1) is in 

and the definition of A 
p 

we see that for r > O. 

A ,. 
p 

By (2.8) 

with C independent of r. By Theorem 2, p. 32 of [5], we have (2.7) 

bounded by 

This completes the proof of (2.6), and, thereby, of Theorem 2.1. 

3. A Basic Lemma 

In Lemma 3, p. 268 of [6], Stein and Weiss showed that if n is a 

finite union of disjoint intervals, a > 0 and E is the set where 

Ixn(x> I > a, then lEI = 2lnl/sinh a. Here we treat the inverse problem; 

given a set E and a > 0 we want to find a corresponding set n so that 
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IxD(x> I > a on E and IDI ~ IElsinh a. This can be done as shown by the 

following lemma. Like the proof in [6], this proof is based on the fact 

that the sum of the roots of a monic polynomial equals minus one times the 

second coefticient. 
n 

LEMMA 3.1. If E" U (ci,di ) is!! finite union of open intervals with 
i .. 1 

disjoint closures and a > 0, then there exists !! finite disjoint union of 

n 
open intervals D" U (ai'''i) such that IDI '" lEI sinh a, bi 6 (ci,di ) and 

i=l 

IxD(x) I > a for x e E. 

We may assume that the intervals (ci,di ) are in their natural order 

so that di < ci +1• 

The polynomial 

1+ea n 1 a n 
a(x) • -2- II (x-ci ) + ~ II (x-di ) 

i=l 2 i=l 

n k n-k-1 n has (-1) • a(~) > 0, (-1) a(~+l) > 0 and lim (-1) a(x) > O. 
x+-co 

Therefore, a(x) has one root in each interval (~,ck+1) and one in 

(-~,c1)' Call the root in (~,c1)' a1• Call the root in (dk,ck+1)~ ~+1' 

Similarly, the polynomial 

1+ -a n 1_e-a n 
b (x) .. _e_ II (x-c ) + -- II (x-d ) 

2 i=l i 2 i z 1 i 

has (-l)n-ko(ck) < 0 and (_l)n-~(~) > O. Therefore, b(x) has one root 

in each interval (ck'~); call this root bk • 

n 
Let D" U (~,bk) and note that the intervals (~,bk) are disjoint 

k=l 

since (~,bk)c (~_l,dk)' where d_1 is defined to be ~. Since 

a(x) = II (x-ai ), 

n l+ea r a .. -
i ... 1 i 2 
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because the sum of the roots of a monic nth degree polynomial is minus 
n-1 the coefficient of x Similarly, 

Combining these we get 

Now 

for some k, 

n x-a 
L logl _bil 

i=l x i 
x-d. 

IElsinh a.. 

10 Ib (x) I 
g a(x) 

then II __ 1 < 0 and 
x-c i 

a. 2 (l+eo.) 
e - -1 + --""="';=';'''::'''''''''x--'''''d:- < e-a 

a. a. i He -(e -1)11-
x-ci 

Therefore, if x e (ci,di ), Ixn(x)I > a.. This completes the proof of 

Lemma 3.1. 

4. A Preliminary Necessary Condition 

The condition in the theorem of this section is in fact equivalent to 

the C condition in Theorem 1.2. The equivalence is proved in §§5-6 and 
p 

makes no use of the equation (1.1). Theorem 4.1 is a straightforward 

application of Lemma 3.1 to the condition (1.1). 

THEOREM 4.1. .!!. 1 < p < 00, (1.1) holds, I is an interval with center -- -----

(4.2) 
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If W 

assume that 

is not integrable on I, the result is trivial; therefore, 

fWdX < 00. Given E > 0, there is a finite union of disjoint 

I 
+ E and fWdX ~ E + f Wdx. open intervals El such that 

E El 

By L .... 3.1 with «. ainh-1~i~J. there ia • finite union of interv.1, 

D such that IDI = III, each interval in D intersects El , and 

- 1 
IxD(x)I > sinh- (III/IEll) for x in El • Therefore 

I W(xldx ~ £ + I W(xldx ~ £ + tinh- 1 li~J-PJ I XD(xll"W(xldx. 

E El El 

An application of (1.1) then shows that 

-1 I -p * P ~ ~ 
00 

lW(X)dX~ E + A sinh ~ ~IXD(X)I W(x)dx. 

Since each interval in D intersects El and El c: I, it follows that 

00 

J 3PIIIPW(x)dx . 

-00 ( I I I + I x-xI I ) P 

Since E is arbitrary, (4.2) follows from this. 

S. A Stronger Necessary Condition 

The condition 
-1 

sinh y::: log 

Cp does not follow immediately from Theorem 4.1 since 

lYl E 2y for large y instead of for some E > O. To 

prove the C condition, we will need a form of the necessity condition 
p 

that can be used repeatedly. The conclusion of Lemma S.l has the desired 

form; it has similar expressions on both sides of the inequality. Note 

that Lemma S.l does not follow directly from the proof of Theorem 4.1 since 

the inequality ~(x) ~ cIXE(x)I P is not true; XE has zeros while ~(x) 
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does not. 

LEMMA 5.1. If 1 < P < co, W is ~-negative. W satisfies (4.2) for every 

interval I and subset E of I, {~}:=1 is.!! set of disjoint subintervals 

of an interval I, ~ is the ~ of ~,xI is the ~ of I and 

n 
(5.2) A(x)" 2 

k"'l 

(5.3) 

~ C depends only ~ A and p. 

To prove this observe first that since IIIklP ~ (21~I)p, then for x 

not in 3I 

Therefore, I frKW(x)dx is bounded by the right side of (5.3), and the 
(3I)c 

proof can be completed by estimating 

(5.4) I t.(x)W(x)dx. 

31 

To estimate (5.4) we will need a Lemma of Car1eson, Lemma 5 p. 140 of 

[2], that asserts the existence of constants Band D; depending only on 

p, such that for a > 0 

(5.5) 

where {~} is any subdivision of the interval I into subintervals. Since 

any disjoint collection {Ik} of subintervals of I can have intervals 

added to it to become a subdivision of I and since adding subintervals 

increases A(x), (5.5) is valid with the same constants for any disjoint 

collection {~} of subintervals of I. Since (5.5) remains true if D is 
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decreased or B is increased, we may also assume that B ~ 1 and 0 < D < 1. 

Now let j be the least integer greater than log(LI~I/III), and let 

J be the least integer greater than 10g~ log(-!l!l;1, where D 
~ L11kl'J 

is the constant in (5.5). Note that since j ~ 0 and J > 0, that j < J. 

Let Q, Sand T be respectively the intersection of 31 with the set where 

A(x) ~ ej , the set where ej < A(x) ~ eJ and the set where eJ < A(x). We 

will estimate (5.4) by estimating the integral of A(x)W(x) over the sets 

Q, Sand T separately. 

First, we have from the definition of Q that 

I LI1k1 I A(x)W(x)dx ~ e ~ W(x)dx. 

Q 31 

The right side is bounded by the right side of (5.3). Next 

(5.6) IAxW(X)dX ~ I I ei +lw(x)dx. 
S i"'j {Ax>ei } n 31 

00 

Now since J Axdx ~:~llI1kl, we. have 

I{Ax_> ei} I ~~~-ilI1kl. Using this fact and (4.2) shows that the right 

side of (5.6) is bounded by the product of 

(5.7) i cei +1[sinh-1( 3(:~1)111~-p 
i=j 2pe E11kl 

and 
00 

(5.8) J 11IPW(x)dx 

-oo( I I 1+lx-xI I)P' 

To complete this part we need to show that (5.7) has the bound 

(5.9) 
r, J 1-p 

CllO~J . 
-1 

To estimate (5.7) use the fact that the argument of the sinh in 
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(5.7) is bounded below by £:! ei - j > p-1. From this we obtain 
p - p 

I. Cei+1 ~Og e i - j +1l-p 

i"J t J 
as an upper bound for (5.7). The change of variables i = mtj gives the 

estimate 
1 J-j m eJ - j 

Cej + I _e_ < Cej +1 ----==----
m=O (m+1)P - (J-j+1)P 

Since J > 1 and j ~ 0, this is bounded by CeJ (l-j)-P. Using the 

definition of j and J shows that this is bounded by (5.9) and completes 

the estimation of the integral of ~(x)W(x) over S. 

Finally, we have 

The estimates (5.5) and (4.2) show that the right side is bounded by the 

product of (5.8) and 

(5.10) 

-1 
As in the estimation of (5.7) we use the fact that the argument of the sinh 

in (5.10) has a positive lower bound, D > 0 and J > 1 to show that 

(5.10) is bounded by 

co ~ i~-P C I log(eDe ) • 
i=J 

This geometric series is easily estimated; with the definition of J we get 

the upper bound C[log(eili/Eilki)]-p which is bounded by (5.9). This com

pletes the proof of Lemma 5.1. 

6. Proof of Theorem 1.2 

We can now complete the proof that C is a necessary condition for 
p 

(1.1). To do this use Theorem 4.1 and Lemma 5.1 to choose a 0 > 0 such 

that if I is an interval and ilk} is a collection of disjoint sub-
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intervals of I with ~IIkl < 26111, then 

'" co 

(6.1) f A(x)W(x)dx < ~f IIIPW(x)dx • 
~ - ~IIIP+lx-xIIP 

Furthermore, o should be chosen small enough that 

(6.2) 

Now given Eel, let n be the least integer such that 15n lII < lEI. 

Define EO = E and Ej = {X; > 6j } for 1 ~ j ~ n. Define ~j(x) for 

1 ~ j ~ n to be the function (5.2) based on the component intervals of Ej • 

If 1 ~ j ~ n, H is a component interval of Ej and x is an endpoint 

of H~ then X;(x) ~ oj. Therefore, 

(6.3) 

and if J is an interval containing an endpoint of H, then I J n E I ~ 6j I J I. 
Consequently, if x is in H n E~_l' there is 

x is in J and I J n E I > I J 16j- • . Therefore, 

an interval Je H such that 
it j-1 

HnEj _1 = hEnH > 0 }. 
1 . 

By a covering lemma argument we then have IHn E -1 1 ~ 26 -] lEn HI. Com-

bining this with (6.3) shows that IH nEj _11 :: 201HI. Now let Q be the set 

of component intervals in HnEj _1 and let ~Q be the corresponding function 

as defined in (5.2) with {~} = Q. Then by the definition of 0 we have 

Adding these inequalities for all the components H of Ej then gives 
00 co 

(6.4) J ~j_1(x)W(x)dx ~ ~J ~j(x)W(x)dx 
-~ -~ 

for 2 ~ j ~ n, where ~j(x) is the function of (5.2) for the collection of 

component intervals of Ej • Similarly, using (6.2) and Theorem 4.1 , we have 



Muckenhoupt 

00 00 

(6.5) 

Combining (6.5) and (6.4) for 2 < j ~ n shows that 

(6.i) IW(X)dX ~ 2~nf~n(X)W(X)dX. 
E 

231 

Since ~n-1 > IEIIIII > ~n, E if' 1 h u u cons sts 0 one 1nterva t at contains 
- -1 n 

is contained in 20 I. Therefore, 

(6.7) 

I and 

Furthermore, since n > (log 1~1)/10g 0, we have ,-n < [~a. where 

Combining this with (6.6) and (6.7) then completes the proof of --~ 
a - log o' 
Theorem 1.2. 
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The translation of a function f on the surface of the unit sphere in k - di
mensional Euclidean space is defined by the integral means of f over the 
circle <x,y> = h on the sphere. Via this translation there are introduced the 
strong Laplace - Beltrami differential operator and the r - th modulus of con
tinuity of functions defined on the sphere. The rate of best approximation 
by sums of spherical harmonics of degree ~ n is then completely characterized 
by higher order Lipschitz conditions and differentiability properties. 

I. Introduction 

The aim of this paper is the characterization of the rate of best ap

proximation of functions defined on the surface of the unit sphere in Rk, 

k = 3,4, ••• , by Lipschitz conditions and differentiability properties. 

To illustrate the problem we recall to mind the corresponding well-known 

J'elated results on the approximation of continuous, 21T - periodic functions 

due to Jackson, Bernstein (1911/12) and Zygmund (1945): 

THEOREM O. Denoting ~ lIn' n ElF = {O, I, ••• }, the set of all trigonometric 

polynomials of degree ~n, ~has for FEC 21T ,rEP and O<Il~I: 

E (F;C2 ) := inf t ElI IIF-tnIlC = O(n -r-Il) (n -+- 00) 
n 11 n n 211 

LiPI (Il;C211) , O<Il<1 
_ F(r) E 

LiP2 (I ;C211 ) , Il = 
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This result can also be understood as the characterization of-best ap

proximation on the unit circle. This case. namely k = 2. could also be treated 

by the same methods used here; but that would lead to a characterization of 

best approximation by means of derivatives and Lipschitz conditions of 

eve n order. This means that the results obtained by our methods for k=2 

are somewhat weaker than those of Theorem O. So we will only consider the 

unit sphere in the Euclidean space with dimension ~ 3. 

2. Basic Concepts 

Let us denote by Sk. k = 3.4 ••••• the surface of the unit sphere in IRk. 

k 
Sk:={xERk;lxl = (L Ix.1 2)1/2=1}. 

j=1 J 

by C(Sk) the set of all continuous functions f defined on Sk. endowed with 

the norm 

IIfliC :- max k1f(x) I • 
xES 

and by LP (Sk). I <p < 00 • the set of all measurable functions f defined on Sk 

for which the norm 

IIfll 
p 

is finite. ds(x) being the (k-I)- dimensional surface element of Sk. and 
~+I k '\ = 2 'IT Ir (~+I). ~ = (k-2)/2. the surface of S • In the following. X is 

one of these Banach spaces. and 11·11 the corresponding norm. Furthermore. 

L! is the Banach space of all funct~ons X measurable on (-1.1) having finite 

norm 

Now. the appropriate fundamental set for our desired approximation 

theorem is the set of all "spherical harmonics" of degree n EIE'. A spherical 
k harmonic Y is defined as the restriction to the unit sphere S of an harn 
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monic, homogeneous polynomial ~ of degree n defined on Rk. The spherical 

harmonics form an orthogonal fundamental system in X, i.e., 

J Y (x) Y (x) ds (x) = 0 
n m 

Sk 
(n *m) , 

X span{Y } X. 
n 

They are closely connected with the Gegenbauer (orultraspherical) polynomials 

(For these and other properties of spherical harmonics see e. g. [12] Qr [13 ].) 

By means of the normalized Gegenbauer polynomials 

we associate to each function f E X a sequence of spherical harmonics, namely 

its "spherical Fourier coefficients" 

(2.1 ) Yn(f;x) := ~ J R~«X,y» f(y) ds(y) 
k Sk 

k (nE\P;xES) 

«','> = inner product in Rk). 

For this transform one has a uniqueness theorem: If f E X, then 

Y (f·x) = 0 
n ' 

k (n E P , xES ) ... f (x) = 0 (a.e.) • 

Whereas the classical translation operator Th of functions defined on 

RI consists in a simple shifting of the variable, it is here more complicated. 

For in defining Th one only has to decide whether the variable is to be 

shifted a given distance h to the left or to the right; which direction is 

taken is only a problem of convention and of no mathematical significance. 

But on the sphere Sk one has infinitely many possible directions for shifting 

the variable a certain distance h, none of them with any preference. So we 
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define the "spherical translation" Th of f E X as the integral means of such 

shiftings, namely, 

(2.2) J f(y) dt(y) 
<x,y>=h 

where hE (-1,1), xESk and dt(y) is the "curve" element of the "circle" 
k <x,y> = h on S • 

This definition has the disadvantage that Th does not possess the semi

group property anymore as does Th(T T =T ), and it cannot be inverted u v u+v 
(Th T_h = identity). Nevertheless, Th is a positive, linear operator mapping 

X into X, with operator norm IIThll [xl = 1 and 

(f EX). 

Furthermore, for Th there hold the product formulae 

Th Y (x) = RA(h) Y (x) , 
n n n 

These are typical for a translation operator and correspond to the product 

formulae 

int in(t+h) 
Th e := e 

21f . 
J Th f(t) e -lnt dt 
o 

inh int 
e e 

int +00 for the trigonometric fundamental system {e } n=-oo 
This concept of translation allows one to define the "spherical convo-

1 lution product" of a function X E LA and f E X, namely 

(2.3) 

which may also be rewritten in the more classical form 
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(2.4) (X*f) (x) = - f X«x,y»f(y) ds(y) 
~ Sk 

(a.e.) • 

As long as 72 years ago L. Fejer [9] wrote the second arithmetical means of 

the Laplace series on S3 in this form. 

Now, this convolution product has the same properties as does the usual 

convolution product of periodic functions (cf. [4]), namely: 

(2.5) 

(2.6) Y (X*f;x) = X (n) Y (f;x) n n 
k 1 

(nEIP;xES ;XELA;fEX), 

where xA(n) are the "Fourier - Gegenbauer coefficients": 

(2.7) 

(For the properties of translation and convolution cited here see e.g. [2].) 

3. The Strong Laplace - Beltrami Derivative and Integral 

Since the spherical harmonics Yare derived from harmonic polynomials 
n 

Qn' i.e. v2Qn=O, v2 being the usual Laplace differential operator in k 

dimensions, they are eigenfunctions of the Laplace - Beltrami differential 

operator V; with eigenvalues -n(n+2A) (cf. [12] or [13]): 

2 
V* Y (x) = -n(n+2A) Y (x) 

n n 
k (n EIP;x E S ) 

Here V; is a pointwise differential operator. The corresponding strong 

operator, i.e. when the limit is considered in the norm, can be defined - up 

to a constant factor -1/(2A+I) - by means of the spherical difference 

k (-I<h<l;xES ;fEX) 

Indeed, if for f E X there exists a function Df E X such that 
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(3.1) 

1 
then Df ( = D f) is called the (first) "strong Laplace - Beltrami derivative" 

of f. Higher derivatives are defined inductively by 

(rE{2.3 •••• }) • 

The sets of functions differentiable in this sense are denoted by 

(rEN={1.2 ••.• }) • 

In this respect. we have for all spherical harmonics Y • n EIP: 
n 

Yn E Wxl • DY (x) = n(n+2A) Y (x) 
n 2A+1 n 

There also exists an inverse operator to Dr. defined by the "spherical 

integral" of f E X: 

(3.2) 

where 

k 
(rE{2.3 •••• };xES ). 

t s 
~(t) := (2HI) f (I_S2)-A-I/2 f (I-u2)A-I/2duds (-I<t<I). 

-I -I 

1 
Since ~ E LA' we have in view of (2.5) 

(rEIN;fEX) • 

The fundamental result for the strong Laplace - Beltrami derivative now 

reads. 

THEOREM I. The following three assertions ~ equivalent to another for 

fEX. rEIN: 
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i) 

ii) 

( n(n+2A) ) r 
Yn(g);x) = 2),,+) Yn(f;x) 

r 
f(x) = (J g2)(x) 

The functions g),g2 ~ uniquely determined: 

(3.3) 
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k 
(n EIP;x E S ) 

(a. e.) . 

(a. e.) . 

So, in analogy to the classical fundamental theorems of the differential 

and integral calculus, the integral of the derivative of a differentiable 

function f is equal to f (except for an additive constant) and, on the other 

hand, the integral of a function f is differentiable and its derivative is 

equal to f (up to an additive constant). 

Note that it follows from this theorem that the operator Dr is closed 

4. Moduli of Smoothness 

For describing the smoothness of a function f E X it is near at hand to 

use the difference llhf. For f E X, 0 < 6 < 2 the (first) "spherical modulus of 

continuity" is defined by 

S 
w) (o;f;X) := sUP)_6<h<) IIllhfll X . 

Virtually one would expect to introduce higher moduli of continuity by 
r 

replacing the difference llhf by the r-th difference llh' defined by applying 

llh r-times. But such a definition would not lead to the desired result 

(namely to the equivalence of this modulus with an appropriate K - functional, 

and so to a characterization of the best approximation by higher Lipschitz 
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conditions). 
So for r EN we define the r-th spherical modulus of continuity of 

f EX by 

(4. I) sUPI_c<h.<1 
J 

j=1 ,2, ... ,r 

and the corresponding spherical Lipschitz classes by 

(0 < 15 < 2) , 

(a > 0) • 

The seminorm wS has all the properties which are to be expected of a 
r 

modulus of continuity. Indeed, 

LEMMA I. For f EX, r EN, there holds: 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

o 

S S 
wr(cl;f;X) ~ w (15 ·f·X) r 2' , 

If furthermore f E wi, 0 < q < r, then 

(4.6) 

and 

(4.7) 

for ~ positive constant M( = M(q». 

(qEIN;0<o<2) 

const. (a. e.) • 

(0 < 15 < 2) 

(0 < 15 < 2) 

Another concept for describing the smoothness of a function f E X is 

given by the "K - func t ional " 
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(4.8) r 
K(t.f;X.Wx) (t > O;r EIN) . 

This seminorm is equivalent to the modulus of continuity in the fol

lowing sense: 

LEMMA 2. For rEIN there exist constants o <mos;;M<oo such ~ for 

f E X. 0 < ° < 2: 

(4.9) 

S 
This result yields a further property of w : if f E X. rEIN. and 

r 
0<01'02 <2. then 

5. Best Approximation 

Denoting by P • n EIP. the set of polynomials of the form 
n n 

Pn(x) = Ik=o Yk(x) for some spherical harmonics Yk of degree k. k=O.l ..... n. 

we define the best approximation of f E X with respect to P by 
n 

(5. I) En (f;X) := infp EP IIf-Pnll X 
n n 

(n Ell') • 

For f EX. n E l' there always exists a polynomial of best approximation 

P*EP (cL [II. p. 17]). Le •• 
n n 

E (f;X) = lI,f-P*II X ' 
n n 

Using the kernel of Fejer - Korovkin type (cL [I] or [6]) 

(n E l'; t E (-1 • 1 » • 



242 Wehrens 

where 

(n E 1') , 

t denoting the largest A in [15], that for root of R , one can show as e.g. n n 
r EN, r f EWX one has the Jackson type inequality: 

(5.2) E (f;X) n 
<; M n-2r II Drfll X (n E/N) • 

Furthermore, from this inequality and (4.9) one can derive the follow

ing Jackson type theorem: 

LEMMA 3. Let f EX, r E/N; then there exists.! positive constant M( =M(r» 

such that 

(5.3) 
S -2 E (f;X) <; M w (n ;f;X) n r (n EIN) • 

On the other hand, the corresponding Bernstein type inequality is known 

(see e.g. [IS] or [3]): 

(5.4) (r EIN;P E P ;n Ell') 
n n 

Combining these inequalities there follows, in view of (4.9), by a 

general theorem on best approximation due to Butzer - Scherer [5] our central 

result, namely, 

THEOREM 2. Let f EX, r I ,r2 ElF, 0 < a <; I with r 2 < a < r I' The following six 

assertions are equivalent ~ each other: 

i) E (f ;X) n 
0(n-2a) (n+oo) 

r -2a+2r l 
ii) liD Ip*1I O(n ) (n + (0) 

n X 

r 2 r r -2a+2r2 
iii) f EWx ' liD 2f -D 2p*1I O(n ) (n + (0) 

n X 
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iv) 

v) 

vi) 

r l r l 
K(t ,f iX,W ) 

x 

s 
W (o·f 'X) 

r " I 
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(t+O+) 

(0+0+) 

(0+0+) • 

In view of the equivalence of the assertions i) and vi) one has: 

E (f iX) n 
= O(n-2r- 2a) (n + 00) 

Lip~(a;X) O<a<1 
_ DrfE 

Lip~(1iX) a = I . 

This is exactly the counterpart of Theorem 0 cited in the introduction. 

On the other hand, this theorem gives a solution to a problem posed by 

Butzer - Johnen [3] in 1971 on the characterization of the rate of best ap

proximation by higher Lipschitz conditions. Indeed, the equivalence i)~ v) 

can for 0 < a < r be rewritten as 

-2a S E (fiX) = O(n ) (n+oo) ~fELip (a;X) 
n r 

In this respect A.S. Dzafarov [8] also gave a result where the modulus 

of continuity was even defined by means of the r-th difference ~~; but his 

proof is wrong, since the "polynomials" used there for deriving the Jackson 

inequality are actually not polynomials. 

For continuous functions th~ equivalence i) .. v) also can be found in 

Kusnirenko [10] provided r = I. 
From the results of Ragozin [14] one can derive (cf. [2]) a character

ization of the rate of best approximation of continuous functions by a 

Lipschi tz condition of classical type. In fact for f EX, 0 < a < lone has 
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(n-+oo) 

k (x,y E S ) . 

But if one would wish to derive such a result for a~1 there arises the dif

ficulty in defining differences of higher order of this classical type one 

the sphere. 

The proofs of the results announced here are to be found in [17] for 

the case k=3. The methods used there can also be carried over in a modified 

form to establish corresponding results on best approximation in other func

tion spaces, such as for Fourier - Jacobi expansions of functions defined on 

(-I, I) (see [71) or Fourier - Laguerre expansions of functions defined on 

(0,00) (in preperation). 
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EIN PROBLEM fiBER DIE BESTE APPROXIMATION IN HILBERTRAUMEN 

Hubert Berens 

Mathematisches Institut 

Universitat Erlangen-Nurnberg 

Erlangen 

In the beginning sixties V. L. Klee conjectured that there exist nonconvex 
Chebyshev sets in an infinite dimensional Hilbert space. Up to today no real 
progress has been made in proving or disproving the conjecture. 
The author wants to discuss a modified version of Klees's conjecture which 
seems to be of some independent interest. 

1. 1m folgenden sei H ein Hilbertraum uber IR mit innerem Produkt <!> • ,. > 

und Norm I· I. 
Fur eine nichtleere Teilmenge K in H bezeichnet PK : H .... ZK die metrische 

Projektion von H auf K und dK : H .... IR die Distanzfunktion. V(PK) bezeichnet 

den Definitionsbereich von PK, das ist die Menge {x E H : PK(x) f ~}. Es ist 

gebrauchlich, die metrische Projektion mit ihrem Graphen in H X H zu identi

fizieren, 

(x,k) E PK bedeutet somit k E PK(x). 

Sei K eine nichtleere Teilmenge von H. Als Verallgemeinerung der metri

schen Projektion mochten wir die folgende mengenwertige Abbildung auf H in 

sich betrachten: 

H3x ... n 
r>dK(x) 

~{b (x) n K}, 
r 

wobei b (x) die offene Kugel um das Element x mit Radius r ist und ~{ ... } 
r 

die abgeschlossene konvexe Hulle der Menge { ••• }. 

Offenkundig ist V(~K) = H und ~PKc ~K. 1st H von endlicher Dimension 

und ist K eine abgeschlossene Teilmenge in H, dann gilt 

fur j edes x E H ~P K (x) = ~K (x) und ext~K (x) 

ext{ ••• } ist die Extremalpunktmenge der Menge { .•. }. 
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Wir mochten in den folgenden Abschnitten einige Eigenschaften der verall

gemeinerten metrischen Projektion herleiten und ihre Bedeutung fUr die beste 

Approximation aufzeigen, siehe hierzu auch [2]. Die Frage, ob die Aussage (*) 

in Hilbertraumen schlechthin gUltig ist, fUhrt uns zur Kleeschen Vermutung. 

2. Sei K eine nichtleere Teilmenge von H. Als eine erste elementare Ei

genschaft von ~K zeigen wir 

SATZ I. ~K ist monoton, sogar zyklisch monoton. Letzteres besagt: FUr n EIN und 

(x ,fl ), .. , (x ,fl ) E ~K mi t (x ,fl ) = (x ,fl ) gilt o 0 n n --- n n 00----

n 
0< L < X.-X. I,fl. >. 

j=1 J J- J 

BEWE1S. Zu jedem E. E.iR+, j = O,I, •.• ,n-l, wahlen wir r. EiFt mittels r~ 
2 J J J 

dK(x.) + E •• 1st k. Ebr (x.) n K, dann gilt 
J J J j J 

Ix. _k·1 2 - E. < dK2(x.) < IxJ• -kJ.+ 112 
J J J - J-

oder 

-E. < 2 < x., k. - k. + I > + I k. + 112 - I k .1 2 . 
J- J J J J J 

wir summieren die n Ungleichungen und erhalten . 

n-) n-I n 
-! L E. < L 

2 . J - . ° J=O J= 
< xJ" kJ. - kJ. + I > = L < x. - x. I' k. >. 

j=1 J J- J 

Die Abschatzung bleibt erhalten, wenn wi~ die Elemente kj aus brj(xj ) n K 

durch die aus ~{br (x.) n K} ersetzen, 1nsbesondere durch fl. E~K(x.), was 
. J J J . J 

zur Ungle1chung 
n-I n -I L E. ~ L < x. - x. -I' fl· >, (x., fl.) E ~K ' 

j=O J j=! J J J J J 

fUr jedes E. EIR+, j = O,!, ... ,n - !, fUhrt. 
J 

Tiefliegender als die Aussage von Satz I ist die folgende in 

SATZ 2. ~K ist maximal monoton, d.h., ~K besitzt in H X H keine echte~

tone Fortsetzung. 

BEWE1S. FUr ein x E H bezeichne 

v(x,u) = sup{<n,u> : flE~K(x)} uEH, lui = ! 

die Tragerfunktion von ~K(x). Offenkundig wird das Supremum angenommen. 



Berens 249 

Wir set zen xt x + tu, t ElR und betrachten die skalare Funktion 

lR3t ..... v(xt'u). 

Aus der Monotonie von ~K folgt sofort, daB die Funktion monoton wachsend fUr 

wachsendes t ist. Wir zeigen, daB sie rechtsseitig stetig ist. Hierzu genUgt 

es 

V(X,u) = lim v(x ,u) 
t .... O+ t 

+ 
zu beweisen. FUr ein t ElR sei nt E ~K(Xt) so gewahlt, daB v(xt'u) = < nt,u > 

gilt. 1st n ein schwacher Haufungspunkt des Netzes {nt : t .... O+}, dann ist 

nE~K(x), Denn fUr jedes £EJIt und jedes x'EH, Ix'-xi < £/3, gilt br,(x') C 

C br(x) mit r' = dK(x') + £/3 und r = dK(x) + £. Daraus folgt aber fUr jedes xt ' 

0< t < £/3, 

und somit 

Aus 

+ 
fUr jedes £ ElR 

V(x,u) ~ lim v(xt,u) = lim < nt,u > = < n,U > < v(x,u) 
t .... O+ t .... O+ 

£olgt die rechtsseitige Stetigkeit der Funktion. 

Die maximale Monotonie von ~K ist nach diesen Vorbereitungen schnell be

wiesen. Angenommen es existiere ein Paar (x,n) EH X X, das nicht zu ~K gehort, 

aber fUr j edes (x', n ') E ~K 

0:::.< n-n',x-x' > 

erfUllt. Aus den bekannten Trennungssatzen konvexer Mengen in H folgt die Exi

stenz eines Elementes u E H, lui = I, und die eines Skalars c ElR, so daB 

V(x,u) < c < < n,u > 

+ gilt. Insbesondere folgt fUr die Elemente xt,tElR , aus der oben gemachten 

Annahme 

V(x,u) < c < < n,U > ~ < nt'u> :::. v(xtu), 

was wegen der rechtsseitigen Stetigkeit von t~ v(xt'u) zu einem Widerspruch 

£Uhrt. // 

Nach einem Resultat von R. T. Rockafellar konnen wir aus Satz lund 

Satz 2 folgern, daB ~K das Subdifferential einer stetigen, konvexen Funktion 

auf H ist. In der Tat gilt 
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SATZ 3. ~K ist das Subdifferential der Funktion 

l~_e H3x ~ 4JK(x) = sup{ <x,u > - 2 : kEK}. 

BEWEIS. Die folgende Form der Funktion 4JK : H ... lR ist vom approximationstheore

tischen Standpunkt her gesehen um vieles aufschluBreicher: 
2 

Ixl2 dK(x) 
H3x l-+ 4JK(x) = T - -2- . 

Es genugt ~K C o(jJK zu zeigen, wobei 04JK das Subdifferential von 4JK be

zeichnet. Sei xEH vorgegeben. Sei £ElR+, r2 d~(X)+£, kEbr(x) n K und 

x' E H. Dann gilt 
2 

(jJ (x) = bt:. -
K 2 

2 
=<xk> - h.t. + ~ = <x' k> 

, 2 2 ' 
Ik l2 £ T - < x' - x,k > + "2 < 

£ S. 4JK (x') - < x' - x, k > + "2 ' 

oder 

Wie im Beweis von Satz 1 bleibt auch hier die Ungleichung erhalten, wenn wir 

die Elemente k aus b (x) n K durch die aus ~{b (x) n K} ersetzen. Wir erhal-
r r 

ten insbesondere fur j edes £ EITt, jedes x' E H und j edes n E ~K (x) 

4JK(x') ~ 4JK(x) + < x' -X,n > - I 
woraus die Behauptung folgt. II 

Als maximal monotoner Operator auf H besitzt ~K aIle die Eigenschaften, 

die diesen Operatoren, speziell den Subdifferentialen stetiger konvexer Funk

tionen, zu eigen sind. Wir mochten an dieser Stelle nur darauf hinweisen, daB 

~K : H ... H n.o. halbstetig ist. H bezeichnet hier den Hilbertraum versehen w w 
mit der schwachen Topologie. 1m Beweis von Satz 2 haben wir zuerst die n.o. 

Hemi-Halbstetigkeit von ~K : H ... Hw g'ezeigt, eine schwachere Stetigkeitsaus

sage als die oben angegebene, und daraus die maximale Monotonie geschlossen. 

In diesem Zusammenhang und fur das folgende mochten wir auf die Arbeit [9] 

von E. Zarantonello verweisen, fur die Behandlung von monotonen Operatoren 

auf Hilbertraumen schlechthin auf die Monographie [4] von H. Brezis. SchlieB

lich mochten wir noch festhal ten, daB fur j edes x E H 

~K(x) = n cO{~K(x'): lx' -xl < o} 
0>0 
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gilt, was von M. B. Suryanarayana [7] gezeigt wurde. 

Dem Autor ist die Funktion (jJK : H ... IR erstmals in der Arbeit [1] von E. 

Asplund aus dem Jahre 1969 Uber Tschebyscheffmengen in Hilbertraumen begegnet 

und die Aussagen der bisherigen Satze sind nichts als Beschreibungen ihres 

Subdifferentials. Die folgenden Aussagen gehen direkt auf E. Asplund zurUck: 

Die Eindeutigkeitsmenge U<IlK = {xEH: jf(<IlK(x» = I} ist eine dichte Go-Menge 

in H, sie beschreibt genau die Elemente in H, in denen (jJK Gateaux-differell

zierbar ist. Indirekt geht der erste Teil der Aussage schon auf S. B. Ste~in 

[6] aus dem Jahre 1963 zurUck. Die Funktion (jJK ist darUberhinaus in einer 

dichten Go-Menge Frechet-differenzierbar. Bezeichnen wir diese Punktmenge mit 

Up dann ist ihr BUd unter <ilK im AbschluB von K enthalten. FUr eine a b -
K 

g esc h los sen e Teilmenge K in H - als ein guter Approximationstheo-

retiker sollte man nur solche Teilmengen betrachten - enthalt somit die 

Tschebyscheffmenge von K eine dichte Go-Menge, namlich die Untermenge, auf der 

die metrische Projektion stetig ist. 

In nichtendlich dimensionalen Hilbertraumen sind abgeschlossene Teilmen

gen im allgemeinen keine Existenzmengen. Dennoch ist fUr solche Mengen <ilK 

durch die metrische Projektion PK eindeutig bestimmt ist. Es gilt 

SATZ 4. Sei K eine abgeschlossene, nichtleere TeUmenge von H. FUr jedes xEH 

ist 

<IlK(x) = n co{PK(x'): 0 < lx' -xl < 0 und x' EV(PK)}. 
0>0 

BEWEIS. Nach obigem ist fUr jedes x E H die Punktmenge auf der rechten Seite 

der Gleichung nicht leer und in <IlK(x) enthalten. Die Annahme, daB die Inklu

sion fUr ein x E Hecht ist, fUhrt wie im Beweis von Satz 2 zu einem Wider-

spruch. 1/ 

Satz 4 gibt uns eine MOglichkeit, monotone Operatoren monoton fortzu

setzen. FUr die metrische Projektion PK auf eine abgeschlossene Teilmenge K 

in H besagt er, daB PK eine eindeutig bestimmte maximal monotone Fortsetzung 

besitzt und daB sie durch 

gegeben ist. 

H3x I- n co{PK(x') Ix -x'i < 0 und x' EV(PK)}. 
0>0 
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3. Es ist wohl bekannt, daB abgeschlossene und konvexe Teilmengen eines 

Hilbertraumes Tschebyscheffmengen sind. Im~n gilt die Umkehrung, was wohl 

von L.N.H. Bunt im Jahre 1934 erstmals bewiesen wurde, in einem beliebigen 

Hilbertraum bisher nur unter zusatzlichen Annahmen. Die wohl schwachste Zu

satzvoraussetzung wurde von L. P. Vlasov [a] gestellt. Er zeigte: 1st K eine 

Tschebyscheffmenge in H und gilt fUr jedes (x,k) E PK 

w-lim PK(k+t(x-k» = k, 
t~l+ 

dann ist K abgeschlossen und konvex. In [3] haben U. Westphal und der Autor 

einen Beweis im Rahmen monotoner Operatoren gegeben. Wir zeigten, daB die Ste

tigkeitsforderung maximale Monotonie von PK impliziert, d.h. PK = ~K auf H, 

was zur Abgeschlossenheit und Konvexitat von K aquivalent ist. 

Vlasovs Arbeit erschien 1967. Schon 1965 hatte V. L. Klee [5] auf einer 

Tagung Uber Konvexitat in Kopenhagen die Vermutung ausgesprochen, daB in 

nichtendlich dimensionalen, maglicherweise nichtseparablen, Hilbertraumen 

nichtkonvexe Tschebyscheffmengen existieren. Klee stUtzt seine Vermutung auf 

Beispiele semi-tschebyscheffscher Mengen, sowie proximinaler Mengen mit in 

sich zusammenziehbarem Bild eines jeden Elementes im Raum unter der metri

schen Projektion, deren Komplement beschrankt, offen und konvex ist. Solche 

Mengen existieren nicht imfr(n. 

Das Problem scheint auch heute noch so weit von einer Lasung entfernt zu 

sein wie vor 15 Jahren. Der wohl schanste Beitrag hierzu geht auf E. Asplund, 

loco cit., zurUck, der zeigte: 1st die Vermutung richtig, dann existieren 

Tschebyscheffmengen mit beschranktem, offenem und konvexem Komplement. 

Der Autor hat vergeblich versucht, die Vermutung durch die Angabe einer 

proximinalen Menge K in einem Hilbertraum H zu stUtzen, fUr die fUr ein Ele

ment xEH Zc;PK(x) ~ ~K(x) gilt. Die Annahme, daB fUr pro x i min ale 

Mengen in Hilbertraumen schlechthin cOPK 
schen Vermutung. 

~K gilt, widerspricht der Klee-

Das folgende Beispiel mag die Situation ein wenig erlautern. 

BEISPIEL. 5 {ej : j E1N} sei die natUrliche orthonormale Basis von tlIN). Wir 

wahlen sie als Approximationsmenge K. 1st L a.e. die Orthogonalreihenentwick
J J 

lung des Elementes x in tlIN) , dann gilt 

lPK (x) 
I 

sup a j - 2" .... 
j 

fUr j ~ "'. 
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Offenkundig ist V(P K) = {x E tiIN) : <l j ~ 0 fUr wenigstens einen Index j EIN}, 

und es ist nicht schwer einzusehen, daB 

[
;;;p K (x), <l j > 0 fUr wenigs tens einen Index j EIN, 

<l>K(x) = 
;;;{O,e. :Vj ElN 3 <l. = a}, sonst 

J J 

gilt. Erganzen wir nun K durch ein Element y ~ L S. e., so daB K = K U {y} 
J J Y 

eine Existenzmenge wird, dann muB iyi < 1 und S. < 0 fUr jedes j ElN gelten. 
- J -

Doch welches solche Element y wir auch wahlen, es gilt stets 

1st J eine Uberabzahlbare Indexmenge und ist {e. : j E J} die natUrliche ortho-
J 

normale Basis von tZ(J), dann ist K = {e. : j EJ} proximinal. Auch hier gilt: 
_ J 

coPK = <l>K· 

Wir mochten mit dem folgenden positiven Ergebnis schlieBen. 

SATZ 6. Jede der folgenden Bedingungen an die Teilmenge K in H ist hinrei

chend, urn <l>K = ~PK zu garantieren. 

(i) Kist approximativ kompakt. 

(ii) K ist proximinal und PK:H->H n.o. halbstetig. 

(iii) K ist proximinal und coPK : H-+ H n.o. halbstetig. w 
(iv) K ist proximinal und fUr jedes x E HO gilt 

~PK(x) n ~{PK(x'): ix -x'i < o}. 
0>0 

(v) FUr jeden abgeschlossenen Halbraum M in H ist K n M proximinal. 

BEWEIS. Es gelten die Implikationen (i) ~ (ii) ~ (iii) ~ (iv). Bedingung (iv) 

aber besagt nach Satz 4, daB ~PK maximal monoton ist. Es bleibt also die 

Hinlanglichkeit der Bedingung (v) nachzuweisen. Zuerst halten wir fest, daB 

K selbst proximinal ist. AngenoIlllllen, ;;;PK(x) 1 <l>K(x) fUr ein xEH. Dann exi

stiert ein uEH, iui = 1, und ein cEIR, so daB fUr jedes kEPK(x) 

< k,u > < c < v(x,u). 

Sei M = {yEH: c ~ < y,u >}. Da v(x,u) > c, ist M n K nicht leer und dK(x) = 
= ~nM(x). Nach Voraussetzung ist K n M proximinal. Wir erhalten also 

PKnM(x) C PK(x) im Widerspruch zu PK(x) C {M. / / 

Bedingung (v) wurde erstmals von E. Asplund, loco cit., formuliert. Er 

folgerte, daB eine Tschebyscheffmenge mit dieser Eigenschaft abgeschlossen 

und konvex ist. 
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tiBER EXlSTENZ- UND ElNDEUTlGKElTSMENGEN BEl DER BESTEN KO-APPROXlMATlON 

Ursula Westphal 

lnstitut fUr Mathematik 

Universitat Hannover 

Hannover 

A condition on a normed linear space is given which implies that every exist
ence and uniqueness set with respect to the best co-approximation is a closed 
flat. This is applied to LP spaces. 

1. Sei X ein ree11er normierter 1inearer Raum. FUr x E X und r > 0 sei 

B(x;r) die offene Kugel um x mit Radius r und B(x;r) ihre Absch1ieBung. 

Sei K eine nicht1eere Tei1menge von X. Die metrische Projektion PK von 

X auf Kist die mengenwertige Abbi1dung PK : X+2K, die durch 

definiert ist. 

n B(x;llx-k'll)n K 
k'EK 

fUr jedes x E X 

Neben der metrischen Projektion fUhren wir fo1genden die Approximation 

durch E1emente aus K betreffenden Operator ein : Es sei ~ : X+2K die mengen

wertige Abbildung, die durch 

~(x) = n B(k';llx-k'll) nK 
k'EK 

fUr jedes x E X 

definiert ist. ~ wird metrische Ko-Projektion von X auf K genannt, und fUr 

jedes x E X heiBt k E ~(x) ein Element bester Ko-Approximation von x durch 

E1emente aus K. 

lmplizit spie1t der Operator ~ fUr eine Teilmenge KcX bereits seit 

1angem eine wesent1iche Rolle beim Studium der Existenz einer kontraktiven 

Retraktion auf K. Man siehe bereits die Arbeiten von Kirszbraun [11] und 

Kakutani [10], sowie Arbeiten jUngeren Datums, z.B. [2],[7]. Exp1izit wurde 

~ 1972 von Franchetti und Furi [8] im Zusammenhang mit der Charakterisierung 

von Hi1bertraumen eingefUhrt. FUr 1ineare Tei1raume K haben Papini und Singer 
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[13] die metrische Ko-Projektion vor allem im Hinblick auf sog. Charakterisie

rungssatze untersucht; auf sie geht auch die Bezeichnung '~este Ko-Approxima

tion" zuriick. Bzgl. der metrischen Ko-Proj ektion siehe auch [12]. 

