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Preface

These Proceedings form a record of the lectures presented at the interna-
tional Conference on Functional Analysis and Approximation held at the Ober-
wolfach Mathematical Research Institute, August 9-16, 1980. They include 33 of
the 38 invited conference papers, as well as three papers subsequently submitted
in writing. Further, there is a report devoted to new and unsolved problems,
based on two special sessions of the conference. The present volume is the sixth
Oberwolfach Conference in Birkhduser’s ISNM series to be edited at Aachen*. It
is once again devoted to more significant results obtained in the wide areas of
approximation theory, harmonic analysis, functional analysis, and operator
theory during the past three years. Many of the papers solicited not only outline
fundamental advances in their fields but also focus on interconnections between
the various research areas.

The papers in the present volume have been grouped into nine chapters.
Chapter I, on operator theory, deals with maps on positive semidefinite opera-
tors, spectral bounds of semigroup operators, evolution equations of diffusion
type, the spectral theory of propagators, and generalized inverses. Chapter II, on
functional analysis, contains papers on modular approximation, interpolation
spaces, and unconditional bases. In Chapter III, on abstract harmonic analysis,
one may find results on approximation on compact abelian groups, minimal
projections in L!, Wiener type distributions, and analysis on local fields, whereas
Chapter IV, on Fourier analysis and integral transforms, comprises papers on
polynomial inequalities, classical orthogonal expansions, multiple series, and the
Hilbert transform. Chapter V deals with best approximation, in general Hilbert
spaces, in the complex domain, as well as in the multipoint sense. Chapter VI, on
approximation by linear operators, includes an estimate for the Lebesgue
function of Lagrange interpolation, a uniform boundedness theorem with rates,
slow and asymptotically optimal approximations. Strong and Miintz approxima-
tion then follow in Chapter VII, whereas problems of asymptotic distribution of
lattice points as well as two papers concerned with limit theorems of probabilty
theory in Banach spaces appear in Chapter VIIL. Chapter IX contains papers on
spline functions and piecewise polynomial approximation as well as a paper on
dominant integrability. The volume closes with a bibliography on Bernstein
polynomials, as well as the section on 22 new and unsolved problems.

One mathematician was sorely missed at the conference. Lionel Cooper,
who had actively taken part in all but one of our conferences since 1963, was
again on the list of distinguished speakers who were invited. But in August of
1979 he passed away after heart operation. The loss caused by his death will
surely be long felt by the scientific world, in particular by the community of



8 Preface

mathematicians and physicists. The participants and organizing committee of the
Conference wish to dedicate these Proceedings to the memory of this distin-
guished and independent scientist. Lionel Cooper also was a sincere friend to
many of us. Two brief appreciations of his life and work appear in these Proceed-
ings.

The editors’ warm thanks are due to all of the participants and contribu-
tors: they made the conference the success it was; to Wolfgang Splettstosser for
his competent handling of the greater part of the general editorial work; to Rolf
J. Nessel for valuable advice during the preparations of the conference; to the
coworkers and research assistants from Aachen for their help in organizing the
conference, and to the secretaries of Lehrstuhl A fiir Mathematik for retyping
many of the papers and for their aid in preparing this volume. To Carl Einsele of
Birkhduser Verlag, Basel, we extend our thanks for his cooperation over the
years.

April 1981
P.L. Butzer E. Gorlich B.Sz.-Nagy
Aachen Aachen Szeged

* The earlier volumes are:

1. On Approximation Theory. Oberwolfach 1963. Eds.: P.L. Butzer and J. Korevaar. ISNM,
vol. 5, Basel 1964 (second edition 1972), XVI+ 261 pages.

2. Abstract Spaces and Approximation. Oberwolfach 1969. Eds.: P.L. Butzer and B.Sz.-Nagy.
ISNM, vol. 10, Basel 1969, 423 pages.

3. Linear Operators and Approximation I. Oberwolfach 1971. Eds.: P.L. Butzer, J.P. Kahane
and B.Sz.-Nagy. ISNM, vol. 20, Basel 1972, 506 pages.