In Analogie zu dem von Efimov und Steckin fUr die beste Approximation 

eingefUhrten Begriff der Sonne nennen wir K C X eine Ko-Sonne, falls fUr jedes 

x E X gilt: 

(I) k E ~(x) ~ k E ~(k + A(X - k» fUr jedes A ;;: 0; 

d.h. 1st k ein Element bester Ko-Approximation zu x, so ist k auch Element 

bester Ko-Approximation zu jedem Punkt auf dem Strahl von k durch x. Daher 

auch nennt man ~ "strahlenformig" (englisch: "sunny"). Die Bedingung (1) 

liBt sich aquivalent mit Hilfe des semi-inneren Produktes auf X x X beschrei

ben, das fUr (x,y) E X x X wie folgt definiert ist: 

<x,y> : = lim 
s t+O+ 

II y + tx 112 _II Y 112 
2t 

K eXist genau dann eine Ko-Sonne, wenn K der folgenden Bedingung genUgt: 

1st x E X und k E ~(x), so gilt < x - k, k - k 1> S ;;: 0 fUr jedes k I E K • 

Diese Bedingung ist das Pendant zum verallgemeinerten Kolmogoroff-Kriterium 

bei der besten Approximation; man siehe dazu die AusfUhrungen und Literatur

angaben in Berens-Westphal [3] • 

Die Ko-Sonneneigenschaft einer Teilmenge K steht in direktem Zusammen

hang mit dem Begriff des Approximationsbereiches, der bereits 1967 von 

Browder bei der Approximation von Fixpunkten kontraktiver Abbildungen in 

Hilbertraumen betrachtet wurde. In unserer Terminologie ist der Approximations

bereich ~(x) zwischen x E X und K durch 

~(x) = {y E X; <x - y, y - kl> S ~ 0 V k' E K} 

definiert. Es gilt: Kist eine Ko-Sonne genau dann. wenn ~(x) = ~(x) n K 

fUr jedes x E X. Man siehe hierzu Bruck, Jr. [5] • 

1st K c X ein affiner Teilraum. so ist leicht einzusehen. daB K eine Ko

Sonne ist. Mehr noch. fUr jedes xE X gilt: 

(2) k E ~(x) ~ k E ~(k + 7I.(x - k» fUr jedes A E R • 

Verwendet man den Orthogonalitatsbegriff im Sinne von Birkhoff. nimlich fUr 

y,z E X heiBt y orthogonal zu z. yIz, falls II y II :;;; II y + AZ \I fUr jedes AER, 
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so besagt (2) 

k E ~(x) ~ K - klx - k • 

Analog zu den Begriffsbildungen bei der besten Approximation nennen 

wir K eX eine Existenzmenge bzgl. der besten Ko-Approximation, falls ~(x). 0 

fUr jedes x E X, und eine Eindeutigkeitsmenge bzgl. der besten Ko-Approxima

tion,falls ~(x) fUr jedes x E X einelementig oder leer ist. 

Bei der besten Approximation interessiert man sich u.a. fUr die Charak

terisierung der Existenz- und Eindeutigkeitsmengen, der sog. Tschebyscheff

mengen. So weiB man in endlich dimensionalen glatten Banachraumen, daB jede 

Tschebyscheffmenge konvex ist. Ob dies auch in unendlich dimensionalen Raumen 

gilt, ist nicht einmal im Fall eines Hilbertraumes bekannt. 1m Gegensatz dazu 

ist die Charakterisierung der Existenz- und Eindeutigkeitsmengen bzgl. der 

besten Ko-Approximation in Hilbertraumen kein Problem. Diese Mengen sind genau 

die abgeschlossenen affinen Teilraume, wie H. Berens und der Autor in einer 

gemeinsamen Note [4] gezeigt haben. 

Die Frage ist, ob auch in allgemeineren normierten linearen Raumen jede 

Existenz- und Eindeutigkeitsmenge bzgl. der besten Ko-Approximation ein 

affiner Teilraum sein muS. FUr die Raume LP, 2 < P < ~, Uber einem cr-endlichen 

MaBraum wird diese Frage im folgenden Abschnitt positiv beantwortet. Daher 

sind die Existenz- und Eindeutigkeitsmengen bzgl. der besten Ko-Approximation 

in LP, 2 < p < ~, genau diejenigen abgeschlossenen affinen Teilraume, deren 

Verschiebung durch den Nullpunkt Wertebereich einer kontraktiven linearen 

Projektion ist. 1m Fall eines endlichen MaSraumes hat Ando [1] solche abge

schlossenen linearen Teilraume von LP vollstandig charakterisiert: Es sind 

genau diejenigen, die zu einem LP-Raum Uber einem geeigneten MaBraum iso

metrisch isomorph sind. Tzafriri [14] hat dieses Ergebnis auf LP-Raume Uber 

nicht endlichen MaSraumen erweitert. 
An dieser Stelle mochte ich H. Berens fUr seine Anregungen und Hinweise 

im Zusammenhang mit dieser Arbeit sowie fUr seine Gesprachsbereitschaft 

herzlich danken. 

2. Sei X ein reeller normierter linearer Raum. 1m ersten Satz stellen 

wir einge unmittelbare Folgerungen der Existenz- und Eindeutigkeitseigen

schaft von Teilmengen in X zusammen. 
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SATZ I. Sei K eX eine Existenz- und Eindeutigkeitsmenge bzgl. der besten Ko

Approximation mit metrischer Ko-Projektion ~ • Dann gilt: 

(i) 

(ii) 

(iii) 

K ist eine abgeschlossene Ko-Sonne. 

1st X strikt konvex, ~ ist K eine konvexe Menge. 

1st X glatt, ~ ist ~ eine Kontraktion; daher ist K Wertebereich 

einer strahlenformigen kontraktiven Retraktion. 

BEWE1S. Wir zeigen (i) und (iii). (i) Die Abgeschlossenheit folgt unmittelbar 

aus der Existenzeigenschaft. Sei x E X und ~ = ~(x) + ~(x - ~(x» fur 

~ ;;: 0. Fur j edes ~ E [0, I] und j edes k I E K gil t xli. E B (k I ; 11 x - k'll) und 

folglich B(k ' ;11 xli. - k'll )C.B(k ' ;1I x - k'll). Daraus folgt ~(xA.)c~(x) fur 

jedes ~ E [0,1], und da K Existenz- und Eindeutigkeitsmenge ist, 

~(x~) = ~(x). Fur A. ;;: I ergibt eine triviale Abschatzung ~(xA.) 

(iii) Seien x, x' E X. Da K Ko-Sonne ist, gilt 

~(x). 

<x - ~(x), ~(x) - ~(X'»s ;;: ° und <x' - ~(X'), ~(X') - ~(x»s ;;: 0 • 

1st X glatt, so ist das semi-innere Produkt <. , .> in der ersten Koordinate s 
linear, und folglich fuhrt Addieren der beiden Ungleichungen auf die Unglei-

chung 

<x - x' - (~(x) - ~(X'», ~(x) - ~(X'»s ;;: 0, 

die zu 11 ~(x) - ~(x') 112 ~ <x - x', ~(x) - ~(X'»s 

aquivalent ist. Daraus ergibt sich 

11 ~(x) - ~(X') II ~ 11 x - x' II • II 

Wie bereits erwahnt, ist jeder affine Teilraum K eine Ko-Sonne, die sogar 

die Bedingung (2) erfullt. Wir werden nun umgekehrt zeigen, daB fur Existenz

mengen K in strikt konvexen Raumen diese Bedingung impliziert, daB K ein 

affiner Teilraum ist. 

LEMMA I. Sei X strikt konvex und K eX eine Existenzmenge bzgl. der besten ~ 

Approximation. Folgende Aussagen sind aquivalent: 

(i) 

(ii) 

Fur j edes x E X gil t: k E ~ (x) =1) K - k 1 x - k 

Kist ein affiner Teilraum • 

BEWEIS. Wir zeigen den Schritt (i) '* (ii). Wegen der strikten Konvexitat von 
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x ist K eine konvexe Menge. Angenommen, Kist kein affiner Teilraum. Dann 

existieren k , k E K, k + k , so daB x: = k + t (k -k ) r£ K fUr ein t > 1. 
12 12 1021 0 

Sei k E ~(x) und ohne Beschrankung der Allgemeinheit k = 0 • Die metrische 

Projektion PG von X auf die Gerade G : = {AX; A E R} ist einwertig, quasi

additiv und homogen; auBerdem besagt Bedingung (i), daB PG(k') = 0 fUr jedes 

k' E K Daher gilt 

1 1 o = PG(k z) = PG«1 - - )k + - x) 
to 1 to 

also x = 0, was x r£ K widerspricht. II 
1st also K eine Existenz- und Eindeutigkeitsmenge bzgl. der besten Ko

Approximation in einem strikt konvexen Raum, so ist K ein affiner Teilraum 

genau dann, wenn sich die nach Satz l(i) geltende Ko-Sonneneigenschaft zu der 

Bedingung 

K - ~(x) 1 x - ~(x) fUr jedes x E X 

verscharfen laBt. 

FUr x ; 0 definieren wir 

H = {y E X; II y 11::0 II y - Ax II V A E R} = {y E X; y 1 x} x 

1st X ein zweidimensionaler Raum oder ein innerer Produktraum, so ist H fUr x 
jedes x ; 0 eine Hyperebene, und diese Eigenschaft charakterisiert gerade aIle 

drei- und hoherdimensionalen inneren Produktraume (vgl. [9]) • 

SATZ 2. X habe die Eigenschaft : 

(*) Zu jedem x E X \ {o} existiert ein n > 0, !£. daB 

Ax E n {B (y; II y - x II); y E H } fUr j edes A E [ -n, 1 ] x 
1st K c.X Existenz- und Eindeutigkeitsmenge bzgl. der besten Ko-Approximation, 

!£. gilt fUr jedes x E X 

K - ~(x) 1 x - ~(x), 

d.h. ~(x) = ~(XA) fUr jedes A E R, wobei xA = ~(x) + A(X - ~(x» • 

BEWE1S. Sei x E X\ K. Da K Ko-Sonne ist, gilt ~(x) = ~(XA) fUr jedes A <: 0 

Urn diese Gleichung auch fUr A < 0 zu verifizieren, betrachten wir die Menge 

L: ={y EX; y - ~(x) lx - ~(x)}. 

Aus der Bedingung (*) folgt, daB zu x - ~(x) ( ; 0) ein n > 0 existiert, so 
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daB 

xA E n B(y; II y - x II ) 
yEL 

fUr jedes A E [- n,l] • 

AbkUrzend setzen wir Q(x) = x-n = ~(x) - n (x - ~(x» und wollen zeigen, 

daB ~(Q(x» = ~(x) • 

Es ist. fUr jedes y E L II Q(x) - y II ~ II x - y II • Um die Gliltigkeit 

dieser Ungleichung auch fUr jedes y E K nachzuweisen, zeigen wir, daB zu jedem 

k' EK ein aE [0,1) existiert, so daBy': =ax+ (l-a)k' EL. 

1st namlich k' E K, so existiert ein ~ EJR, fUr das IIk'-~(x)+ A(x-~(x»11 

als Funktion von A sein Infimum annimmt. Es ist dann 

k' - ~(x) + ~(x - ~(x» 1 x - ~(x) 

1st ~ > 0, so folgt daraus 

~ ~ I x + s+-r k' - ~(x) 1 x - ~(x) • 

D.h. ax + (I - a)k' E L, wobei a 

sich, da K eine Ko-Sonne ist: 

= ~ E (0,1) • 1st ~ ~ 0, so ergibt 
~ + I 

II ~(x) - k' II:;; II ~(x) - ~(x - ~(x) - k' II ~ II ~(x) + A(X - ~(x» - k' II 

fUr jedes A E JR • Also ist k' - ~(x) 1 x - ~(x), d.h. k' E L • 

FUr jedes k' E K gilt nun: 

II Q(x) - k' II :;; II Q(x) - y' II + II y' - k' II :;; II x - y' II + II y' -k' II = IIx-k'lI. 

Da K Existenz- und Eindeutigkeitsmenge ist, folgt damit 

II ~(Q(x» - k' II:;; II Q(x) - k' II ~ II x - k' II fUr jedes k' E K 

und ~(Q(x» = ~(x). Wegen der Ko-Sonneneigenschaft ist dann sogar 

~(XA) = ~(x) fUr jedes A :;; 0. 

Es ist klar, daB jeder innere Produktraum die Eigenschaft (*) fUr n = 

besitzt. Wir wollen nun zeigen, daB sie in den Raumen LP, 2 :;; P < 00, auch 

fUr P , 2 erfUllt ist. Zuvor die folgende 

BEMERKUNG. 1st X gleichmaBig konvex, ~ gibt ~ ~ jedem x E X\{O} und jeder 

Kugel B(O;r) ein n >0, ~ daB 

AX En {B(Y;II y - x II); y E H n B(O;r)} fUr jedes A E [-n ,I]. 
x -

1/ 
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BEWErs. Sei x fOund setze H = H • Fur jedes y E H ist II y - AX II als Funkx 
tion von A stetig und streng mono ton wachs end fur A ~ 0 sowie streng monoton 

fallend fur A ~ O. Daher existiert eine Funktion h : H + R+, so daB 

(3) II y - x II = II y + h(y)x II fur jedes y E H • 

Sei r > O. Dann ist inf {h(y); y E H n B(O;r)} > O. Angenommen, dies ist nicht 

der Fall. Dann gibt es eine Folge (Yk)kE N ' Yk E H, so daB lim h(Yk) = 0 
k+oo 

und lim II Yk - ax II 
k+oo 

= II Yk - x 11-1 Yk und 

: d > 0 fur jedes a E [0,1]. Nun gilt fur ~: = 

und lim II i(Uk + vk) II = I • Da X gleichmaBig konvex, folgt daraus, daB 
k-+<x> 

o = lim II ~ - vk II = II x II d-1 , was im Widerspruch zu x f 0 steht. Sei n 
k-+<x> 

= inf {h(y); y E H n B(O;r)}. Dann ist fur jedes A E [-n,l] 

Ax E n {B(y; II y - x II ); y E H n B(O;r)} • 

Sei nun X einer der gleichmaBig konvexen, glatten Banachraume LP = 
= LP(n,Lt, ~), wobei P > 2 und (n,ot, ~) ein cr-endlicher MaBraum ist. Fur 

x,y E LP ist das semi-innere Produkt durch 

I J p-I < x, y > = 2 x I y I sgn y d~ 
s lIyllP-

gegeben. Da in glatten Raumen y 1 x ~< x, y > = 0 ist, gilt fur x + 0 s 

H = Hx = {y E LP;JlX I yl p-I sgn y d~ = O} • 

Der Konvexitatsmodul 6 (E), 0 < E ~ 2, von LP, definiert durch 
P 

/I 

6 p (E) = inf {I - II u + v II; u, vEL P, II u Il ~ I, II v II . ~ I, II u - v II ~ E} , 
2 

wurde im Fall P > 2 bereits von Clarkson mit 

angegeben; vg1. z.B. [6]. Sind daher u, v E LP, so daB II u II ~ I , II v II ~ 
und II u - v II ;;: E , so gil t 

(4) 
,.. P II u + v liP 

(';:) ~ I - ~--"""-
2 2P 
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LEMMA 2. Die Raume LP, 2 < P < 00, genUgen der Bedingung (*). 

BEWEIS. Sei x # 0 in LP• Sei h : H ~ R+ die durch (3) definierte Funktion. 

Nach obiger Bemerkung ist auf jeder beschrankten Teilmenge von H inf h > o. 
Wir werden nun zeigen, daB auch fUr 11 Y II + 00 hey) durch eine positive Kon

stante nach unten beschrankt ist. AngenollUllen, es ist inf {h(y); y E H } = o. 
Dann gibt es eine Folge (Yk)keN ' Yk E H, so daB lim 11 Yk II = 00 und 

k~ 

lim h(Yk) = 0 • Wir zeigen zunachst, daB lim 
k~ k~ 

II Yk - x II P -11 Yk 11 P = 0 ist. 

Dazu betrachten wir im FaIle m < P ~ m + I, m = 2, 3, ••. , das asymptotische 

Verhalten der Differenzen 

fUr t = I, ••• , m-I. Wegen h(tyk) ~ t h(yk) fUr t ~ list auch lim h(tyk) = o. 
k~ 

Setzt man 

~,i : 

fUr i 2, ••• , m, so gilt fUr t = I, ••• , m - I 

I m I 
(5) II Yk - n x liP -II Y liP - r: -. a . = 0 (II x liP) 

J., k i=2 tl.~,l. 

I P mI' . 
(6) 11 Yk - n x II -II Yk liP - r: -. (_I)l. hl.(tyk)a . = 0 (hP(tYk)11 x liP) 

J., i=2 tl. !C,l. 

Aus (5) und (6) ergeben sich (m-I) beschrankte Linearkombinationen der (m-I) 

AusdrUcke a . !C,l. 
m 
r: -1.- (1 

i=2 tl. 

(i = 2, .•• , m), namlich fUr t = I, ••• , m-I 

i i P - (-I) h (tYk)) ~,i =0 (lIxll). 

Der Betrag der Koeffizientendeterminante dieses Systems von Linearkombinatio

nen ist durch eine positive Konstante nach unten beschrankt, falls k groB ge

nug ist. Daher ist jedes ak . (i = 2, ••• , m) fUr k ~ 00 beschrankt. Aus (6) ,l. 
folgt dann 

(7) lim II Y - x II P - 11 Y 11 P = 0 • 
k+eo k k 

Sei nun fUr k E IN ~ = \I Yk - x 11-1 Yk , vk = II Yk - x 11-1 (Yk - x) und 

E:k = IIYk - x 1I-1 1lx II. Dann folgt aus (4), wenn man dort~, vk ' E:k fUr 
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u, v, E: setzt, 

Fur k + 00 fuhrt diese Ungleichung wegen (7) zu x = 0, was der Voraussetzung 

x f ° widerspricht. Also ist n : = inf {h(y); y E H} positiv und 

A.X E n {B"(y;lIy - xli); y EH} fur jedes A. E [-n,l] • II 

Fur < P < 2 ist der Konvexitiitsmodul 0 (E:) vom Potenztyp 2 und nicht p : 
p 

daher ist die Argumentation von Lemma 2 auf diesen Fall nicht anwendbar. Fur 

p ~ 2 fassen wir zusammen: 

SATZ 3. In LP, 2 ;;;; p < 00, uber einem a-endlichen Ma13raum sind die Existenz

und Eindeutigkeitsmengen bzgl. der besten Ko-Approximation diejenigen abge

schlossenen affinen Teilriiume, deren Verschiebungen durch den Nullpunkt Werte

bereiche kontraktiver linearer Projektionen sind. 
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In the period 1966-73, Lebedev and Tamrazov obtained very general inverse 
approximation theorems for polynomial approximation. on plane compacta K. Their 
work extends the inverse theorems of Dzjadyk for the interval [-1,1] and other 
well-behaved continua; because of its generality it is rather complicated. The 
present paper, based on the joint "Master's thesis" of the first two authors, 
deals with a simpler situation. It is assumed that K is a continuum with con
nected complement and that for an f in A(K), the apProximation by polynomials 
p of deiree";;n on L : dK is at most of order d (x ,Ll/n) s. Here LU is the level 
ciirve I ~ : eU of the exterior mapping function ~ and s: k+a., k a nonnegative 
integer, 0 <ex";;\' The con<;ll,lsion is that f is of class AS on L and also on K, 
that is, f is in Ck and ftk) is in Lip ex (if ex < I) or the Zygmund class (if 
ex: I). Except for integral s this theorem is a very special case of the re
sults of Lebedev and Tamrazov [5], [7] . 

I. Model Theorems for Degree of Approximation 

For degree of approximation problems generally, the model theorem is the 

classical Jackson-Bernstein-Zygmund result (1911-12-45) for the circle or C2~: 

f E AS : E~rig(f) : O(n-s), s > O. 

Here AS = Lip s if 0 < s < I, AI is the ·Zygmund class and f E AI+t,t > o means 

fECI and f' E At. We will not consider more general smoothness classes. 

1.1 The Interval [-I, IJ. For results on polynomial approximation in the com

plex plane, a better model is provided by the Timan-Dzjadyk characterization 
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(1951-56) for the interval [-I, IJ: 

where 

there exist polynomials p and a constant M such that 
n 

If(x) - p (x)1 ~ MA (x)s, -I ~ x ~ I, n ~ I, 
n n 

The characteristic rate of approximation is better at the ends of the intervall 

([6J. The term l/n2 in the definition of A (x) may be omitted, Teljakovski~ 
n 

[IOJ, but such improvement would get in the way of our story).It is remarkable 

that this theorem was discovered, and is usually proved, by real variable meth

ods. Complex methods would seem to be very natural here, especially for the 

"inverse theorem"! 

What is the geometric meaning of A (x)? What quantity should one use in 
n 

the case of more general continua K in the plane with connected complement? 

The function A (x) is comparable to the distance between x E [-I, IJ and the 
n I/n -I/n 

ellipse with foci ±I and major axis e + e . For general K one may use the 

distance d(x, LI/n) between x on L = aK and the curve LI/ n (Dzjadyk 1958).Here 

LU is the level curve {g = u} of the Green function g(z, 00) for the complement 

rtO = a:*'K with pole at 00. Equivalently, it is the level curve {I¢I = eU } for 

the I - 1 conformal mapping w = ¢(z) of rtO onto {Iwl > I} such that ¢(oo) = 00, 

¢' (00) > 0: 

g(z, 00) log 1¢(z)l. 

In the case of the closed unit disc, K = B(O, I), one has ¢(z) 

log I z I, 

d(z, LI/n) = e 1/ n - I ~ I/n. 

z, g(z, 00) 

In the case K = [-I, IJ the conformal map is given by z = !(w + l/w); one can 

use it to prove the characterization theorem, in particular the inverse theorem. 

2. Known Results for the Complex Plane 

Let K be a compact set with connected complement. We consider only func

tions in A(K), that is, continuous functions on K which are holomorphic on the 

interior KD. The N i k 0 1 ' ski ~ pro b 1 em (1956) is to characterize 
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the classes AS, s > 0 by polynomial approximation properties. In the period 

1959-65, Dzjadyk considered continua K with nice boundary L: piecewise rather 

smooth, no cusps. For such K, he obtained the result 

f there exist polynomials Pn and 

1 If(x) - p (x)1 $ Md(x, LI/n)s, 
n 

a constant M such that 

X E L, n;:: I. 

The proof depended on properties of the mapping function ¢ and a generalized 

Jackson formula. 

2.1 Recent Results. Recent work by members of the Dzjadyk school and others has 

been directed to the problem of weakening the conditions on K. 
v 

BelY1 [IJ has obtained a very powerful d ire c t the 0 rem. 

He proved " + " under the sole condition that L aK be a quasi-circle or qua-

siconformal curve, that is, the image of a circle under a quasiconformal map

ping of the plane onto itself. (Equivalently, a quasi-circle is the image of a 

quasi-line under a fractional linear transformation; a quasi-line is a Jordan 

curve r through 00 in a* for which there is a constant B, such that for any 

three finite points zl' z2' z3 on r, with z2 "between" zl and z3' one has 

IZI - z21 / Iz) - z3 1 $ B.) The proof depends on very sophisticated use of 

extremal lengths to obtain the necessary properties of the mapping function ¢ 
v and on further generalization of the Jackson formula. BelY1's work continues; 

the restriction that r be a quasi-circle can be relaxed; some cusps are per

missible. 

It is quite surprising that for the i n v e r s e Nikol'skir problem 

practically no conditions on K are necessary. Continuing Dzjadyk's work, 

Lebedev-Tamrazov [5J and Tamrazov [7J (cf. also [8J) have obtained extremely 

general and definitive inverse theorems. The results involve very generalmodu

Ii of continuity and very general compacta with connected complement. Because 

of this generality, the statements and proofs are rather complicated. The pres

ent paper is intended as an i n t rod u c t ion to this work. In order to 

bring out the basic ideas, we will discuss only the simple case involving the 

c las s e s AS and con tin u a K with connected complement. 

Before we start on this discussion, we briefly remark that there is a 

parallel problem to that of Nikol'skir, namely, to characterize the functions 
-s f in A(K) for which E (f) = O(n ). Also on that problem, Dzjadyk and other 

n 
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Soviet mathematicians have done a good deal of work. Recent contributors have 

been Kovari, Andersson and Dyn'kin [2J. Here one is led to consider closed 

Jordan domains K of bounded boundary rotation. For such (and somewhat more 
s -I 

general) K, the condition f 0 ~C € A (on the unit circle C), where ~ = ¢ , 

implies that E (f) = O(n-s ). A limited converse holds. 
n 

Additional references for this section are Dzjadyk [3J, Korevaar [4Jand 

Tamrazov [9J. 

3. The Principal Theorem 

In the following wE(f, 8) will denote the usual modulus of continuity of 

f on the compact set E. An equivalent modulus may be obtained with the aid of 

local best approximation by constants. To define a Z y g m u n d c I ass 

AI for E one introduces a second order modulus of continuity. Such a modulus 

may be based on local best approximation by general or special linear func

tions. We will use 

w~(f, 8) max If(z) - f(zO) - c(z - zO)! 
! z-zO I S:8, uE 

and say that f is in AI on E when w~(f, 8) = 0(8). 

Except for integral s, the following theorem is a very special case of 

the results in [5J, [7J. 

THEOREM. Let K be ~ continuum with connected complement QO' set L = aK and let 

LU , u > 0 be the level ~ {g = u} of the Green function g(z, (0) for QO with 

pole at co. Suppose that for ~ f in A(K) and s > 0 there exist polynomials Pn 

of degree s: n, a constant M and a positive integer m such that 

(3. I) 

(3.2) 

(3.3) 

I ! lin s f(x) - p (x) s: Md(x, L ), 
n 

Then if 0 < s < 

w (f - 8) s 
Pm' s: C I (s)Mo , L 

wK(f 8) s 
- Pm' s: C/s)MI) , 

If s then (3.2) and (3.3) hold with w ----

X € L, n;::: m. 

8 > 0, 

I) > o. 

rel2laced ~w*. 



Bijvoets/Hogeveen/Korevaar 269 

If s > I then f is differentiable ~ K, f I is in A(K) and 

(3.4) I I lIn s-I f'(x) - p~(x) ~ C3(s)Md(x, L ) , X E L, n ~ m. 

Constants C.(s) independent of K are easily determined. 
1 - -

COROLLARY. Under the hypotheses of the theorem f will be of class AS on L and 

K: if 0 < S < I then f is in Lip s, if s = I then f is in the Zygmund ~ and 

if :-> I ~hen f is in cT and f' in AS-=-I. 

3.1 Introduction to the Proof (cf. [5J). Dividing by M we may assume M = I,sub

tracting p from f and the p we may assume p = O. As in the Bernstein case m n m 
of C2n one takes m = mO < ml < ••• and writes 

(3.5) 

If 0 < s < lone can proceed with the following direct estimate: 

If(xO) - f(x)1 ~ If(xO) - p (~0)1 + If(x) - p (x)1 + r~I~.(xo) - ~.(x)l. 
~ ~ J J 

(3.6) 

In the case of trigonometric approximation and Etrig(f) = O(n-s ) it is 
. n 

convenient to take mj = 2J, j ~ jO' To deal with the last term in (3.6), 

Bernstein invented his inequality for the derivative of a trigonometric poly

nomial of order ~ n, namely, IIT'II ~ cn liT II (where one may take c = I). He . n n 
finally took k such that ~ ~ 1/8 and readily concluded (when 0 < s < 1) that 

w(f, 8) = 0(8s). 

We proceed with the problem of proving (3.2). For Xo and x on L = aK and 

Ix - xol ~ 0, (3.6) and (3.1) with M = I give 

(3.7) If(xO) - f(x)1 ~ ~ + (0 + ~)s + r~I~.(xo) - ~.(x)l. 
J J 

Here we have introduced the notation 

(3.8) 

and we have used the fact that d(x, LU) ~ Ix - xol + d{xo' LU). There is an 
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immediate complication. For reasons to be explained below, one would like the 

sequence {d.} to decrease exponentially but not faster and one would also like 
J 

to keep the sequence of ratios m. 11m. bounded. The price will be that the se
J+ J 

quence {m.} and the corresponding numbers d. in general have to depend on the 
J J 

point xO' 

Let us look more closely at the estimation of Iq(xo) - q(x)1 where 

(3.9) q 

This is a polynomial of degree $ mj +1 such that on L, by (3. I) , 

11m. 11m. I 
Iq(x)1 $ id(x, L J)s + ~d(x, L J+)s < d (x, L u) s , u = 11m .• 

J 

One may first estimate Iq(z)1 near xO' On every bounded component ~i of KO 

function log Iq(z)1 is subharmonic and has boundary values $ slog d(x, LU). 

Let H.{z, log d(x, LU)} be the harmonic function on the simply connected domain 
~ 

~. which solves the Dirichlet problem with the continuous boundary values 
~ 

log d(x, LU). Then the function log Iql will be majorized by sH. on ~ .• 
~ ~ 

On ~ = ~* , K there is a similar upper bound, although not for log Iql (which o 
in general tends to + 00 as z ~ 00), but for log Iql - mj +1g(·, =). 

We thus require a good local estimate for the continuous functionH on C* 

which is equal to H. on ~., i = 0, I, •••. Such a result exists (cf. [5] and 
~ ~ 

section 4): 

(3.10) 
u u H{z, log d(x, L )} $ log d(xO' L ) + log 23, 

Setting go = g on ~O and go = 0 elsewhere, (3.10) will give the inequality 

11m. 
(3.11) log Iq(z)1 $ mj+lgO(z, 00) + slog 23 d(xO' L J), z E B(xO' dj ). 

Thus for z on the circle C(xO' p) and whatever value s has in (3.1), 

(3.12) ~I~ (z)1 
j+! 

Iq(z)1 1 emj+l/mj 23S d~ 
< J 
- s s 

e',23 d. if p = d. I' 
J J+ 

if p d. , 
J 
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One may next use Cauchy's formula for z on B(XO' ~p) to obtain 

(3.13) 

\q(xo) - q(z)\ = I 2;i Ic q(w) (--1-- - __ I __ )dw\ w-xO w-z 

If mj+l/mj ~ 2, say, one could take p = dj , using the first line (3.12). For 

large m. I/m. one could take p = d. I and use the second line. However, the 
J+ J J+ 

bound for Iq(xo) - q(z)\ in the second case would be larger than the first 

bound by roughly a factor d./d. I' The second bound will be useful only if the 
J J+ 

ratio d./d. I is n~t too large. A satisfactory balanced construction of the 
J J+ 

sequences {m.} and {d.} is possible (see [5J and section 5.1). Putting every-
J J 

thing together and choosing k in a suitable manner, one will obtain a bound 

for \f(xO) - f(x)\ which does not involve the sequences {m.} and {d.}; in-
J J 

equality (3.2) will follow (see section 5.2). 

For (3.3) more work is required. One first shows that the value wK(f, 0) 

is attained when one of the variable points in its definition lies on the 

boundary L = aK. Denoting it by Xo we have to estimate If(xO) - f(z)l. In 

(3.6) with z instead of x the above estimate for \q(xO) - q(z)1 can be used 

again. However, this time we also have to estimate \f(z) - p (z)\ at points 
IIIJc 

z of KO. Here too the solutions H., i ~ I 
1 

of the earlier Dirichlet problems 

can be used as majorants. We finally need a more flexible estimate than the 

one in (3.10) and proceed to prove one. 

4. The Key Lemma 

Let K and LU, u > 0 be as in the theorem (section 3) and let 

H{z, log d(x, LU)} be the combined solution of the simultaneous Dirichlet 

problems, for nO = «* , K and the bounded components n. of KO, with boundary 
u 1 

values log d(x, L ) when x E L = aK. 

KEY LEMMA. For Xo ELand z E B(xO' r) ~ has 

H{z, log d(x, LU)} ~ { log r + log 23 

log r + log 65 

if r ~ d(xO' LU), 

if r ~ d(xO' LU )/8. 
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~ generally, for Z E B(xO' r) with r ~ d(xO' LU)/a (a > 0), 

H{z, log d(x, LU)} ~ log r + log min max {a + 2 + 2A, (a + 2)a(I/A)}, 
A>O 

where 

aCt) 3 + 8t + 2V 2(1 + 2t)(1 + 4t). 

The special cases a 

and = 27, respectively. 

I and a = 8 are obtained by taking A lIt 10 

4.1 Auxiliary Lemma. For the proof of the key lemma we need an auxiliary re

sult from conformal mapping. 

LEMMA [5J. Let D be ! simply connected domain, Zo in D such that 0 < d(zo' aD) 

= r < 00 and diam aD ~ Ar where 0 < A < oo. Then for Iz - zol = r and with aCt) 

~ ~, ~ ~ function gD(z, zO) satisfies the inequality 

PROOF. As is well-known, the Green function is given by 

where F is any I - conformal map of D onto the unit disc B(O, I) such that 

F(zO) = O. We will obtain such an F with the aid of an auxiliary transforma

tion. Choose points zl and Zz on aD such that d(zO' zl) = rand d(zl' z2) 

= ~Ar. Let T be the fractional linear transformation which takes Zo to a, 

Zl to ! and z2 to 00: 

T(z) 

We denote the image TD by G and let ~ be the I - I conformal map of G onto 

B(a, I) such that ~(O) = 0, ~'(O) > O. Then the composition ~ 0 T gives an 

appropriate F. 

The inverse ~ of ~ is a 1 - 1 conformal map of BCO, I) onto G such that 

~(a) = 0 and the boundary of G contains the point 1. It follows that c 

f'(a) ~ I. Indeed, if c = 1 then by Koebe's ! theorem, ~B(a. I) must contain 
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the disc B(O, i). Thus our G = ~B(O, I) must contain the disc B(O,!c) and 

since the point is not in G, c must be ~ I. 

The map ~O ~/c has ~O(O) = 0, ~O(O) = I, hence it belongs to the class 

S of normalized univalent functions. For this class one has Koebe's distor

tion theorem which shows that 

~ Iwl 
(I - Iw\)2 

We now observe that 

I I 
; T =; ~ 0 F ~O 0 F. 

Taking \z - zol r we have on the one hand 

I \ ~Ar'r -IT(z) ~ 1'1 c r(2r + !Ar) 4 + 16t ' 
t = II;\. 

On the other hand, by the distortion theorem, 

Solving the resulting quadratic inequality for v > I we obtain 

I/IFI = v ~ 3 + 8t + v'<3 + 8t)2 - I = o(t) = 0(1/1.). 

4.2 Proof of the Key Lemma (cf. [5J). We fix a and u > 0 and take r ~ 
u 

d(xO' L )/a. We next select Zo on B(xO' r); let Zo lie in Qi where i ~ O. 

We finally introduce a parameter A > O. 

(4. I) 

(i) Suppose diam L ~ (2 + 2A)r. Then for any z E a* 

H{z, log d(x, LU)} ~ max log d(x, LU) 
XEL 

~ log {d(xO' LU) + diam L} ~ log (a + 2 + 2A)r. 

(ii) Suppose now that diam L ~ (2 + 2A)r. Then there is a continuum 

L* c L with d(zO' L*) = rand diam L* ~ Ar. [There must be a point 

with d(zO' xI) ~ (I + A)r or else L would belong to the disc B(Zo,(I+A)r).] 
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We choose such an L* and define D as the component of ~*, L* which contains 

B = B(zO' r) and Qi' Then D is a simply connected domain which contains Xo 

and hence QO' The boundary aD will contain L* so that diam aD ~ Ar. 

Clearly 

~ {(a + 2)r if x E B n aQi' 

(a + 2)lx - zol if x E BC n aQi' 

It will follow that log d(x, LU) is majorized by gD(x, zo)+10g(a+2)lx- zo l 

everywhere on 3Q .• This is clear for x E BC n 3Q. since gD ~ O. For z E ClB like-v 1. 1. 

wise log (a + 2)r ~ gD(z, zO) + log (a + 2)lz - zol and since the right-hand 

member of the inequality is harmonic on B, the inequality will hold through-

out B and in particular on B n 3Q •• 
1. 

The conclusion is that the solution H. of the Dirichlet problem for Q. 
1. 1. 

with boundary values u 
log d(x, L ) satisfies the inequality 

(4.2) 

throughout r2 i • 

We now apply the auxiliary lemma to the present domain D. It shows that 

for z E aB, the right-hand side of (4.2) is majorized by log a(I/A) 

+ log (a + 2)r. The same constant will majorize that harmonic right-hand side 

throughout B; it will in particular majorize the (limit) value of the right

hand side at zOo It follows that 

(4.3) u 
Hi{zO' log d(x, L )} ~ log a(I/A) + log (a + 2)r. 

This inequality will hold for each Zo in Qi n B(XO' r) and each i ~ 0, 

hence it will hold for H throughout B(xO' r). Combining (4.1) and (4.3) we 

conclude that for every A > 0, 

H{z, log d(x, LU)} ~ log r + log max {a + 2 + 2A, (a +2)a(I/A)} 

throughout B(xO' r) and hence B(xO' r). 
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5. Proof of the Theorem 

5.1 The Sequences {m.} and {d.}(cf. [5J). Let Xo on L be fixed.l.[e remark that 
u .:r--.J 

d(xO' L), u > 0 is strictly increasing as a function of u and tends to 0 as 

u ~ 0 (think of the exterior conformal mapping of nO in connection with the 

level curves LU). 

To start the construction one defines mO = m ~ I, where m is given by the 

theorem. Suppose now that mO < < m. have been defined; we write 
J 

(5. I) d. 
J 

I/n. 
Let nj be the smallest positive integer such that d(xO' L J) $ !d .• We then 

J 
take mj +1 n. if 

J 
I/n. 

(a) e i the r d(xO' L J) ~ !dj o r n./m. $ 2 (or both). 
J J 

In this case !d. $ d. I $ ~d. or m. Jm. $ 2. However, 
J J+ J J+ J 

I/n. 
(b) d(xO' L J) < !d. and n./m. > 2 

J J J 

we define m. 1 n. - I (> m.). Then !d. < d. I < d .• 
J+ J I/n~ J J+ J 

In case (b), d(xO' L J) < ~dj+1 so that nj +1 = 

I + I/m. 1$ 2. Hence for j+1 we will be in case (a): 
J+ 

!d. I and m. 2/m. I $ 2. J+ J+ J+ 

if 

n .• Also, n. I/m. I = J J+ J+ 
mj +2 =nj +1 =nj , dj +2 < 

Con seq u e n c e s 0 f the con s t r u c t ion. The sequence 

{m. } 
J 

is strictly increasing, the sequence {d.} strictly decreasing. For each j, 
J 

at least one of the following is true: 

(i) !d .• 
J 

(ii) mj+ Jmj $ 2 

Furthermore, for each j, 

(iii) d. 2 < ~d .• 
J+ J 

and 

5.2 Proof of (3.2). We complete the proof begun in section 3.1. We have 0 < S 

< I and take M= I, Pm = O. Fixing 0>0, we choose xOEL and xELnB(xO' 0); 

we let {m.} and {d.} be the sequences associated with Xo as in section 5.1. 
J J 
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For anyk~O. (3.1). (3.5) and (3.6) give (3.7). Via (3.9) - (3.11), appealing 

to the key lenma. we will arrive at (3.12). Continuing. we distinguish two cases 

(i) The case d. I ~ ld .• We use the second line in (3.12). For z E 
J+ J 

B(xO' dj /8) c B(xO' !dj +l} formula (3.13) then shows that 

(5.2) 

(ii) The case dj +1 < ldj • Now mj+l/mj $ 2 (section 5.1) and we use the 

first line in (3.12). Via a different middle step we easily obtain the estimate 

(5.2) even on B(XO' !dj ). 

Summing the results (5.2) for j = 0 ••.• , k-I we find that for Z E 

B(xO' dk_1/8); using the fact that dj +2 < !d j • 

(5.3) 

sl Is-I s-I s-I 23s s-I 
$ 24·23 Xo - Z 2dk_1 (I + 2 + 4 + ••• ) $ 48 -"';;~s---:-I I Xo - z I elk-I • 

- 2 

We finally determine k ~ 0 such that dk ~ 80 < dk_1 (setting d_ 1 = =). 

Applying (5.3) to z = X E L n B(XO' 0) and substituting in (3.7). we obtain 

the following result (a fortiori valid when k = 0) 

The right-hand side of (5.4) is independent of the sequence {m.};itmajorizes 
J 

If(xo - f(x)1 whenever xo ' x ELand Ix - xol $ O. hence it majorizes 

wL(f. 0). 

5.3 Proof of (3.3). Again 0 < S < I. M = I. p = O. We fix 0 > 0 and now m 
have to estimate 

We claim that the maximum is attained when one of the points zl' z2 lie s 

o n L (but perhaps not only in that case). Indeed. suppose the maximum 
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wK(f, 0) is attained for points zJ and z2 = zJ + h in KO (with Ihl ~ o).Write 

min {d(zJ' L), d(z2' L)} = p > 0; we may assume d(zi' L) = p. The function 

¢(z) = f(z) - f(z + h) is continuous on B(ZJ' p) and holomorphic on B(zJ' p), 

and I¢I attains its maximum at zJ. Thus by the maximum principle ¢ is cmnstant 

on B(ZJ' p), hence I¢\ = wK(f, 0); the circle C(zJ' p) contains a point of L. 

The conclusion is that there is a point Xo E L such that 

For such a point (or any point) Xo E L we again let {mj } and {d j } be as 

in section 5.J. For Z E K n B(XO' 0) we may write, cf. (3.6), 

(5.5) 

For the last term we have the estimate from (5.3) provided Z E B(xO' dk_I/S). 

It only remains to estimate the next to last term in (5.5). We know from 

(3.1) that 

I/~ 
log If(x) - p (x)1 ~ slog d(x, L ), x E L. 

~ 

Since we are dealing with a subharmonic function, it follows that 

J/~ 
log If(z) - p (z)1 ~ s H{z, log d(x, L )}, Z E K. 

~ 

This time we will use the second inequality in the key lemma (section 4). We 

again determine k such that dk ~ So < dk_ l . Now taking r = 0 so that r ~ dk/S, 

the key lemma shows that our H is bounded by log 650 on B(XO' 0), hence 

(5.6) 

Combining (5.5), (5.6) and (5.3) we conclude that 

5.4 Proof for the Case s = J. We again take M = I, p = 0 and fix 0 > O. In 
m 

order to obtain bounds for the second order moduli w*(f, o)(section 3)we will 
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estimate If(xo) - f(z) - c(xO - z)1 for Xo E L, z E B(XO' 0) and suitable c 
depending on Xo and O. This will be good enough also in the case of w~(f, 0): 

one can show as in section 5.3 that the modulus is attained when one of the 

points used in the definition lies on L. 

We again use the sequences {m.} and {d.} associated with xo. By (3.5), 
J J 

If(xo) - f(z) - p~(xo)(xo - z)1 ~ If(xo) - p~(xo)1 + If(z) - p~(z)1 

(5.7) 

For z on C(XO' p) with p = d. or d. 1 we have the estimates (3.12) for 
J J+ 

q = ~q . Distinguishing two cases as in section 5.2, we now use the Cauchy 
mj+1 

formulas to obtain, cf. (3.13), 

21 q(xO) - q(z) - q' (x)(x - z) 1 =.!I f q(W){_I- __ I _ _ Xo - z 2}dWI 
o 0 TI C W - Xo w - z 

(w - xO) 
(5.8) 

< sl 12 s-2 - 94·23 Xo - z dj , Z E 

Taking s = 1 and summing over 0 ~ j ~ k-I we find that for z E B(XO' dk_ I/8), 

cf. (5.3), 

(5.9) r~ I~.(xo) - ~.(z) - ~.(xO)(xO - z)1 ~ 94'92 IxO - zI2/dk_I' 
J J J 

As before we determine k such that dk ~ 80 < dk_ l . The first two terms on the 

right-hand side of (5.7) are bounded by 80 and 90 when z = x E L n B(xO' 0); 

inequality (5.6) gives the upper bound 650 for the second term when z E 

K n B(xO' 0). Combining (5.7) and (5.9) we thus obtain for z = x E 

L n B(XO' 0) 

hence wt(f, 0) ~ 1 100 o.Similarly w~(f, 0) ~ 1155 O. 

5.5 Proof for s > I. We mostly write s = 1 + t and again take M= 1 and p =0. 
m 

The proof goes in two steps. We show first that (3.1) implies uniform conver-
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gence of the sequence {p'} on K to a function g in A(K). The function g will 
n 

be approximated by the polynomials p' to order d(x, Ll/n)t on L. In the sec
n 

ond step we show that f is differentiable on K and that f' = g. 
(i) We choose Xo on L and let {mj } and {d j } be as in section 5.1. Taking 

positive integers n ~ m an v > n we want to estimate Ip~(xo) - p~(xo)l. Let j 

be such that m. $ n < m. I. 
J J+ 

Supposing first that v $ m.+ I we write ! (p - p ) = q, comparable to the 
J v n 

last member of (3.9) but with m. replaced by nand m. I by v. The analysis of 
J J+ 

section 3 now leads to the inequalities (3.12) with m. and d. replaced by n 
d d( L l/n) ... h· J J an xo' etc. D1st1ngu1s 1ng the same two cases as in section 5.2 we use 

these inequalities and Cauchy's formula to estimate q'(xO). The resultwill be 

When v > m. I we write 
J+ 

pI _ p' = (p' _ p') + (p' _ p' ) + ... + (pI _ p' ) 
v n mj +1 n mj +2 mj +1 v ~ 

with suitable k. Repeated application of (5.10) gives the general formula 

(5. II) 

v > n ~ m. 

As n -+ 00 the distance d(x, L lIn) tends to ° uniformly for x € L (think of the 

exterior conformal mapping in connection with the level curves). Thus by (5.11) 

the polynomials p' converge uniformly on L and hence on K. The limit function 
n 

g will be continuous on K and holomorphic at interior points. 

Letting v tend to 00 in (5.11) we see that g is approximated by the poly-
. lIn t nom1als p' on L to order d(x, L ). 

n 
(ii) Since p -+ f uniformly on K, complex analysis shows that p' -+ f' at 

n . n 
interior points, hence fl = g on KO. It remains to prove the corresponding 

result for boundary points, 

(5.12) 
f(xO) - fez) 

lim --=-----
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Taking the sequences {mj } and {dj } corresponding to Xo we start with (5.7) 

If(xO) - f(z) - g(xO)(xO - z)1 s If(xO) - p~(xo)1 + If(z) - p~(z)1 

+ Ig(xo) - P~ (xo)I·lxo - z\ + L7 Iqm.(xO) - ~.(z) - ~.(xO)(xO - z)1 
k J J J 

(5.13) 

say. For z E K, z '" Xo we write I Xo - z I = 0 and determine k such that dk" 80 

< dk_ l . Then each of the terms Ti will be 0(0) as 0 + 0: For TI this follows 

from (3.1), for T2 from (5.6), for T3 from the definition of g or from (5.11) 

as v + = and for T4 from (5.8) (we have to sum over 0 S j s k-I; note the 

special case s = 2). Thus (5.13) establishes (5.12). 
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The problem of best multipoint local approximation is posed and discussed. 
In special cases, these approximants are solutions of certain minimax 
problems. 

1. Introduction 

Let f be a sufficiently smooth function and m£ be a best approxi

mant of f, from a class of functions M, on a disjoint union 1£ of 

L norm. k nondegenerate closed intervals, with the 
P 

investigate the behaviour of the net of best approximants 

In this paper we 

as 

shrinks to a union X of k points when £ + 0+. 

Suppose that for each £ > 0, f has a unique best approximant m£ 

from M on I. Then it is natural to ask if the net {m} 
£ £ 

point, mO' as £ + 0+, with respect to some topology on M. 

has a cluster 

If mO 

exists, it will be called a best k-point local approximant of f (on the 

set X with respect to the topology on M). If f has a best k-point 

local approximant mO' then the following questions are of interest. Is 

mO unique, and if so how is it characterized? When 1£ is "symmetric" 

and M is a "nice" d = Nk parameter family, then instinct tells us that 

the net {mE} should have a unique limit 

pola tion conditions: (m - f) (j) (x) = 0, o 

mo characterized by the inter-

j = 0, ••• , N-l, for each x E X. 

lSupported in part by the U. S. Army Research Office under Grant No. 
DAAG 29-78-G-0097. 
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We will prove a result of this type for algebraic polynomials, where the 

best k-point local approximants are Hermite interpolatory polynomials. If 

d is not divisible by k, then the problem is much more complicated. We 

will prove that at least in special cases, 

solution of a minimax problem. 

is characterized as the 

To be more precise, we let X = {xl' ••• , ~} where xl < ••• < ~ 

and xi +l - xi > 20 > 0 for i = 1, ••• , k-l. For 0 < E ~ 0, we will 

consider the case where IE is the disjoint union of k nondegenerated 

closed intervals each of length E so that X C IE. Let TI£ denote, as 

usual, the linear space of all polynomials with degrees not exceeding £. 
Our first result is the intuitively obvious 

N-l THEOREM 1. Let 1 ~ p ~ 00 and fEe (10) where N ~ 1. For each E, 

o < E ~ 0, let PE be the best Lp(IE) approximant to f from TIkN- l • 
""""+ Then the net {PE} converges coefficientwise as E + 0 to ~ 

POE TIkN- l • Furthermore Po is the unique polynomial in TIkN- l which 

satisfies the interpolation conditions 

(1.1) 1, ••• , k, j 0, ••• , N-l • 

In Theorem 1 the restriction that the number of parameters is a 

multiple of k is most undesirable. In special cases we will show that 

this restriction is indeed not needed, and the best k-point local approxi

mant turns out to be the solution of a certain minimax problem. 

Let J E = [-1, -l+E] U [l-E, 1] where 0 < E ~ 0 < 1. For each 
N fEe (10), let 

(1.2) 0, j 0, ••• , N-l}. 

We have the following result: 

THEOREM 2. N 
Let fEe (Jo)' N ~ O. For each E, o < E ~ 0, 

be the best uniform approximant of f on J E from TI2N• 

{PE(f)} converges coefficientwise as E + 0+, to ~ Po 
~ PO is the unique polynomial in F f which minimizes 

Then the net 

E TI ZN• Further-
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(1.3) max{ I (p-f) (N) (-1) I, I (p-f) (N) (1) I} 

over all p E Ff • 

In Theorem 2, M = TI2N is a 2N + 1 parameter family. Of course 

approx~mation from the 2N parameter family TI2N- l is a special case of 

Theorem 1. The L2 analogue of Theorem 2 was established by Su [6). How

ever, the linear methods in [6) are not applicable to the uniform norm 

setting. 

Let 

let Ks 

X be a set of k distinct points as before. For o < S ::: 0, 
k 1 
i~l [xi - s, xi + s). For each f E C (Ko)' let 

(1.4) (p-f)(x.) 
~ 

0, i 1, .•• , k}. 

We have the following result: 

THEOREM 3. Let For each s, o < S ::: 0, let p (f) 
-- s 

be the 

best uniform approximant of f on Ks from TI 2k- 2• Then the net {ps(f)} 

converges coefficientwise as E + 0+ to some PO E TI2k- 2• Furthermore Po 

is the unique polynomial in Gf ' which minimizes max{l(p-f)'(xi)l: 

i = 1, ••• , k} over all p E Gf • 

Results related to best I-point local approximation are contained in 

Walsh [7,8,9]; Chui, Shisha and Smith [2,3]; Chui, Smith and Ward [4]; 

Chui [1]; and Wolfe [10]. 

2. Best k-Point Local Approximation from TIkN- l 

Given a bounded measurable set E c~ and 1::: p < 00, we define 

(L IflPr
/P 

[JE IfIP/L lr
lP and 

IIfIlL!(E) = ess sup{lf(x)I x E EL 
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Then for every non-negative integer d, there exists a constant C > 0, 

depending on d alone, so that 

for all h E TId' 1 ~ P ~ 00, and _00 < a < b < 00. When a = 0 and b = 1 

(2.1) is trivial since lIoIlL;[O,l] = lIoIILp[O,l]. Hence, since the normal

ized Lp norm, II ilL;' is unchanged by a linear change of variable, 

(2.1) follows for arbitrary values of a and b. 

LEMMA 2.1. Suppose that and is a net with 

as E + 0+. Then QE + e, the ~ polynomial, coefficientwise as E + 0+. 

PROOF. Since I is the union of k disjoint intervals each of length 
e: 

E we find from (2.1) above that 

for all Q E TIkN_l , 1 ~ P ~ 00, and 0 < E ~ 0, where D > 0 is a 

constant depending only on k and N. Hence it suffices to prove the 

lemma when p = 00. 

Let be the unique polynomial in TIkN_ l with 

o ie 0 j r' i, e = 1, ••• , k; j, r = 0, ••• , N-l, 

~ n ~~l 
where 0ie' Ujr are the Kronecker deltas. Then QE = Li=l Lj=O ai ,j,Eh1] 

for some {a. j ~}. Applying the Markov inequality on each of the k inter-
1, ,~ 

vals of length E comprising IE' we find 

0(1), j 0, 1, ..• , N-l • 

This implies that 
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la.. I = IQ(j) (x.) I ~ IIQ(j) ilL (I ) = 0(1). 
~.J.c c ~ c 00 c 

as C + 0+. i = 1 ••••• k; j = O. 1 ••••• N-1. Hence. Qc + O. the ~ero 
polynomial. coefficientwise as c + 0+. This completes the proof. 

We are now ready to prove Theorem 1 which is an easy corollary of 

Lemma 2.1. Let f E eN- 1(Ia) and for each o. 0 < C ~ a. let 

Pc(f) E nkN- 1 be the best Lp(Ic) approximant of f from nkN- l • Let 

Po be the unique polynomial in nkN- 1 such that (f - Po)(j) (xi) = o. 

i = 1, •••• k; j = O ••••• N-l. Since Pc(f) is the best approximant of 

f in L (I). we have 
p c 

implying 

It follows from Lemma 2.1 that Pc + Po 

required. 

N-l o(c ). 

N-l o(c ) 

coefficientwise as C + 0+ as 

3. Best 2-Point Local Approximation from n2N 

This section will be devoted to the proof of Theorem 2 stated in the 

introduction. To facilitate our proof we need a sequence of six lemmas. 

As in Section 1. we set J c = [-1, -l+c] U [I-c. 1]. where 0 < c ~ 0 

and 0 < a < 1. Throughout this section we denote by II' IIJc the uniform 

J Let P(x) = x2N+l. P b d . d . 1 b norm on c. 0 E n2N- l e etertune un~que y y 

the interpolation conditions (PO - P)(j)(±l) = 0 j = 0, •••• N-l. and 

Pc E n2N be the best uniform approximant of P on J c from n2N • Since 

P is an odd function. Pc must be a polynomial with odd degree. so that 

it is also the best approximant of P on J c from n2N- 1 • Hence, as a 

consequence of Theorem 1, we have the following 

LEMMA 3.1. The net {pc} converges coefficientwise to Po as c + 0+. 
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We next derive an error bound on the convergence of {p} to P. 
E 

LEMMA 3.2. The following estimates hold: 

(3.1) 

as E -+ 0+, but 

(3.2) 

N To obtain (3.1), we simply note that lip - PEII J :::: lip - POIIJ = a(E). 
E E 

Assume, on the contrary, that (3.2) does not hold. Then there is a sequence 

Ek -+ 0+ such that lip - PEkllJEk = O(E~). Hence, by Lemma 2.1 we may con

clude that P - PEk -+ e coefficientwise. This is a contradiction since 

P - PEk is a polynomial in TI 2N+l with leading coefficient 1. 

We next consider the following minimax problem. Let Fp = {Q E TI2N : 

(Q - P)(j)(±l) = 0, j = 0, ••• , N-l}. We will study the extremal problem 

(3.3) min max 1 (Q - P) (N) (x) 1 . 
QEFp x=±l 

LEMMA 3.3. The extremal problem (3.3) has ~ unique solution given ?y 

Q = PO' 

To prove this result, we note that every Q E Fp can be written as 
2 N Q(x) = P O(x) + a(x - 1) for some constant a. Hence, we have (Q - P) (x) = 

(PO - P) (x) + a(x2 - l)N, where Po - P is an odd function and a(x2 _l)N 

is an even function. It follows immediately that I(Q - p)(N)(l)1 = 

1 (PO - P) (N) (1) + a2NN! I, 1 (Q - P) (N) (-1) 1 = 1 (PO - P) (N) (1) - a2NN! I, and 

1 (PO - p) (N) (-1) 1 = 1 (PO - P) (N) (1) I. Hence we have max 1 (Q - P) (N) (x) 1 ::: 
(N) x=±l 

max 1 (PO - P) (x) I, where equality holds if and only if a = O. This 
x=±l 
completes the proof of the lemma. 

In order to apply the above results to an arbitrary function f E CN(Jo)' 
we consider the polynomial 

(3.4) 
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which is uniquely determined by the interpolation conditions 

(f-hf )(j)(±1) =0. j=O •.••• N. Let 

(3.5) 2N 
p f (x): = aO + a l x + ••• + a 2Nx + a2N+ 1 Po (x) 

289 

Hence. Pf E1T 2N and satisfies the interpolation conditions (f-Pf) (j) (±l) 

= 0 for j = 0 ••••• N-I. That is. Pf E F f" We also note that 

(3.6) (p -f) (N) (+1) = a (P -P) (N) (+1) 
f - 2N+l 0 -. 

and that if a 2N+l 10 a polynomial q is in F f if and only if 

(3.7) q = h f + a 2N+1 (Q-P) 

where Q is in F. 
p 

Hence. Lemma 3.3 yields the following 

LEMMA 3.4. The extremal problem min max I (q-f) (N) (x) I has ~ unique 
qE Ef x=±l 

solution given E1. q = Pf" 

It is now intuitively clear that hf is a "polynomial representer" 

of the given function f useful in discussing best 2-point local approxi

mation of f. We will therefore study the approximation properties of 

hf. Let PE(hf ) be the best approximant of hf in C(JE) from TI 2N • 

and set E2N .E(hf ) = IIhf - PE(hf ) II J • It is clear that E2N .E(hf ) = 0 if 

and only if a2N+l = O. Since TI2NE is a Chebyshev system we can find 

xi = xi (E) EJE' i = 0 •.•. i 2N+l • with Xo ~ ••• <x2N+l • 

(hf-PE(hf»(xi)=cr(-l) E2N .E(hf ) for 1=O ••••• 2N+1. 

or I. 

such that 

where cr = -1 

Let the integer l> 0 and the l+2 points Zo < zl < ••• < zl+l be 

given. For each j. let e j ETIl be uniquely determined by the inter-

polation conditions: 

(3.8) 
i 

(-1) e j (zi) = -1. for i I j. 0 < i< l+I. 
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Then we have the following result of Maehly and Witzgall which is contained 

in the proof of the first lemma in [5). 

LEMMA 3.5. Let a be 2. positive number and q be 2. polynomial in 'lTR. 

satisfying the inequalities (-l)iq(Zi) ~ -a, i = 0, ••• R.+l. Then for 

each x E JR, q also satisfies the inequalities 

a min e. (x) ::: q (x) ::: a 
O:::j:::Hl ] 

e. (x) 
] 

When ~ = 2N and z. = X.(E), i 0, ••• , 2N+l, we shall denote the 
~ ~ 

polynomials e. bye .• We then have 
] E,] 

LEMMA 3.6. 

= 0(1) as 

Suppose 

E -+- 0+. 
_Th_e_n _fo_r each j, 

To prove Lemma 3.6, we note that the alternant 

0::: j ::: 2N+1, lie .II J E,] E 

{XO' ••• , x2N+l } of 
2N+1 hf - PE(hf ) is also the alternant of (P - PE)(x) := x - PE(x), where 

PE is the best approximant of P in C(JE) from 'lT 2N• Set g = P - P~. 
N-l E <-

Applying Markov's inequality to (3.1), we have Ilg~ IIJ = a(E ) • For each 
E 

i, o ::: i ::: 2N, we also have 

IgE(Xi +1) - g(Xi ) I ::: Ilg~lI[xi'Xi+l)(Xi+1 - xi) 

::: IIg~IIJE (xi +1 - xi) • 

Hence, by (3.2) in Lemma 3.2, there exists an n > 0 such that 

(3.9) 

for all sufficiently small E > O. Since gE is a nontrivial polynomial 

in 'lT 2N+l , a simple zero counting argument shows that the alternant 

{ } .. Al . P() 2N+l. dd h xo ' ••• , x2N+l ~s un~que.. so, s~ce x = x ~s 0 ,we ave 

-1 ::: Xo < ••• < xN ::: -l+E < l-E ::: ~l < ••• < x2N+l ::: 1. 

To estimate IleE,j II JE, we rename the points in Aj = {xO,· .. ,xj _l ' 

Xj+l, ••• ,x2N+l} as B = {YO""'Y2N} so that all even indexed points in 

B lie in the half of J E containing N + 1 points of Aj , and all the 
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odd indexed points in B lie in the other half of J E, containing the 

remaining N points of Aj • By Newton's formula, we may write 

(3.10) 

Let 0 < E S l/Z. By (3.9) and the separation of the consecutive y. 's it 
1 

is clear that the following estimates can be obtained: 

I () 1 - I I < i - [ i/ Z] e E . Yo -1, [Yo, ••• ,y.]eE . - Z (nE) , 
,J 1 ,J 

II( -) (- )11 < Z[i/Z]+l c.[(Hl)/Z] x yO ••• x y. J - ~ 
1 E 

i 0, ••• , ZN, where for any nonnegative number a, [a] denotes, as usual, 

its integer part. 

E ~ 0+, for each 

Hence, by using (3.10), we have lie E .IIJ = 0(1) as 
,J E 

j = 0, ••• , ZN+1. This completes the proof of Lemma 3.6. 

N We are now ready to prove Theorem Z. Let f E C (J6), and for each 

E, 0 < E S 6, let PE(f) E TIZN be the best approximant of f in C(JE) 

from TIZN • In view of Lemma 3.4, it is sufficient to prove that the net 

{PE(f)} converges coefficientwise to PO:= Pf as € ~ 0+, where Pf is 

defined in (3.5). 

Let 

Pf :::: hf· 

= O(EN). 

S zllpf -

wise as 

us first consider the trivial case when a ZN+l = O. In this case, 

Since (f - hf ) (j) (±1) = 0 for 0 S j S N, we have Ilf - Pfli JE 
Hence, it follows that IIPf - PE(f)II J S IiPf-fIiJ +lif-PE(f)IIJ NEE E 

fli JE = O(E) so that, by Lemma Z.l, PE(f) ~ hf :::: Pf coefficient-

E ~ 0+. 

Now assume that a ZN+1 # O. Then since (f - hf )(j)(±l) 0 for 

o S j S N, we have 

Let EZN E(f) , 

(3.1Z) 

Ilf - PE(f)II J . Then by (3.11), we have 
E 

Since a ZN+l # 0, Lemma 3.Z yields 
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(3.13) 

From (3.11) and (3.lZ), we obtain 

(3.14) 
i N 

0(-1) EZN,E(hf ) + O(E ) 

O(_l)i EZN,E(f) + O(EN). 

Hence, by the first inequality in (3.13), the signs of (f - PE(hf »(xi) 

alternate for i = 0, ••• , ZN+l for all sufficiently small E > O. Set 

qE(f) := PE(f) - PE(hf ) = (PE(f) - f) + (f - PE(hf ». We therefore have 

-EZN,E(f) + (f - PE(hf )(xi) S qE(xi ) S EZN,s(f) + (f - PE(hf »(xi) , a~d by 

(3.14), it follows that q (x.) ::: -a if sgn(f - P (hf»)(x.) = 0(-1) > 0, 
s 1 S . S 1 N 

q~(x.) S a if sgn(f - P (hf»(x.) = 0(_1)1 < 0, where ° < a = o(s ). 
~ 1 S S 1 S 

Hence, by Lemmas 3.5 and 3.6, we have IlqsllJ S as ~xlles .IIJ = o(SN). 
E J ,J s 

Again, Lemma Z.l implies that qs = ps(f) - ps(hf ) + e coefficientwise as 

s + 0+. However, we also have ps(hf ) + aZN+1PO + (aO + ••• + aZNxZN) 

:= Pf by Lemma 3.1. That is, the net {ps(f)} converges to Pf 

coefficientwise as s + 0+. This completes the proof of Theorem Z. 

4. Best k-Point Local Approximation from TIZk-Z 

This section will be devoted to the proof of Theorem 3 stated in the 

introduction. 

As in Section 1, we let X = {xl' •.• '~} ~e a set of k distinct 

points spaced at least Z6 apart and set KE = i~l [xi-S, xi +s ] where 

o < s So. Throughout this section we denote by II-11K the uniform norm 
Zk-l E 

on K. Let s 
i = l, ••• ,k}. 

(4.1) 

P(x) = x and Gp = {Q E TIZk-Z : (Q - P)(xi ) = 0, 
We first study the extremal problem 

min max I(Q - P)'(x.) I 
QEGp i=l, ••• ,k 1 

LEMMA 4.1. There is::. unique polynomial Po E Gp such that (PO-P)'(xHl) 

(Po-P) '(xi)' for allIS is k-l. Furthermore, (PO-P)'(xi ) f O. 

Zk-Z 
+ a Zk- Z x 

Zk-l - cx Now given data 
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f i , f~, 

(aO' aI' 

i = l, ••• ,k, it is well known that there is a unique solution 
T ••• , a2k_2• c) to the system of equations 

(4.2) r(x.) =f. and r' (x.) = f!, i = 1, ••• ,k 1 1 1 1 

* * c*)T Let (aO' ... , 
a2k- 2• be the solution of the system (4.2) with f. = 0 1 

and f' = i 1, i = 1 •••• ,k. Then it is easy to see that rex) has at least 

2k-l sign changes, one at each xi' and one in each interval (xi' xi+l)' 
It fo1lows that rex) is of exact degree 2k-l. Hence, c* ;, O. 

Next, let d be a real number. From above, the solution of (4.2) for 

the data f. = 0, i = l, ••• ,k, 
* 1* * T 

f! d, i = l, ••• ,k, is unique and equals 
1 

(daO' ••• , da2k_2, dc ) • There is one and only one d * for which d * c * = 1. 

Hence, there is one and only one Q E Gp such that (Q - P)'(xi +l ) 

(Q - P)'(x.) for all i = l, ••• ,k. We note that with this choice of Q, 
1 

(Q - P)'(x.) = d* ;, O. This completes the proof of the lemma. We also 
1 

have the following 

LEMMA 4.2. The extremal problem (4.1) has ~ unique solution given ~ Q = PO' 

To prove this result, we note that every Q E Gp can be written as 

Q(x) = PO(x) + w(x)v(x) where w(x) = (x-xl)(x-x2)"'(x-~) and 

v E TIk_2• Hence, 

(4.3) 

Suppose now Q is a solution of the extremal problem (4.1). Then, in 

particular, 

(4.4) 

where d* 
(_l)k-i 

is the non-zero constant value of (PO-P)'(x1.). But sgn w'(x.) 
k . 1 

for a1l 

i = l, •••• k. where 

i=l, .... k. 

* a = sgn d • 

Thus (4.4) implies that a(-l) -1v(x.) ~ o. 
1 

Hence. v E TIk_2 has at least k-l 

zeros and is identically zero. Thus. Po is the unique solution of the 

minimax problem, yielding Lemma 4.2. 

We let hf E TI2k- l be the unique Hermite interpolating polynomial 

satisfying (hf-f)(j)(xi ) = 0 for j = 0.1. and i = 1 ••••• k. If 
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(4.5) 

we let 

(4.6) 

Hence, Pf E1T 2k-2 and satisfies the interpolation conditions (Pf-f) (xi) = 0 

for i=l, ... ,k. That is, 

only if q = hf + a 2k_l (Q-P) 

PfEGf • Then since if a 2k_l "'0,qEGf Hand 

for some QEG, Lemmas 4.1 and 4.2 yield 
p 

LEMMA 4.3. 

(4.7) 

Furthermore 

(4.8) 

Pf is the unique solution to the minimax problem 

min max !(q-f)' (x.)!. 
1. 

qEGf i=l, ••• ,k 

Pf also satisfies 

We now define {zO,··· ,z2k-l} by z2i = xHl - £, z2Hl = xHl + £ 

for O~i~k-l, and let e£,j E1T 2k_2 be the polynomial specified by the 

interpolation conditions (3.8). 

LEMMA 4.4. For each j, 0 <j < 2k-l, lie .II K = 0(1) 
- - £,] £ 

To prove this leunna, we rename the points in Aj = {ZO"" ,Zj_l' 

Zj+l""'Z2k_l} as B={YO""'Y2k-2} so that YO""'Yk-1 all lie in 

distinct subintervals of K£ and Yk+i lies in the same subinterval as 

Yi for 0 ~i~ k-2. Then for distinct i and j !Yi -Yj! ~20 unless 

!i-j! =k in which case !Yi-Yj! =2£. By Newton's fomu1a 

(4.9) 

Now from the spacing of the y.' s it is clear that for i = 0, ••• ,2k-2 
1. 

(4.10) I I -[ilk] 
[Yo, ... ,y.]e . =O(E ) 

1. E,] 
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II - [(Hl)/k] 
and (x-YO) ••• (x-Yi) ilKs - O(c ). Hence, by using (4.9) we have 

Ilee- .IIK = 0(1) as s -* 0+ for each j = 0,1, ••• ,Zk-1. This completes c.., J s 
the proof of the lemma. 

We are now ready to prove Theorem 3. Let f E Cl(Ka) and for each s, 

o < s ~ a, let ps(f) E TIZk_Z be the best approximant of f in C(Ks ) 

TIZk- Z' in view of Lemma 4.3, it is sufficient to prove that the net 
+ 

from 

converges coefficientwise to Po:= Pf as S -* 0 where Pf is 
defined in (4.6). 

In the trivial case when aZk_l = 0 we have Pf = hf and 

o(S). The result follows after an application of Lemma Z.l to 

(ps(f) - Pf)' 

Now assume that aZk- l f O. Then by Lemmas 4.1 and 4.3, we have 

(pf - f)'(xi +l ) = (pf - f)'(x.) f 0, for 1 ~ i ~ k-l. Thus by the contin-
1 .. 

uity of (f - Pf )' on Ka (f - Pf) (xi + (-l)JE:) = (-l)Jall f - PfilKs + o(s), 

j = 0,1, 1 ~ i ~ k, where a = -lor a = 1. Setting q (f) = P (f) -p(f) 
s . s 

and noting that Ilf - ps(f) 11K ~ IIf - PfliK we see that (-1)J aqs (X1.+(-1)jS) 
c s 

~ -ac' for 1 ~ i ~ k,j = 0,1, where 0 < a c = o(c). Hence by Lemmas 3.5 

and 4.4, we have IIqsllKc o(c). Then Lemma Z.l implies that qs = 

pc(f) - Pf -* 8 coefficientwise as S -* 0+. That is, the net {ps(f)} 

converges coefficientwise to Pf as c"-* 0+. This concludes the proof of 
Theorem 3. 
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VI Approximation by Linear Operators 



ON THE LEBESGUE FUNCTION OF INTERPOLATION 

pAl Erdos and P~ter V~rtesi 

Mathematical Institute 

of the Hungarian Academy ot Sciences 

Budapest 

Solving an old problem of P.Erdos, we prove the best possible in 
order estimation for the Lebesgue function of Lagrange inter
polation. 

1. Introduction 

Let Z={xkn }, n=1,2, ... ; lSkSn, be a triangular matrix 

where 

(1. 1) -lSx <x 1 < ... <xl Sl nn n-,n. n 
(n=1,2, ... ) 

are n arbitrary points in [-l,lJ (shortly xk=xkn ). 

(1. 2) 

(1. 3) 

Putting 

n 
w(x)=wn(Z,x)= IT (x-xk ) 

k=l 
(n=1,2, ... ), 

(k=1,2, ... ,n) 

are the corresponding fundamental polynomials of the Lagrange 

interpolation. It is well known that the so called Lebesgue 

function and Lebesgue constant 

n 
A (x) = A (z.x) = I: I R.k (x) I , 

n n k=l 
A =A (Z)=max A (x) 

n n -lSxSl n 
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play a decisive role in the convergence and divergence properties 

of Lagrange interpolation. 

G.Faber [1] proved that 

1 
An > 12 ln n 

., 
for arbitrary matrix Z. Later S.Bernstein [lJ obt·ained 

that for any system of nodes (1.1) 

(1. 4) lim A (x ) 
n+oo n 0 

for a certain x E(-l,l). 
o 

00 

In 1961, P.Erdos [5] improved an earlier result of P.Erdos 

and P.Turan [6] proving 

A n 
2 > lnn-c 
11 

(n2!n ) 
o 

will for all system (1.1) again. (Here and later 

denote positive absolute constants.) 

Finally we quote the result of P.Erdos 

follows. 

[4J which says as 

THEOREM 1.1. Let e and A be any given positive numbers. Then, 

considering arbitrary matrix Z, ~ measure ~ the ~ in 

x (_oo<x<oo) for which 

(1. 5) A (x)SA 
n 

is less than e. ----
2. Results 

if 

Here we prove the following improvement of Theorem 1.1. 

THEOREM 2.1. ~ e > 0 be ~ given number. Then for arbitrary 

matrix z there exist sets --- --- H n with IH ISe n and n (epO 
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such that 

(2.1) An(x»n(£)lnn 

The case of Chebyshev nodes shows that the order of (2.1) 

is best possible. 

By this theorems it is easy to obtain the following 

COROLLARY 2.2. Let £>0 and s C[-l,lJ n-
~ arbitrary measurable ~ ~ for any matrix z 

(2.2) J A ( x) d x> ( I s I - £ ) n ( £) 1 nn 
s n n 

n 

whenever n<!n (£) 
o 

The case sn~S=[a,bJ was treated by P.Erdos and J.Szabados 

[7J • 

~ The relation (2.1) is obviously valid if Ixl<!l+£ because 

of 
n 

n-1= " n-1 n ( ) 
X - ~ x k Nk x 

k=l 
which means 

n-1 n 
Ixl S L I,Q, (x)l. 

k=l k 
So we 

have (2.1) on the whole real line apart from a set of measure 

S3 £ (n<!n (£)) 
o 

2.2. Nearly 50 years ago S.Bernstein [lJ conjectured that 

min 
z 

A (Z) 
n 

is assumed if all the n+1 maxima in (-1,1) of An(X) are 

the same. P.Erdos conjectured that the smallest of these n+1 

maxima is largest again if all these n+1 maxima are the same. 

Erdos further conjectured that if the z. are on the unit 
~ 

circle then the corresponding extremal problems are solved if 

the z. are the n-th roots of unity. 
~ 

All these conjectures were recently proved in a series of 

remarkable papers by T.A.Kilgore [lOJ, C.de Boor and A.pinkus 

[2J and L.Bratman [3J. 
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3. Proof 

3.1. In what follows, sometimes omitting the superfluous 

notations, let x =1, x =-1 and on n+1,n 

(3.1) (k=O,1, ••• ,n; n=1,2, •.• j • 

Let us define the index-sets K1n and K2n , further the 

sets D1n and D2n by 

-1/6 d~f /) iff kEK ~ n , 
n 1n 

IJknl 

(3.2) > /) iff k EK2n n 
, 

D = U J kn , D2n=[-1,1J\D1n 1n kE K1n 

If IJkl~/)n (which means kEK 
1n and J k CD1n ) we say that 

the interval is short; the others are the long ones. 

3.2. In our common paper [8J we proved 

LEMMA 3.1. Let IJk 1>6 ( k 
n n 

fixed O<q<1/4 we can define 

is fixed, 

the index 

O~k~n) • 

t=t(k,nj 

Then for any 

and the set - -- -----
hknCJkn so that Ihknl~4qlJknl, moreover ---

(3.3) if and n~n1(qj 

(See [8J, Lemma 4.4. 'In [8J 6n =1/1nn but this does not make any 

difference in the proof.) 

Now, if q=E/32, for the 1 0 n g i n t e r -

val s w e o b t a i n (2.1) (see (3.3» if xED2n\H1n 
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Here d~f u H h, 
In kEK kn 

2n 

which means 

(n~n2{e:))· 

3.3. To settle the short intervals we introduce the following 

notations 

(OSkSn) 

where OSqSl/2. Let zk=zkn{q) be defined by 

(3.4) Iw {zk)l= min Iw (xli k=O,l, •.• ,n, 
n xEJ () n 

finally let k q 

(OSi, kSn) • 

In [8],Lemma 4.2 we proved 

LEMMA 3.2. If lSk, r<n then for arbitrary 0<qSl/2 

(3.5) 

3.4. Later we shall also use the 

if xEJ (q) • 
r 

LEMMA 3.3. Let Ik=[ak,bk ], lSkSt, t~2, be any t intervals 

in [-1,1] with I Ik('\I ,1=0 (k~j), IIklSp 
t ---- ] 

(lSkSt), 

~ IIkl=~. Supposing that for certain integer R~2 
k=l R 

we have -- ----
~ ~ 2 p, there exists the index s, lSsSt, 

(3.6) s .... R 
<:. 8 ~ • 

I will be called accumulation interval of 
s 

such that 

(Here and later mutatis mutandis we apply the notations of 

3.3. for arbitrary intervals.) 

Note that we do not require 
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The lemma and its proof correspond to [8J, 4.1.3. Indeed, 

dropping the interval I, containing the middle point of 
] 

[-I,IJ and bisecting the same interval [-I,IJ, we have (say) 

in [O,IJ a set of measure ~(p-II,I)/2 ~ (p-p)/2 
] 

consisting 

of certain I k • Doing the same, after the ~-th bisection we 
1-~ 

obtain that interval of length 2 which contains certain 
-~ -~-1 

Ik'S of aggregate measure >2 p-p~2 p~p for 
def 

1~~~p R-l. 

0 

2 
~-1 

(3.7) 

(3.8) 

(3.9) 

Consider these intervals L1,L;, •.• ,L; 

L3 

L* 3 

L2 

L* 
2 

L* ) 

L) 

L* 
P 

Figure 1. 

Obviously I L'" I =2~-P 
~ 

Further 

intervals Ik because 

L: IIk l ~ 
~-p-2 

2 p 
k 

I CL''; 
k ~ 

each 
,', 

L" 
~ 

(1~~~p) 

(Fig. 1). 

L 
P 

contains at least 

. 

Let 
,', 

further L =L ~':\L ~t: (2~~~p) (see Figure 1) • Ll=L'i , ~ ~ ~-1 

If s is an index, for which I CL 
s- 1 we can write 

p IIkl def 
s > L: L: IIs,Ikl 

B . 
~=1 k 

IkCL~ 

To estimate B , let 

L: IIk l d~f 
a~p (1~~~p) . 

k 
IkcL~ 
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By (3.7) and construction we can write 

(3.10) 
i-p-2 

2 \l (l~i~p) , 

(3.11) I I < 2 t - P ~f I~,CLt I ,I, _ ... (l~t~p) . 
s ~ 

It is worth to remark that 

(3.12) ~ 
t-2 

(2~t~p) o. t 2 0. 1 . 

t-1 t-2 
(Indeed, by construction o.2~o.1 o. t ~ '\' a., ~2 L: a., , , w 

~ ~ 
i=l i=l 

3~t~p, from where we get (3.12).) 

Now by (3.11), (3.9), (3.10), finally by the Abel trans

formation we obtain as follows 

-t 
2 

t 
-t-1 \' 

2 (w 
i=l 

which was to be proven. 

l.:2.!. Suppose 

~n (E) Inn (n 

intervals J kn 

xEJkn (q)CD ln (1~k~n-1); whenever 

will be determined later), the point 

and Jkn(q) , finally the index k 

called e x c e p t ion a 1. Let q=E/12. 

W e s hal 1 pro v e 

(3.13) (n'2:n =n (E)) 
o 0 

E:!:.l:.. 
8 \l , 

A (x)~ 
n 

x, the 

wi 11 be 

Here and later the dash indicates that the summation is extended 

only over the exceptional indices k. To prove (3.13) it is 
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enough to consider those indices 
00 def 

{n.}. 1 = N for which 
~ ~= 

Jl n . ~ E/10 • 

~ We can apply Lemma 3.3 for the exceptional Jkn'S with 

Jl=Jl n , p=6n and R=[1~n1/7]+1 

n EN1 )· 

if nEN and n~n (E) (shortly 
o 

Denote by M1=M1n the accumulation interval. Dropping M1 , 

we apply Lemma 3.3. again for the remaining exceptional intervals 

with Jl=Jl -IM1 1>Jl /2 and the above p and R, supposing n n 
> 2R+1 

Jln-P whenever nEN1 . We denote the accumulation interval 

by M2 • At the 

and apply Lemma 

i-th step (2~i~~n) we drop M1 , M2 , ••• Mi _1 
3.3. for the remaining exceptional intervals 

with 
i-1 

Jl=Jl n - I: IMil 
j=l 

using the same P and 

Here 4 is the first index for which 
n 

4 -1 
n Jl 

(3.14) I: IMil~ ~ but 
i=l 

4 n Jl 

I: IM.I> ~, 
i=l ~ 

nEN 
1 

If we denote by M". +1' M". +2 ... M 
~n ~n ~n 

(i.e. not accumulation) exceptional intervals 

(E/20)n 1 / 6<<jI <~ ) , by (3.6) we can write n n 

(3.15) 
Jl Inn n 

112 if 

~ To go further in proving (3.13) let 

R. 

the remaining 

(by 1M .1~6 
~ n 

u. EM. (q) (l~i~~, nEN1 ) be exceptional points, where c 1 ~n ~n n 
will be determined later. 

If for a fixed nEN1 there exists t, l~t~~n' such that 

(3.16) 2 
An(U tn ) ~ C 1 E Jlnlnn , 

by 

P r 

nlnn~An{Utn) 

o v e (3.16) 

we obtain (3.13) for this 

for arb i t r a r y 

n. W e 

nEN1 

s hal 1 

Indeed, Ie t 
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us suppose that for a certain mENl 

(3.17) 
2 

A (u )<ClE ~ 1nm where U EM (q), l~r~~. m rm m rm rm m 

By (3.17) we obtain 

(3.18) 
~m 
E 1M IA (u )<ClE2~2 1nm 

r=l rm m rm m 
where mEN 

1 

On the other hand, by (3.5), for arb i t r a r y 

n 
1M I ~ l£k(U )1 ~ 1 1M I 

r k=l r 2 r 

2 
~L 

2 

~n w(z) 

E I (3) I 
k=l W zk 

so, by (3.14) and (3.15) we have 

nEN 
1 

if c l =8.l44.ll2. This contradicts to (3.18), i.e. (3.16) is 

valid for arbitrary nENl ' which proves (3.13). 

3.7. By definition, if the short J k is not exceptional, then 
---- n 
for any XEJkn(q) (2.1) valid, supposing that k#O,n. If Jon 

is short it should belong to H. The same should be done with 
n 
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J nn Moreover, the sets Jkn\Jkn(q) of aggregate measure c 2 

should belong to H 
n 

So using these, 3.2 and 

n 
too. Obviously c 2S2q ~ IJk 1=4q=&/3 

k=O n 
(3.13), we obtain 

IH ISIH1 I+~ +26 +C2SE/4+&/6+&/4+&/3 &, 
n n n n 

which completes the proof. 

The authors are indebted to G.Ha1Asz for his valuable 

remarks and suggestions. 
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A UNIFORM BOUNDEDNESS PRINCIPLE WITH RATES 

AND AN APPLICATION TO LINEAR PROCESSES 

Werner Dickmeis*) and Rolf Joachim Nessel 

Lehrstuhl A fUr Mathematik 

Rheinisch-Westfalische Technische Hochschule 

Aachen 

It is shown that in the classical uniform boundedness principle the condition 
of strong (pure) boundedness of a sequence of bounded linear operators on a 
Banach space X may indeed be replaced by boundedness with rates on correspon
ding subsets of X. The method of proof employed is the gliding hump method but 
now equipped with rates. Some applications are given to linear polynomial con
volution operators, rega~n~ng and extending relevant work of Dahmen - Gorlich 
1974 and Baskakov 1977. 

1. Introduction 

With X a Banach space (with norm II'II X)' Y a normed linear space, and 

[X,Y] the space of bounded linear operators of X into Y, the classical uniform 

boundedness principle (UBP) reads (m :=set of natural numbers): 

UBP. If for {Tn}nEm c[X,Y] ~ has (pointwise) strong boundedness 

(1. 1) II T fll = Of( 1) 
n Y 

(f EX, n +(0) , 

then the operators ~ also uniformly bounded, Le., 

(1.2) 

The aim of this paper is to develop a version of a UBP with rates in 

the sense that, if in (1.1) one replaces the whole space X by a certain sub

set, but correspondingly the strong (pure) boundedness on X by boundedness 

with an appropriate rate, then this nevertheless implies the uniform estimate 

(1.2). For details see Sec. 2. Some applications to linear approximation pro-

*) The contribution of this author was supported by Grant No. II B4 FA 7888 
awarded by the Minister fUr Wissenschaft und Forschung des Landes NRW. 
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cesses are given in Sec.3: In Sec. 3.1 we regain and extend results of W. Dah

men and E. Gorlich concerning a conjecture of M. Golomb as well as work of V.A. 

Baskakov concerning a problem of P.P. Korovkin. Whereas these contributions are 

settled in the frame of one-dimensional trigonometric expansions, Sec. 3.2 

outlines extensions to regular biorthogonal systems in Banach spaces, now pos

sible in view of the general treatment of Sec. 2. 

The authors thank Professor E. Gorlich for many valuable suggestions in 

connection with Sec. 3.1 and for a critical reading of the manuscript. 

2. A Uniform Boundedness Principle with Rates 

Let uex be a seminormed linear subset of X (with seminorm I' Iu)' Then for 

each f EX, t;;;'O the K - functional is defined by 

(2.1) 

and serves as an abstract measure of smoothness (cf. (3.1)). Let w be a modu

lus of continuity, thus a continuous, increasing function on [0,00) satisfying 

(2.2) w(O) = 0, w(t) > 0 for t >0, 

w(s+t) ..; w(s) + w(t) for s, t ;;;'0. 

Employing the additional assumption 

(2.3) sup{w(t)/t; t >O} = 00, 

we consider the intermediate spaces U eX eX ex, w,o w 

Xw := {f EX; K(t,f) = 0f(w(t)), t +O+}, 

Xw,o := {fEX; K(t,f) = 0f(w(t)), t-+O+}, 

endowed with the seminorm 

(2.4) If I := sup{K(t,f)/w(t); t > O}. 
w 

Let {(j)n}n E IN denote a sequence of positive numbers with 

(2.5) lim (j) = O. 
n~OO n 
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Then one has the following version of a UBP with rates. 

THEOREM 1. Let Tn' TE[X,Yj, and let {lPn} satisfy (2.5). Suppose that for each 

n E IN there exists h E U such that 
----- n ----

(2.6) 

(2.7) 

(2.8) 

Let w be ~ modulus of continuity satisfying (2.2/3). Then the (pointwise) 

strong boundedness condition (with rates on X ) 
------ W,o 

(2.9) 

implies that the operators Tare uniformly bounded, i.e., 
n-

(2.10) 

PROOF. First note that (2.3) is equivalent to 

(2.11 ) limt+O w(t)/t = 00. 

Moreover, each modulus w satisfies 

(2.12) w(t)/t .;;; 2w(s)/s for t~s >0. 

Assume that (2.10) does not hold, i.e., 

(2.13) 

(f EX, n +00) w,o 

Then one may successively construct a subsequence {nk}kElN satisfying (k~2): 

(2.14) 

(2.15) 

(2.16) 
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(2.17) II Tnk_1 -TII[X,Y] ..: 8C IC k~1 ~_2w(lPn )/w(lPn ), 
13k-I k 

(2.18) 
2 

IIT~II[X,y] ~ max{Hk_I; 2C IC3I1TII[X,Y]}' 

where the constants ~ are defined via 

by Mo=1 and for k~1 by (cf. (2.9)) 

(2.19) 

Since X is complete and (cf. (2.6/15)) 

r:-k (w(lP )/j)lIh IIX": (CI/k)r:_k w(lP )..: 2C l w(lP )/k, J- n. n. J- n. nk 
J J J 

(2.20) 

the case k=1 implies that g := r:_ 1 (w(lP )/j)h is well-defined as an ele-
w J- nj nj 

ment in X. Moreover, g EX. Indeed, for each t E (O,lP ) there exists k E IN w W,o n l 

such that lP ":t<lP (cf. (2.5/14)). Using the corresponding gkEU and con-
~+I ~ 

ditions (2.6/7), (2.16/20), and finally (2.12) one obtains 

K(t,gW) ..: IIgw -~lIx +tlgklu 

..: IIr=k+1 (w(lP )/j)h IIx+tIL~=1 (w(lP )/j)h lu 
J nj . nj J nj nj 

This proves g EX. Applying T - T to 
w w,o nk 

gw = (w(lPnk)/k)h~ +gk-I + (gw -gk) 

yields by (2.8/17-20) that 

(t +0+). 
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which is a contradiction to (2.9) proving the theorem. 

Apart from obvious modifications, the preceding proof also establishes the 

following version, where {1/In }n E:Ii is such that 

(2.21) 1/1 ;;'1 
n 

(n E IN). 

COROLLARY I. Let X,Y,U,w,{<Pn},{Tn},T, and {1/In } satisfy the hypotheses' of Tbm.1 

and (2.21), respectively. Then 

liT f -Tflly = 0f(1/I w(<p » n n n 
(f EX, n +00) w,o 

implies the growth condition 

(2.22) 

Let us give a few remarks concerning the limiting cases wl(t) =1, 

w2(t) =t, exluded by (2.2/3). Since Xw =X, the first case is covered by the 

classical UBP, even without (2.6-8). Cbncerning w2 we may mention 

COROLLARY 2. Let X,Y,U,{<Pn},{Tn},T, and {1/In } satisfy the hypotheses of Cor. I. 

Furthermore, let U be complete in the ~ that 

(2.23) for every sequence {f } E IN eU with lim ~ool f - f Iu = 0 there - n n -- n,m ~ n m --
exists fo EU such that limn+oolfn -folu =0, 

.in!!. JJU. Tn - T be bounded operators of U into Y in the ~ that they satisfy 

the Jackson -~ inequality 

(2.24) (f E U). 

PROOF. In view of (2.23/24) an application of the classical UBP on U gives 

II T f - Tfll Y os.;; C1/I <P I flu n nn 
(f E U). 

Hence conditions (2.6-8/21) deliver 
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Of course, a corresponding treatment would also be possible for the inter-

mediate spaces X ,X, provided one makes additional (but unnecessary, see 
w,o w 

Thm.l) assumptions which ensure completeness of X ,X relative to (Z.4) and 
W,o w 

boundedness of T - T on X ,X 
n w,o W 

(cf. (Z.Z3/Z4». 

Analogously to Thm. I there holds a "oh" - version in the sense that 

even implies 

(fEX , n-+oo) 
W 

Again the proof proceeds via a gliding hump method with rates. In fact, this 

method of proof was inspired by recent work of Teljakovskii [ 13], Pochuev 

[ IZ], and Mertens -Nessel [10] concerning mUltipliers of strong convergence. Of 

course, the latter results can now easily be deduced from the present functio

nal analytical principles. For further details, however, see [7,8]. 

3. Applications to Linear Polynomial Processes 

3.1 Trigonometric Convolution Operators. Let XZ~ be one of the spaces L~~, 

I";p <00, or CZ~ of Z~ -periodic functions, p - integrable or continuous with 

I 
IIfllp := {Z~ 

-~ 

respectively. For r E:IN let 

IIfIlC:= sup If(u) I, 
-~..;u ..;~ 

X~~) := {fEXZ~; f(j)EXz~, o";j";d, If I (r) := IIf(r)lI x . 
XZ~ Z~ 

Then the corresponding K-functional is equivalent to the rth modulus of 

continuity of the function f E XZ~, 

r 
W (t,f;XZ ):= sup II 2 (~)f(. +kh)1I X ' 

r ~ Ihl";t k=o Z~ 

in the sense that there exist constants c I ' C z > 0 independent of f E XZ~ and 

t ~ 0 such that 
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(3.1) 

Hence the intermediate spaces (X2 ) are Lipschitz spaces (cf. [2, p. 19Iff]). 7T W 
We consider polynomial operators Tn E [X27T] (:=[ X27T ,X2) ) of convolution type, i.e., 

7T 
(3.2) (T f)(x) == (J/2lT) J f(x-u)t (u)du n n 

-IT 

where t ElI (:= set of trigonometric polynomials of degree n). It follows that 
n n 

conditions (2.6-8) are always satisfied for the spaces and operators under con-

sideration. 

LEMMA I. For sequences of operators of ~ (3.2) there exist elements hn E xi~) 
such that conditions (2.6-8) hold true with (j) = n -r. 
---- ------ n 

PROOF. By definition of an operator norm there exists f E X2 with 
n IT 

(3.3) II f IIx .;;;; I, 
n 27T 

II T II [ Xl';;;; 211 T f II X • 
n 2~ n n 2lT 

Applying the delayed means of de La Vallee Poussin 

2n 
(V 2 f)(x):= L r( Ikl/n)r(k)eikx 

n, n k=-2n 
(3.4) 

f"'(k) := (J/27T) 
IT -iku J f(u)e du, 

-7T 
ret) {

I, O';;;;t';;;; I, 
:= o2-t, l';;;;t';;;;2, 

t ;;;02, 

then already furnishes appropriate candidates via 

(3.5) h := V 2 f • n n, n n 

Indeed, since the operators V 2 are uniformly bounded in [X2lT] , one has 
n, n -r 

(2.6), and since they are polynomial of degree 2n, also (2.7) with ~ =n 

via the classical Bernstein inequality. Furthermore, T f = T h which esnn nn 
tablishes (2.8), too. 

In the present setting Dahmen - GBrlich [ 5,6] proved the following re

sult, in fact one step in their verification of a conjecture of M. Golomb 

concerning asymptotically optimal linear approximation processes: 

PROPOSITION 1. Let {Tn}n E IN be given via (3.2). Then 
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(3.6) sup{IIT f -fll • Ilf(r)llc"l} "cn-r 
n C' -- (n E IN ) 

implies the uniform bound 

A similar result concerning the Lipschitz spaces 

was obtained by Baskakov [I] as a contribution to a problem of P.P. Korovkin. 

PROPOSITION 2. Let w, {~n} satisfy (2.2/21), respectively. Then 

(3.7) (n E IN ) 

implies the uniform growth condition 

PROOFS of Prop. 1-2 (in X2 ). With h as given by (3.5) first note that for 11 n 
g :=c w(<P)h, co>O, one has by La.1 (cf. 2.2/5-7/12» n,w 0 n n 

r (r) K(t,g ;X2 ,X2 ).;;; c w(<p ). n,w 11 11 0 n 

IIhllX ';;;cClw(t) 
n 211 0 

In view of (3.1) this implies g EH for c sufficiently small. Thus Prop.2 
n,w w 0 I 

follows since by (2.8/21) and (3.7)(with r = I, <p =n- ) 
n 

liT IIx .;;; C311T h IIx .;;; C3{IIT h -h IIx +lIh IIx 
n 211 n n 211 n n n 211 n 211 

-I 
.;;; C3{(c w(<p» liT g -g IIx +C I } = O(~). 

o n n n,w n,w 211 n 

Using g := c <p h , Prop. I is established quite analogously. 
non n 

Let us mention that Dahmen and Gorlich [5,6] apparently were the first 

who pointed out that the uniform boundedness of a sequence of convolution 

operators can be concluded from the rate of approximation on a subspace. In 

fact, the original proof of Prop. I in [6] has nearly the same structure as 
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that given here: One uses a set which determines the operator norms in the 

sense of (2.8) and smoothes via delayed means so that the Bernstein inequality 

is applicable. The result of Prop. I has been extended by Dahmen [4] to exponen

tial rates of approximation, even including an asymptotic expansion of the 

(then necessarily not uniformly bounded) operator norms in terms of n (and 

w(~ ». Concerning the original proof of Prop.2, however, Baskakov [I] em-
n 

ployed rather specific arguments, only available in C2u• 

On the other hand, Thm.1 now admits further extensions. To this end, note 

that the left - hand sides of (3.617) in fact represent operator norms. The 

following result shows that these assumptions in a uniform operator topology 

may indeed be replaced by corresponding (pointwise) strong ones. 

COROLLARY 3. Let {Tn} be given via (3.2), and let w,{l/In} satisfy (2.2/3), 

(2.21), respectively. Then either of the conditions 

(3.8) IITnf -fll x2u = Of(l/In/nr ) 

(3.9) liT f -fll x = 0f(l/I w(1/nr » 
n 2u n 

implies that" the operator ~ satisfy 

(3.10) 

(f E x(r) n +00), 
2u ' 

(f E (X2 ) ,n +00) , 
u w,o 

Indeed, (3.8) .. (3.10) by Cor.2, and (3.9) .. (3.10) by Cor.l, La.l. Note 

that assumption (3.9) is only needed on (X2 ) (instead of (X2 ) ) and that 
u W,o u w 

the result is stated for any X2u - space. 

3.2 Summation Processes of Fourier Expansions in Banach Spaces. With X* the 

dual of X let {fk,f~ } ~=o eX x X* be a biorthogonal system on X. The system is 

assumed to be total, Le., f~(f} =0 for all k implies £=0, and to be regular, 

1. e., there exists some a;;oO such that the (C,a) - Cesaro means 

are uniformly bounded: 

II (C,a)nfIiX ..; CallfliX 

With C the set of complex numbers let 

(f EX). 
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be the set of polynomials and of those of degree n, respectively. 

A basic feature of regular systems is that the powerful tool of de La 

Vallee Poussin (or delayed) means is still available. Indeed, with an arbitra

rily often differentiable function A satisfying 

Oo;;;A(t) 0;;;1, A(t) ! I, 
0, 

o o;;;t 0;;; I, 

t ~2, 

(generalized) de La Vallee Poussin means are defined by 

(3.11) (f EX). 

As for one - dimensional trigonometric expansions one has 

LEMMA 2. Let X be ~ Banach space with total biorthogonal system {fk,fkJc:x xX* 

which is regular (for ~ a ~O). Then the ~ (3.11) possess the properties 

(i) V f E1I2 for each f EX, n n---
(ii) V P = p for each p E II , 

n --- n 

where [[aU denotes the greatest integer less than .£!. equal .!£ a. 

Indeed, (i), (ii) are obvious, and (iii) follows by general multiplier 

criteria for regular systems(see[3,11] and the literature cited there). 

LEMMA 3. Let U c:X be ~ seminormed linear subspace for which ~ has the Bern

stein -~ inequality ({q> } satisfying (2.5» 
n 

(3.12) Ip lu 0;;; (C/q> )Hp "X n n n (p E II ). 
n n 

~ for any linear polynomial summation process given via (~n E C) 

(3.13) 

there exist elements h EU so that conditions (2.6-8) hold true. ---- n ___ _ __ _ 
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Indeed, in view of La.2 one may proceed as for La.l. Concerning a treat

ment of Bernstein-type inequalities in the setting of regular systems in Ba

nach spaces one may consult [3,9]. 

COROLLARY 4. Let X be .! Banach space with regular total biorthogona1 system 

{fk,f:}, and let .! sequence of polynomial operators {Tn} e[ X] be given via 

(3.13). Let U eX be .! seminormed linear subspace with Bernstein -~ inequa

lity (3.12). If w'{~n}'{~n} ~ subject to (2.2/3/5/21), respectively. then 

liT f -fll x = 0f(~ w(~ » n n n (f EX) 
00,0 

necessarily implies the uniform growth condition 

(n +00). 

In view of La.3 the proof follows by Cor.l. Obviously, one may also for

mulate a counterpart for the limiting case w2(t) = t, using Cor.2. 
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SLOW APPROXIMATION WITH CONVOLUTION OPERATORS 
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In this paper it is proved that the class B of functions a with which the 
convolution operators Up are constructed contains elements such that if f 
belongs to a certain class M and if f" (x) exists the rate of approximation 
of f(x) by (U f)(x) (p +00) is very small. 

p 

1. Introduction 

The class M consists of all real functions f(t), defined, bounded and 

Lebesgue measurable on the real axis R. The class B consists of all real 

functions a(t) defined on R and possessing the following four properties: 

1. a(t) ~ 0 on R, 

2. a(t) 1S continuous at t = 0 and a(O) = 1 , 

3. for all o > 0 is sup a(t) < 1 , 
It I~o 

4. a(t) belongs to the Lebesgue class £1' 

In [2] the author studied approximation properties of operators U of convo
p 

lution type defined on the class M by 
00 

(1) (Upf) (x) 1-1 
p f f(x-t )aP (t )dt (p ~ 1) 

_00 

with 
00 

(2 ) I f aP (t )dt p (p~1). 

It was proved that the approximation property holds, i.e. that 

(U f) (x) - f(x) + 0 
p 

(p + (0) 
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for each aEB and each fEM at a point x where f is continuous. 

Moreover, the speed with which the approximation takes place was studied under 

an additional assumption concerning the behaviour of a(t) as t + O. In fact, 

it was assumed that there exist four positive constants a, a', c, c' such that 

a(t) = 1_cta + o(ta ) if t t 0, 

a(t) = 1-c'ltl a ' + o( Itl a ') if t t O. 

It was shown e.g. that if f"(x) exists and if a > a', the order of approxima-
. . 1/a . tlon lS p ; to be more preclse 

(p + co). 

In [3] the author considered a class of elements aEB which yield a very high 

order of approximation. As an example a a was given to which the order of ap-
1/2 1/4 . proximation is exp(d1P + d2P ), d1 and d2 belng constants. 

In the present paper it is shown that if a is properly chosen in B, if fEM and 

if f"(x) exists at a point x, the order of approximation is very low, viz. 

log2P, (For shortness log logp is denoted by log2P, log log logp by log3P etc.). 

This result is formulated in Theorem 2. 

More results on the convolution operators U and related literature can be 
P 

found in [1], [2]. 

Whenever in this paper the order symbols 0 and 0 are used they are always 

related to P tending to infinity. Hence "p + co" will be omitted almost every

where. 

2. Choice of a(t) 

Let a > 0 and 

(3) o = 2-1/ a • 

The function a(t) is defined by 

r 2 (t S 0) exp(-t ) 

(4) a(t) = 
1_ 

1 - exp(-exp(t-a )) (0 < t S 0) 
2 (t > 0) • exp(-t ) 

Clearly aEB. Hence if fEM and f is continuous at x the approximation theorem 

holds at x. 



Sikkema 

If r"(x) exists Taylor's expansion gives 

r(x-t) - r(x) = -tf' (x) + h 2f"(x) + t 2y (t), 
. x 
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where y (t) is bounded on R and by setting y (0) = 0, y (t) is continuous at x . x x 

t = 0. Multiplication of both sides with I- 1SP(t), P ~ 1 , S(t) being given 
P 

by (4) and I by (2), and integration from _00 to 00 gives because or (1) 
P 

with 

(6) 

and 

(8 ) 

(u r)(x) - f(x) = I- 1 f {f(x-t) - r(x)} SP(t)dt 
P P 

_00 

15 

= I~1 f {-tf'(x) 

-0 

+ I~1 f {f(x-t) - r(x)} SP(t)dt 

Itl~o 

15 

I (c) = f tVSP(t)dt 
vp 

-15 

15 

Jp(O) f t2Yx(t) SP(t)dt, 

-0 

(v = 1,2, later on also 

considered with v = 0) 

Kp(O) = f {f(x-t) - r(x)} SP(t)dt. 

Itl~o 

The asymptotic behaviour of (6), (7) and (8) for P + 00 will be determined in 

section 4. 

3. Investigation of a Function A(p,U) 

In section 4 the runction 

, y = a/ ( v+a+ 1 ) 
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v = 1.2, plays an important role. In the present section A(P.U) will be 

investigated. 

THEOREM 1. For all sufficiently large .P A (p .u) possesses ~ minimum ~ the 

interval [2. 00 ). ~ at u = u • with (p + 00) 
- 0--

log20 log30 [lOg;O] 
Uo = lo~P + -- + -- + 0 --2-

log 0 log 0 log 0 
( 10) 

PROOF. Setting 0 = yp it follows from (9) that 

(11 ) 

dA 
Then -- = 0 leads to the equation 

du 

( 12) 

(0 = yp). 

If (12) has a solution that tends to infinity if p + 00 a first approximation 

to this solution has to satisfy the equation exp(eu ) = oueu and hence the 

equation 

( 13) eU = logo + logu + U. 

Consequently the first approximation is u = log2o. In order to obtain a second 

approximation the sUbstitution u = log2o + ~(u) (~(u) = o(lOg2o)) in (13) is 

made. It gives 

logo exp(~(p)) = logo + log(log20 + ~(p)) + log2o + ~(p) 

and thus 

exp(~(p)) = 1 + ----11 {log2o + log30 + log(1 + ~l ) )+ ~(p)} ogo og20 

from which it follows that 

~ (p) 
log2o log3° 

=--+--+ 
logo logo [ lO~O 1 

o 2' 
log 0 

Hence a second approximation to a solution of (12) tending to infinity 

if p + 00 is 
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(14) [ 
10g~cr 1 O 2 , 
log cr 

i>. . i>. 1 Cal cult at ion of -2 at u = u y~elds -2 = logcr~ Ylog2cr) - '( 1 + 0 (1) ). 
du 0 duO 

Thus >'(p,u) has a minimum at u = u 
o 

If (12) has a solution that remains bounded if p + ~ (12) shows that it 

tends to zero if p + ~ • Therefore (12) is written as 

which leads to 

223 exp(l + u + O(u )) - 1 = cr(u + U + O(u )) 

-1 (1 O( 2)) _ ~-1 -_ u + u2 + O(u3). cr e + u + U v 

From this equation it follows that 

* -1 -2) ( -2) u = u = (e-l)(cr + cr + 0 cr • 
o 

Recalling that cr = yp it appears that >'(p,u) has a maximum at u = u* and also 
o 

that uo satisfies the inequality u: < 2 for all sufficiently large values of 

p. Consequently, for all sufficiently large values of p >,(p,u) has one (in

terior) extremum on [2.~).itlies at u = u given by (14) and it is a minimum. 
o 

This proves the theorem. 

LEMMA 1. If P + ~ the following two relations hold with the notation cr = YP 

((10)): 

( 16 ) 
u -1 

(1 - exp(-e o))p = 1 - (ylogcr log2cr) (1 + 0(1)), 

PROOF. From (14) it follows that if p + ~ 

u (lo~cr) 
e 0 = logcr exp logcr e (10g3cr) 

xp logcr 

= logcr o [logicr] I. 
log cr 
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( 18 ) . j 1 + 0 [11oogg~20011 = logo + log20 + log30 + 0 [lOg~O] • 
logo 

Consequently, 

This leads to 

u 
= exp{ p log(1 exp(-e a))} 

= exp j P 10gl, - (olog 0 10g20d, : 0 [~::;0])11 
= exp 1_( ylog 010">0 r 1 (, + 0 [::~o ])1 

(20) 
-1 

1 - (ylog a log2 0) (1 + 0 ( 1 ) ) 

which proves (16). 

Again, sUbstitution of (14) and (20) in (9) with u = u yields o 

-1 1 
= Y log30 (1 + O(log- 0)). 

Thus (17) is established. 

LEMMA 2. For all sufficiently large values of p is 

PROOF. Since by (14) 

log20 log3° 
u - log30 = log20 - log30 + -1-- + -1-- + 0 o ogo ogo 

[lOg;O] 
logo 

we have in view of (18) 

( ) -1 = ~ + exp Uo - log30 = log2 a exp Uo log20 (lOg20) 
logo 

and thus 
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exp(-exp(uo - 10g30 )) = {e exp [i~::o](1 + 0(1; } 

Consequently, by (9) 

-1 
A(p,UO - 10g30 ) = y log(uo - 10g30) - plog {1 - exp(-exp(uo - 10g30))} 

-1 -1 -1/log2o 
= y 10g30 (1 + 0( 1 )) - p log {1 - e ° (1+ o( 1))} 

-1 1 1-(1/log20) 
= y 10g30 (1 + 0(1)) + (ey)- ° (1+ 0(1)). 

From this it follows that 

which proves the lemma. 

4. Asymptotic Behaviour of I (0), J (0), K (0) 
vp P P 

(22 ) 

Setting for v = 0, 1, 2 

o 
A (0) = I tVSP(t)dt 

vp 
o 

o 
B (0) = I tVSP(_t)dt vp 

o 

it follows from (6) that 

(23) I (0) = A (0) + (_1)V B (0) vp vp vp (v = 0,1,2). 

In order to derive the asymptotic behaviour for p ~ 00 of A (0) the sub
vp 

stitution t-a = u in the first part of (22) is made. In view of (22), (4) and 

(3) this gives 

o 
A (0) = J tVexp(p 10g(1 - exp(-expta)))dt vp 

o 

(24) = a- 1 J u-(v+a+1)/a exp(p 10g(1 - exp(-eu)))du. 

2 

Setting 

(25) A(p,U) = y-1 log u - plog(1 - exp(_eu )) , y = a/(v+c*1) 
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it follows from (24) that 

00 

(26) aA (0) = f exp(-A(p,u))du. vp 
2 

A(p,U) was investigated in section 3. 

It is supposed from now on that p is so large that Theorem 1 holds. 

That means that A(p,U) has one minimum on [2,(0), at u = u . Then the integral 
o 

at the right-hand side of (26) is written as the sum of three integrals: 

(27 ) a A (0) 
vp + + 

00 

f ) 
u o 

The behaviour of 13 if p + 00 will be investigated first. The function 

10g(1 - exp(_eu )) is monotonically increasing on the interval [u ,(0). 
o 

Hence using the definition (9) of A(p,U) 

00 

u o u o 

By Lemma 1, (16), the factor before the integral in the left-hand side of (28) 

tends to 1. Therefore and because 0 < y < 1 

13 = f u- 1/ YdU (1 + 0(1)) 

u o 

y/(l-y) u 1-(1/y) (1 + 0(1)). 
o 

From this, from the definition of y in (9) and from (14) it follows that 

(29) 

Secondly, the asymptotic behaviour of 11 and 12 if p + 00 will be derived. 

A(p,U) is monotonically decreasing on [2,u ] and thus exp(-A(p,U)) is 
o 

monotonically increasing there. Hence 

from which it follows by (14) and lemma 2, (21), that if p is large enough, 
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According to (29) this means that 

(30) 

Again, 

and by Lemma 1,(17), this leads to 

Combining (27), (29), (30) and (31) and using the definitions of a in (10) and 

y in (9) Avp(o) is getting the form 

(32 ) A (0) = (v + 1)-1 {10~_(ap/(v+a+1))}-(v+1)/a(1 + 0(1)). vp -<! 

Returning to (23) it follows from the definition of B (0) in (22) and from vp 
(4) that .. .. 

Bvp(o) = J t Vexp(_pt2)dt = J t Vexp(_pt2)dt(1 + 0(1)) 

o 0 

= O(p-(V+1)/2) = 0 (A (0)) 
vp 

by (32). Consequently, 

I (0) = A (0) (1 + 0(1)). vp vp 

Further, (2), (4) and (33) yield 

I = I (0) (1 + 0(1)) = A (0) (1 + 0(1)). 
P op op 

Combination of (33), (32) and (34) gives the asymptotic relations 

and 
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(36) I- 1 I2 (0) = (A (0))-1 A2 (0) (1 + 0(1)) = 3- 1 (10g2P)-2/a(1+ 0(1)). 
P P op P 

Again, concerning (7) it is obvious from the definition of S(t) 1n (4) that 

o 
J (0) = J t 2y (t) SP(t)dt (1 + 0(1)). 
Pox 

As was noticed in section 2 y (0) is put equal to zero making y (t) continuous 
x x 

at t = O. Hence to each £ > 0 there exists an n, 0 < n < 0, such that 

Iy (t)1 < £ if 0 ~ t ~ n. Moreover y (t) is bounded on [O,oJ which means that 
x ' x 

there exists a constant M > 0 such that Iy (t)1 ~ M on [n,oJ. 
x 

Then 

IJ (0)1 ~ 
P 

non 

J + J ) t 2 IYx(t)1 SP(t)dt < £ J t 2 

o n o 

£ I 2p (0) + 0(I2P (0)) because of (33) and (32). 

Since £ > 0 1S arbitrary it follows that Jp(o) = 0(I2P (0)) and hence 

(37) I-1 J (0) = 0 (I -1 I 2p ( 0 ) ) • 
P P P 

Finally, concerning (8) it is noticed that f is bounded on R. Hence 

there exists a constant P > 0 such that If I ~ P on R. In view of (4) this 

means that 

(38) 

IKp(o)1 ~ 2P j SP(t)dt = 

It ~o 

o 

(because of (33) and (32)). Combination of (5), (35), (36), (37) and (38) 

leads to 
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This proves the following theorem: 

THEOREM 2. If S(t) is given ~ (4), if f(t) is, defined, bounded and Lebesgue 

measurable Q!! R, if f"(x) exists at !! point xER and if f' (x) .f 0 then the 

operators Up (p ~ 1) defined ~ (1), (2) have the property that 

lim (lO~p)1/a{(Upf)(X) - f(x)} = _2-1f'(x). 
p--

Thus under the conditions of Theorem 2 the order of approximation at x is 

(log log p) 1/a. 

REMARKS 

1. If P is a positive integer, p ~ 2 , if fEM, f(P)(x) exists at a point 

XER and f'(x) = ... = f{P-1)(x) = 0, f(P)(x) .f 0 then for the operators 

U (p ~ 1) used in theorem 2 it can be proved that 
p 

lim (10g2P ) 1/a{(U f)(x) - f(x)} = (-1)P(p+1)!-1 f(P)(x). 
p-- p 

Hence the order of approximation at x is then (log log p)p/a. 

2. S(t) as defined by (4) is not the only element in B for which Theorem 2 

holds. In fact, in order to maintain the result of Theorem 2 S(t) as defined 

by (4) can be altered on (-~,O) and on (~,~) in such a way that properties 

1.-4. are retained and 1-S(t) increases more quickly if t leaves the origin 

towards the left than if it leaves the origin towards the right; S(t) as 

defined on (O,~] by (4) remains unchanged. 

3. A still more slow approximation than is given by theorem 2 can be achieved 

by altering S(t) in its definition (4) on the interval 0 < t ~ ~ in the 

following way: on 0 < t S ~ S(t) is defined by 

(39) S (t) = 1 -exp (-cf> ( t», cf> (t) = exp (exp ( ... (expt -a) ... », 
where cf>(t) contains exp (n-1) times, n being a positive integer (n ~ 2). 

On (-~,O] and on (~,oo) S(t) remains as it is given by (4). Then the order of 
... .. (t)· al t (1 )1/a approx~mat~on wh~ch results from th~s new funct~on S ~s equ 0 o~p • 

For sake of completeness it should be added here that if in (39) cf>(t) contains 

no exp, so cf>(t) = t-a , then the order of approximation is (log p)1/a, which 

yields a faster approximation than Theorem 2 gives. 
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A REMARK ON ASYMPTOTICALLY OPTIMAL APPROXIMATION BY FABER SERIES 

E. Gorlich 
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Aachen 

In the real domain, the generalized de La Vallee Poussin means of Fourier 
series. yield asymptotically optimal approximation. The purpose of this remark 
is to transfer this result to Faber expansions on a complex domain. 

Let G be a Jordan domain in ( with rectifiable boundary r, ~ the mapping 

of {w; Iwl > I} onto the exterior of G such that '1"(00) >0, and {Fk(z)}~=o the 

associated sequence of Faber polynomials. Denoting by A(e) the space of con

tinuous functions on e which are regular in G with maximum norm, the Faber 

coefficients of f E A (e) are defined by 

(I) 
] J -k-I ak(f) = ---2 • f(~(w» w dw 
1T1. Iwl =] 

(k E P = {O, I , 2 , ••• }) • 

The de La Vallee Poussin means (delayed means) of the Faber series and their 

rate of approximation have been considered by Kovari [5]; see also Gaier 

[4, p. 56] and the literature cited there. The purpose of this remark is to 

indicate one (certainly not the best possible) way to extend these results to 

generalized de LaVallee Poussin means. This will cover exponential rates of 

approximation as treated by Dahmen [2], [3] in the real domain. Concerning 

the required degree of smoothness of r we content ourselves here with 

rEC(4,e:) for some e:>0. For rEP, e:>0, rEC(r,e:) means that the represen

tation z = z (s) of r via are length s has an r th derivative in Lip e:. 

Given an increasing sequence {m(n)}n E P of integers with Oo;;;;m(n) < n 

V n E P, the generalized de la Vallee Poussin means V () (f;z) of f EA(G) 
n,m n 

are defined by 

n 

V () (f; z) n,m n k~O vn,m(k) ak(f) Fk(z) (z E e) , 



336 

where 

v (k) 
n,m 

n-k+1 
m(n)+1 

o 

Giirlich 

O";;k";;n -m(n) , 

k >n. 

If m(n) =[n/2] or m(n) =0, where [n/2] denotes the integral part of n/2, 

the V () reduce to the delayed means or to the partial sum operators, res-n ,m n 
pectively. Concerning their operator norms on A(G) one has the following 

PROPOSITION I. Let r E C (4, E) for ~ E > O. There is ~ constant M such that 

PROOF. The Faber polynomials are related to the trigonometric functions via 

'i' -ij6 
l. elkj, e , 

j=1 
(2) 

where the coefficients satisfy the Grunsky law of symmetry 

(3) 

Under the hypothesis r E C(r+2, E), r E lP, 0 < el < I, they satisfy the following 

estimates 

(4) 
"" 'i' -ij6 1 -r-el 
l. elkj, e .,;; M k , 

j=1 
kElP, 

(5) I I ,,;:: -r-el 
elk' -..Mk , 

,j 

(6) I I -r-I-el 
elk' .,;; M k j , 

,j 

uniformly in k and j, for some constant M. Indeed, (4) follows by combining 

(2) with Suetin's [6; p. 128] result 

(7) k -r-el 
Fk(~(w)) = w + O(k ), k ,*00 

for Iwl ~I, and (4) implies (5). Inequality (6) follows by (3) and (5). 

Let fEA(G). Using (5), (6) with r=2 and setting y=(4+E)/(6+2E) one 

has 
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I ~ ~ -ij el ~ ~ 1 1"'( 1 11-"'( 
f. { f. ak(f) Qko}e <;lIfIlA(-G) of. f. QkJo QkJo 

j=1 k=1 J J=I k=1 

(8) 00 00 

2 ~ Jo-I-e/2 ~ k-I-e/2 
<;M IIfIlA(G} f. f. 

j=1 k=1 

Thus the function 
00 

(9) 
ie 

K(e} = f(~(e }} - ~ 
j=1 

belongs to C2n ' the space of continuous, 2n periodic functions on lEt, and has 

Fourier coefficients 

j ~(f); kElP, 

(l0) 

-k E:N , 

and, as in Curtiss [I, p. 592/593] it follows that 

(II) 
n 00 

+ II ~ v (k) ~ (f) I QkJo e -ij ell C I I 
k=o n,m j .. 1 2n = I + 2' 

say. Here II'II C is the maximum norm with respect to e. From the correspon-
2n 

ding real variable result (cf. [3], Remark 4.1) one has 

II <;IIKllc { ~ log ~ +O(l)}, n+ oo, where IIKlIC <; M IIfIlA(G) , by (8},(9). 
2n n m\n, 2n 

By (4), it follows that 12 <;M II fll A (G) for some constant M, which proves the 

upper estimate of IIVn,m(n)II[A(G»)' 

To show that this is best possible with respect to the rate of increase 

it suffices to consider V () (f ;z), where f are polynomials defined by n,m n n n 

~(fn) = I 0 
-I (n+l-k) ; 

k =O,n+I, k~2n+2, 

which satisfy II fnll A (G) = 0(1), n +00. The lower estimate then follows as above. 
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We want to study the rate of approximation furnished by the generalized 

de La Vallee Poussin means, in comparison with the rate of best approximation. 

It is customary to express this in terms of asymptotically optimal approxima

tion. Let En[ f] = inf E P II f - Pnll A (G) denote the error of best approximation 
Pn n 

to f EA(G) by polynomials p of degree";n. Given a subset WCA(G) with the 
n 

property that sUPf E W En[ f] exists for each n E lP, a sequence of bounded 

linear operators U from A(G) into P is said to yield a s y m p tot i -
n n 

cally 0 p tim a 1 a p pro x i mat ion 0 n W if there is a 

constant M such that 

sup II f - U fll A (G) "M sup 
fEW n fEW 

E [f] 
n 

(n E lP ) • 

It is known, for example, that the delayed mea~s Vn ,[n/2] yield asympto

tically optimal approximation on W={fEA(G); f('I'(e18» ELip* cd, 0<a<2, if 

r is of bounded rotation, see Kovari [5], cf. Gaier [4], p. 55/56. The follo

wing proposition contains an extension of this result to certain general 

classes W = B<.p' under the more restrictive hypothesis r E C(4, e:), e: > O. 

In order to define the classes B<.p We suppose that <.p is an element of the 

following set n of "orders of approximation". Let R + = [0, (0) and 

+ + no = {<.p(x); <.p: R + R , <.p(0) = I, <.p' (x) 3, continuous and> 0 on (0,00), 

lim <.p(x) = +""}, 

n {<.pEno ; <.p(x) =eg(x), g"'(x) 3, continuous on (0,00), 3xo>0 with 

g"(x)";O, g"'(x);;;'OVx>xo ' lim sup Ig"(x)!<Il. 
x +00 (g' (x» 

Cf. e.g. [2] for a discussion of these assumptions. For each <.pEn we set 

We can now state 

PROPOSITION 2. Let r E C(4, e:) for ~ e: > O. Given <.p En, the generalized de La 

Vallee Poussin ~ V n,m(n) with m(n) = [ 1/ (log <.p)' (n)] yield asymptotically 

optimal approximation on B . 
- <.p 

PROOF. As in (II) one has, with an obvious notation, 
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00 cd n 00 

+11 L v (k) ak(f) L QkJ' 
k=1 n,m j=1 

-ija 
e - L ak (f) L Qkj e -ij all c 

k=1 j=1 21T 

say. If it can be shown that the trigonometric best approxim~tion of order n 

to K(a) in C21T behaves like O(l/Ijl(n» as n +00, it follows by [3], Thm. 5.2, 

that 13 = O(l/Ijl(n», n +00. To this end K(a) will be approximated by trigono

metric polynomials t (a) defined as follows. Let p*(z) denote the polynomial 
n n 

ot best approximation to f on G and let 
00 00 

(12) A' = 
j 

with ak (P:) = 0 for k > n. The first series in (12) converges since 

(13) 

and 4=1 I/Ijl(k) <00 for each Ijl€ n, cf. [2], La. 2.3. Setting 

n "a -I iJ'a 
t (a) = L a.(p*) e1J + L 0.'. -A .) e 
n j=o J n j=-n -J -J 

it follows in view of (8), (9) and the hypothesis that 

00 

IIK(a) - t (a)lI c "E [f] + II L (A! -A.) e-ijall c 
n 21T n j=n+1 J J . 21T 

00 00 

Rewriting the sum 14 as 

14 = II I (v (k) -I) ak(f) ~ QkJ' e-ija - ~ ~(f) ~ ~. e-ijaU c 
k=1 n,m j=1 k-n+1 j=1 J 21T 

and using that Iv (k) - II "c <p(k) /<p(n) uniformly in n €:N, k € Z for sane 
n,m 

Constant C it follows by (13) and (4) that 
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n </>(k) k -2-E 
I 4 ":M I </>(n) </>(k-I) 

k=1 

Goriich 

and the proof is complete. 
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Recently several papers (see e.g. [2], [3], [5], [7], [10]) deal with 

problems of imbedding of classes of functions connected with strong approxi

mation of Fourier series. At such problems the main question is to find 

conditions implying that a certain class of functions should be imbedded into 

another one, and one of the classes in question is determined by certain pro

perties of the strong approximation of Fourier series. 

The aim of this note is to present some new relations of this type intro

ducing the concept of the enlarged Lipschitz class. 

2. Definitions and Theorem 

In a previous paper [~ we investigated a certain class of functions 

showing great similarity to the classical Lipschitz class; consequently we 

shall call this class of functions the e n 1 a r g e d Lip s chi t z 

c las s and denote it by Lip(e)~. More precisely we shall say that a modulus 

of continuity w(IS)=w (0) belongs to the class Lip(e)~ if for any ~' >~ there 
~ 

exists a natural number 1l=1l(~I) such that 

(2. 1 ) 

holds for all n;;;' 1; and simultaneously for any natural number v there exists 

another natural number N(v) such that if n > N(v) then 
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(2.2) 

holds. 

It is clear that the classical class Lipa is imbedded into Lip(e)a 

strictly, i.e., 

Lipa c Lip(e)a. 

Before formulating the theorem we give some known definitions and nota

tions. 

Let f (x) be a continuous and 21r - periodic function and let 

a 00 

(2.3) f(x) ,.., 20 + L (a cos nx +b sin nx) 
n=1 n n 

be its Fourier series. Denote by s = s (x) = s (f ;x) the n - th partial sum of 
( n n n 

(2.3) and let f r) denote the r - th derivative of f. For any positive Il and 

p we define the following strong mean 

where II II denotes the usual maximum norm. 

Let 00(6) be a modulus of continuity, i.e. a nondecreasing continuous 

function on the interval [O,2w] having the properties: 

00(0) =0, 00(61 + 62) C;oo(6 1) +00(62) for any 0C;61 C;62 C;6 1 + 62 C;2w. 

Let E (f) denote the best approximation of f by trigonometric polyno
n 

mials of order at most n. 

(2.4) 

We define the following classes of functions: 

H(Il,p,r,lII) := {f:h (f,ll,p) = O(n-roo(l/n»}, 
n 

:= {f:oo(f(r);6) .O(oo(6»}, 

WrHoolnH := {f:w(f(r);6) = O(oo(6)ln(I/6»}, 

~H. := {f:f(r) cA.} 

where A. denotes the class of Zygmund (see [II], p.43), and oo(f,6) is the 

modulus of continuity of f. In the case 00(6) = 6a we write WrHaand 



Leindler 345 

a 
H(B,p,r,a) instead of WrH& and H(B,p,r,&a), respectively; and if r =0, 

HW stands for WOHw• 

Generalizing a result of Alexits and Kralik [1] we([5]) proved the follo

wing equivalence and imbedding relations: 

Let B,p and a be positive numbers and r be a nonnegative integer, and 

additionally 

if B > (r+a)p then 

and if B" (r+a)p then 

r a H(B,p,r,a) 5 W H 

WrHI I r * C H(B,p,r, ) • W H 

H(B,p,r,a) C ~Ha 

r * H(B,p,r,l) c W H 

(a < I), 

(a = 1) ; 

(a < I), 

(a = I). 

The aim of this note is to extend these relations to the classes defined 

under (2.4) assuming that the modulus of continuity 00(&) =00 (&) in question 
a 

belongs to the class Lip(e)a. 

THEOREM. Let B,p and a be positive numbers, r be a nonnegative integer and let 

00 = 00 (&) belong to the class Lip (e) a. 
a a -

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Additionally if B> (r+a)p then 

and if B = (r+a)p then 

r wa 
H(B,p,r,wa) c W H 

r wI 
H(B,p,r,wl ) c W H lnH 

3. Required Propositions and Lemmas 

PROPOSITION I. For any positive B and p we have 

(a < 1), 

(a = I) ; 

(a < 1), 

(a = I). 
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(3.1) 

This is a trivial consequence of Theorem 1 in [4]. 

PROPOSITION 2. (Corollary 2 in [6]). For any a and p 

(3.2) E (f) < K h (f.a.p). 
n n 

PROPOSITION 3. ([ 9. pp. 59 and 61]). We have for any r;>O 

(3.3) 

LEMMA I. (Lemma 3 in [8]). For any nonnegative sequence {an} the inequality 

m 
(3.4) L 

k=1 
a < Ka n m (m=I.2 .... ; K>O) 

holds if and only if there exists a positive number c and a natural number 

~ such that for any n 

(3.5) 

and 

(3.6) a > 2a 
n+~ n 

are valid. 

LEMMA 2. Condition (3.4) implies that for any positive p 

m 

L 
n"'l 

also holds. 

This is an obvious consequence of Lemma I. 
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4. Proof of Theorem 

First we prove that 

(4.1) 
w 

r Cl 
W H C H(S,p,r,w ) 

Cl 

holds if S > (r+Cl)p and Cl < I. w 
Assuming that f belongs to WrH Cl we have the inequality 

(r) I I w(f ._) = O(w (-» 
'n Cl n ' 

which by the following well - known inequalities 

(4.2) 
I 

E (f) E;; Kw(f ;-) 
n n 

implies that 

,(4.3) 
-r I E (f) E;; Kn w (-). 

n Cl n 

Hence, by (3.1), we get that 

(4.4) 

(4.5) 

i. e. , 

(4.6) 

h (f,S,p) E;; KI \ ~ ~ kS-I(k-rwCl(I»P (lip 
n ) n k=1 \ 

E;; K I 2m(s-rp )wP(J...)' ~ lO~ n II Ip 
2 n o 

~ m=1 Cl 2m 

Using Lemma I and 2, by S>(r+Cl)p and (2.1), (4.4) gives that 

-r I 
h (f,S,p) E;; K3n w (-), 

n Cl n 

fEH(6,p,r,w), and this proves (4.1). 
Cl 

So, in order to prove (2.5), it is enough to show 

w 
r Cl 

H(S,p,r,w ) c W H • 
Cl 

347 

If fEH(S,p,r,w) then (4.5) holds and this, by (3.2), implies (4.3). 
Cl 

Then, by (3.3) and (4.3), we obtain that 
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The first term in the brackets, using Lemma I and the conditions a <] and 

(2.1), can be estimated by O(w (lIn». a 
Next we show that the second term has the same order and this will verify 

(4.6). It is clear that 

00 00 

L L I 
W (-) am' k=n+1 m=log n 2 

so if we choose v such that va > I then (2.2) implies that 

00 

\ I I 
~ W (-) ~ Klw (-), 

1 a 2m a n m= og n 

which completes the proof of (4.6). 

(4.1) and (4.6) jointly prove (2.5). 

The proof of (2.6) is shorter. Using the same consideration as before 

we obtain that f E wrHwl implies 

and hence, by the arguments used in the proof of (4.5), we get that 

holds, which verifies that fEH(B,p,r,w l ) and so we concluded the proof of 

(2.6) • 

An examination of the proof of (4.6) shows that we did not use the 

condition B> (r+a)p in its proof, so (4.6) holds for any B,r and p; the 

only important condition is a< I. In view of this the relation (2.7) does 

not require a new proof. 

Finally we prove (2.8). If f EH(B,p,r,w l ) then 

-r I h (f,B,p) ~ K n wl (-), 
n n 
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whence by (3.2) 

Putting these estimates into (3.3) we get that 

(4.7) 

Since 

so by (2.2) it is clear that 

(4.8) 

On the other hand, by (2.2) (e.g. choosing v=2), 

(4.9) 

SUDDD.ingup, (4.7), (4.8) and (4.9) give that 

(r) 1 1 w(f ;-) < Kw 1(-) ln n 
n n 

r wI 
and this verifies that f belongs to the class W H ln H in accordance with 

statement (2.8). 

Thus the proof is complete. 
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STRONG APPROXIMATION AND THE BEHAVIOUR OF FOURIER SERIES 
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Since 1963, a work of G. Alexits and D. Kralik [ I], the so called strong appro
ximation of Fourier series has developed very rapidly. The difference between 
ordinary and strong approximation is that the latter examines means of type 

(tnk ~O, P > 0) 

where sk (x) = sk (f ;x) is the k-th partial sum of the Fourier series of the 211 

periodic function f, or of even more general types. In this work we apply most
ly known strong approximation results for proving theorems concerning the be
haviour of Fourier series. For our purposes the case p= 1 will be sufficient, 
therefore, the cited results are presented only in this particular case. In the 
first two paragraphs we prove two approximation theorems, and in the last two 
ones we estimate crcx(f) -f, cx >-1/2, for "almost all n". 

n 

I. A Nikol' skii Type Approximation Result. 

In this point we give an example how strong approximation results can be 

directly applied to ordinary approximation. We do not strive for too much ge-

nerality, only indicate the possible results. I 
2m+ 

Let {Ak}~=O be a nonnegative sequence, {A~}k=2m+l the monotone increasing 

2m+1 
rearrangement of the finite subsequence {Ak}k=2m+1 and 

A 
m 

2m 
L \* log (2m/ (2m+l-k» 

k=1 2m+k 

A = \ + A I' In [12] we proved that o 0 

(m=I,2, .•• ), 
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r Aklsk(fjx) -f(x)1 ...; K rAE (f) I) 
k m m 2m 

where E (f) is the best uniform approximation of f by trigonometric polynomi
n 

als of order at most nand K is an absolute constant. This implies: 

(I. I) If(x) - r Aksk(fjx) I ...; K rAE (f). 
k m m 2m 

( I • I) cannot be sharpened in general, e. g. ,if 0 < a < I and r;> 0 is an inte-

ger,then there is a function f with fer) ELip a such that r,a r,a 

(1.2) If (0) - r Aksk(f jO) I;> rAE (f) 
r,a k r,a m m 2m 

2m+1 
for every sequence {Ak} the finite subsequences {Ak} m of which are all 

k=2 +1 
monotone (see the proof of [12, Theorem ~). 

(1.1) and (1.2) can be applied to almost all of the known summation 

methods: Abel, Euler, Borel, de La Vallee Poussin, Linde10f methods, many of 

Riesz and Nor1und type methods etc. (see [2,3,12]). We mention only one 

corollary: 

COROLLARY. If (A~n»k"';n is .! triangular matrix with A~n)~~~~, O"';k <n, 

r:=o ~n) = I and fer) ELip a, 0 <a < I, then 

n n 
O( r A(n) -L + -- r A(n) log n+nl _k ), 

k=1 k k r+a nr +a k=1 k 

furthermore, this is already the best possible estimate. 

Results of similar character are contained in [6, Chapter ~. 

1) K,A,c denote (mostly absolute) constants, besides K,c are not necessarily 
the same at each occurence. 
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2. Generalized de La Vallee Poussin Means. 

It it well - known that 

2n 1 
n l sk (f jX) - f (x) = O(w(f ;Ii» 

k=n+l 

353 

where w(fj6) is the modulus of continuity of f. In this connection a very 

interesting question arises: what can we say about the approximation proper

ties of the means 1 l~n +1 sk (fjx) where {k.} is an arbitrary subsequence of n l=n. 1 
1 

the natural numbers. Concerning strong approximation we proved a result of this 

type ([ 7] ): 

THEOREM A. If E (f)';;;Kp and ip . ';;;Kp ,then for every sequence {ki } ~ have 
- n n - 21n n -- --

2n 
n l Isk . (fjx) -f(x) I .;;; APn 

i=n+l 1 

and here A depends only ~ K. 

The answer to the above problem is given by the next two theorems. 

In the following by w we denote always an arbitrary modulus of continuity. 

Let HW and H~ be the class of functions f for which w(f j 6) ';;;Kfw( 6), 6 E [0, 2'1r], is 

satisfied with a constant Kf and with Kf = 1, respectively. 

THEOREM 2. Let w.(6) =suPE:>lw(E6)log (lIE). If fEH~,then, whatever the sequence 

{k.} be,we have 
1 ----

2n 
11 l 
n i=n+l 

(2.1) Sk.(fjX)-f(x)I';;;KW.(~) 
1 

with ~ absolute constant K. 

THEOREM 3. For every modulus of continuity w with w.(l) <00 ~ is ~ f EHw 

and .! sequence {ki } with the property 

2n 
lim 11 L 

n -+-00 n i=n+l 
sk (fjO) - f(O) I/w.(l) > o. . n 

1 
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We mention that if <o*(l'l) -+-0, Q -+-0, then w*(l'l) is again a modulus of con

tinuity. Our proof shows that beyond (2.1) 

(2.2) 
2n 
L 

n i=n+1 
Isk . -fl ..; KW*(*) 

1 

is true as well for any set {k.}~n of numbers k. greater than n, and so, if 
1 l=n 1 

we take into account the estimate ([2,10]): 

we obtain 

I n 21T 
'\' I sk - f I ..; K! f n+1 l.. n 

k=o lin 

w(t) dt 
2 ' t 

COROLLARY. If f E H~ and k l , ••• ,kn ~ arbitrary distinct natural numbers then 

I n I 1T () I I - L sk (x) - f(x) I ..; K(- f w ~ dt + w*(-» 
n i=o i n lin t n 

with an absolute constant K. ---
Thus, e.g., if f E Lip a ,then 

n 

L 
n i=o 

uniformly in {ki } and x. 

sk. (f) - f 
1 

if 0< a < I 

if a = I, 

Of course, the latter corollary is not the only consequence of our re

sults, we could consider means of type Ltnksk with quite general (tnk) (see 

e.g. [2,10]), but we do not go further in this direction. 

Finally, we remark that from the proof of (2.2) it will follow that if 

f is r - times differentiable, r~ I, then we have for every {k.} 
1 

2n 
I! L 
n i=n+1 

Sk (x) - f(x) I ..; A ...!.. w(f(r) ;!). 
. r n 
1 n 

PROOF of Theorem 2. We prove (2.2). The following inequality will be 

used (see [ 10] ): 

LEMMA I. If I ";k l < ••• <kr";n ~ arbitrary, then 
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(2.3) 
r 2n 
L 1 Ski' (f;x) -f(x) I'''; A Ekl(f) log r 

r i=1 

holds with an absolute constant A. 

355 

Let vi be the number of those kt for which 

2in < k ..; 2i+ln 
t 

(n<t";2n, i=O,I, •.• ). 

By (2.3) and by Jacksonts theorem 

Isk.(x) -f(x)1 ..; K v. w(-~-) log 2i+ln 
1 1 21n Vi 

and thus,it is enough to prove that 

1 ( I) 2i +1n 1 S = - L V.W -r- log --..; Kw*(-). 
n v. > 0 1 21 n Vi n 

1 

(2.4) 

But 

and clearly 

1 1 'i' 1 
S 1 ..; Kw*(-) - l.. v . ..; Kw*(-). 

n n v. > 0 1 n 
1 

where the summation in S21 is extended to the its satisfying the condition 

log (n/v.)/(i+I)";1. Thus we have 
1 

1 1 'i' 1 
S21 ..; KW*(n) ; l.. v . ..; Kw*(-), 

v.>O 1 n 
1 

( . )/ i+1 and since log (n/vi) > (i+l) implies log (n/vi)!(n!v i )"; 1+1 e ,we obtain 
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00 

L 
i=o 

I i+1 ~ 1 
-. -I -. -I ... Kw*(-) 1+ 1+ n 

e 

which. together with the previous estimates. prove (2.4). 

We have proved Theorem 2. 

PROOF of Theorem 3. For every n we can choose an mn > e lOO with 

w(l/(m n» log m ~cw*(I/n). c >0. We use the following lennna (see the proof 
n n 

of [ 10. Lennna 5]): 

LEMMA 2. There is an f EHw such that 

(2.5) 
I mn 

s ,(f;O) - f(O) > w(-) 10g...E.-
m n+A m n A 

n n 

is satisfied for infinitely many n. 

m n 
(0 <a <_n_) 

100 e 

Let {k.} be a sequence such that for infinitely many n satisfying (2.5) we 
1 

should have k 1 =m n+l. k 2=mm+2 ••••• k2 =mn+n. For this {k} and the 
n+ n n+ n n n n 

above f we have 

2n 1 n m n 
L sk (f;O)-f(O) ~ w(-) L 10g--1!.... 

n i=n+1 i mnn A=I A 

1 1 
~ w(-) log m > cw*(-) 

m n n n 
n 

for infinitely many n and this was to be proved. 

3. Approximation by the Partial Sums of the Fourier Series for "almost all nil 

The first strong approximation result is due to G. Alexits and 

D. Kralik [I] who proved that in the case f E Lip a. 0 < a < I. 

1 n - L Is -fl = O(n-a) 
n k=o k 

holds. They remarked that this implies: 

THEOREM B • .!i An t 00 arbitrarily. then for every fixed x 
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Is (f;x) -f(x)1 .;;; A n-a 
n n 

holds for all n but.! sequence nk with ~ density. Le •• with k/~ =0(1). 

The important inequality 

2n 
n L Isk-fl = O(En(f» 

k=n+1 

of L. Leindler [2] shows that a similar statement holds for f(r) EHw. We now 

prove another result of similar kind: 

THEOREM 4. There exists an absolute constant B such that if f(r) E HW and 
------ ----- o-

x E [O.2Tr) then the sequence of the natural numbers .£!!!. be decomposed into ~ 

subsequences {~} and {nk-,} in such.! way that 

(3.1) Is (f ;x) - f(x) I .;;; B 2r .L w(.L) log log ~ 
~ ~ ~ 

(k=I.2 •••• ) 

and 

00 
L :A-<oo 

k=1 nk 

~ satisfied. 

This theorem cannot be strenghtened in general. as is shown by 

THEOREM 5 • .!!. 0 <a < 1 and r~O integer.then there exist.! function f with 

f(r) ELip a • .! constant c >0 and.! sequence {~} with 4=1 (1/~) =00 for which 

1 
s (f;O) - f(O) > c -- log log n. 
~ r+a k 

~ 

(k = 1.2 •••• ). 

PROOF of Theorem 4. Let us start from the inequality (2.3). By this. if 

Hn(x) = {n <k ';;;2nl I sk(f;x) - f(x) I > 6A 2r +2.L w(.!.) log log k}. 
kr k 

then 

I 1 1 r+2 \ 1 1 IH (x) 6A - w(-) log log n .;;; 6A 2 L - w(k') log log k .;;; 
n nr n k E H (x) kr 

n 
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(in the last step we used that E (f)0;;;(3/nr )w(f(r);I/n); see [6, p. 293]), by 
n 

which 

(3.2) 
IH(x)1 2 

n o;;;-~-.". 
n (log n)2 

Thus, if B = 24A then those n' s, for which 

B2r I Is (f;x) -f(x) I 0;;; - w(-) log log n 
n r n 

n 

according to 

is not satisfied, will belong to U H (x), and we have to remark only that, 
n 2n 

(3.2), 

( 
IH (X)I) 

I 2n I L - = 0 L = O( L - ) k n 2 k E U H (x) n 2 n n 
n 2n 

0(1) • 

PROOF of Theorem 5. Let us put 

f(x) 

where 

Q (x) = I (cos (.n-i)x _ cos (~+i)x ) 
n,m i=1 1 1 

is the well-known Fejer -polynomial. As 10 10;;;4, f(r) ELip ex is clear. For 
"'n,m 

o < A < 2n- 2/n_1 we have 

n-2 
2 I I 2n-2 

( L"'" > ( ) log "'TiT 2n r+ex) i=A+1 1 2n r+a 

Now, the proof can be completed easily, since 
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~ _1_ ;;;. c ~ .!. = 00. 

t.. n-2 n t.. n n: 1 .;;;).. < 2 /n-I 2 +).. n 

4. Approximation by the (C,ex)-Means, ex * 0, of the Fourier Series for "almost 

all n". 

ex 
In this section we examine the behaviour of the Cesaro means (ak(x» of 

Fourier series. If ex > 0 and f E HW then (see [4,8] ) 

(4.1) 

where 

w*(o) = 

"'CI. ~ 

a (f;x) - f(x) 
n 

1 O(w**(-» 
n 

2n 0 
J w(t) dt and w**(o) = J w(t) dt 
o t 2 0 t 

are two moduli of continuity associated to w. For negative a the best possib-

Ie estimate is (see e.g. [9, Theorem 2]): 

aa (x) - f (x) 
n 

-a 1 
O(n w(-»· 

n ' 

But, if we require an estimate only for most of the indices then we nearly 

obtain (4.1): 

THEOREM 6. If O>a>-1/2, fEHw, xE(O,2n], and).. +oo,then 
-- n --

for every n but .!! sequence {~} with density O. 

This follows immediately from the estimates (see [8, (3.4), (3.5)]) 

2n 1 
n 2 I a~ (x) - f(x) I .;;; K w*(-), 

k=n+1 n 

2n 
1 

n 2 I~(x) -1(x) I .;;; K w**(-). 
k=n+l n 

A "more dense" "good" approximation is given by 

w THEOREM 7. If O>a>-1/2, fEH, xE(O;2nJ, and E>O,then~have 
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/ a / I I -a+E cr (x) - f(x) ..;; K w*(-) + w(-) log n, 
n n n 

/
.-.(l 1 / I I -a+E cr (x) - (x) ..;; K w**(-) + w(-) log n 

n n 

For example, in the case f E Lip B, 0 < B < I, this theorem gives: 

a -B -a+E 
/ cr (x) - f (x) / ..;; n log n 

n 

for every n but a sequence {~}with Lk lInk <00. 

Now the following theorem shows that, in general, Theorem 7 cannot be 

strenghtened: E > 0 is necessary in it. 

THEOREM 8. If 0 > a > -I, I > B > 0, I > -a+ B, then there is ~ f E Lip B and .! 

sequence {nk } with Lk lInk =00 such that 

(4.2) / a / -B -a lim cr (0) - f (0) I nk log ~ 
k +00 nk 

== 00. 

We mention that both Theorem 7 and Theorem 8 hold in a sharper form: 

COROLLARY. Let {tP(n)} be ~ increasing sequence with tP(2n) = O(tP(n». If 
t -I -:r7a 
Lk k (tP(k» < 00, then 

/cra(x) - f(x) / ..;; K w*(.!.) + w(.!.)tP(n) 
n n n 

holds I for every n but ~ sequence {nk } with Lk I/~ <00. On the other hand, if 

Lk k - (tP(k))I'/a" =00, then there exist an f E Lip B, B-a < I, and a sequence {nk } 

with Lk I/~ =00 for which 

The proofs of these statements are similar to those of Theorem 7 and Theorem 8. 

Before we prove Theorem 7 we state an analogous result for integrable 

functions. In [5] G. Sunouchi proved: 

THEOREM C. If 0>a>-1/2 and fELI/(I+a), then 
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n 

n I la~(x) -f(x)1 
k=o 

a (I) 
x 

(a. e.). 

This implies immediately 

I/(\+a) 
THEOREM 9 • .!!. O>a>-1/2 and fEL , then for almost all xE(O;27r] the 

relation 

aa(x) - f(x) = a (I) 
n x 

holds not counting an index - sequence {~} of density O. 

In [11] we proved that there is an f such that f E L13 for every 

13 < I / ( I +a) bu t 

I n 
sup fi I la~(x) -f(x) I = 00 

n k=o 
(a. e.). 

A closer examination of the proof shows that the following statement holds, 

as well 

THEOREM 10. There exists ~ function f such that fEL 13 for every i3<I/(\+a) 

but for almost all x there is 1! sequence {~x)} .!!£!:. of density ~ ~.! posi:

sitive number e:(x) such that 

I a~ (x) (x) - f (x) I > e: (x) • 
nk 

PROOF of Theorem 7. We consider only the first estimate. Using the inequality 

(see [9, Lemma 1]) 

.!. I I ak.a (x)- f(x) I .;;; A(W*(.!.) + (~) a w(.!.», 
A. Inn n 

1= 1 

which is valid for arbitrary nand n <k l < ••. <k" ';;;Zn, the proof is similar to 

that of Theorem 4: if 

I a I I -a+e: 
Hn(x) = {n <k';;;Zn lak(x) -f(x) I > AW*(n) +w(fi)(log n) }, 

then 
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( 
1 (IH (X)I)a 1 ) 

~ A w*(~) + \ n n w(~) 

by which 

IH (x)1 -.!. 
n ~ A A 1 

n (log n)I+£/(-a) 

from which the statement follows easily (see section 3). 

PROOF of Theorem 8. Let 

(jl (t) 
n 

and 

a 
I 1T( 1 +-Z) 

. [(Zn a) 1TCl,. .-- ~ Sl.n +I+I t --z1,l.f 1 .... t"'1T 

o 

00 

f(x) = L 
n=2 

Zn +_+~ 
2 Z 

, elsewhere in (-1T,1Tj 

Z-n 8(jl (x). 
n 

The relation f E Lip 8 can be proved easily. 

We use that 

a 2 1T a 
(J (x) - f(x) = - f (jl (t)K (t)dt, 

n 1T x n o 

where (jl (t) = (f(x+t) +f(x-t) -Zf(x»/Z and Ka(t) is the k-th (e,a) -kernel. 
x n 

It is well -known (see [13 pp. 94-94]) that 
• { a 1 1Ta } 

1 Sl.n (n +2'+-Z)t -2 29(t)a 
IKa(t) I " Zn; Ka(t) = - +--'~=..;,.-~ 

n n Aa (Zsint/2)I+a n(Zsint/2)Z 
n 

n+a 
( ), n = I ,2, ••• ), 

n 

by which 

. {n a 1 1TCL} 
1T f(t)Sl.n (Z + A +2' +2')t -2" -n8 
f 1+ dt+O(2). 

Z-n (Z sin t/2) CL 

1 = -

Here the absolute value of the integral for A~2n/(n log n) can be esti

mated as ;;;. In - Lkffi Ik ' where 
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I = k 

. {n a 1 no. } 1 IT <Ik (t) sm (2 + A +2' +2')t -'2 
1- f dtl. 
2kS (2 . /2) l+a 2-n Sln t 

By the second mean value theorem we have: 

a) fork>n 

Ik = O(2-kS2n (l+a)2-k ) = O(2-kS2na), 

b) for k < n (with ak = IT(l + a/2) / (2k + a/2 + 1/2» 

c) 
I ~.!. 2-ns ] cos At dt _I.!. 2-nS ] cos[ (2' 2n H+l+a)t -'!fa] dtl 

n 2 2-n (2 sin t/2) l+a 2 2-n (2 sin t/2)1 +a 

Now, an easy calculation shows that 

and thus ,with a suitable 1.0 ' we get for A ~ 1.0 

Aa AlT Q 1 Q 
1* ~ - f cos t dt -K 2-n ,,_ ~ cAa2-n " 
n 2nS A/2n t1+a A 

with c independent of n and A <"A<"2n /(n log n), since 
o 

j COt+: dt = Re( j t-1-ae-itdt) = Re(e ilTa/2r(_a» = cos lT2a r(-a) > o. 
o t 0 

Collecting the above estimates and taking into account that Aa~na and 
n 

that a-S>-l, we get for A <..A<..2n /(n log n) 
o 

loa (0) -f(o)1 ~ c>.a2-n0.2-nS_ K 2-nS _K L 
2n +A k=n+l 

n 
2-kS -K 2-na L 2-n2k(1 +a-S) 

k=l 

A a -nS -nS -a -a -nS -a n -a n -S 
~ c(-) 2 - K 2 ~ cn (log n) 2 ~ c(log n) (10g(2 +1.» (2 +1.) . 

2n 
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ThUG, if we arrange the numbers 2n+A, n=I, •.• ,oo, A <A";'2n/(n log n), into a o 
sequence {nk},we get that (4.2) is satisfied and 

I 2n I l ~ ;;;. r (n log n - "0) 2n = 00 

by which we proved our theorem. 
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ON THE RATE OF APPROXIMATION BY MllNTz 
POLYNOMIALS SATISFYING CONSTRAINTS 

Dany Leviatan 

Department of Mathematics 

California Institute of Technology 

Pasadena 

The rate of approximation to functions in CO[O,l] by means of MUntz poly
nomials the coefficients of which satisfy some growth restrictions is dis
cussed. Relations between the size of the restricting constants and the speed 
of the approximation process are derived in various cases. 

1. Introduction 

Given a sequence of non negative constants G= (~}(k~l) denote by PG 
the set of polynomials 

n 
I~I ~ {}. (p(x) : p(x) L,~Xk, n arbitrary and 

k=l 

It has been shown by v. Golitschek [3 J and Roulier [5] that for P G to be 

dense in CO[O,l] it is necessary an~ sufficient that there should exist a 

subsequence {k.}(j >1) such that L, 11k. = GO for which lim ~ =~. 
J - j=l J j+co j 

Since we require nothing from the other ~'s we see that the denseness 

property of PG depends on a MUntz sequence of coefficients i.e. we may 

impose arbitrary conditions on the other ~'s in particular that all of 

them be zero. Namely, we may allow non zero coefficients only for a MUntz 

subsequence {kj J(j ~1) and obtain MUntz polynomials. Indeed one can 

extend the above result to MUntz polynomials with non integral exponents and 

have a similar characterization of those Pu that are dense in CO[O,l]. 

0:> Given a MUntz subsequence of the integers that is (kj J(j ~ 1) satisfying 

~ 1/kj = IX) the rate of approximation to functions in Co [0,1] by means of 
j=l 
MUntz polynomials is given by the well known MUntz-Jackson theorem (see 

[2, Thm 1]). 
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THEOREM A. There exists ~ absolute constant C > 0 independent of the se

quence (kj ) such that for ~ k: E CO[O,l] and each n > 1 there is ~ 

MUntz polynomial p (x) = t ajx J with 
n j=l 

(1) 

where 

(2) & = 
n 

max 
Rez=l 

- II ----l. 11 n z-k'l 
z j=l z+kj 

Here w(f,') is the modulus ~ continuity of f. Moreover this ts best ==:...:...::;.::.-- ---
possible in the sense that there ~ functions the approximation to which 

is not better than the rate in (1). 

(3) 

2. 

If the sequence (kj ) satisfies 

n 

k. > 2j Vj, 
J -

& - exp[-2 L,l/k.]. 
n j=l J 

Rate of Approximation by Pa 

then 

One may ask what if anything does one lose in the rate of approximation 

by restricting the coefficients, alternatively, what are the restrictions 

that would still guarantee the MUntz-Jackson rate of approximation (1). 

For ordinary polynomials Bak, v. Go1itschek and the author [1] have 

recently shown the following 

2 
THEOREM B. If ~ ~ 6k for ~ 0> 0 and all k ~ kO' then the rate 

of approximation to functions in CO[O,l] E1 ~ of polynomials in Pa 
is at least that guaranteed £r Jackson's theorem, namely, there exists ~ ~

stant C > 0 such that for ~ f E CO[O,l] and all sufficiently large n, 

there is ~ p n EPa such that 

(4) 

Moreover, for ~ sequence a = [~}, if the Jackson rate of approximation to 

functions in Co [0,1] E1 polynomials in P a is guaranteed, then .for every 
2-& 

& > 0 and any sequence (Sk) with Sk = O(k ) there is ~ subsequence 
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This means that for ordinary polynomials if we would like to guarantee 

the Jackson rate of approximation our restricting sequence u = {~} should 

behave like {k2 }. So that although there is a gap between the necessary and 

sufficient parts of Theorem B it gives a good idea of the "best possible" 

restriction. But Theorem B does not take advantage of the fact that we may 

a-priori have only a MUntz subsequence of non zero ~fS, thus instead of try

ing to obtain (4) we should try to get the rate (1). 

We prove the following 

THEOREM 1. Let {kj } (j'::: 1) be ~ subsequence ~ the integers satisfying 

kj ~ 2j Vj and let en = exp [-2 j~l l/kj]. Then there exists a constant 

C > a such that. for ~ f E CO[O,l] and any E > a there are MUntz 
n kj 

polynomials 

large n 

(5) 

(6) 

Pn(x) = ~ aJ.nx with the properties that for all sufficiently 
j=l 

Ilf - p II < C w(f ,el - E) 
n - n 

Comparing (5) and (l)we see by virtue of (3) that we may get arbitrarily 

close to the MUntz-Jackson rate and the payment is in the right hand side of 

inequality (6) the exponent in which grows to infinity as E approaches zero. 

As we shall see this phenomenon occurs in other results in this theory. 

COROLLARY. Let {kj J (j ~ 1) be ~ subsequence of the integers satisfying 
f } 2 -(I-E) I E kj ~ 2j Vj and ~ u = l.~ is such that ~ . .::: e ej for some 

J 
E: > O. Then there exists ~ C > a such that for ~ f E CO[O,l] and all 

sufficiently large n there is ~ polynomial Pn E P u of degree ~ kn for 

which (5) holds. 

PROOF of Theorem 1. Fix 0 < E < 1 and let m(E,n) be chosen so that 

(1-) exp [<l-E) mt 11k. - E I., 1/kj ] ~ 1 
j=l J j=m 
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and 

(8) exp [(l-€) I: 11k. - € L 11k.] > 1. 
j=l J j=m+l J 

Now apply Theorem A to the set of exponents fk, ... , k}. We conclude m n 
that there exists a constant C > a independent of the sequence fk.} and 

J 
of m,n and € such that for any f E CO[O,l] there is a Muntz polynomial 

n k. 
p (x) = L..: a. x J such that 
n j=m In 

(9) l~ - p II < C w(f, T] ) n - n 

where 

1 n Z - k. 
T] = max - II __ J 

n Rez=l Z j=mz + k j 

Assume that the maximum is achieved at 

have 

IZ 1= r. 

T] <1 exp [-2 n- r 

= 1 exp [-2 t 11k.] r . J J=m 

Then since k. > 2j Vj we 
J -

< 1 exp [-2 I: 11k.] 1 2 
exp 2" 10g(1+r ) 

- r . J 
J=m 

.s 2 exp [-2 .~ 11k.] 
J=m J 

By virtue of (7) we have 

Hence by (9) we have established (5). 

In order to prove (6) note that by (5) our polynomials Pn tend to f in 

the uniform norm and so for sufficiently large n IIPn 1I.s 211f U. Applying 
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[4, Lemma 2 J we have 

1+2kj 
cp(m,n) , m ~ j ~ n, 

where 

By (8) 

(10) 

and for m~L:5n 

(11) cp(m,n) J ~ exp -=..£ L l/j l/k. [1 m ~ 
€Ill j=l 

[ 1- e ] ~ exp -en log m 

for sufficiently large n since (8) implies that m(e,n) ? m as n? m. 

Now the proof of (6) is complete by combining (9) (10) and (11). 

Theorem 1 can be extended to differentiable functions. 

THEOREM 2. Let {kj } be!! subsequence of the integers satisfying 

k. > 2j Vj and let r > O. There exists a constant C > 0 independent of 
J - -- - --- - r -

the sequence . {kj } such that for any e > 0 and any f E C(r) [0,1 J which 

satisfies f(l)(O) = 0 for i = 0, 1, ••• , r, there are MUntz polynomials 
n k - -----

p (x) = L a x j such that 
n j=l jn ----

1,& - p II < C e (l-e)r w(f (r) e1-~ 
JL n rn 'n 

and the coefficients ajn satisfy (6). 

Let us return now to the phenomenon of having to "pay" in the rate of 

growth of the coefficients in order to obtain better rate of approximation by 
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means of the MUntz polynomials. One case of this type is apparent in the 

second part of Theorem B. Another example of a little different nature is 

the following. It is easily seen that the function f(x) = xl/2 is approxim
-1 able by means of ordinary polynomials at the rate of n although Jackson's 

-1/2 theorem guarantees the rate n • Recently Bak, v. Golitschek and the auth-

or [1] have shown that for any € > 0 f(x) = xl/2 can be approximated at the 

rate of n -(I-e:) by polynomials p (x) - Z a. x k such that 
n k=l Kn 

However the rate n-l cannot be achieved if (12) is satisfied no matter 

how small € is. 
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THE ASYMPTOTIC DISTRIBUTION OF LATTICE POINTS 

IN EUCLIDEAN AND NON-EUCLIDEAN SPACES 
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The counting numbers for discrete subgroups of motions in Euclidean and non
Euclidean spaces are obtained using the wave equation as the principal tool. 
In dimensions 2 and 3 the error estimates are close to the best known. 

1. Introduction 

Counting the number of lattice points in a circle is a classical number 

theoretic problem. One can describe the lattice points in the plane as the 

orbit of the origin when acted on by the group generated by unit translations 

in the horizontal and vertical directions. This suggests that we take as the 

non - Euclidean analogue of this problem the counting of orbit points, in a 

non-Euclidean circle, created by a discrete subgroup r of the motions of the 

hyperbolic plane: 

(1. 1) N(s;x,z) =# [y E r; dist(x,yz) ~ s] . 

The estimation of N(s;x,z) was first studied by H. Huber [ 1,2] who con

sidered Fuchsian subgroups for which the fundamental domain was compact. Some

what later S.J. Patterson [3] was able to handle all discrete Fuchsian sub

groups with fundamental domains of finite area. A. Selberg (Stanford Universi

ty lectures in 1980) treated the same problem in real hyperbolic spaces of 

arbitrary dimension, again for fundamental domains of finite volume. Selberg's 

error estimates are markedly better than those of Huber and Patterson. 

In the present work we extend the previous results for 2 and 3 spatial 

dimensions, to discrete subgroups with the fin i t e g e 0 met ric 

pro per t y. This property requires that the polygonal representation of 
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the fundamental domain have a finite number of sides; the volume may be finite 

or infinite. Our error estimates are essentially the same as Selberg's. 

The main tool in our approach is the wave equation. The fact that signals 

travel with finite speed makes the wave equation especially well suited for 

this task. To understand why this is so, consider a spherically symmetric so

lution u (z,t) with initial support in the ball {\z-x\ <6} emanating from a 
o 

point x in 3 - space. Because of Huygens' principle, the solution will be dif-

ferent from zero at time t only in an annulus about x of inner and outer 

radii t - 6 and t + 6, respectively. To obtain a weighted count of the number 

of orbital points {yz} in this annulus we need only sum the solution over the 

group: 

(I. 2) u(z,t) l u (yz,t). 
yEr 0 

Note that u(z,t) is the "automorphic solution" of the wave equation for the 

subgroup r and can be estimated directly. Summing over disjoint annulii of 

radius ";;T and letting 6 tend to zero we obtain a progressively more accu

rate count. In Section 2 we carry out the details for the lattice problem 

in Euclidean 3 space. 

Our results are summarized in the following two theorems: 

THEOREM 1.1. The number of lattice points N(s) in ~ sphere of radius r in 

1Rn' n=2 ~ 3, about ~ point x is 

(I. 3) 
( a +E) 

N(s) = A (s) + 0 s n 
n 

Next let r be a discrete subgroup of the motions in a hyperbolic n

space. r having the finite geometric property. In this case the Laplace-

Beltrami operator on the fundamental domain F has a finite number of eigen

values A I ;;;;. A2 ~ •• ;;;;. \ lying above the continuous spectrum; that is 

n-I 2 Ai > -<-2-) • Denote the corresponding normalized eigenfunctions by {(j)i' 

i=I ••••• k}; lPl(x);;;;'O and is constant if and only if vol(F) <00. 

THEOREM 1.2. Set 
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(I. 4) 
n-I In-I 2 

II i = -2- + VA i + (-2-) 

Then for n = 2 

lli s 1/2 (ll.-3/2)! I e \p.(x)\p.(z)1I 1 +0(exp(62 +£)s) 
Q 1 1 ll.! 

(1.5)2 N(s;x,z) 
lli > 1-'2 1 

where 62 = (lll + 1)/3; and for n =3 

N(s;x,z) I 
lli > 63 

where 63 = (lll + 1)/2. 

ll.s 
e 1 \p. (x)\p. (z) 11 

1 1 ll.(ll.-I) 
1 1 

( 63 +£)S) 
+ 0 e 

It should be noted that when vol(F)=oo send hence \PI is not constant, then 

the leading term in N(s;x,z) depends on x and z. This makes it very unlikely 

that a purely geometric argument for (1.5) will be forthcoming. 

2. The Number of Lattice Points in a Ball. 

Denote by N(s) the number of integer lattice points in a ball of radius 

s about a point x in 3 - dimensional Euclidean space. It is well known that 

as s +00, N(s) is asymptotically equal to the volume of the sphere: 

(2. I ) 411 3 
N(s) ~ 3" s . 

It is further well known that the deviation of N(s) from the asymptotic value 

above does not exceed the area of the sphere bounding the ball: 

(2.2) 1 411 31 2 N(s) -3" s .;;; O(s ). 

In this section we show that 

THEOREM 2. I • 

(2.3) 

Our proof is based on the behavior for large t of solutions of the wave 

equation 

(2.4) 
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in ]R3. A spherically symmetric solution of this equation is of the form 

(2.5) h(r-t) 
r r = lxi, t ~O, 

h some C2 function supported on the positive axis. In what follows h shall be 
o 

normalized by 

(2.6) f h(r)dr = I; 

in addition, h shall depend on a small parameter a in the following fashion: 

(2.7) I r 
h(r) = a: hI (a:) 

where hI is some C2 function supported on (0,1), satisfying (2.6). We take hI 

to be ~O. 

We are interested in those solutions of the wave equation which are pe

riodic in x. To construct such a solution out of the outgoing spherical wave 

(2.5) we sum over the group of all integer translations n: 

h(r -t) 
u(x,t) = I n 

r 
(2.8) 

n n 

where r = Ix 1= Ix-nl. Note that for t bounded only a finite number of terms 
n n 

in (2.8) are *,0. Using the counting function N(s) defined above we can rewrite 

(2.8) as a Stieltjes integral: 

(2.8)' u(x,t) =Jh(s,t) dN(s). 
s 

We form the integral 

(2.9) 
T 

I = f u(x,t)t dt. 
o 

I is a function of T and of the parameter a which enters the function h via 

(2.7). 

Setting (2.8)' into (2.9) we get after interchanging the order of inte-

grations 

(2. 10) 

where 

(2. II) 

T 00 

Iff h(s-t) dN(s)t dt f g(s,T) dN(s), 
s o 0 

g(s,t) 
T J h(s-t) tdt. 

s 
o 
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Integrating by parts in (2.10) gives 

(2.12) I -J g (s,T)N(s) ds. s 

Differentiating (2.11) gives 

T T - f h'(s-t) t dt - f h(s-2t ) t dt. gs - s (2.13) 
o 0 s 

Integrating the first term by parts leads to 

T 

(2.14) -h(S-T)! + s-2 f h(s-t) (s-t) dt 
s 

T -h(s-T)- + f(s,T). 
s o 

LEMMA 2.2. 

-2 
O(as ) for s < T+a 

(2.15 ) f(s,T) 
o for s > T+a • 

377 

PROOF. It follows from (2.7) that the range of t integration in the second term 

in (2.14) can be restricted to 0 < s-t < a. For s > T+a this interval has empty 

intersection with (0, T); this proves the second part of Lemma 2.2. For s < T+a 

-2 s -2 a -2 
f(s,T) < s J h(s-t)(s-t) dt < s J h(p)p dp < as 

s-a o 

by (2.7). This proves the lemma. 

Setting (2.14) into (2.12) we get 

I = f h(s-T) ! N(s)ds + f f(s,T)N(s) ds. 
s 

Using (2.15) and the trivial estimate N(s) = 0(s3) we obtain 

(2.16) I = f h(s-T) ! N(s)ds + 0(T2a). 
s 

It follows from (2.7) that the range of the s integration in (2.16) is 

T < s <T+a; since N(s) is an increasing function, we get using (2.6) the 

following upper and lower bounds for I(T,a): 

TT N(T) + 0(T2a) < I(T,a) < N(T+a) + 0(T2a). +a 

From this we deduce that 
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(2.17) 2 T+a 0 2 I(T-a,a) + O(T a) ~ N(T) ~-r- I(T,a) + (T a). 

We shall give now an independent asymptotic evaluation of I, based on 

splitting off the mean value of u. Define 

(2.18) m(t) = J u(x,t) dx, 
F 

where F is the unit cube in x - space. Integrating (2.4) over F shows that 

i.e. that m is 

(2.19) 

From (2.18), 

(2.19) I 

d2 
-Zm(t) 
dt 

a linear function: 

m(t) 

a = J u (x,O) dx, 
F t 

0, 

at + b. 

b = J u(x,O) dx. 
F 

For t small and a small, the sum (2.8) has only a single nonzero term: 

(2.20) 

Setting this into 

using (2.6), that 

(2.21) 

ut(x,O) = 
h' (r) 

--r-' u(x,O) = h(r). 
r 

(2.19) and using polar coordinates, dx = 411 

a = - 411 J h' (r)r dr 411, 

b = 411 J h(r)r dr O(a). 

2 dr, we get, r 

We now decompose u =m(t) +v; clearly v is a solution of the wave equa-

tion 

Vtt - /J.v 0 

and v has mean value zero; 

(2.22) J v(x,t)dx ;: o. 
F 

Using (2.19) and (2.21) we can write this decomposition as 

u(x,t) = 411t + O(a) + v(x,t). 
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Setting this into the definition (2.9) of I gives 

(2.23) l(T,a) 

where 

(2.24) 

T 4~ 3 2 f u(x,t)t dt = :r T + O(aT ) + V, 
o 

T 
Vex) = f v(x,t)t dt. 

o 

We shall now estimate V with the aid of a Sobolev type inequality: 
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LEMMA 2.3. Let Vex) be ~ periodic function in the unit cube F with ~ value 

= O. Let q be any number > 3/4; then 

(2.25 ) 

denotes the L2 ~ ~ F, and c is ~ constant whose dependence ~ 

(2.26) 3 -1/2 c(q) ... C(q -4') . 

For the sake of completeness we give a proof: Expand V in a Fourier se-

ries: 

(2.27) Vex) = I 2~in • x 
a e 
n 

n integer vector. 

a = fV(x)dx which by assumption =0. Since the exponentials are eigenfunctions 
o 

of tJ., 

.qv \ 12 12q 2~in' x 
u = ~ a ~n e • 

n 

According to the Parseval relation 

(2.28) 

Using (2.27), the Schwarz inequality, and (2.28) we get 

2 1 { 2 4} 1 /2 { 1 1/2 
IV(x)1 .;;; I la I = I la I Inl q -2 .;;; L la I Inl q L -4 } 

n n Inl q n n*o Inl q 

= II tJ.qVII c, 

where 
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I 
c =---

(21T)q 
{ L _I_} 1/2 

n*o Inl4q • 

f -4q 
Replacing the sum by the integral Ixl ~I r dx shows that c satisfies the 

inequality (2.26). o 

Since v(x,t) has mean value 0 for every t, it follows from (2.24) that so 

does V. To apply Lemma 2.3 we need an estimate for IllIqVl1 for q close to but 

greater than 3/4. As we show below it is technically easier to start with lIV 

and replace II qv by (I - lI) -p lIV. Because of this, we shall use the following 

variant of Lemma 2.3, whose proof is identical with that of Lemma 2.3: 

LEMMA 2.3'. Let V(x) be ~ periodic function in the unit cube with mean value 

= o. Let p be any number < 1/4; then 

(2.29) Iv(x) I ~ c(1 -p)11 (I -lI)-PllVII, 

where c LS the function defined before and satisfying (2.26). 

Using the definition (2.24) of V and the fact that v satisfies the wave 

equation we get, after an integration by parts: 

T T T 
(2.30) lIV = J lIvtdt = f v tdt = Tv (T) - J vtdt. tt t 

000 

Next we introduce the function w: 

(2.31 ) 

Applying (I - lI) -p to (2.30) we get 

(2.32) 
T 

(l-lI)-P lIV = Twt(T)- J wtdt. 
o 

From this we deduce that 

(2.33) II (I - lI) -p lIV11 ~ 2T max II w II • 
t t 

Since v satisfies the wave equation, so does w. To estimate IIwtll we apply 

the law of conservation of energy, which asserts that for solutions w of the 

wave equation the quantity 
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(2.34) 

is independent of t. From this we conclude that 

(2.35) 1/2 
m~x "wt" ..;; E (w). 

Conbining this with (2.29) and (2.33) gives 

(2.36) 
1/2 

IV(x)I";;c(l-p) TE (w). 

The last estimate that we need is obtained from 

LEMMA 2.4. For w defined by (2.31) and for p < 1/4 

(2.37) 
4p-3 

E(w) = O(a ). 
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Before proving this estimate we show how it can be used to prove Theorem 

2.1. Setting it into (2.36) and using (2.26) gives 

(2.38) 

We choose p optimally by minimizing the right side of (2.38); we find that 

I 
I - 4p = Ilog al 

Inserting this in (2.38) gives 

(2.38) I 

Setting this into (2.23) yields 

and combining this with (2.17), we get 

I 411 3 1 2 -I I 11/2 N(T) -:r T ..;; O(aT ) + O(T a log a ); 

Th . 1 h' f . T- I /211 II / 4 h' h . ld h' 1 . e opt~ma c o~ce or a ~s a = og a ,w lC y~e s t e ~nequa ~ty 

(2.3) of Theorem 2.1. 

We turn now to the proof of Lemma 2.4. Recall that v is obtained from u 

by removing the zero component. Therefore it follows that (1 - 6) -Pv = w is ob-
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tained in the same way from (I - /',) -pu = z. In particular, 

(2.39) E(w) ~ E(z). 

We estimate E(z) by evaluating it at t =0. Setting (2.7) into formulas (2.20) 

for u(O) and ut(O) we have 

(2.40) 
I r 

u(x 0) = -- h (-) , ar I a and 
-I r 

u t (x,O) = -2- hI (-;;). 
a r 

We proceed to expand these functions in their Fourier series: 

(2.41 ) 

and estimate their Fourier coefficients a and b . 
n n 

(2.42) 
a 

W2 I 2 
a = 211 J J exp(-211i r Inl cos e) -- hi (E.)r sin e de dr 

n -11/2 ar a 

= 2J sin 211 r In I a-I h (E.) dr = o (-r::Tn
l ) 

Inl I a 1"1 

___ 2_ J sin 211 r Inl a-3 hI' (~) dr 
1211nl2 Inl 

(2.42)b b = 2Jsin 211r Inl a-2 hI (E.) dr 
n In I I a 

I 
0(-2--3) ; 

a Inl 

411 J (cos 211 r Inl) a-I hi (~) dr 0(1) 

2 J cos 211r Inl 
= T2iiiiT I n I a-3 hI' (~) dr 

In terms of the coefficients a and b we can write 
n n 

(2.43) E (z) 

We break up these sums into two parts 

and L" L . 
I nl > R.. 

I 
(-2--2)' 
a Inl 
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Using the estimates (2.42) we see that for p close to 1/4 

E(z) .;;; C I I' 1 2 2 + I" 
(I + Inl ) p 

Choosing l = I/a, this becomes 

E(z) = O(a4p- 3) 

as asserted in Lemma 2.4. This completes the proof of Theorem 2.1. 
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In this note a problem of the approximation of indicator functions of some 
sets in Banach spaces by smooth functions is considered. The problem had ari
sen in limit theorems of probability theory in Banach spaces. One method of 
constructing such an approximation in Banach spaces with sufficiently smooth 
norm and sets with smooth boundary are given; some examples of such sets are 
considered. 

The main purpose of this short note is to draw attention to mathemati

cians working on functional analysis to a problem which had arisen when consi

dering limit theorems of probability theory in Banach spaces, but which itself 

can be formulated purely in terms of functional analysis. Some results connec

ted with the problem are given. 

We shall start with the formulation of the problem on limit theorems in 

Banach spaces, and this is done only for the purpose to show the role which 

the problem we shall speak about, takes in limit theorems. Let E;., i;;;'l,be ~n
~ 

dependent random variables, defined on some probability space (~,~P) with 

values in a Banach space B. Let S =\~ I E;. and F (A) =P {w: S (w) EA}, A n L~= ~ n n 
being a Borel set in B. Let n., i;;;'l,be another sequence of independent B

~ 

valued random variables, Z = L~ In., G (A) = P {w : Z (w) E A}. The sums Z n ~= ~ n n n 
are chosen as approximations for S , so usually G (and of course distribu-n n 
tions of n., i;;;. I) are Gaussian or stable measures. Then one wants to know how 

~ 

good the approximation is, that is to estimate the quantity 

( 1 ) sup I F (A) - G (A) I = sup If XA(x) (F - G ) (dx) I, 
AErS n n AErS B n n 

where rS is some class of Borel sets and XA denotes as usual the indicator 
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function of the set A. There are some methods for estimating (I) but it is 

necessary to mention that at present the infinite-dimensional case is very 

far from the completeness which is achieved in finite-dimensional case (see, 

for example, [5], [7], [8] for the infinite - dimensional case and [I] for the 

finite - dimensional case). 

The so - called Trotter method for estimating (1) is based on the follo

wing idea: the indicator function XA(x) is approximated by a sufficiently 

smooth function, say gA,£(x), which coincides with XA everywhere except for 

the set A \ A, where A = {x: II x - yll < £ , yEA}, The error of such an approxi-
£ £ 

mation is of the order G (A \ A), which is usually of order £, and the integral 
n r:: 

J gA r::(x) (F - G ) (dx) 
B' n n 

is estimated by expanding gA 
,r:: 

ximation with Gaussian measure 

variables f;,. with EIlf;,.11 3 <00 (E 
1. ~ 

sure P), therefore we need the 

in a Taylor series. If we consider the appro

G , then it is natural to consider random 
n 

denotes the expectation with respect to mea-

expansion of gA with three terms. The deri-

vatives of gA (if BJ and B2 are Banach 
(i) ,£ (i) 

,r:: (') 
spaces and f : B) +B2, then D ~ f(x), 

D f (x)(h l , h2, ... hi)' liD f (x) II denote the i - th derivative in the sense 

of Frechet, the differential and norm of the derivative, respectively; for 

differentiation in normed spaces we refer to [4]) must satisfy the relation 

where the constant C may depend on A and the space B. 

Thus we are faced with the following problem of pure functional analysis. 

Let B be a Banach space and A be a connected Borel set in B. For which spaces 

B and sets A for any f. > ° is it possible to construct the family of functions 

gA,f.: B+[O,I], having the properties: 

(2) 

(3) 

1 , 

0, 

x EA, 

x f. A , 
E: 

i=J,2,3, 

where C=C(B,A) is a constant depending only on Band A. Since the problem is 

rather general, it is clear that it is difficult to find an exhaustive answer 
• 

to it. Moreover, from the beginning we can exclude some Banach spaces, such 
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as e(O,I), {I' since it is known that in these spaces there does not exist any 

non - trivial real - valued differentiable function having bounded support (i. e. , 

vanishing outside some bounded set). More precisely, let e3 (Coo) denote the 

class of functions f : B+R which are three (infinitely many) times differen

tiable. The Banach space B is said to be e3 - smooth, if the class e3 contains 

non-trivial functions with bounded support. We refer the reader for this and 

more general definitions to [2). Thus at once we can restrict ourselves to the 
3 class of e -.smooth Banach spaces. It is known [2) that if the B norm as a map 

B \ {a} +R is three times differentiable, then B is e3_ smooth. (In [2) it was 

asked if the converse statement is true - if B is e3-smooth, then there exists 

an equivalent norm which is three times differentiable - but it seems that till 

now the answer is not known). But even in Hilbert space, the norm of which is 
00 

in the class e , the above formulated problem is not trivial. Due to the par-

tition of unity in H (see, for example [6), for any closed connected set A 

and for any E > 0 one can construct a function gA E COO satisfying (2), but the 
,E 

troubles come with the estimation (3). If one looks carefully through the proof 

of the partition of unity, presented in [6), then it is easy th see that due 

to the non - constructivity of Lindelof I s lemma it is impossible to get a bound 

of the type (3) for the derivatives of gA ,constructed in this way, and it 
, E 

seems unlikely that for any closed connected set A the solution will be affir-

mative. 

In this note we propose one rather simple method for constructing gA for 
, E 

some class of sets with sufficiently smooth boundary in Hilbert space and some 

Banach spaces, having norm in e3 • The idea, roughly speaking, is to transform 

the set A into the ball by means of a three times differentiable transformation 

and for the ball there is no difficulty to construct the required function. 

We shall say that the Banach space B belongs to the class ~ if the norm 

<;lex) = II xii , considered as a map ¢: B\ {O} +R, is of class e3 and satisfies the 

inequalities 

(4) IID(i)¢(x)1I < ellxli l - i , i=I,2,3. 

It is easy to verify that { , p = 2 or 3 < p < 00 are in (ifi. 
p 

Let <Q(=~(Ml, ... M5) stand for the class of closed sets A, satisfying the 

following conditions: 

(Jill) A is connected, 0 E A and every ray tx, t > 0, II xii = I intersects the 
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(d2) 

boundary aA of A at one point; 

the functional d A (x) = sup{ t > ° 
tiable for all x * ° and 

-I 
txll xII E A} is three times differen-

(S) 

(6) inf d~(x) = M4 >0, 
IIxll = 1 

i=I,2,3, 

sup d A (x) = MS < 00. 

IIxll = 1 

Now we can formulate the following result. 

THEOREM I. Let BE q} and A E d(M1, ••• MS). Then for any £ > ° it is possible to 

construct·~ function gA,£' satisfying (2) and (3), and the constant in (3) will 

be dependent ~ Mi , i = I, .•• S and the constant from (4). 

REMARKS. I. It is easy to see that the requirement ° E A is not essential, since 

gA (x) = gA (x+a) • -a, £ , £ 

2. In limit theorems, as a rule, one considers the family of sets of the form 

A(r) =A·r={xEB : x=r·y, yEA}, r>O. It is possible to show that for all 

r >0 one can construct functions gA(r),£' and estimates of derivatives will be 

uniform with respect to r. 

The main step in the proof of Theorem 1 is the following 

LEMMA 2. Let the ~ A satisfy conditions (dl) and (r;f2), and let the operator 

K : B + B be defined EY equali ty 

(7) 

Then: (i) 

(ii) 

(8) (iii) 

K(A) l5 {yEB : y" K(x), xEA} = VM l5 {xEB IIxll <M4 }; 
- - 4 

there exists ~ ~ A, A cA CAE such that 

K(A) = VM (I+£M -I); 
4 S 

IIn(i)K(x)1I < L.llxll- i +l , i = 1,2,3, x *0, 
~ 

where Li depends ~ Mj' j = I, ••• ,S. 
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PROOF. (i) follows from the definition of K, since if xEA then Ilxll';;;dA(x), and 
c c -I 

if x E aA then II xii = dA (x). Now let x E (\) , (A = B \ A), ex = xII xII ,xI E aA , 

x2 EaA, x. =t.e for some t. >0, i=I,2. Then 
1 1 x 1 

This means that K«A£)C)C(VM4(I+E:H5-1)/, or equivalently K(A£)::>VM4(1+£H5-1). 

Since K(A) =VM4 there exists a set A, ACACA£,such that K(A) =VM4(1+£H5-1), 

and (ii) is proved. To prove (iii) one needs to calculate three first deriva

tives of K. We give here the expressions of differentials of K 

Having these formulae and the estimates (5) one easily derives (8), and the 

lemma is proved. 
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PROOF OF THEOREM I. Let us define the family of functions f E : RI .... [0, I], E > 0, 

having the properties: 

f (u) 
E 

1 , 

0, 

If (3)(u)1 ..;; C(M6E)-\(M M +M E)(u), 
E 4'· 4 6 

f (i) (M ) = 0 . 1 2 3 
E 4 ' 1 = , , • 

Now we put gA = f (II K(x)1I ), where K : B .... B is defined in (7). From Lemma 2, 
,E E 

(i) and'(ii), it follows that (2) is fulfilled. In order to prove (3) we need 
(i) 

expressions of D gA (x). Now gA is the composition of three functions 
,E ,E 

and we must apply the formula of differentiation of compound functions twice 

(see [4] ). For example, if we denote cp(x) = II xII, k(x) = (cj>oK)(x) = II K(x)lI, then 

(9) D(3)gA,E(X)(Y,y,y) = f~(k(X»D(3)k(X)(Y,y,y) 

+3f ~'(k(x»D (2)k(x) (y ,y)Dk(x) (y) 

+f III (k(x» (Dk(x) (y» 3 • 
E 

By means of the same formula we get derivatives of k, for example 

D(2)k(x)(y,y) = Dcj>(K(x»(D(2)K(X)(y,y» +D(2)cj>(K(x»(DK(x)(y),DK(x)(y». 

Putting D(i)k(x), i=I,2,3 into (9), and using the estimates (4), (8) we get 

the desired estimate (3). Theorem 1 is proved. 

Now we shall consider the case when a set A is defined by means of some 

functional, e.g. A =A f' = {x E B : f(x) < r}, and we shall formulate the condir, 
tions which f must satisfy in order that A f satisfies (.:#1) and (.012). r, 

PROPOSITION 3. Let BE!!), and f :B .... R1 satisfy the conditions: 

(FI) f(x) ~ 0 for all x E B, f(tx) = tCXf(x), t > 0, for ~ 0 < cx <00, 

(F2) inf f(x)=nl>O, sup f(x)=n2 <00, 
lid =1 lid =1 
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Then A =A f satisfies (.911) and (.9IZ) with 
-- r o ' 

PROOF. It is easy to see that 

The calculations of the derivatives of dA(x) are rather tedious, thus they are 

omitted. 

The rest of this note is devoted to examples of functionals satisfying 

(FI) - (F3). For this purpose we need some further definitions, used in non

linear functional analysis (for details see [31). Let BI and BZ be Banach spa

ces. 

DEFINITION 4. An operator Q : BI .... BZ is called ~ homogeneous polynomial opera

tor of order k, if there exists ~ k -linear operator Q: BI X BI X ••• X BI .... BZ' 

symmetric with respect to all its arguments (this ~ that the value of Q 

is the ~ for any rearrangement of arguments) such that Q(x) = Q(x, •.. ,x) for 

all x E BI . The operator Q is called polar operator for Q. 

DEFINITION 5. An homogenous polynomial operator Q : B .... B* of order k is posi

tive (positive definite) 2!! the set MCB, if 

- - k-I Z 
<Q(x,x, ... ,x,h),h> > 0, «Q(x, ... ,x,h),h> > Cllxll IIhll, C>O) 

LEMMA 6[ 3 1. Let Q : B .... B* be ~ symmetric homogeneous polynomial operator of 

order k > I, positive E.!!. the ~ open set M. Then f(x) = <Q(x), x> is ~ 

~ functional E.!!. M, and Df(x) = (k+1 )Q(x). (Symmetricity of Q ~ that 

<Q(x l , ... ,xk ) '~+I > is symmetric with respect to all arguments). 
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If we assume that M = Band Q is positive definite on B, then it follows 

inf f(x) 
IIxll = 1 

inf <Q(x) ,x > > C. 
IIxll = 1 

Further, if we assume that Q is bounded, then Q is bounded, too, namely 

II QII < IIQjI (see [3] ), and we get 

sup f (x) < IlQiI • 
IIxll = 1 

There are no difficulties to obtain the estimates 

Thus we have the following 

i <k+l. 

PROPOSITION 7. Let BE£}, and Q : B + B* be ~ symmetric, homogeneous polynomial 

bounded operator of order k;;;'3, positive definite ~ B. Then f(x) = <Q(x),x> 

satisfies (FI) - (F3). 

As an example (see [3]) we can give the following operator of order 3, 

satisfying Proposition 7 in the case B = L2 (0, J.): 

1 2 
Q(x) = y(s) = x(s) J K(s,t)x (t)dt, 

o 

where K(s,t) is continuous and ° <C 1';;; K(s,t) ';;;C2 <00. Then 

1 1 2 2 
f(x) J f K(s,t)x (s)x (t) ds dt. 

o 0 

A similar example can be given in the spaces L , for example, if p = 2m, m;;;'1 
p 

being an integer, K(s,t) is the same as above, then 

Q L +L , 
P q 

1 
Q(x) = xp-I(s) J K(s,t)xP(t)dt, 

o 

1 1 
f(x) J f K(s,t)xp(s)xp(t) ds dt. 

o 0 

q 
-I 

p(p-I) , 

Another class of differentiable functionals one can get by means of ope

rators of Hammerstein and Nemyckii. We recall (for details see [9]) that the 

operator of Nemyckii, acting from one space of functions to another, is of 
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the form N(u) =q(u(y),y), and the operator of Hammerstein -

r(u) = fIK(x,y)q(u(x) ,x) dx (there for simplicity we took the interval [0,1]). 
o 

In [~ there are given conditions in order for the operator r to have the first 

Frechet derivative. Using the same ideas we can prove the following result.Let 

I I 
(10) f(x) = J h(t) j K(t,y)q(x(y),y) dy dt, 

o 0 

xEL ;: L (0,1), p > 4. 
p p 

PROPOSITION 8. Let the following conditions hold: 

I) 

2) 

-I 
hEL ,q=p(p-I) ,h(t) >0 for all tE[O,l], 

q 

°q(u,s) is measurable with respect !£ s for fixed u; 

p-I q(ku,s) = k q(u,s);;Jo 0 for all u ER I , sE[O,I] ; 

3) qu (3)(u,s) is continuous with respect to u and 

i=I,2,3, 

I I 
4) J J (K(x,y»p dx dy <00, K(x,y) >0 for all x,yE[O,I]. 

o 0 

Then f from (10) satisfies (FI), (F3) and sup f(x) =n2• 
IIxll = I 

REMARK. The boundedness from below is not achieved by means of conditions 1)-

4). This can be done under stronger conditions on h, K and q. 

The proof of proposition 8 consists of calculating the derivatives of f, 

and since f is the composition of a linear functional and operator r, thus we 

need to calculate n(i)r(x). We omit all calculations and give the final result: 

I 
nr(u) (v) J K(x,y)q~(u(y),y)v(y) dy, 

o 

I 
J K(x,y)c(' (u(y) ,y)v(y)z(y) dy, 
o 

D(3)r(u) (v,z,w) = } K(x,y)~" (u(y) ,y)v(y)z(y)w(y) dy. 
o 

From here it is easy to get the estimates for IID(i)f(x)lI. 
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ON THE o-CLOSENESS OF THE DISTRIBUTION OF TWO WEIGHTED SUMS 

OF BANACH SPACE VALUED MARTINGALES WITH APPLICATIONS 
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Aachen, W.-Germany 

For two Banach space valued martingale difference sequences (MDS)(x.,F.). Ell" 
ill 

(Z.,G.). EJP' and a normalizing function (j) :1N+(O,oo), the closeness of the 
ill 

distributions of the weighted sums (j)(n)S :=(j)(n)L~ 1 X. and (j)(n)T :=(j)(n)L~ IZ, 
n 1= 1 n 1= 1 

will be examined. For this purpose, a general theorem concerning weak conver
gence, equipped with little-o estimates will be established. By applying this 
theorem to a sequence of independent, mean-zero Gaussian random variables 
(r.vs.), this yields the central limit theorem (CLT) for martingales in Banach 
spaces. 

I. Introduction 

Let B be a real Banach space with a normalized, countable basis (ek)kEIN' 

~={1,2, ... }, and norm lI o ll B, (Xi)iEN a sequence of B-valued integrable 

random variables (r.v.) defined on a common probability space (n,A,p), and 

let (Fi)i EP' I' :=N U {O}, be an increasing sequence of sub-a algebras of 

A such that X. is F. -measurable for each iEtl'. Then (x.,F.). Ef' X :=0, 
1 1 ill 0 

is called a martingale difference sequence (MDS) if 

(I. \) E(x·IF. \) 
1 1-

o a.s. 

This is equivalent to (S ,F) EP being a martingale, i.e., that n n n 

( 1.2) E(S IF \) = S 1 a.s. n n- n-

(i EIN) • 

(nEtl') . 

The results of this paper will include the case of two sequences of independ

ent mean-zero B-valued r.vs'(Xi)iEtl' and (Zi)iEIN' since (Xi,Fi)iEP' Xo=O 

forms a MDS by choosing F :={~,n} and F. :=A(XI, .•• ,x.) (the generated 
Oil 
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(J - algebra). It will be seen that our results for B - valued MDS yield the 

same order of approximation as is already known from the independent Hilbert

space case; compare [3,4]. Indeed, the material of this paper may be regarded 

as a generalization of that of [3] to martingales in the context of Banach 

spaces. 

Of course our original aim was to try to extend the matter to the case 

of dependent r.v. in B-spaces. However in this respect, the use of condi

tional expectations in the proof is rather natural and seems to lead to a 

type of martingales (see also [8]). This paper will deal with little - a esti

mates, in contrast to that of [6], which is concerned with the large - 0 case. 

Here it will turn out that a Lindeberg-type condition will be of basic im

portance in the case of MDS, just as in the independent situation [3] (Note 

that pure convergence assertions are also of lit tIe - a type, namely a (I); in 

this case a conditional Lindeberg condition has to be assumed (comp. [7] and 

[9]).) In 1975 Paulauskas [10], following up work initiated by V.M. Zolotarev 

[13] and H. Bergstrom [2], considered the closeness of the distribution of 

two weighted sums of independent r.v. in Hilbert spaces, and obtained large 

0- rates of convergence; these are of the same order as ours. 

Stimulated by Basu's paper [I] of 1976 in the real case, the proof of 

our main theorem will be modelled upon Levy's version (1925) of Lindeberg's 

method (1922) as developed into an operator method by Trotter [12] in (195~; 

the latter, however, tailored and applicable only for independent r.vs. has 

to be generalized in order to cover the case for MDS. The aim is to deduce 

estimates for the difference 

(I .3) E[f(~(n)S ] - E[f(~(n)T )] 
n n 

(f E K) , 

where K is a function class essentially characterized by differentiability 

conditions upon f : B ->-IR (Theorem 3. I). As one possible application, the 

central limit theorem will be deduced by choosing the limiting sequence of 

r.v. Z. to be Gaussian distributed in a suitable fashion (Theorem 4.1), see 
~ 

also [II]. 

2. Notations and Preliminaries 

If B is a real Banach space with normalized basis (ek)k E/N' then for 



Roeckerath 397 

(k) 
each x E B there exists an unique sequence of reals (x )k EIN such that 

(2. I) x = \' (k) 
L x ek , 

k=1 

. 1 l' II \,n (k) II ° S h of course or, more prec~se y, ~mn-+oo x - Lk= I x ek B = • uc spaces are 

separable. Examples are any separable Hilbert spaces, as well as the spaces 

LP[O, I], IP , I":p < 00, e[o, I] and c . Let Bj denote the j - fold product 
o 

space Bx ... xB endowed with the max-norm 11"'eIl Bj :=maxl~":j Ilxkll B, where 

"e : = (xI' ... ,x.) E Bj . Then the space L. = L. (Bj ,IR) of all real valued multi-
J . J J 

linear continuous functions g : BJ -+IR is a Banach space under the norm 

II gil L. := 
J 

sup 
1I"t1l • = I 

BJ 

ig("e)i 

Let f be a real valued function defined on B with (sup-norm) 

IIflloo:=suPxEBif(x)i (may be infinite), whose Frechet derivatives f(j) :B-+Lj 

exist and are continuous for I":j":r, rEN. Then one has Taylor's formula 

(2.2) 

f(x+y) 
r 

f(y) + L 
j=1 

I 
+ (r-\)! f (1- t) r- I {f ( r) (y+tx) [x] r - f ( r) (y) [x] r} d t , 

o 

where x,yEB and [x]j :=(x, ... ,x) EBj . Furthermore, one has for a j -times 

continuously differentiable function f 

(2.3) 
(") 

f J (y)(x, ... ,x) 
(VI) (v.) (") 

x ... x J f J (y)(e , ... ,e ), 
VI Vj 

(vk) 
where v k E IN, and x are the unique components of x, I": k": j, y E B. Indeed, 

(2.3) follows immediately from (2.1) and the fact that the f(j)(y) belong to 

L., i.e., are multilinear and continuous. To abbreviate (2.3), we choose the 

f~l1owing notations for v = (v 1" .• , v.) ElN j : 
J 

(2.4) Ivl := j , 
v 

x 
j 

:= II 
k=1 
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(2.4) 

Then (2.3) takes on the form 

(2.5) f(j)(Y)[X]j = ~ xV f[v](y) 
IVI =j 

,e ): B ->-R . 
v. 

J 

The following further function classes are needed, r fIN: 

Roeckerath 

(x,yfB). 

C~ ':' CB := {f : B ->-IR; f uniformly continuous and bounded on lR} 

CB(L ) := {g : B ->- L ; g uniformly continuous and bounded on L } r r r 

On Cr a seminorm is defined by 
B 

If I r := sup Ilf(r)(x)II L 
CB xEB r 

II f (r) ( 0) II L II 
r 00 

Given an arbitrary probability space (0,A,p), let us now consider a B-valued 

r.v. Z : 0->-B,B endowed with the Borel o-algebra BB' with distribution Pz 
on B defined by P (B) :=P({w E 0IZ(w) EB}) for all BEBB. The expectation 

B Z 
of Z is defined as E(Z) :=J0 Z(w)P(dw) and understood in the sense of 

Bochner. With (2.1) one has the representation Z(w)= L~=I(Z(w»(k)ek' so that 

one can define the real-valued component r.vs. Z(k) by Z(k)(w) = (Z(w»(k). 
. . (vk ) 

For a j-tuple v=(vl, ... ,vj)Ej;.~J define the r.v. ZV :=n~=1 Z 

3. General Hartingale Convergence TheoreI:l with Rates 

The reason for assuming that the Banach space B has a countable normal
ized basis is that instead of posing all conditions upon the B-valued r.v. 

X., i EIN, it allows one to pose them upon the associated real components 
1 

x~k), kH~. 
1 

For instance, it is not hard to verify (see [5]) that one 

. f ~('( IF) b' I'CO ,,(,\(k) 'F) s (X F) verSlOn or r. • i I i-I can e wrltten as Lk=1 ,:, - iii-I ek · 0 'i' i i EIP 

is a MDS, iff the real components of Xi satisfy 

(3. I) o a.s. (k, i EIN) , 
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or, equivlently, 

(3.2) E(X~ \ F. I) = 0 a.s. 
1 1-

( \v \ = I, i EN) • 

In the following, we say that a sequence (Xi) i EN satisfies a generalized 

Lindeberg condition of order r E~, iff for each ° > 0, n + 00, 

(3.3) ~ J r ~ [ r] L IIxliB Px (dx) =Oo( L E IIx.II B ) . 
i=1 IIxll ?o/tp(n) i i=1 1 

THEOREt-l 3.1. Let (x.,F.). Eon and (Z.,G.). Ein be two MDS, rEli, and 
111 ... - 111 ... --

(3.4) 

(3.5) E(X~ \ F. I) = E(Z:' \ G. I) = C. a.s. 1 1- 1 1- l,V 

Assume that the r.vs. Xi and Zi satisfy the generalized Lindeberg condition 

(3.3) of order r. Then f E: C~ implies for n +00 

iE[f(~(n)S )] - E[f(tp(n)T )]\ 
n n 

(3.6) 

PROOF. For the two B-valued MDS (X., F.). EID and (Z. ,G.). Ell> defined on the 111 ~ 111 IL 

common probability space (n,A,p) there exist a further probability space 

(n,A,p) and two sequences of independent B-valued r.vs. (Xi)' EI' and _ _ 1 

(Z.). EID (the X. also being independent of the G., and the T. independent 
1 1 It" 1 1 1 

of the Fi , respectively) such that Pi. =PX. as well as IZ. =PZ.' iEI'. 
1 1 1 1 

'" n '" - n-
Defining S := L. 1 X. and T := L. 1 Z. first note that f(tp(n)S ) and n 1= 1 n 1= 1 n 

f(tp(n)T ), as well as f(tp(n)S ) and f(tp(n)T ) are real integrable r.vs. for 
n n n 

each f E CB• By the triangle inequality one easily sees that 
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IE[f(~(n)S )] - E[f(~(n)T )]1 
n n 

~ IE[f(~(n)S)] -E[f(lP(n)T)] 1 + IE[f(lP(n)T )] -E[f(lP(n)S )] 1 
n n n n 

Setting 

R . 
n,~ 

i-I n ~ 

:= L ~ + L Zk 
k=1 k=i+1 

(I ~i~n, nEll) , 

a double application of Taylors formula (2.2) yields for f E c~ 

f(lP(n)S ) - f(lP(n)T ) 
n n 

n 
L {f(lP(n)R . + lP(n)X.) - f(lP(n)R . + lP(n)Z.)} 

n,~ ~ n,~ ~ 
i=1 

I I ~ {f(j)(lP(n)R .)[4J(n)x.]j -f(j) (lP(n)R .)[lP(n)Z.]j} 
i=1 j=1 J. n,~ ~ n,~ 1. 

n I I ( \' f (I-t/-I{f r)(lP(n)R . + tlP(n)X.)[lP(n)X.]r 
+ i~1 (r-I)! 0 n,~ 1 1 

n I 
\' I f r-I { (r) ~ ~ r 

- L -( -1)1 (I-t) f (lP(n)R . +tlP(n)Z.)[lP(n)Z.] 
i=1 r . 0 n,l 1 ~ 

Since f E c~, fer) is uniformly continuous, so that for each E > ° there exists 

a 8 = 8(E) > ° with II fer) (~(n)R . + tlP(n)X.) - fer) (lP(n)R . )11 L < E for all 
n,l ~ n,~ r 

II tlP(n)X.1I < 8, or all II x.1I < 8/lP(n) because t E [0, I]. In the same way 
~ B ~ B 
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Ilf(r)(rp(n)R . + t4l(n)Z.)-f(r)(4l(n)R .)II L <£ 
n,l 1 n,l r 

Noting that for an arbitrary gEL there holds the inequality 
r 

Ig[x]rl';;;lIgIl L IIxll~, 
r 

one has, together with (3.4), 

401 

where ~ denotes the indicator function. Likewise one has with pi. =Pz. ' 
1 1 

Since the X. and Z. satisfy the Lindeberg condition (3.3), this yields that 
1 1 

11 - !E[f4l(n)S ) - E[f(4l(n)i )]1 
n n 
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n 
+ o(<.p(n)r L (E[IIXill; + E[IIZill;]) 

i=1 

(n+oo) • 

In view of the fact that for each 1 o>;j o>;r one has 

v [v] -v [v] 
(E[X. f (<.p(n)R .)] -E[Z. f (<.p(n)R .»)), 

1 n,l 1 n,l 

compare [5], it remains to show that for Io>;io>;n, nEIN, Io>;j O>;r, and Ivl =j 

(3.7) 

For a set C c pen) or a r. v. X let A( C) and A(X) be the a-algebra generated 

by C and X, respectively. Setting 

A. := A(F. 1 UA(2. 1, .. ·,2 », l,n 1- 1+ n 

one deduces by standard arguments for the conditional expectation of real 

r.vs. 

(3.8) 

= E{f[V] (<.p(n)R .)[E(X~ I A .. ) - E(~ I A. )]} 
n,l 1 l,n 1 l,n 

[v]. - -
since f (<.p(n)R .) lS (A. ,R) - measurable. Moreover A(Z. I""'Z ) is 

n,l l,n lR 1+ n 
independent of A(F. 1 UA(x.». Therefore E(x~IA. ) =E(x~IF. I) a.s. and 

1- 1 1 l,n 1 1-

-VIA ~ v since A(Z.) is independent of A. , one has that E(Z. . ) =E(Z.) =E(Z.)a.s .. 
1 l,n 1 l,n 1 1 
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Together with asumption (3.5) this implies that E(?'IA. ) =E(Z':'IA. ) a.s., 
1 l,n 1 l,n 

-::v v v 1 v 1 v] [':::'I] since E[X.] =E[X.] =E(X. F. I) =E(Z. G. I) =E[Z. =E Z. a.s •• Therefore 
1 1 1 1- 1 1- 1 1 

(3.7) holds. Analoguously we can show that 

I = IE[f(~(n)T )] - E[f(~(n)S ]1 
2 n n 

n 
a (~( n) r L (E [II Z ill ~] + E [II XiII ~] ) ) 

i=1 
(n+"') , 

,i-I ,n -
by choosing R . :=Lk I Zk+Lk . I X. and A. :=A(G. I UA(x. I'''''X )). n,l = =1+ -K l,n 1- 1+ n 

In this case (3.5) implies E(Z~IA. ) =E(?'IA. ) a.s .• 
_ _ 1 l,n 1 l,n 

Since (Z.). EaT and (X.). E"'T are two sequences of independent mean-zero 
1 1 ~ 1 1 ~ _ _ 

r.vs. one can tread the term 13 == IE[f(~(n)S )] -E[f(~(n)T )]1 in the same 
n n 

way as in [3.4]. This completes the proof of Thm. 3.1. 

4. A type of CLT with rates for MDS 

In this section, our general theorem will be applied to a concrete 

sequence of r.vs. Z. and a concrete normalizing function ~(n). If X is a 
1 

Banach space valued r.v. with finite second moment E(IIXJI~) <"', and E(X) =0, 

the covariance functional is the symmetric continuous bilinear function 

RX(f*,g*) := E[f*(X)g*(X)] (f*,g*EB*) 

Denote by Xa a Gaussian (distributed) r.v. with mean zero and covarian.ce 

functional R==R~. (A mean zero Gaussian r.v. is uniquely determined by its 

covariance functional R.) It is wellknown that for a separable B-space the 

absolute moments of order s of any mean-zero Gaussian r.v. ~ are finite for 

all s ;;>0, i.e. E[II ~II:] < "'. In the following theorem we have to assume 

that B is a Banach space of type 2. This space is characterized by the fact 

that for each r.v. X: Q+B with covariance functional RX there exists a 

mean-zero Gaussian r.v. ~ with the same covariance functional R=~. For 

this material see especially [II, p. 36,46] and the literature cited there. 
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THEOREM 4.1. Let B be of type 2, r~2, (Xi,Fi)iEIP be!: MDS with E[IXi"~] <00 

and covariance functional R., i EN. Assume that 
- 1 -----

(4.1) E(Xr I Fi _ l ) = E[~~] a.s. (I Et; IvlEt;r, i E~) 
1 

~ well ~ that the sequences (Xi) i Etl' and (~.) i Etl satisfy the generalized 
lr 

Lindeberg condition (3.3) of order r. Then f E CB implies (n +00) 

(4.2) 

In particular, if the r.vs. X., i EIN are identically distributed with 
- -- 1 - -- / 
~ covariance functional R, then (4.1) yields for each fEC~ andtp(n) :=n -I 2 

(n +00) • 

The Proof of Tlun. 4. I follows from Thm 3. I noting that there exist n independent 

mean-zero Gaussian r.vs. ~. such that Px 2 n =Ptp(n) L~_ 
1 tp(n) ~. I R. 1-1 

£.1= 1 

the r.v. X. are identically distributed (3.3) is fullfilled perse. 
1 

~. 
If 

1 

Finally note that it would also be possible to formulate a version of 

the weak law of large numbers for martingales in the frame of Banach spaces 

as an application of theorem 3.1 provided that instead of condition (3.5) 

a weaker asumption upon the rate of growth of the difference 

E(X~ I F. I) -E(Z~ I G. I) will be posed. For details see [II]. 
1 1- 1 1-

This work as well as the paper [6] was supported by the DFG research grant 

Bu 166/33, which is gratefully acknowledged. 
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The present paper is concerned with the inter-relation of the theory of uni
variate spline functions and the harmonic analysis. Specifically it deals with 
(I) the periodic spline interpolants with equidistant knots and uniformly 
spaced data, (III) the cardinal exponential splines, and (11 2) the cardinal 

logarithmic spline interpolants. The underlying groups and their associated 
transforms are (I) the Heisenberg group mod N and the finite Fourier cotrans
form, (III) the additive group m and the inverse Laplace transform, and (112) 

the multiplicative group mX and the inverse Mellin transform, respectively. 
The principle aim is to shot how these transforms may be used to represent 
the splines of the type referred to above. Finally, the paper presents an 
"Erlanger PrograllBll" for splines with "regular" knot sequences on T, m, and 

x • m+, respect1vely. 

I. Einleitung 

Zu den derzeit wohl am besten verstandenen (univariaten) Splines ge-

horen 

(I) die periodischen Spline-Funktionen 

und 

(II) die kardinalen Spline-Funktionen. 

Ein wichtiger Grund, weshalb fur diese beiden Klassen von Splines eine ab

gerundete und wirksame Theorie besteht, ist in ihrem engen Zusammenhang zur 

harmonischen Analyse zu sehen. 1m Fall (I) wird dieser Zusammenhang durch 

die endliche Fourier-Kotransformation geliefert, also durch die Fourier-Ko

transformation auf der zyklischen Gruppe ~/N~ der ganzen Zahlen mod N. Oabei 

zeigt sich jedoch, daB nicht die zyklische Gruppe ~/NZ selbst, sondern die 

der geometrischen Anschauung nicht unmittelbar zugangliche, endliche nilpo-
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tente Heisenberg-Gruppe mod N die fur die periodischen Splines "zustandige" 

Gruppe ist (Abschnitt 4). 1m Falle (II) ist der Zusammenhang zur (kommuta

tiven) harmonischen Analyse durch "diskontinuierliche Faktoren" gegeben, die 

mit Hilfe einer zur unterliegenden Gruppe gehorenden linearen Integraltrans

formation dargestellt werden. Wir behandeln (III) kardinale exponentielle 

Splines auf der additiven Gruppe m der reellen Zahlen mit Hilfe der inver

sen Laplace-Transformation (Abschnitt 6) und (112) kardinale logarithmische 

Interpolationssplines auf der multiplikativen Gruppe m: der strikt positi

ven reellen Zahlen mit Hilfe der inversen Mellin-Transformation (Abschnitt 7). 

Der letzte Abschnitt schlieSlich faSt die bei "regularen" Knotenfolgen zu

grunde liegenden Strukturen tabellarisch zusammen. 

Der Autor ist Herrn Professor Zvi Ziegler (Haifa/Israel) fur seine 

Gastfreundschaft im Technion und Herrn Professor Paul R. Halmos (Bloomington/ 

Indiana)fur sein Interesse an dieser Arbeit und seine Ermutigungen sehr zu 

Dank verpflichtet. 

2. Periodische Splines 

Es sei m~1 eine natiirliche Zahl und G (m ;\) der komplexe Vektorraum 
m 

aller polynomialen Spline-Funktionen auf m vom Grad m zur unendlichen Knoten-

folge~. 1st -l aquidistant und besitzt die "Gitterkonstante" k = ~ 
(N E IN, N~I), gilt also 

(I) ~ = (nk)n E l' 

so laSt sich jede Spline-Funktion s E G (m ;ft) mit Hilfe des Schoenbergschen 
m 

Basis-Splines bEG (m ;\) und einer durch s eindeutig bestimmten Folge 
m m 

(an)n E l komplexer Zahlen in der Form 

(2) s = La b (.-nk) 
nEl nm 

als Linearkombination von Translationen von b (punktweise) darstellen. Der m 
Basis-Spline bm hat das kompakte Intervall [O,(m+l)k] zum Trager, ist in 

seinem Inneren ]0, (m+l)k[ strikt positiv und erfullt die Standardisierungs

bedingung L bm(t)dt = I. 

Projiziert man die additive Gruppe m auf die Quotientengruppe mIl, 
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geht also zu der (als multiplikative Kreisgruppe aufgefaEten) eindimensiona

len Torusgruppe TUber, so kann s E G (lR ;\) genau dann als Element des 
m 2 . 

Spline-Raumes <;m(l;~er) zur aquidistanten Knotenfolge ~er=(e n~nk)o~n~N_l 
aufgefaEt werden, falls die Koeffizientenfolge (an)n E :l in (2) die Periodi

zitatsbedingung 

(3) 

erfUllt. 

a = a fUr n = n' mod N n n' 

1st eine Funktion f: 1 ~ ~ vorgegeben und verlangt man, daE f vom 
G oper 2ni(a+pk) 

Spline s E m(l;~ ) in den aquidistanten Punkten (e )O~p~N-l 

(a E lR) von 1 interpoliert wird, so erhalt man fUr die komplexen Koeffi-

zienten (a ) ~ das lineare Gleichungssystem nnE • 

(4) ~ b (e2ni (a+(p-n)k»a = f(e 2ni (a+pk» 
n E:l m n 

(p E 7). 

Die wie folgt definierten komplexen Zahlen 

(5) SCm): = L b (e2ni (a+(p-n-rN)k» 
pn rEa m 

«p,n) E 'J: x :I) 

erfUllen offenbar die 1dentitat 

(6) SCm) 
pn 

SCm) 
p'n' fUr p-n = p'-n' mod N 

und gestatten wegen (3) das lineare Gleichungssystem (4) in der Form 

(7) (O~p~-l ) 
O~n~N-I 

zu schreiben. Die zugehorende (von m abhangige) komplexe Koeffizientenmatrix 

(8) 

ist wegen (6) zirkulant (Ahlberg-Nilson-Walsh [IJ), d.h. sie ist dadurch 

bereits von den Elementen ihre O-ten Zeile 

(9) SCm): 
n 

S (m) (O~n~-l) 
On 
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eindeutig bestimmt, daB die p-te Zeile (l~p~N-I) durch tibertragen des letzten 

Elementes der (p-I)-ten Zeile auf die erste Stelle und Verschieben aller 

Ubrigen Elemente der (p-I)-ten Zeile um jeweils eine Stelle nach rechts ent

steht ("cyclic shift"). 

Es sei'~[~/N~l die Gruppenalgebra der zyklischen Gruppe ~/Nl Uber dem 

Korper ~. BezUglich der kanonischen, durch die Restklassen mod N indizier

ten Basis von ~[~/Nll ruft die Matrix ~ einen Vektorraum-Endomorphismus B 
m m 

von c[~/Nll hervor. Offensichtlich existiert zu jeder Funktion f: 1 + ~ und zu 
(eZ'1Ti(a+pk» jedem a E ~ genau ein f in den aquidistanten Punkten 

O~p~N-1 

von 1 interpolierender Spline s E G (1;{Eer), falls der Grad m und die Anzahl 
m 

N der Knoten so gewahlt sind, daB der Endomorphismus B invertierbar ist. Un
m 

ser erstes Ziel besteht darin, die Struktur von B und damit auch die der 
m 

periodischen Interpolationssplines s EG (1;~er) selbst von der Warte der har
m 

monischen Analyse aus zu verstehen. Dazu hat man im Sinne des "Erlanger Pro-

gramms" von Felix Klein zunachst die "zustandige" Gruppe ausfindig zu machen. 

3. Die Heisenberg Gruppe A(G) 

Es bezeichne G eine (additiv geschriebene) abelsche lokalkompakte topolo-

gische Gruppe, G die zu G 

wie Ublich, (x, ~)_ <x, ~> 

dung von G x G in 1. Nach 

duale Gruppe (ebenfalls additiv geschrieben) und, 
A 

die zur Dualitat (G,G) gehorende kanonische Abbil-

Weil [10] wird die Uber G modellierte Heisenberg-

Gruppe A(G) folgendermaBen konstruiert: Man wahlt als den A(G) unterliegen

den lokalkompakten topologischen Raum das cartesische Produkt G x G x 1 und 
~ ~ ,.. 

definiert mit Hilfe des Bicharakters (G x G) x (G x G) 3 «xl,x l ), 

(xZ,xZ»- <xI ,xZ> E 1 durch die Vorschrift 

( 10) 

eine multiplikative VerknUpfung auf A(G). Dann reprasentiert A(G) eine 

nicht-abelsche unimodulare lokalkompakte topologische Gruppe. 

Die irreduziblen stetigen unitaren Darstellungen von A(G) lassen 

sich klassifizieren. Konstruiert man mit Hilfe eines Haar-MaBes von G den zu

gehorenden komplexen Hilbert-Raum LZ(G), so wird durch die Zuordnung 

(II) 
A Z A Z W (x,x,i'J: L (G) 3 g-(s-1;<s,x>g(x+s» E L (G) 

o 
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eine irreduzible stetige unitare Darstellung (x,x,s)~W (x,x,s) von A(G) 
o 

in L2(G) definiert. Man nennt W die Schrodinger-Darstellung von A(G) in 
o 

L2(G). Nach dem Unitatssatz von Stone-von Neumann-Mackey ist jede irredu-

zible stetige unitare Darstellung W von A(G) in einem komplexen Hilbert-Raum 

Emit der Eigenschaft W(O,O,s) = slidE fUr aIle s E1 (W subduziert den zen

tralen Charakter s~sl) zur Schrodinger-Darstellung W unitar aquivalent. 
o 

Man sieht: Die Heisenberg-Gruppe A(G) ist "beinahe" abelsch, d.h. eine 

verhaltnismaBig elementare nicht-abelsche lokalkompakte Gruppe. Sie spielt im 

FaIle G=lR vor allem in der Quantenmechanik eine entscheidende Rolle. Die 

drei-dimensionale reelle nilpotente Lie-Gruppe A(lR) wird auch Heisenberg

Weyl-Gruppe eines (einzigen) nicht-relativistischen Teilchens ohne Spin mit 

einem Freiheitsgrad genannt. 

4. Die Heisenberg-Gruppe mod N 

Wie in Abschnitt 2 sei N~I eine natUrliche Zahl. Konstruiert man zur 

zyklischen Gruppe G = 2/N2 der Ordnung N unter der diskreten Topologie die 
A 

Gruppe A(Z/N2) und bezeichnet mit TN die zu 2/N2 (und zu 2/N2) isomorphe ab-

geschlossene Untergruppe von 1 der N-ten Einheitswurzeln, so heiBt die Unter-

gruppe 

(12) J>(2/N2) = {(x,x,S) E A(2/N2>\s E TN} 

von A(2/N2) die Heisenberg-Gruppe mod N (Auslander [2]). Man Uberzeugt sich, 

daB c1(2/N'l:) durch die aus allen oberen Dreiecksmatrizen der Form 

(I3) (x,y,z E :t/N2) 

gebildete Untergruppe von SL(3,2/N2) realisiert werden kann. Versieht man 

den komplexen Vektorraum ~[2/N2] mit dem kanonischen Skalarprodukt, so indu

ziert der (abelsche) Charakter 

( 14) 

'" mit Hilfe des Monomorphismus 2/N2 x T 3 (x,s)~(O,x,s) EJP(2/N2) und geeig-
n 
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neter Identifizierung des Darstellungsraumes eine irreduzible unitare Darstel

lung 

(15) 

von cl('Z/NJ) in G:[:r/NJ], welche zur Schrodinger-Darstellung von J'(7J/N'I) (uni

tar) aquivalent ist. Das Entsprechende gilt fUr die vom Charakter 

(16) X2: '1/N'Z x TN 3 (x,l;)-l; E T 

mit Hilfe des Monomorphismus '1/N'Z x TN 3 (x,l;)~(x,O,l;) EJr('1/N'Z) und geeig

neter Identifizierung des Darstellungsraumes induzierte irreduzible unitare 

Darstellung 

(17) 

von JP(J/N'Z) in ~[J/NJ]. 
Nach dem Unitatssatz sind WI' W2 aquivalente Darstellungen von Jrl'Z/NJ) 

im komplexen Hilbert-Raum (['I/N'I]. Der unitare Verflechtungsoperator ~ von 

WI und Wz besitzt bezUglich der kanonischen Basis von '[IfNI] die zur Knoten

folge -t['er gehorende Vandermondesche Matrix -:fN(e 2lrinpk) O~n;;;N-I' stimmt also 

O~p~N-I 

mit der "endlichen" Fourier-Kotransformation der zyklischen Gruppe 'IfNI 

Uberein. 
A 

Identifiziert man die isomorphen additiven Gruppen '1/NI und 'IfNI, so re-

prasentiert die Abbildung 

( 18) 
-I 

0: (x,y,l;)~(y,-x,<x,y> l;) 

einen Automorphismus von Jr(J/NI), welcher eine fundamentale Symmetrie-Eigen

schaft von Jf(l/NJ) wiedergibt. Man erhalt insbesondere XI = 0(X2) = X2 0 0 

und X2 = o(XI), d.h. 0 vertauscht die WI und W2 induzierenden Charaktere. 

Ferner erhalt man mit den gemaB (9) und (5) definierten komplexen Zahlen 

(S~m»o~n;;;N_I in der O-ten Zeile von ~m das folgende Resultat: 

SATZ I. !.!!!. ~ ~ periodischen Interpolationsspline s E Gm(T;f£er) zuge

ordneten Endomorphismus B von (['I/N'Z] gel ten die Beziehungen 
- m- -
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B L (m) 
I3n WI (n,O, I) m 

O~n~-I 

(19) 

L (m) I3n W2(O,n,l) 
O~n~-I 

~~ irreduziblen unitaren Darstellungen (17) und (IS) ~ Heisenberg-Grup

~ rl ('1:/N7) mod N. 

Wendet man auf die erste der Gleichungen (19) den Verflechtungsoperator 

9rN von WI und W2 an, so erhalt man das folgende bekannte Resultat: 

SATZ 2. Die endliche Fourier-Kotransformation 9rN diagonalisiert ~~ 

morphismus Bm ~ «: [7/NZ]; ~ Eigenwerte ~ Bm ~ ~ ~ Summen 

(~I3(m)e2ninpk) gegeben. 
O~n~-I n O:;;p~-I 

Aus den vorstehenden Satzen wird der Zusammenhang zwischen den zu aqui

distanten Knotenfolgen~er und aquidistanten Datensatzen auf 1 konstruierten 

periodischen Interpolationssplines auf der einen Seite und der Heisenberg-Grup

pe Jr(~/N7) mod N und ihrer (im Raum «:[7/N7] operierenden) Schrodinger-Dar

stellung auf der anderen Seite deutlich. Als Anwendung kann man aus ihnen hin

reichende Bedingungen fur den Grad m und die Anzahl N der Knoten auf 1 her-

lei ten, um die Existenz und Eindeutigkeit des periodischen Interpolations

splines s E(;m(T;tEer ) zu sichern. Details sollen an anderer Stelle wieder

gegeben werden. 

5. Diskontinuierliche Faktoren 

Wie bereits in Abschnitt I erwahnt, wird der Zusammenhang zwischen den 

kardinalen Spline-Funktionen und der (kommutativen) harmonischen Analyse durch 

sog. diskontinuierliche Faktoren gegeben, die man etwa von der Behandlung von 

Einschaltproblemen in der Elektrotechnik kennt. 

Fur jede naturliche Zahl m~l erhalt man durch eine Variablen-Transfor

mation die bekannte Identitat 
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(20) ( -zx md 
~ e x x 

+ 

m! 
= --m+T 

z 
(Re z > 0). 

Die Gleichung (20) besagt, daB die einseitige Laplace-Transformierte 

des Monoms x~xm im Punkt z der offenen rechten komplexen Halbebene mit 

m!/zm+1 ubereinstimmt. Zur additiven lokalkompakten Gruppe lR gehoren, weil 
. '" die Charaktere von lR durch x_e1XY (y E lR =lR) gegeben sind, die (klassische) 

Fourier-Transformation und, durch Fortsetzen der Charaktere in der komplexen 

y-Ebene zur Erfassung nicht-unitarer Darstellungen, die zweiseitige Laplace

Transformation. Definiert man fur jede reell-wertige Funktion f ihren Posi

tivteil gemaB f+ = sUP(f,O)~(f+lf'), so folgt aus (20) durch Anwenden der in

versen Laplace-Transformation die Identitat 

(21) xm =..!!!.!.... (~dZ (xElR), 
+ 2ni ) m+1 

L z 
1 

wobei LI = {z E tiRe z = c}, c > 0, eine beliebige vertikale Gerade in der 

offenen rechten komplexen Halbebene bezeichnet. Entsprechend gilt die 

komplexe Linienintegral-Darstellung 

(22) 1 I ~ xz (_x)m = (_I)m+ ~ _e __ dz 
+ 2n1 m+1 

L z 
2 

(x E lR) 

mit einer vertikalen Geraden L2 in der offenen linken komplexen Halbebene. 

Auf ahnliche Weise kann man vorgehen, wenn man die multiplikative Gruppe 
x 

lR+ der streng positiven reellen Zahlen zugrunde legt. Bezeichnet (r ) 'I 
m m", 

die Folge der Partialprodukte in der klassischen GauBschen Produktdarstellung 

der r-Funktion, also 

(23) r : 
m z-T'T 

O~k~.(z+k) 
(m~l) , 

so erhalt man durch schrittweise partielle Integration der Funktion 

t~(I- !)mtz-I die Identitat 
m 

(24) (Re z > 0). 
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Die Rolle der Fourier-Transformation auf der additiven lokalkompakten 

Gruppe lEt wird von der Mellin-Transformation auf der multiplikativen lokal

kompakten Gruppe lEt: iibernommen, weil log: 1R: -+ lEt einen topologischen Iso

morphismus definiert. Aus (24) erhalt man durch Anwenden der inversen Mellin

Transformation die 1dentitat 

(25) (1- -) =~ r (z)t dz t mil -z 
m + 21T1 m 

(t E lEt), 

wobei L eine vertikale Gerade in der offenen rechten komplexen Halbebene be

zeichnet. Die kornplexe Linienintegral-Darstellung (25) des diskontinuierlichen 
t m Faktors t~(I- -) (m~l) scheint, obschon sehr naheliegend, dennoch neu zu 
m + 

sein (vgl. [6». 

6. Kardinale Exponentielle Splines 

Es bezeichne MO eine feste komplexe Zahl. Jede Losung s E G (lEt ;:1) der 
m m 

homogenen linearen Differenzen-Gleichung 

(26) f(x+l) - hf(x) o (x E 1R) 

heiBt nach Schoenberg [9] ein kardinaler exponentieller Spline vorn Grad m~1 

und Gewicht h. Mit Hilfe der diskontinuierlichen Faktoren (21) und (22) und 

der Differenzen-Gleichung (26) gewinnt man den folgenden Darstellungssatz 

(vgl. [4]): 

SATZ 3. Die kardinalen exponentiellen Splines s E G (lEt ;:1) vom Grad ~I und 
-- x m m -----

Gewicht hE' -1 besitzen ~ kOmplexe Kurvenintegral-Darstellung 

(27) s (x) 
m 

~ (x+l)z 
C (1- ~m+1 _1_ e dz 
m,h h 2· (z h) m+1 

1T1 p e - z 
(x E lEt). 

Dabei bezeichnet Cm,h E It eine beliebige Konstante ~ P ~ ~ zwei ~ 

parallelen Graden bestehenden positiv orientierten Rand ~ abgeschlossenen 

vertikalen Streifens ~ ~ offenen rechten ~ ~ komplexen Halbebene, 

k~~ ob Ihl>1 ~ O<lhl<1 gilt, der die "kritische" Gerade 

{w E a:\Re w = loglhl} i!!.~~ enthalt. 
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Falls s (0) * 0 zutrifft, kann in (27) die Konstante C h so gewahlt m m, 
werden, da13 s E (S (lR ;71) die Folge (hn) E 71 in den Punkten n E 71 interpo-m m n 
liert. Mit Hilfe von Satz 3 und den Eigenschaften der Euler-Frobenius-Poly-

nome (vgl. [5]) la13t sich durch Anwenden des Residuen-Satzes beweisen, da13 

die kardinalen exponentiellen Interpolationssplines punktweise die Konvergenz

Eigenschaft lim s (x) = hX(x E lR) erfiillen, falls das Gewicht h E t-l nicht 
m m .... 

zur abgeschlossenen reellen Halbgeraden lR gehort. Eine Erweiterung dieses 

Resultats wird mit Hilfe von (27) in der Arbeit [7] bewiesen. 

7. Kardinale Logarithmische Interpolationssplines 

Es sei h > I eine feste Schrittweite und~ die Knotenfolge (hn) o x .,~ x 0 n E 71 
in der offenen reellen Halbgeraden lR • Jede Losung S E G (lR +;.1 ) der 

+ m m ''b 
inhomogenen linearen Differenzengleichung 

(28) f(h x) - f(x) = 1 
o 

welche die Interpolationsbedingung S (hn) = n(n E 71) erfUllt, hei13t nach Newm 0 
man-Schoenberg [3] ein kardinaler logarithmischer Interpolationsspline vom 

Grad m~1 und der Schrittweite h • FUhrt man die leicht modifizierte Logarith
o 

musfunktion 

(29) 

ein, die offenbar ebenfalls die Differenzengleichung (28) und die Interpola

tionsbedingung f (hn) = n (n E ~) erfUllt, so liefern der diskontinuierliche 
o 0 

Faktor (25) und die Differenzengleichung (28) den folgenden Darstellungssatz: 

SATZ 4. Die kardinalen logarithmischen Interpolationssplines Sm E~(lR:;~) 

~ ~ m~1 ~!!!!. Schrittweite ho > 1 besitzen !!i!. komplexe Kurvenintegral

Darstellung 

(30) S (x) 
m 

= _1_ ( r (z)h -zfo(m) 
2 .) m 0 

TIl. Q 

-z 
I-x 
---dz 
I-h-z 

o 
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~ bezeichnet Q ~ positiv orientierten ~ eines abgeschlossenen 

vertikalen Streifens, ~ ~ ~ ~ antiparallelen Geraden 

Ql = {w E ~IRe w = c}, c > 0, ~ Q2 = {w E t\Re w = d}, - l<d<O, begrenzt 

wird. 

Die Gleichung (30) zeigt, daB im FaIle der kardinalen logarithmischen 

Interpolationssplines die imaginare Achse {w E ':\Re w = O} die "kritische" 

Gerade ist. Mit Hilfe von Satz 4, des Residuen-Satzes und eines mit der Gleich

verteilung auf 1 zusallllllenhangenden Dichtheitsarguments laBt sich das "Newman-
x 

Schoenberg-Phanomen" beweisen: Es gilt lim S (x) = f (x) fur x E 1R genau m 0 + m-+oo 
dann, wenn der Punkt x mit einem Knoten zusallllllenfallt, also x E~ zutrifft. 

o 

8. Zusallllllenfassung 

Eine Ubersicht uber die behandelten Splines, die zugehorenden Gruppen 

und Transformationen sowie Literaturhinweise werden in der nachstehenden Ta

belle gegeben, die man gewissermaBen als Ansatz zu einem "Erlanger Pro

grallllll" fur Splines zu "regularen" Knotenfolgen betrachten kann. 

Spline Gruppe Transformation Lit. 

Periodischer Spline Heisenberg-Gruppe Endliche Fourier-

I zu aquidistanten .r(Z/N~) mod N Kotransformation [7] 

Knoten 

Kardinaler Additive Gruppe 1R Inverse Laplace- [4] 

III exponentieller der reel len Zahlen Transformation [5] 

Spline 

Kardinaler Multiplikative Gruppe Inverse Mellin- [6] 

logarithmischer 
x 

positiven Transformation II2 1R + der 

Spline reellen Zahlen 

Fur eine Ankundigung der angesprochenen Ergebnisse sei auf den Artikel [8] 

verwiesen. 
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UNIQUENESS OF OPTIMAL PIECEWISE POLYNOMIAL 

LI APPROXIMATIONS FOR GENERALIZED CONVEX FUNCTIONS 

John B. Kioustelidis 

Department of Applied Mathematics 

National Technical University 

Athens 

. h h h . 1· . th d 1· 1 L .. It 1S s own t at t e opt1ma p1ecew1se m egree po ynom1a l-approx1mat1on 
. ' . ((m+ I ) ..). . . 1 (m+ I ) of a general1zed convex funct10n f f pos1t1ve 1S un1que, 1f og f 

is concave. 

I. Introduc.tion 

The uniqueness of optimal piecewise polynomial approximations with free 

knots has already been investigated by Meinardus [I, p. 188] for the case of 
. .. . h· d . f f (m+ I). . the un1form norm. Un1queness 1S 1n t 1~ case guarantee , 1 1S POS1-

tive and polynomials of degree not exceeding m are used. 

More recently, Barrow, Chui, Smith and Ward [2] have answered the ques

tion of uniqueness of piecewise linear approximations for convex functions in 

the case of the L2- and LI-norms. Their main instrument is the concept of the 

topological degree of a mapping, which allows under certain conditions the 

determination of the exact number of zeros of the mapping in some region. 

Using the same technique Chow [3] has shown that optimal piecewise mth degree 

polynomial L2-approximations of generalized convex functions (f(m+l) >0) with 

concave log f(m+l) are unique. Here we prove the same result for the LI-case. 

The notation used is not the spline notation but a simpler one. 

2. The Problem, Characterization of the Solutions 

Let 1=[ a,b] be a given real interval and U denote the set of all possi
n 

ble partitions of I into maximally n subintervals 
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( I ) U :={{u.,i=O(I)n}:u =a,u =b,u. l';;;u.,i=l(l)n}. n 1 0 n 1- 1 

Also let P be the linear space of polynomials of degree at most m. 
m 

By P(I) denote the set of piecewise continuous functions over I, and by 

P (I) the set of functions q E P(I), which are described in each half-open m,u 
subinterval 1. := [u. I'u.) of the partition U by some polynomials p. E P 1 1- 1 n 1 m 

(2) P , (I) :={qEP(I) :q(x) =p.(x) V xE [u. I'u.), p. EP ,i=I(I)n}. m,u 1 1- 11m 

The problem under consideration is the following: 

For given fEe (I) and n EIN find u E U and q EPA (I), which minimize the n m,u 
LI-norm 

(3) II f - qll I I = f I f (x) - q (x) I dx 
, I 

of f - q over all u E U and q E P (I). Any solution of this prob lem is called 
n m,u 

optimal segmented (or piecewise) mth degree polynomial LI-approximation of f 

with n segments. The existence of solutions to this problem has been estab

lished in[4] and [6]. It has also been shown that any solution q has distinct 

knots [5], and that it is characterized by continuity of the pointwise error 

modulus (If-cil EC(I» [4], [6]. 

In the case of generalized convex functions (f (m+ I) (x) > 0 for x E I) we 

have the following more specific results [6] (the second one being due to 

S.N. Bernstein). 

PROPOSITION I. Let f E Cm+1 (I) with f(m+l) positive in I, and suppose that q 

is ~ optimal piecewise mth degree polynomial LI-approximation of f with n 

segments: Then q has the following properties: 

(4) a) 
m+1 

f(u.) -p.(u.) = (-I) (f(u.) -po I(u.», 1 1 1 1 1+ 1 i=I(I)n-1 

b) (S.N. Bernstein) The polynomial Pi (x), i = I (I)n, which describes the 

optimal approximation in the interval [u. I'u.) is the interpolation polyno-
- 1- 1 ---

mial of f at the m + I points 

(5) 
kIT 

cos(-2 ) m+ k = I (I)m + I • 
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3. Uniqueness of Optimal Segmented Approximations 

In order to establish the uniqueness of the optimal segmented LI-

approximation of generalized convex functions, under certain conditions we 

are going to derive first an expression for the approximation error and need 

the following lemmata: 

LEMMA I. Let 

(6) ~ c +d cos t k , 

(7) tk = (k1r)/(m+2). 

Then for any polynomial of degree !!!. ~ m there holds 

(8) 
m+1 

H(p) := L 
k=O 

~ 
f 

~+I 

p(x)dx o . 

k = O(1)m + 2 

PROOF. It is sufficient to prove the validity of this identity for the powers 

of x -c. Let 

(9) 
s-I p (x) = (x-c) , 

s 
s = 1(1)m + I • 

Then it is easy to show that 

(10) dS { m+s m~ I k s I H(p) =- - 1+(-1) +2 L (-I) cos tk • 
s s k=1 

s Expressing the terms cos tk by sums of cosines and interchanging the 

summations we obtain 

(II) H(p ) == 0 • s 

LEMMA 2. For any function g there holds 

(12) 
m+\ 

g(x ) + (-I)mg(x 2) + 2 I 
o m+ k=1 

k 
(-I) g(~) -
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m+1 k 
L (-I) (g(~) - g(~+I)) -

k=O 

m+2 
2(m+2)d g[x .xl.· ... x 2] o m+ 

where ~ ~ the points defined E1. (6). (7). 

PROOF. The identity follows from the fact that 

m+2 g(~) 
(13) g [x • xl' •..• x 2] - L w' (~) o m+ 

k=O 

with 

m+2 
dm+3 [ (x-c)2_l] U (14) w(x) := II (x-x. ) (~) • 

i=O 
l. d m+l d 
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where U I (t) is the second kind Chebyshev polynomial of degree m + I: 
m+ 

( 15) U (t):= sin~(m+2)arccos t) 
m+1 sl.n(arccos t) 

For later use we note also 

LEMMA 3. For ~ arbitrary function hex) and arbitrary points zl.z2 •••• ,zQ, • 

it follows from 

( 16) g(x) (x-zl)h(x) 

that 

(17) 

PROOF. This is an immediate consequence of the relation 

Q, 

( 18) L 
k=l II (zk-z,) 

i*k l. 

THEOREM I. Let f E Cm+ l (J) with f(m+l) positive in the interval J= [v.u] . 

Also let 

x 
(19) F(x) := f f(t)dt, xEJ. 

v 

If P is the best mth degree polynomial Lj-approximation to f in J 
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then the approximation ~ is 

(20) 
m+1 k 

EJ = IIf-plll J = z: (-I) (F(~) -F(~+I» 
, k=O 

m+1 k 
= F(x ) + (-I)~(x 2) + 2 z: (-I) F(x.) 

o m+ k=1 K 

(21 ) 
m+2 

= 2(m+2)d F [x ,xl'···x 2] o m+ 

(22) c = (u+v)/2, d = (u-v)/2. 

PROOF. According to the above mentioned result of S.N. Bernstein, p interpo

lates f at the points ~, k = I (I)m + I, defined by (6), (7) and (22). Using 

the interpolation error formula and the fact that f(m+l) is positive we see 

that 

(23) 

Therefore, 

(24) 

sign{f (x) - p (x)} I m+1 I sign IT (x-x,) 
j=1 J 

k 
(-I) for x E (~+I'~) • 

m+1 
E == z: 

J k=O 

~ m+1 
f \f(x)-p(x)\dx= z: (_I)k 

~ 
f {f(x) -p(x)}dx. 

~+I k=O ~+I 

Formula (20) now follows immediately with the help of Lemma I, while 

formula (21) is a direct application of Lemma 2 to formula (20). 

COROLLARY I. Let f E Cm+I(I) with f(m+l) positive in 1. Then: 

a) The ~ of any optimal segmented mth-degree polynomial LI-approximation 

(with n segments) q of f is 

(25) 

with 

(26) 

n ( m+1 k ) 
E = z: F(x,) + (-I)~(x, 2) + 2 z: (-I) F(x'k) 

i=1 10 1,m+ k=1 1 

x 
F(x) := f f(t)dt , 

a 
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(27) 

and 

(28) C. 
1 
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. 2 tk 2 tk 
ui _ 1 Slll T +ui cos T' k=0(I)m+2 

d. 
1 

i=I(I)n. 

b) The partition knots ui ' i=I(I)n-l, fulfill the equations 

(29) o 
m+1 k( 2 tk 

gi(u) := f(x io ) + (-I)mf (Xi ,m+2) + 2 k~1 (-I) cos Tf(xik) 

i=I(I)n-l. 

PROOF. The relation (25) follows by applying formula (20) in each partition 

interval and summing up the errors. The equations (29) follow either by 

equating the derivatives of the error E with respect to the variables u. to 
1 

zero, or by using the continuity conditions (4). 

Under the assumptions of Corollary I, the question, whether the optimal 

segmented approximation is unique or not, reduces to the question, whether 

the mapping g occuring in (29) has only one zero point in the region 

(30) 

or not (note that uo=a, un=b). This question can be answered in some cases 

by considering the topological degree of the mapping g with respect to the 

region G and the value vector e (e is here the zero vector): 

(31 ) 
N 

deg(g,G,e) = L sign det g'(u(k)), 
k=1 

where u(k), k=I(I)N, are the solutions of the equation: 

(32) g(u) e 

in the region G, and g' the jacobian matrix of g. (For an introduction to the 

concept of the topological degree and its properties see [5, chapter 6] .) If 

the determinant of g'(u) is always positive at the zero points of g(u), then 

obviously deg(g,G,e) is equal to N, i.e., to the number of solutions of (32) 

in G. Our first step is thus to determine conditions for the positivity of 
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det g'(u(k)). In order to determine deg(g,G,e) we then use the property of 

homotopy invariance of the topological degree [5, p. 156] • This property can 

be expressed in the following way: 

If the mappings g : G +lRn- 1 and g : G +Rn- I are continuous and the mapping 

(33) At(u) := tg(u) + (\-t)g(u) 

has no zero points on the boundary aG of G for all tE[O,I], then deg(At,G,e) 

is constant for t E [0,1] and more specifically, 

(34) deg(g,G,e) = deg(A1,G,e) = deg(Ao,G,e) = deg(g,G,e). 

The mapping g is chosen so that the number of its solutions in G can be 

easily determined. It is the mapping which corresponds to the continuity con

ditions (29) for the approximation of the function f(x) =xm+1 . 

Following the above procedure, we first determine the jacobian g'(u). 

This is a tridiagonal matrix, whose nonzero elements in each row are 

(35) 

where 

(36) 

a g. 
1 

au. 
1 

From (29) it follows that 

and 
ago 

1 

~I 1+ 

m+1 k 2 tk . 2 tk , 
2 l (-I) cos :r Sin :r f (x ik ) 

k=1 

hex) := (x. -x) (x-x. 2)f'(x) 10 1,m+ 

(note that X. =U. and X. 2 =U. I)' Applying successively Lemma 2 and 10 1 1,m+ 1-
Lemma 3 on this expression we have 

(37) 2(m+2) m+2 m 
= ~ di h[xio ... ·'xi ,m+2] = -(m+2)di f'[xiI,· .. ,Xi,m+1 1 

1 

In the same way it follows that 
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(38) 

while 

(39) 

Now we prove 
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ogi m+1 k. 2 tk 2 tk 
--=2 L (-I) S1n -2 cos -2 f'(x1'+ I ,k) 
Oui +1 k=1 

-(m+2)d~+1 f' [x'+ 1 I'· .. ,x'+ 1 I] 1 1, 1 ,m+ 

og. m+1 4 t r = f' (x. ) + 2 L (_I)k cos 2k f' (x· k) + (-I)mf , (x. 1 2) 
ui 10 k=1 1 1+ ,m+ 

m+1 t 
+ 2 L (_I)k sin4 : f'(xi+I,k) 

k=1 

LEMMA 4. Let f ECm+2(I) with f(m+l) positive and log f(m+l) concave 

(f(m+2) /f(m+l) nonincrea~) in 1. If g(u) = e, then the determinant of g' (u) 

is positive. 

PROOF. It is sufficient to show that g'(u) has positive diagonal elements and 

is diagonally dominant with strict inequality in the first and last row. By a 

standard modification of Gerschgorin's theorem it follows then that the eigen

values of g'(u) lie in the open right half of the complex plane, i.e., have 

positive real parts. Since all elements of g'(u) are real, the complex eigen

values come in conjugate pairs, and the product of the eigenvalues, i.e., 

det g'(u), is therefore positive. 

Using the generalized theorem of Rolle [8, p. 5~ we see that the divided 

differences in (37) and (38) are equal to some intermediate values of f(m+l) 

in the interval I., resp. I. 1 and therefore positive. Thus,the expressions 1 1+ 
(37) and (38) are negative. Positivity of the diagonal elements and (strict 

in the first and last row) diagonal dominance are therefore established at 

the same time, if we show that 

(40) 
ag. ag. ag. 

s .. = __ 1_ + __ 1 + __ 1_;;;. 0, 
l' au. IOu. au. 1 1- 1 1+ 

i =2(1)n -2, 

and 

(41 ) 
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By means of (35), (38) and (39) it follows that 

(42) 

(43) 

where 

(44) 

s. 
~ 

m+1 k 2 tk 
f'(x. ) + 2 L (-I) cos -2 f'(x· k ) + (-I)mf' (x. 1 2) 

~o k=1 ~ ~+ ,m+ 

m+1 2 tk , 
+ 2 ~ (_I)k sin 2" f (xi+l,k) 

k=1 

hl(x) := (x-x. 2)f'(x), h 2 (x) := (x. 1 O-x)f'(x) • 
~,m+ ~+ , 

Then,by means of Lemma 2 and Lemma 3, it follows from (43) that 

(45) s. 
~ 

m+1 
(m+2)d. f'[x. , ... ,x. 11 

~ ~o ~,m+ 

m+1 
- (m+ 2) d ~+ 1 f' [ x. 1 I'"'' x. 1 21 • 

L ~+, ~+,m+ 

Using the same technique as above we can show that the system (29) is 

equivalent to 

(46) dm.+ 1 f[ 1 x. , ... , x. 1 
~ ~o ~,m+ 

m+1 
d. If[x. 11, .. ·,x·+ 1 +2], i=I(I)n-1. 
~+ ~+ , ~ ,m 

Therefore, 

(47) 

where 

(48) 

and 

(49) A. 
~ 

s. P. (A. - B. I)' 
~ ~ ~ ~+ 

P. 
~ 

m+1 
(m+2)d. 

~ 

f[x. , ... ,x. 11 
~O' ~,m+ 

f'[x. , ••. ,x. 11 
~o ~,m+ 

f[ 1 ' B~ + 1 x. , ... ,x. 1 L 

~o ~,m+ 

> 0 , 

f'[x. 1 I'''·'x. 1 21 ~+ , ~+ ,m+ 

f[x. 1 I'''·'x. 1 +21 ~+ , ~+ ,m 
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Using integral representations for the divided differences in Ai and 

Bi + I (see [8, p. 561 ), and wri ting f (m+2) in the form f (m+ I) (f (m+2) If (m+ I» we 

see that A. is a weighted average of f(m+2)/f(m+l) in I and B is a 
1 i i+1 

weighted average of the same function in the interval I. I' Therefore, since 
1+ 

f(m+2) If(m+l) is nonincreasing, s. is nonnegative. 
1 

In order to establish the validity of the inequalities (41) we note that 

inequality (40) is also valid for i = I and i = n - I. Since - a gl lauo and 

-agn_l/aun are positive the inequalities (41) follow immediately. 

- m+1 
Now we consider the mapping (33). Since f(x) = x it follows that 

(50) 
m+1 k( 2tk 

A . (u) := H(x. ) + (-I)~(x. 2) + 2 L (-I) cos -2 H(x1· k ) 
t,l 10 1,m+ k=i 

i = I (I)m - I, 

where 

(51 ) H(x) := tf(x) + (i-t)f(x) 
m+1 

tf(x) + (i-t)x . 

We now show: 

LEMMA 5. For any t E [ 0, I] the mapping At (u) has ~ ~ points ~ the boundary 

aG of G. 

PROOF. Using Lemmata 2 and 3 we can show in the same way as previously that 

(52) 
m+1 

A . (u) = (m+2)d. H[ x. , .•• ,x. 11 t,l 1 10 1,m+ 

m+1 
- (m+2)d. I H[x. I I , ... ,x. I 21 . 1+ 1+ , , 1+ ,m+ 

By means of the generalized theorem of Rolle it follows that 

(53) A .(u) 
t,l 

(m+2)(dr;t+ i H (m+ I) (~. ) _ dr;t+ II H (m+ I) (n. » , 
1 1 1+ 1 

i=I(I)n-l, 

for some~. E1. and n. E1. I' Noting that f(m+l) is positive and i(m+l) is 
1 1 1 1+ 

equal to (m+I)! we see that 

(54) H(m+I)(x) = tf(m+I)(x) + (l-t)(m+l)! >0 for all t E [ 0, I] . 
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The boundary aG of G contains exactly the points u E G with 

d. 
1 ° (u. I=u.) for some i, i=I(I)n (withu =a,u =b). 

1- 1 0 n 

From 

(55) A .(u) = 0, 
t,l 

and d. =0 for any j it follows because of (53), and (54) that 
J 

i=I(1)n-1 

(56) d. = ° 1 
for i = 1(I)n. 

However, these equations are equivalent to 

(57) 

which is obviously impossible. Therefore, At cannot vanish on G for any 

tE[O,I]. 

Invariance of the topological degree under the homotopy (33) has thus 

been established, and therefore 

(58) 

(59) 

(60) 

i. e. , 

(61 ) 

deg(g,G,e) = deg(g,G,e). 

For the mapping g there holds 

g.(u) := (m+I)! (d~+I-d~+II)' 
1 1 1+ 

Its only zero point is given by 

d. 
1 

b-a 
n 

b-a u=a+k--
k n ' 

i=I(I)n-l. 

i=I(I)n, 

k = 1 (l)n - 1 . 

The determinant of its jacobian at this point is positive. Therefore, 

according to (31) we have 

(62) det(g,G,e) 1 , 

and because of (58) 

(63) deg(g,G,e) 1 • 
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Thus,we have established the following result. 

m+2 . (m+ 1) .. (m+ 1 ) 
THEOREM 2. Let f E C (I) wlth f posltl.ve and log f concave in I. 

The optimal segmented m-th degree polynomial L1-approximation E! f with n 

segments is then unique, and ~ be determined by solving the system (29). 

As said before, for m = 1 this result is already given in [2, pp. 1141-

1142] • 
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The dominated integral of a function of two real variables is introduced 
along the lines of [2] . 

The concept of the dominated integral of a function of a real variable 

was recently introduced and studied in [2]. [3] and [ 1]; in particular. its 

relationship with numerical quadrature of improper integrals has been investi

gated. The purpose of the present paper is to generalize this concept. along 

the lines of [2]. to functions of two real variables. 

DEFINITION I. Let f be ~ complex function ~ 1= (0.1] X (0.1] • ! dominated in

tegral of f on I is ~ number lI(f) having the property: For each £ > 0 there 

exist 0 and X. 0 < 0 < I. 0 < X < I. such that 

m n 
( I ) IlI(f) - 2 2 f(Po k)(xo -xo_I)(Yk -Yk-I) I < £ 

j = I k=1 J. J J 

whenever O<xo<xl < ... <xm=l. O<Yo<Y I < ... <yn=l. xo<X. Yo<X; and 

xj_l/xj >1-0. Yk-I/Yk> 1-0. Pj •k E[xj_I.Xj ] X[yk_l.yk] for j = 1.2 ..... m. 

k = 1.2 •..•• n. Dominant integrability of f ~ I means existence of such ~ 

lI(f) . .!!. it exists. it is clearly unique. 

THEOREM I. Let f be ~ complex function ~ I. dominantly integrable there. 

Then (i) f is Riemann integrable ~ each [a.l] X [b. I] • 0 < a < I. 0 < b < I. 

(ii) f is summable on I. and (iii) lI(f) = II f(x.y) dx dy. 
I 

If f is a complex function. defined and bounded on a nonempty set S. we 
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denote byw(f,S) the oscillation of f on S, i.e., sUPp,QEslf(P)-f(Q)I. 

Given a complex function f, defined and bounded on each closed subset 

of I, and given sequences O<x <xI'" <x =1, O<y <YI < ... <y =1 o m 0 n 
(m;;;'l, n;;;' I), we set 

m n 
'f: L w(f,[xj_l,xj ] X[Yk_I'Yk])'(xj -xj-I)(Yk-Yk-I)' 
j=1 k=1 

(OS stands for "oscillation sum".) 

DEFINITION 2. ! complex function f satisfies on I the Riemann condition for 

the dominated integral (RCDI) iff the following two conditions hold: 

(i) f is defined on I and bounded ~ each of its closed subsets; and 

(ii) for each E > 0 there exists 0, 0 < 0< I, such that if 

O<x < <x =1, O<y <YI'" <y =1 (m;;;'l, n;;;'I); x. I/x. >1-0 for o m 0 n J- J --
j =1,2, ••. ,m; and Yk-I/Yk> 1-0 for k=I,2, ••• ,n, then 

OS(f; x ,xl'''''x; Y ,yl, ... ,y) < E. o m 0 n 

THEOREM 2. ~ complex function ~ I is dominantly integrable there iff it sa

tisfies there RCDI. 

COROLLARY I. If ~ complex function f is dominantly integrable on I, so is 

1 f I. 

PROOF OF COROLLARY I. Theorem 2 and the inequality 

IIf(p) I - If(Q) II ~ If(p) - f(Q) I· 

LEMMA I. Let f be dominantly integrable ~ 1. For every (x, y) E I set 

f(x,y) = sup{ I f(u,lT) I: x ~u ~ I, Y ~v ~ J} 

(~ Theorem 2 and Definition 2, (i». Then f is dominantly integrable on I. 

DEFINITION 3. ~ complex function f is absolutely dominantly integrable on I 

iff it is Riemann integrable on each [a, I] X [b, I], 0 < a < I, 0 < b < I, and I fl 

is dominantly integrable on I. 
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DEFINITION 4. ! complex function f has property D (for "dominated") ~ I iff 

it is Riemann integrable ~ each [a, I] X [ b, 1], 0 < a < I, 0 < b < I, and there 

exists ~ real function g(x,y) which, ~ I, is monotone nonincreasing in x 

and in y, summable, and satisfies g;;;.lfl. 

THEOREM 3. The following ~ equivalent: (i) dominant integrability ~ I; 

(ii) absolute dominant integrability ~ I; (iii) property D on I; and 

(iv) Riemann integrability ~ each [a, 1] X [b, 1], 0 < a < I, 0 < b < I, along !lith 

domination of absolute value on I £r~ function, dominantly integrable 

there. 

(That (i) implies (ii) follows from Theorem I and Corollary I. That (ii) 

implies (iii) follows from Lemma I and Theorem I, (ii). By Lemma I applied to 

the dominating function, we see that (iv) implies (iii). That (i) implies (iv) 

is seen by Theorem I, (i) and Corollary I, letting the absolute value of the 

function dominate itself. Thus it merely remains to prove that (iii) implies 

(i).) 

PROOF OF THEOREM I, (i). Let 0 < a < I, 0 < b < I. As we shall see, it suffices 

to prove the following statement: For each E > 0 there exists °1 (E) > 0 such 

that if a=x <XI < ... <x =1, b=y <YI < ••. <Ym=l; x. I/x. >1-ol(E), and 
o m 0 J- J 

y·_I/Y' > I-ol(E) for j = I,2, ... ,m, and P. k' Q. k are points of 
J J J, J, 

[xj_I,Xj ] X[Yk_I'Yk ]for j,k=I,2, .... m. then 

(2) 

Indeed. assume its truth. Let E > O. and set 02 = °1 (E)min(a,b). Choose 

a = x < XI < ... < x = I. b = Y < YI < ... < Y = I with x. - x. I ~ 02 and o mom J J-
y. -y. 1~02 for j=I,2, •••• m. Then x. I/x . >I-CI(E). y. I/y , > 1-15 1 (E) for 

J J- J- ] J- J 
j = 1,2, ••• ,m, and hence, if P. k' Q. k are as above. (2) holds. This clearly 

J. ] ' 
implies that f is bounded on [a,I] X[b,l] and 

OS(Re(f); x ,xI""'x ; y 'YI'''''Y') ~ E, o mom 
OS(Im(f); x .xI""'x ; Y 'YI""'Y ) ~ E. Hence f is Riemann integrable on o mom 
[a.l] X [b. I]. What remains is to prove the above statement. 

Given E > 0, choose 15 and X, both in (0, I), so that (1) holds under the 

conditions following it, with E replaced by E/2. Set °1 (E) = 0, and choose a 
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N 
positive integer N such that [1-(012)1 max(a,b) <x. If x j , Yj' Pj,k and Qj,k 

N-' N-' 
are as in the statement, set x'!' =[ 1-(0/2)] J a , y'!' =[ 1-(0/2)] J b for 

J J 
j=O,I, ••• ,N-I; x~=x, N' y~=y, N for j=N,N+I,.,.,N+m; p,!, k=Q'!' k=(x'!"Y*k) 

J J- J J- J, J, J 
for j =1,2, ... ,N, k=I,2, .. "N+m and for j =1,2, ... ,N-+m, k=I,2" .. ,N; 

Pj,k =Pj-N,k-N' Qj,k = Qj-N,k- N for j,k =N+I ,N+2, ... ,N+m. Then 

m m 
ILL [f(P, k)-f(Q, k)](x,-x'_I)(Yk-Yk_I)1 
j=1 k=1 J, J, J J 

N-+m N-+m 
ILL [f(P'!' k) -f(Q'!' k)1(x'!'-x'!'_I)(Yk-Yk_I)1 < E. 
j=1 k=1 J, J, J J 

LEMMA 2. Let f be dominantly integrable ~ I. Then it satisfies there RCDI. 

PROOF. By Theorem I, (i), f is bounded on each closed subset of I. Given 

E > 0, choose o,X as in the last proof. Let 0 < x < ... < x = I, o m 
O<y <'" <y =1 (m;;;'l, n;;;'I); x, I/x, >1-0 for j =1,2, ... ,m; and 

o n J- J 
yk-I/Yk >1-0 for k = 1,2, ••• ,no Choose a positive integer N such that 

N •• 
[1-(0/2)] max(x ,Y ) <X, and set x, =[ 1-(0/2)]-Jx , Y' =[ 1-(0/2)]-Jy , 

o 0 J 0 J 0 

j =-I,-2, ... ,-N. Let Pj,k' Qj,k be arbitrary points in [xj_I,Xj ] X[Yk_I'Yk], 

j = -:HI ,-N+2, ••• ,m, k = -N+I ,-N+2, ••• ,n. Then 

m n 
L L [Re f(P, k) -Re f(Q, k)] (x, -x, I)(Yk -Yk I) < E, 

j=-N+I k=-N+I J, J, J J- -

which clearly implies that also 

m n 
L r IRe f(PJ. k) -Re f(Q, k)l(x, -x, 1)(Yk-Yk I) < E. 

j=-N+I k=-N+I ' J, J J- -

Similarly, 

m n 
L r lIm f(PJ',k) -Im f(QJ',k)I (xJ' -XJ'_I) (Yk-Yk- I) < E. 

j=-N+I k=-N+I 

Hence 

m n 

L L If(PJ',k) -f(QJ',k) I (XJ' -xJ'-I)(Yk-Yk- i ) < 2E, 
j=-N+I k=-N+i 

and therefore 
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OS(f; x .xt ..... x ; Y .YI ..... Y) o m 0 n 

We shall use the following simple 

LEMMA 2a. Let r ~s. P <O'~T. and let f be ~ complex function. defined and 

bounded~[r.s]X[p.T]. Then 

~ w (f • [ r. s] X [ P. 0)) • 

PROOF. Denote by sl the first sup. by s2 the second. We may assume sl >s2' 

Then 

So sl - s2 ~ last sup - last inf 

= w(!f!,[r.s] X[p,a]) <: w(f,[r,s] X[p,a]), 

Another simple result we use is 

LEMMA 2b. Let r <so p <0. and let f(x.y) be!. real function ~ J=[r.s] X[p.a]. 

monotone nonincreasing in x and in y there. Then f is Riemann integrable ~ J. 

PROOF. Let E > O. Choose an integer n;;;'1 with 

(2n-I)(s-r) (o-p)[ f(r.p) -f(s,o)] In2 < E. 

and observe that. by the monotonicity. the left hand side is ;;;. 
n n 
l l w(f'[XJ'_I,xJ'] X[Yk_I'Yk])(xj -xj-I)(Yk-Yk-l) 

j=1 k=1 

, '( )-1 '( )-1 where. for J =O.I ..... n. x. =r+J s-r n • y. =P+J o-p n • 
J J 

For convenience of the reader we state here the definition of dominant 

integrability on (0.1]. 
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DEFINITION 5. Let f be ~ complex function ~ (0,1]. Dominant {ntegrability of 

f ~ (0, 1] ~ existence of ~ number /). having the property: For each E > ° 
there exist 6 and X, 0<15 < I, ° < X < I, such that 

n 
I/).- L f ( ~ . ) (x. - x . I) I < E 

j=1 J J J-

whenever ° <x <x < ••• <x = I, x <X, x. I<;~' <;x., and x. I/x. > 1-15, 
o I n 0 J- J J - J- J 

j=I,2, .... n. 

By Theorem 3 of [2]. a complex function f on (0,1] is dominantly integrable 

there iff it is Riemann integrable on each [a, 1], 0< a < I, and there exists a 

function g. monotone nonincreasing. summable and satisfying g~lfl on (0,1]. 

LEMMA 3. Let f satisfy, ~ I, ReDI. Then f is summable there. 

PROOF. We first show that 

is dominantly integrable on (0,1]. Using (ii) of Definition 2, take. for our 

f. 6 corresponding to E = I, and set y = 0/2. Let 0 < 11 <;1, and let N be an 

integer ~ 1 with (I_y)N < 11. 
N-k 

Set 11k = (I-y) , k=O,I, .... N. Then 

For every y E (0,1] let 

Then. by Lemma 2a. 

I I N 

f g(y) dy <; J g(y) dy <; g(l) + L [g(~-I ) - g(11k)] 11k 
11 no k=1 

-I N 
g(l) + y I [g(11k_ l ) - g(11k)] (11k -11k_I ) 

k=1 

-2 N -2 <; g(l) + y L w(f.[I-y,I] X[~_I.nk])y(~-11k_l) < g (I) + Y 
k=1 
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and so, g is summableon (0,1]. Sinceg;;;'!f l ! throughout (0,1], fl isdomi

nantly integrable there. 

By Definition 5, there are 01 and X in (0,1), and an A such that 

L~=I f) (Yk-I) (Yk -Yk- I ) <A whenever ° < Yo < YI < ••• < Yn = I, Yo < X, and 

yk_l/yk>l-ol,k=I,2, ••• ,n. Let 

and 

let 

I - min (0, ° I) < S < I , 

NI 
let NI be an integer;;;' I with S <X. For k=I,2, ... , and every xE(O,I] 

Let m;;;' I, n;;;'N I be integers. Then 

(I-S) -I 

-I .;;; (I -S) 

~ [gk(l) + i (gk(Sj) - g (Sj-I)}Sj-l j Sk-I 
k=1 j=1 k 

n m 
, -I , m+l-j m-J' 
L [gn+l-k(l) + (I-S) L (gn+l-k(S ) - gn+l-k(S )} 

k=1 j=1 

n 

L 
k=1 

-1 -2 
< (I-S) A + (I-S) • 

Letting m +00, we obtain 

n I k-I _I 2 
L (J gk(x)dx)S .;;; (\-S) A + (\-S)- • 

k=1 0 

A k ,k 
Since, for every xE(O,I] and every integer k;;;'l, f(x,S )';;;Lj=1 gj(x), we 

have 
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I n Ink I 
f f(x,y)dx)dy ~ I f f(x,Sk)dx(Sk-I_Sk) ~ I I (f g. (x)dx) (Sk-I_Sk) 
o k=1 0 k=1 j=1 0 J 

n I k-l _I -2 
~ I ( f gk(x)dx)S ~ (I-S) A + (I-S) • 

k=l 0 

Therefore fl (JI f(x,y)dx)dy <00. By Lenuna 2b, r(x,y) is measurable on 
o 0 

I=U~2 [1/j,l] X[I/j,I]. Hence f is summable on 1. 
J= 

LEMMA 4. Let f satisfy, on I, ReDI, and let ° < a < I, ° < b < I. Then f is 

Riemann integrable ~ [a, I] X [b, I] • 

PROOF. Given E > 0, take, using Definition 2, (ii), a corresponding 0, and 

choose a =x <x l < ••• <x = I, b =y < YI< •.• <y = I so that x. -x. I and 
o mom J J-

are~omin(a,b) forj=I,2, ••. ,m. Thenx. l/x.>I-O, y. l/y.>I-O, 
J- J J- J 

j =1,2, ••• ,m, and hence OS(f; x ,xI' .•• 'x ; y 'YI' •.• 'Y) <E, which o mom proves 

the Lemma. 

We shall use the following technical 

LEMMA 5. Suppose f is ~ complex function, Riemann integrable ~ each 

[a,l] X[b,l], ° <a < I, ° <b < 1. For every E,E I (E >0, 0< EI < I) there exists 

° in (0, I /2] such that if 

(3) Yk-I /Yk > 1-0, Pj,k E[ xj _ 1 ,x j ] X [Yk-I ,Yk] for j = 1,2, •.• ,m, k = 1,2, •.. ,n; 

then 

(4) 

and xm _I~EI <x , Y I~EI <Yn for ~ml' n l , 
I ml nl- I 

Iff f(x,y)dx dy -
R 

m ·n 
I I f(Pj,k)(Xj-Xj_I)(Yk-Yk_I)1 < E 

j=m l k=nl 

where R=[xm -1,1] X[Yn _1,1]. 
I I 

PROOF. Let oE(O,I/2]. If (3) holds, thenx.-x. l<oforj=I,2, •.• ,m, 
J J-

Yk-Yk- I <0 for k=I,2, •.• ,n, and the left hand side of (4) is~ 
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n 

L (xm -£1) (Yk - Yk-I )f(E I ·yk- I ) 
k=nl+1 1 

m n 
L L f(Pj.k)(Xj -xj-I)(Yk-Yk-I)! + 60f(EJZ.E 1/Z) 

j=ml+l k=nl+1 

where Q=[EI.I] X[E1.1] (an "emptY"L is 0). Using the Riemann integrability 

of f on Q. the desired conclusion follows. 

LEMMA 6. Let ~ complex function f be Riemann integrable on each [a.l] X[b.l]' 

o < a < I. 0 < b < I. and let f be summable on 1. Then f is dominantly integrable 

and summable on I and 6(f) ~ Definition I is fIf f. 

Theorems land Zare fully established by Lemmas Z-4 and 6. 

PROOF OF LEMMA 6. Since !f!";f throughout I. f is summable there. Given 

E >0. choose El E (0.1) such that 

II f < E 

L 
where L=[ (O.E I ) X (0.1)] U[ (0.1) X (O.E I )]. 

Take 0 guaranteed by Lemma 5. and suppose 0 < Xo < xI < Xz < •.• < xm = I. 

O<y <Y I < ... <Y =1. x <£I'Y <E I ; X. I/x , >1-0. Yk l/yk>l-o, o n 0 0 J- J -
Pj,kE[xj_I,Xj] X[Yk_I'Yk] for j=I,Z ..... m, k=l,z, .. ·,n·Let xml_I";E I 

Y I ";E I <Y • Denote n l - n l 

Then 

(5) 

A={(j,k): I";j<ml 

fJ f(x.y)dx dy -
I 

or 

m n 

L L f(PJ',k)(XJ'-XJ'-I)(Yk-Yk-I)! 
j=1 k=1 

< If f(x,y)dx dy +! L f(P. k)(x, -x'-I)(Yk-Yk-I)! + E. 
L (j , k) E A J , J J 

The last absolute value is ..; 
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Hence the left side of (5) is < 6E. 

LEMMA 7. Property D ~ I implies dominant integrability there. 

Lemma 7 establishes completely Theorem 3. 

Suppose f is dominantly integrable on 1. By Definition 4 (with g = f) , 
Lemma 2b, Theorem 2 and Lemma 3, r has property D on I. By Lemma 7, ~ is 

dominantly integrable on I, which proves Lemma I. 

PROOF OF LEMMA 7. Let f have property D on I, and let g be as in Definition 4. 

Then r ";;g' throughout I, and hence r is summable there. By Lemma 6, f is 

dominantly integrable on I. 
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BERNSTEIN - POLYNOME, 1912 - 1955 

Eberhard L. Stark 

Lehrstuhl A fur Mathematik 

RWTR 

Aachen 

This paper may be considered as a first attempt in writing down the story of 
the Bernstein polynomials. It is based more on the bibliographical background 
than on the trace of the mathematical development. The latter, due to the 
lack of space, is postponed to another occasion. It leads from the original 
paper (1912) of S.N. BERNSTEIN to the natural caesura as given by the book 
(1953) of G.G. LORENTZ. Finally, the suprisingly large quantity of contri
butions to the subject is indicated by the additional pages of the bibliog
raphy ending in 1955. 

In Dutzenden von Buchern uber Approximationstheorie, Numerik, Analysis, 

etc. und mehreren hundert Zeitschriftenartikeln wird die mit Recht so ge

ruhmte Arbeit [I] von S.N. BERNSTEIN (1880- 1968) mit dem elementaren wahr

scheinlichkeitstheoretischen Beweis des Approximationssatzes von 

K. WEIERSTRASS zitiert: entscheidendes Rilfsmittel sind die auf der Bino-

mial - (Bernoulli -) Verteilung beruhenden "Bernstein - Polynome" 

B (f;x) := 
n 

n 

L 
k=o 

(nEIN; fEC[O,I]). 

Erstaunt wird man jedoch feststellen mussen, daB die bibliographischen An

gaben sowohl bezuglich der Zeitschrift selbst als auch bezuglich des Er

scheinungsjahres stark variieren. Die Erklarung ist darin zu finden, daB die 

meisten der Autoren diese nur zwei Seiten umfassende Originalarbeit nie in 

den Randen gehabt haben! Dies wird klar, wenn man die ungeahnten Schwierig

keiten bei der Beschaffung der Zeitschrift oder einer Kopie der Arbeit in 

Betracht zieht. Exemplare zumindest dieses unter zweisprachigem Titel er

schienenen Bandes der 
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bzw. 1) 

~ Communications de la Societe mathematique de Kharkow < 

C0051l1EHHI 
XAPbHOBCHAfO 

MATEMAT~YECHAfO 051l1ECTBA 
BTOPA8 CEPI8, TOMb XIII, 1913 

Stark 

dlirften - auBerhalb der UdSSR und selbst dort - nur noch in wenigen und da

zu unvermuteten Bibliotheken vorhanden sein. 

Wesentlich einfacher zu beschaffen sind BERNSTEINs "Gesammelte Werke" 

~2]: in ihnen sind jedoch die ursprlinglich fremdsprachlichen Veroffent

lichungen BERNSTEINs einheitlich nur in russischer Ubersetzung - ohne ge

wisse Wiederholungen - zu finden. (Die provisorische englische Teilausgabe 

[A3] der Gesammelten Werke enthalt lediglich die Ubersetzungen der in 

russischer Sprache abgefaBten Publikationen - bzgl. der nicht erfaBten Ar

beiten wird - welch' Ironie! - auf die Originalveroffentlichungen verwiesen!) 

Die bibliographischen Datierungen werden in [A2] wie auch in den BERNSTEIN 

gewidmeten Jubilaumsartikeln etc. (mit entsprechendem Werksverzeichnis, vgl. 

fA6] - fA13]) rein chronologisch vorgenommen: so wird [I] unter 1912, dem tat

sachlichen Erscheinungsjahr des ersten Heftes, No I, aufgeflihrt, obwohl der 

Band 13 dieser Zeitschrift redaktionell unter der Jahreszahl 1913 registriert 

ist (s. obiges Zitat). 

Die Verwirrung wird noch dadurch vergroBert, daB wieder zahlreiche 

Autoren bzgl. des erstmaligen Auftretens der Bernstein - Polynome auf die 

im wesentlichen inhaltsgleichen Arbeiten fAI] bzw. [2], auch aus dem Jahre 

1912, verweisen (letztere wird in [A 2, I ,p. 567] unter Nr. 43 zeitlich vor 

fA I] unter Nr. 46 eingeordnet). Seiner Dissertation [2 ] fligt BERNSTEIN 

selbst die Anmerkung bei: " ... In addition, I deem it necessary to note that 

with the exception of the two Appendices to the fourth and fifth chapters 

the present work is a minimally edited translation of my monograph of the 

same title, which won the prize of the Belgian Academy, to which it was sent 

I)Wortliche Wiedergabe der Angaben des Titelblattes dieses Bandes (ein
schlieElich also der Abweichungen von der heutigen Rechtschreibung). 
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in June of 1911." [A2,I, p. 12, footnote 2;A3, p. 3/4] 2) Festzustellen ist 

jedoch, daB die Bernstein - Polynome in IA 1] tiberhaupt nicht auftreten, 

sondern gerade im Appendix zu Kapitel V unter der Uberschrift "Expansion 

of arbitrary functions in normal series" [A2, I, p. 79-84;A3, p. 68-73]; 

diesem Problemkreis ist dann auch die ausftihrlichere Darstellung in D] ge

widmet. AbschlieBend sei darauf hingewiesen, daB die in [1] bzw. [2] mittels 

der Bernstein - Polynome geftihrten Beweise des WeierstraB - Satzes erheblich 

voneinander abweichen - was aus vie len Zitaten auch nicht hervorgeht! 

Nach diesem Versuch, die "Entstehungsgeschichte" der Bernstein-Polynome 

zu rekonstruieren, sollen daran ankntipfend die Anfange ihrer auBerst inter

essanten "Ausbreitungsgeschichte" verfolgt werden. Vor allem beabsichtigt 

ist auch, eine, cum grano salis, moglichst ltickenlose Bibliographie der 

Bernstein - Polynome bis zum Jahre 1955 einschlieBlich zusammenzustellen. 

(DaB zahlreiche, insbesondere russische Publikationen trotz aller Bemtihungen 

nicht beschaffbar waren, sondern nur durch Referate, Zitate, etc. als 

existent nachgewiesen werden konnten, dtirfte in der Natur der Sache liegen. 

Allerdings erhebt sich dabei die Frage, worin der Wert von z.B. nach 1945 

erschienenen Arbeiten zu sehen ist, die nicht allgemein zuganglich sind 7) 

Die Bibliographie nach 1955 (vorerst) abzubrechen, wird durch mehrere 

Grtinde gerechtfertigt. Das Erscheinen der Monographie "Bernstein Polynomials" 

[90] von G.G. LORENTZ (siehe dazu auch den Jubilaumsband [AI4]) im Jahre 1953 

- und deren Auswirkungen ab 1955 - stellt eine nattirliche Zasur dar. 3) -

2) Auf dem Titelblatt zu [A 1]: "Memoire couronne par la Classe des sciences, 
dans sa seance du 15 decembre 1911." bzw. aus dem Inhaltsverzeichnis" •.• , 
medaille d'or en 1911." - Die offentliche Verteidigung der Doktor -Dis
sertation erfolgte in Har'kov am 19. Mai 1913; siehe den aus diesem An
laB von BERNSTEIN gehaltenen Vortrag 1i\2, I, p. 209-214;A3, p. 109-114]. 

3) Der erste Satz der Einleitung zu [90, p. vii] "This contribution attempts 
to give an exhaustive exposition of main facts about the Bernstein polyn
omials and to discuss some of their applications in Analysis.", mag ange
sichts der Ftille des heute zu verzeichnenden Materials als zu weitgesteckt 
erscheinen (so werden z.B. [36],[54],[58],[80] vermiBt); jedoch waren 
offenkundig die Intentionen dieses so verdienstvollen Buches andere - auf 
neuere Entwicklungen, auch abstrakter Art, hinftihrende - als Volistandig
keit der Literatur. 
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Publikationen uber den Bernstein - Polynomen nachempfundenen Verallgemeine

rung en von Approximationsoperatoren - bzgl. der ersten Ansatze siehe [52], 

[73],[82],[88],[92],[93] - mehren sich. Dies wird insbesondere durch das 

Testfunktionenkriterium fur positive lineare Operatoren von H. BOHMAN-

P.P. KOROVKIN (1952/53) gefordert, das gerade auch die Bernstein-Polynome 

als deren einfachstem Prototyp unter einem vollig neuen Aspekt erscheinen 

laBt; vgl. insbesondere auch [80]. - SchlieBlich ermoglicht die groBe Zahl der 

bis in das Jahr 1955 zu datierenden Arbeiten eine sich durchaus bestatigende 

Extrapolation auf die Flut der Arbeiten uber Bernstein - Polynome und deren 

Verallgemeinerungen in den nachfolgenden Jahren. 

Zu Beginn dieses Abschnitts stehe kommentarlos das "erstaunliche Kurz"

Referat von Prof. D. Sintzov (Charkow)4) in "Fortsehritte der Mathematik" 

43/1912 (1915) 301 (also auch hier die Einordnung von [I] in das Jahr 1912): 

"IstF(~ eine kontinuierliche Funktion, dann genugen die Polynome 

welche in der Wahrscheinlichkeitsrechnung auftreten, der Ungleichung 

(Diese Besprechung ist unter dem Abschnitt "Kombinationslehre und Wahr

scheinlichkeitsrechnung" nachzulesen, nicht - wie vom Thema her ublich und 

zu erwarten - im Abschnitt "Reihen"!) 

In einem Lehrbuch erscheinen die Bernstein - Polynome zum ersten Mal er

staunlicherweise bereits im Jahre 1913, und zwar im zweiten Band von 

R. d'ADHEMARs "Lecrons sur les Principes d' Analyse" [4], einem von mehreren 

seinerzeitigen Lehr- und Ubungsbuchern desselben Verfassers (der zu [4] ge

horende erste Band enthalt zu dieser Zeit schon Beweisskizzen zum WeierstraB

Approximationssatz mittels der singularen Integrale von WeierstraB, 

4) D.M.Sincov (1867 -1946); s. Bernste1n, S.N. -L.Ja. Gir~val'd: Obituary: 
D.M.Sincov. Uspehi Mat. Nauk 2, no. 4 (20)(1947) 191-206 (Russ.). 
MR l2., 420. - --
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Landau - Stieltjes und de La Vallee Poussin !); zu bemerken ist allerdings, 

daB dieses besagte Zitat in einer eigenen Abhandlung [3] mit BE&~STEIN als 

Autor auf tritt, die als Anhang dem Band [4] beigegeben wurde: " ••• Serge 

Bernstein ouvre des voies nouvelles, en substituant certaines Se~e6 de 

po{ynome6 au developpement taylorien .... je fais pressentir la valeur des 

idees de M.S. Bernstein, en resumant quelques pages de sa these" [4,p. vi]. 

Festzustellen ist auch, daB [4] den Bernstein-Polynomen zu keiner durch

greifenden Verbreitung verhalf: Hinweise auf [4] sind lediglich im Lehrbuch 
,.-

(1925) von W. SIERPINSKI [IO,p. 228] sowie bei I. CHLODOVSKY [13] (hier 

wiederum der einzige Verweis auf [10]) und im FdM - Referat Uber die Arbeit 

[26] von A. WUNDHEILER durch BERNSTEIN selbst (die Ergebnisse in [26] seien 

in [3] enthalten !) zu finden. 

Es ist dann eine lange (kriegsbedingte 7) Pause zu verzeichnen. Erst 

1921 wird in der berUhmten Arbeit von F. HAUSDORFF [7, p. 104] beilaufig, 

unter HinzufUgung eines knappen Beweises, auf [I] verwiesen. Es folgt [8]. 

Die nachste, auBerst exponierte Erwahnung des Bernsteinschen Satzes findet 

sich in dem 1924 herausgegebenen Heft [9] Uber - in moderner Terminologie

"Approximationstheorie" der "Encyklopadie der mathematischen Wissenschaft". 

Der Bearbeiter der deutschen Ausgabe, A. ROSENTHAL, verweist - nach einer 

Aufzahlung von rund zwei Dutzend Beweisen des WeierstraB - Satzes in einer 

FuBnote [9, p. 1148] auf die BERNSTEINsche Arbeit: "937)* Es sei noch er

wahnt, daB S. B~n6tein, Communications Soc. math. de Kharkow (2) 13 

(1912/13)', p. 1/2, einen Beweis von Satz I.mit Hilfe der Wahrscheinlichkeits-

* rechnung erbracht hat. - "; [2] wird nicht erwahnt. Der Zusammenhang des 

BERNSTEINschen Verfahrens mit der Interpolationsformel von E. BOREL (1905)

fUr f E C[O, I] lassen sich stets Polynome P (x) konstruieren, so daB 
Il,V 

f(x) =lim IIl=V f(~) P (x) gilt bei gleichmaBiger Konvergenz - wird v=oo LIl=O v Il,V 
wieder mit einer zusatzlichen FuBnote [9, p. 1155] gewiirdigt: "962 a)* 

S. B~n6tein 937). Hier ein ganz besonders einfacher Ausdruck fUr P (x), 
Il,V 

namlich 

Doch auch dieses Werk blieb bzgl. der Bernstein-Polynome (jedenfalls, was 

rUckverweisende Zitate in anderen Quellen anbelangt) ohne (die gebUhrende) 

Wirkung. 
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Umso durchschlagenderen Erfolg zeitigte dann 1925 das Erscheinen der 
/ 

ersten Auflage von G. POLYA - G. SZEGOs "Aufgaben und Lehrsatze aus der Ana-

lysis, I" [11,p.66]: drei isolierte Aufgaben (144-146) am Ende des 3. Ka

pitels /2. Abschnitt sind dem Satz von BERNSTEIN gewidmet; auf die Original

quelle [I] (1912 !) wird in den Losungen [II, p. 230] verwiesen. Wegen der 

schon damals offensichtlichen Unzuganglichkeit der BERNSTEINschen Arbeit ver

weisen in der nun folgenden Zeit zahlreiche nicht - russische Autoren (ehr

licherweise !) zumindest auch auf diese Quelle; siehe z.B. [12],[18],[23]. 

HinzuzufUgen bleibt im Rahmen dieser Urgeschichte der Bernstein - Poly

nome, daB der Begriff "S. Bernsteinsche Polynome" wohl von F. HAUSDORFF [8, 

p. 243, FuBnote](1923) gepragt wurde; bei I. CHLODOVSKY [13] finden sich 

"polynomes de M. S. Bernstein"([II] wird nicht erwahnt); in [23] treten erst

mals "Bernstein polynomials" auf. 

Die mathematische Entwicklung der Bernstein - Polynome (einschlieBlich der 

auch in diesem Zeitraum schon zahlreichen Parallelentwicklungen, Wiederent

deckungen,etc.) chronologisch zu verfolgen, ist an dieser Stelle aus Platz

grUnden - noch - nicht moglich. Zusatzlich wird das Vorhaben dadurch erschwert, 

daB viele Arbeiten - noch - nicht zuganglich sind; und selbst deren teilweise 

verfUgbaren Referate enthalten widersprlichliche Wertungen. 

Von Interesse ware auch zu ergrUnden, warum zahlreiche BUcher und tiber

sichtsartikel (bis 1955), die den WeierstraB-Approx~mationssatz in aller Aus

fUhrlichkeit behandeln, die Bernstein - Polynome Ubergehen ? (!) 

Der Verfasser dankt allen, die mitgeholfen haben, diese Bibliographie 
wenigstens auf den hier vorgelegten Stand zu bringen. Stellvertretend gilt 
ein besonderes Wort des Dankes Prof. J. Musielak, Poznan, fUr die entsprechen
den Kopien aus dem Buch [10]: fUr lange Zeit erschien es hoffnungslos,auch nur 
ein Exemplar dieses Bandes ausfindig zu machen. Das Literaturverzeichnis wird 
LUcken und Fehler enthalten. Der Verfasser bittet aile am Thema Interessierten, 
ihn dar auf hinzuweisen und ihm Quellen zu und Belege von fehlenden Arbeiten 
(insbesondere auch der mit * gekennzeichneten) zuganglich zu machen. 

AbschlieBend sei vermerkt, daB diese Arbeit aus AnlaB von BERNSTEINs , 
100. Geburtstag, der im Jahre 1980 ebenso wie der von L. FEJER (1880 - 1959) 

und F. RIESZ (1880 - 1956) gefeiert werden konnte, niedergeschrieben wurde: 

so sei sie -neben J.L.B. Cooper, dem dieser Tagungsband als ganzes gewidmet 

ist - auch dem Entdecker der Bernstein -Polynome mitzugedacht. 
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LITERATUR 

Den bibliographischen Angaben wurden, soweit dies m5glich war, die ent

sprechenden Referate hinzugefugt; dabei bedeuten (wie ublich und in zeit

licher Reihenfolge): 

FdM Jahrbuch uber die !ortschritte ~er ~thematik; 

Zbl Zentralblatt fur Mathematik und ihre Grenzgebiete; 

MR Mathematical ~eviews; 

RZM !eferativnyi Zurnal. Matematika. 

Die Abkurzungen der Zeitschriften sind die in den MR gebrauchlichen bzw. -

falls die entsprechenden Zeitschriften ihr Erscheinen eingestellt haben -

jenen angeglichen. 

Ein Stern solI andeuten, daB die so gekennzeichnete Publikation dem Verfas

ser in keiner Form (Original, Kopie, "Gesammelte Werke". etc.) zur Verffi

gung stand: ihre Existenz ist (also) lediglich durch Referate oder Zitate 
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NEW AND UNSOLVED PROBIB'S 

I. C. BENNETT - R. SHARPLEY: An Approximation Problem in Interpolation Theory 

The basic ingredient in the Peetre-Lions method of interpolation of 

operators is to solve the following problem: 

Identify the K-functional 

K(f,t;Xo'X I)= inf {lIgllo +tllhll l } 
f = g +h 

" " • 1 00 _ It * as some analytic measurement of f; e.g. K(f,t,L ,L ) - f (s)ds. 
o 

1 PROBLEM. Identify K(f,t;H , BMO). 

2. W.R. BLOOM: Modulus of Continuity of Trigonometric Polynomials 

Let Tndenote the set of trigonometric polynomials on the real line IR 

of degree at most n. It is known that for each p E [1,00] there exists a 

constant Cp such that for all t E Tn and a E IR, 

II t-tll <Cp W (a) IItll , 
a p n p 

where t:x +t(x-a) and W (a) = max {I exp{ika} -11 : Ikl <n} , [see W.R, Bloom, a n 
J. Austral. Math. Soc. 1I(1974), Remark 2.4, p.96], where it is observed 

that C can be taken not exceeding YJ2. 
p 

PROBLEM. Find the minimum possible value of C for each p. 
p 

3. Z. CIESIELSKI: On BMO Space 

Let tl =0, tn = (2V-I)/2).1+1 for n =2).1+v, I<v <2).1, ).I,V - being integers. 



464 New and unsolved problems 

Let B1 be the periodic Bernoulli polynomial of degree 1 i.e., 

The BMO space is considered on T =< 0 , 1) • 

PROBLEM. Show that there is an absolute C <co such that 

n 
II L±[B (·)-B (·-t )]11 ";C 

k=1 Ilk BMO 

holds for all choices of signs and for all n;;;'l. 

4. Z. CIESIELSKI: On Interpolation by Splines 

Let {s ; n = 0,1, ••• } be a dense sequence in <0, I> such that s = 0, n 0 

sl =1, {s , ... ,s } s:: {s , ... ,s +1} for n;;;'O. Let Sr be the set of all o n Ton n 
polynomial splines of order r corresponding to the simple nodes {sZ, ••• ,sn}' 

Let Pnf, for given f EW~ <0, I> , be the unique spline in s!r such that: 

Djp f(O) =Djp f(l) =0, j =O, ... ,r-I, 
n n 

PROBLEM: Show that 

5. H.G. FEICHTINGER: On the Minimal Deviation of Convolution Squares 

Given mE:IN one may define 

One can show that one has 
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QUESTIONS. i) Can the above estimates be improved? 

ii) What is the numerical value of d ? 
m 

iii) Does d actually depend on m? 
m 

iv) Is the infimum attained? 

465 

v) If the answer to iv) is yes. can the corresponding functions 

be characterized. maybe even as the (normalized) dilations of a 

single function? 

6. P.R. HALMOS: Invariant Subspaces Via Convexity (Dedicated to D.P. Milman) 

This is not a problem but the hope of a research program. Can the 

Krein-Milman theorem be applied to the invariant subspace problem for 

operators on Hilbert space? 

If A is an operator on H. a subspace is invariant under A if and only 

if the projection P whose range is that subspace satisfies the equation 

AP =PAP. Projections are sometimes (often?) the extreme points of algebraically 

characterized sets of operators. Proposed program: carry out an experimental 

study on many operators whose invariant subspaces are known. for each such 

operator form the (weakly closed?) set whose extreme points are exactly the 

projections onto those subspaces. and. thus try to discover a natural way 

of associating a convex set with (some? many? all?) operators. whose 

extreme points are exactly the invariant projections. If successful. then. 

presumably the steps can be reversed: given A. manufacture a convex set. use 

Krein-Milman. and thus end up with non-trivial invariant subspaces (or an 

example where only trivial ones exist?). 

7. P.R. HALMOS: Cyclic Vectors 

If S is the uni lateral shift on a Hilbert space H (Sen = en+ 1 • 

n=0.1.2 ... , where {eo.e\.e2 .... } is an orthonormal basis for H). does the 

direct sum S @S* acting on H@H have a cyclic vector? (Note: S has cyclic 

vectors. and so does S*. The direct sum S@S does not have a cyclic 

vec tor; the di rec t sum S* @S* does.) 

The question is due to C. Foia§ and D. Voiculescu. 
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8. G.G. LORENTZ: About Interpolation 

We consider the Lagrange interpolation polynomial as a function of knots 

X :-I~xI~x2< ••• <xn~l. For a function f, analytic on [-1,+1], 

(*) I J wet) -w(z) 
fez) -Pm-I(f;X,z) =2ni C w(t)(t-z) f(t)dt, 

where the contour C contains [-1,+1] inside and w(z) = (z-xI)···(z-xm)· In this 

case, P I is an analytic function of xI""'x , even if some of them coin-m- _ m 
side. Also, Pm-I (~;X,z) = V(f;X,z) /V(X), where VeX) is the Vandermonde 

determinant, and V is some other determinant. In this representation, vex) 

cancells out. Again, Pm-I is an analytic function of X. In particular, Pm-I 

is a continuous function of X for -I ~xI ~x2 ~ •.• ~xm ~+I. 

For the polynomial of B irk h 0 f fin t e r pol a t ion , 

P (f;E,X,t) =D(f;E',X,t)/D(E,X). One can show that D(E,X) cancells out here 
n 

exactly when E is an Hermitian matrix. Therefore, in general, P(f;E,X,t) is 

arne rom 0 r phi c fun c t ion of X. Nevertheless,S.D. Riemen

schneider and myself have shown that, for conservative matrices E and fECn , 

P(f) is a continuous function of X for-l~xl~ ••• ~xm~1 (knots are allowed to 

coincide! ). 

QUESTION. What corresponds to (*) for Birkhoff approximation? 

9. P. MASANI: Banach-Space Valued Stationary Measures 

Let (JJJ {(a,b] : a,h E lR & a ~b} 

g, ,00 
Pk E.'~} t U1 Pk : 

9 0 
{S : Sf&> & 3P E (JJJ 3 S cP & P \ S Eg, } 

q' an infinite dimensional Banach space. 

PROBLEM. Show that 3 a strongly continuous unitary representation U(o) of lR ... 
over .6£ and 3 a set S E 9 such that 

o 

Range J U (t) dt 'i. q)A ' 
S 

where A is the infinitesimal generator of U(.). 
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REMARKS. For the definitions, and for the relevance of the result in the 

theory of stationary measures, see [Measure Theory, Ed. D. KBlzow, Springer 

Lecture Notes # 794, 1980, pp. 295-309]. There the validity of the result 

for ~= a Hilbert space and for ~= any 1 space,l~p<oo,is stated. 
p 

10. P. MASANI: Extreme Points in Banach-Graphs 

Let (~, 1.1 corr) be a Banach graph, 

U the closed unit ball in .or , 
aU the boundary of U, 

a U the set of extreme points of ii, 
e 

~ = {x: xE~ & x corrx }. 

PROBLEM. Characterize the Banach graphs (3r, 1.1 ,corr) for which 

(I) 

REMARKS. For the definitions,see [Linear Spaces and Approximation. Ed. 

P.L. Butzer - B.Sz.-Nagy, Birkhauser, 1978, pp. 71-89]. When ~ is the 

Marcinkiewicz Banach space and "corr" stands for Wiener correlatedness, 

the validity of (I) has been established by K.S. Lau [paper to appear]. 

When ~ is the Banach space of bounded countably additive measures on a 

cr algebra wi th values in a Hilbert space and "corr" stands for ''biorthogonal'', 

the validity of (I) has been shown by P. Ressel [unpublished report]. For 

.or= Cl(JtP,£), .tt= a Hilbert space,and "A corr B" meaning "A commutes with 

B*", (I) is false. 

, 
II. F. MORICZ: On the Convergence of Double Orthogonal Series 

QUESTION I. Does there exist a double orthonormal system {~ik(x'Y)}~,k =1 

on the unit cube 12 = [0, I] X [0, I], which is 

i) uniformly bounded, 

ii) complete in L2(I2), and 
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iii) the double series L:=IL~=laik~ik(x,y) converges a.e. (regularly or 

only in Pringsheim's sense) for every double sequence {a'k}~ k=l of coeffi-
2 ~ ~, 

cients such that L:=IL~=laik <00 ? 

REMARK. The double Haar system violates (i), the double Rademacher system 

violates (ii), and the double trigonometric system violates (iii). 

Let 0 <\k too as min(i,k) +00 and let {Aik} behave "fairly well" (e.g. 

let !J. I IA. k := A. I k I-A. I k-A. k I+A'k;;;'O for every i and k). 
,~, ~+ ,+ ~+, ~,+ ~ 

QUESTION 2. Is it true or not that if a double orthonormal system 

{~'k(x,y)}~ k=1 is such that for every double sequence {a'k}~ k=1 of 
~ . . ~, 00 00 2 ~ ~, 

coeff~c~ents, Li=ILk=laik <00, we have the estimate 

m n 
L L a'k~'k(x,y) =0 (y;::- ) 

i=1 k=1 ~ ~ x ron 

then the double series L:=IL~=laik~ik(x,y) converges a.e. (regularly or 

only in Pringsheim's sense) for every sequence {aik}7 k=1 with 
~ ~ 2 ' 
Li=ILk=laikAik <00 ? 

REMARK. In case Aik =1 the conclusion holds true. 

12. J. MUSIELAK: On Hardy Spaces 

a.e. , 

Let HP , 0 < P < co, be the Hardy space of analytic functions in the unit 

disc, then p(r,f) = f27T I f(reit)IP dt is a non-decreasing function of 
o 

rE[O,I) and so limr+l_p(r,f)= sUPO';;;r<1 p(r,f) for every fEHP. 

PROBLEM. Do there exist non-constant, positive continuous functions p(t) 

on [0,27T] such that p(r,f) =f27T If(reit)1 P(t)dt has both the above 
o 

properties for all analytic f for which sUPO';;;r < 1 p (r,f) <co, or that at 

least limr+l_p(r,f) exists? If yes, then give sufficient conditions on 

p(t) in order that this be true. 
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13. R.S. PHILLIPS: On Dual Subspaces 

Let H be a Hilbert space and E an orthogonal projection. Set 

I(f,g) = (Ef,g) - «I-E)f,g). 

Then I is an indefinite form and we can define the notion of positive and 

negative subspaces relative to I: P is a positive subspace if I(f,f);;;'O for 

all f EP and N is an negative subspace if I(f,O';;;O for all fEN. P and N 

are called dual if I(P,N) =0. A pair P,N is called a maximal dual pair 
1 1 

if P is positive, N is negative and N =P , P =N (here 1 means orthogonal 

complement with respect to I). 

Next we introduce a commutative algebra A of operators on N which is 

closed relative to 1- adjoints: T-+To when I(f,Tg) =I(Tof,g). We say N 

is invariant under A if TN eN for all T in A. 

PROBLEM. Given a dual pair of subspaces N,P both invariant under A. Does there 

exist a maximal dual pair N', pI invariant under A such that N' ::::>N and pI::::> P? 

14. W. SCHEMPP: On Patil Type Approximations 

Let B ={zEU;n;lzl <1} denote the open unit ball in the space <en (n;;;'1) 
n 

and 3B =S2 I =U(n)/U(n-I) its boundary sphere. Denote by.#,P(B ) the Hardy n n- _ n 
space of exponent p E [I, +(0) modelled on B and let f~f be the isometric 

n 
embedding ofJf'P (Bn) into the complex Lebesgue space LP ~S2n-I)' If ~ denotes 

a subset of S2n-1 of Lebesgue surface measure> 0 then f I ~ = 0 implies f = O. 

In the case n = I, P E] I, 00 [, D.J. Patil [Bull. Amer. Math. Soc. ~ (1972), 

617-620] has pointed out a constructive algorithm to recapture the function 
"-

f E Jf P (B I) form its boundary values f I ~ on the set ~. For related work in the 

case n =1 see [S.E. Zarantonello, Pacific J. Math. ~. (1978) 271-282] 

and [Quantitative Approximation, Ed. R.A. DeVore - K. Scherer,Academic Press, 

1980, pp. 291-300], where BMO techniques are used to study certain Patil type 

approximations in the case p =1. 

QUESTION. Does there exist an extension of the Patil procedure to the case 

n > I? 

REMARK. For the polydisc case, see [D.J. Patil, Trans. Amer. Math.Soc. 188 
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(1974), 97-103]. 

15. W. SPLETTSTOSSER: On the Quantization Error 

With this problem we wish to draw the reader's attention to a certain 

type of (approximation) error which does not seem to be familiar in approxi

mation theory but is so in several of the applied fields. For instance, for 

the digital processing of signal functions, samples f(tk ) of the signal f(t) 

are taken which are quantized afterwards, i.e., they are replaced by QE[f(tk )] 

which is the mUltiple nearest to f(tk) of a given E > 0 (E being the. quanti

zation step size). The question then is whether it is possible to represent 

the signal f in terms of these quantized sampled values, thereby keeping the 

reconstruction error small. The mathematical problem, which is also the 

question concerning the influence of small deviations of the sampled values, 

now reads as follows. 

PROBLEM. Given any (interpolating) operator of the form I f(t) = I f(tk)Sk (t) n ,n 
with f belonging to an appropriate function space, is is true that 

\I I f - I (Q (f) II = 0 (E) nnE (E->-O) , 

at least for large n; what is the O-constant? 

REMARKS. For In =Bn being the Bernstein polynomial operator (in terms of 

which the question has been raised at the conference) the answer is 

trivially "yes", because the Bare posi ti ve operators. In case I (f) are n n 
the Shannon sampling series the problem has been dealt with in [P.L. Butzer -

W. SplettstoBer, Signal Processing ~ (1980), 101-112]. In this respect 

the socalled "jitter" error,considerd in the latter paper,would also 

be of interest. 

16. B.SZ.-NAGY: About the Corona Theoren; for Hatrices 
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Consider the operator a=[a l ,a2".]T fHlID EI to Eoo (En: Hilbert coordi-
00 

nate space of dim. n), with ~ =~(z) EH (D). In order that there exist an 

operator c =[cl'c2,.,,] from Eoo to EI with c a = 1 with norm IIcli bounded on 

the unit disc D it is necessary and sufficient that a should have a positive 

lower bound on D, i.e. 

00 

inf L lak (z)1 2 >0. 
zE D k=1 

Some estimates are also given. 

QUESTION. Does this result generalize to matrices over Hoo(D), finite or even 

infinite. More preciselY,suppose A=A(z) is a bounded operator from En to Em 

(n,m possibly 00), with bound, say equal to I, i.e., with IIA(z)xll';; I1xllfor 

any X EEn and z cD, and with 

inf inf IIA(z)xll =0 >0. 
zE D xE En 

Ibell = 1 

Does there follow the existe.nce of an analoguous matrix over Hoo(D), C =C(z), 

so that 

I) IIC(z)yll .;; y lIyll for all y E Em and z ED, and with some y independent 

of z and y. 

2) C(z) A(z) =In • 

If this is the case, give estimates for y (in terms of n,m,a, if possible). 

17. M. WOLFF: Spektrum und Storungstheorie fUr stark stetige Halbgruppen 

positiver linearer Operatoren 

Sei E ein Banachverband und .7= (T ) ..... 0 eine stark-stetige Halbgruppe 
t t "" 

von positiven Operatoren auf E. Sei A ihr Generator,a(A) das Spektrum von A, 

s (A) = sup{Rez : z E CJ(A)} die Spektralschranke und w = in£{ (1 It) In II Til: T > O} 
o t 

der Typ von ,cy • 

FRAGE I. I. Gibt es auf E =LP([O, I]) e~n solches ff mit s (A) <w (fur p = 1,00 
o 

gilt stets 5 (A) = Wo fur alle solche Halbgruppen ff; so muB also 1 <p <00 

gelten, das Problem ist selbst fur p = 2 offen)? 
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FRAGE 1.2. Sei jetzt E beliebig. FUr alle O<xEE, O<x' EE' (Dualraum) sei 

sup{<Ttx,x'>: t >O} ~ O. Gilt dann s (A) =wo? Auch dies Problem ist selbst 

fUr E =L 2«(0,1]) offen. 

FRAGE 1.3. Ist.'1 = (Tt \ Em. eine stark stetige Gruppe positiver Operatoren, 

so ist s (A) ElRn cr (A). Gilt hierfUr stets s (A) =W ? Auch dies Problem ist 
o 

selbst fUr E=L2«(0,1]) offen. 

Sei B =A +U, wo A der Generator einer stark stetigen Halbgruppe .rvon 

positiven Operatoren auf dem Banachverband E und U ein (beschrankter) posi

ti ver linearer Operator auf E is t. Sei s (A) = - 00 • 

FRAGE 2. Welche Bedingungen muB U erfiillen, damit s(B) ~_oo ist ? 

FUr E = LP (n), wo r2 ein beschranktes Gebiet von lRn ist (1";;p < 00), ist 

dies Problem von Interesse in der Theorie Uber die lineare Boltzmann-Gleichung. 

Das Problem ist selbst fUr den Fall eines kompakten Operators U nur in 

Spezialfallen gelost. 

M.Z. NASHED: Regularizability of Ill-Posed Operator Equations 

The concepts and methods used in the analysis and regularization of 

ill-posed problems have stimulated in recent years advances in some areas of 

operator and approximation theory. For some perspectives, see [A.N. 

Tikhonov - V.Y. Arsenin, Winston & Sons, Washington, DC, 1977], [General

ized Inverses and Applications, Ed. M.Z. Nashed, Academic Press, New York, 

1976], [M.Z. Nashed, In: Constructive and Computational Methods for 

Differential and Integral Equations, Springer Lecture Notes #430, 1974] 

The following problem arising from the theory of ill-posed operator 

equations seems to be still open. 

Let A be a one-to-one mapping from a Banach space X into a Banach 

space Y. The operator equation Af = g is said to be 

reg u I a r i z a b I e if there exists a one-parameter family of 

mappings T: Y ->- X, 0 < a";; 1 for which a 

for all f EX. 

lim (sup{lIf-Tagll: g EY, Iig-Afli ";;a}) =0 
a+O 
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There are examples of nonregularizable operator equations where A is 

a bounded linear operator (even compact) from a Banach space X into a 

Banach space Y. However,in all known examples the space X is nonsepara

ble (see [V.A. Vinokurov, Soviet Math. Dokl, 11 (1970), 1495-1496]). So 

the question is: 

QUESTION. Let A be a one-to-one bounded linear operator on a 

s epa r a b I e Banach space X into a Banach space Y, with the range 

of A nonclosed. Is the operator equation Af =g regularizable? 



ERMTA 

Some corrections to papers which appeared in earlier volumes of Oberwolfach 
conference proceedings (see the list in the preface) are given here. 

K. ISHIGURO - W. MEYER-KONIG: Uber das Vertraglichkeitsproblem bei den 

Kreisverfahren der Limitierungstheorie. ISNM 25 (1974), 547-558 • 

In der letzten Zeile auf Seite 550 muB 1 z + 1/61 > 1/9 ersetzt werden durch 
R Iz+ 2/91> 1/9. In der ersten Zeile auf Seite 554 muB S_3 ersetzt werden 

R 
durch S3' 

W. SPLETTSTOSSER: Some extensions of the sampling theorem. ISNM 40 (1978), 

615-.628. 

An additive term is missing in formula (4.7); it must read correctly 

(4.7) f"(t) = lim {2 
W-+<x> 

~ k (_I)k+1 _ 'ITW2 f(t)} 
l. f(t +w) ~-'--~ 

k=-oo (k/W) 2 3 
k*O 

On page 625 there are two formulae numbered (5.7), the second of which 

has to be changed into 
00 

(5.8) f(t) = lim .!. 
W-+<x> 4 

I 
k=-oo 

. 3'IT (W k) . 'IT S1n"4 t - sm 4 
'IT 2 [4 (Wt -k)] 

(Wt - k) 

(t E IR). 

(t E IR). 
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