4. Linear Operators and Approximation II. Oberwolfach 1974. Eds.: P.L. Butzer and B.Sz.-
Nagy. ISNM, vol.25, Basel 1974, 585 pages.

5. Linear Spaces and Approximation. Oberwolfach 1977. Eds.: P.L. Butzer and B.Sz.-Nagy.
ISNM, vol. 40, Basel 1978, 685 pages.
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Zur Tagung

Vom 9. bis 16. August 1980 fand im Mathematischen Forschungsinstitut Ober-
wolfach eine Tagung iiber «Funktionalanalysis und Approximation» statt. Sie
setzte die 1963 begonnene und inzwischen zur Tradition gewordene Reihe
internationaler Tagungen uiber Approximationstheorie und angrenzende Gebiete
fort. Djesmal stand sie unter der Leitung von Prof. P.L. Butzer (Aachen), Prof.
E. Gorlich (Aachen) und Prof. B. Szokefalvi-Nagy (Szeged, Ungarn). Es nahmen
54 Mathematiker aus 14 Nationen an der Tagung teil, darunter auch viele
Kollegen, die zum ersten Mal eine Konferenz dieser Reihe besuchten, insbeson-
dere mehrere jiingere Mathematiker. Zum Bedauern aller Teilnehmer muften
eine Reihe von Kollegen aus der UdSSR ihre Zusage in letzter Minute zuriickzie-
hen.

Das Vortragsprogramm bestand aus 38 Ubersichts- und Spezialvortrigen, in
denen ein breites Spektrum von Themen aus den verschiedensten Gebieten der
Approximationstheorie, der harmonischen Analysis, der Funktionalanalysis und
der Operatortheorie behandelt wurden. Zwei weitere Sitzungen waren aktuellen
Problemstellungen gewidmet; hier wurden von den Teilnehmern 18 neue und
ungeldste Probleme vorgestellt. (Der Programmablauf ist auf den Seiten 15-17
ausfuhrlich wiedergegeben.) Der vorliegende Band enthélt den groBten Teil
dieser Vortrage und Problemstellungen.

Neben dem Vortragsprogramm fanden zwei gesellige Abende statt, und am
Mittwochnachmittag das traditionelle Ausflugsprogramm nach Baden-Baden,
Freiburg, Freudenstadt und in die ndhere Umgebung,.

Die Tagung war gekennzeichnet durch eine kollegiale und freundschaftliche
Atmosphire, wozu die Teilnehmer durch ihr spontanes und sympatisches
Mitwirken in vielfiltiger Weise beigetragen haben. Allen Vortragenden, den
Sitzungsleitern und besonders den Vorsitzenden der beiden «problem sessions»
sei fiir ihr Engagement herzlich gedankt.

An dieser Stelle ist besonders die Gastfreundschaft und Hilfsbereitschaft der
Mitarbeiter des Oberwolfacher Instituts zu erwdhnen, ohne die solch eine
Tagung kaum denkbar wire, und fiir die sich die Tagungsleiter bei den Damen
und Herren des Oberwolfacher Hauses und insbesondere bei dem Direktor des
Instituts, Herrn Professor Dr. M. Barner, herzlich bedanken mochten.

Tagungsleiter: P.L. Butzer E. Gorlich  B.Sz.-Nagy
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JACOB LIONEL BAKST COOPER - IN MEMORIAM

P.L. Butzer
Lehrstuhl A fiir Mathematik
Rheinisch~Westfilische Technische Hochschule

Aachen

1))

was born in Beaufort-West in the Republic of South Africa on 27. Dec.

We are here together to pay tribute ’ to Professor Lionel Cooper. He
1915, After receiving his B.Sc. degree at the University of Cape Town in
1935, he came to England as a Rhodes scholar. to study at Oxford University.
He wrote his doctoral dissertation under the direction of Professor E.C.
Titchmarsh, and received his D.Phil, in 1940. In 1939/44 he published three
papers on Fourier integrals, and shortly thereafter he wrote three further
papers on operators in Hilbert space, including one onsemigroup~operators
(Oxford Quart. J., Ann. of Math., PLMSj }945-8); The latterthree papers—are
cited inmost books on functional analysis and established his early reputation.
It was at Oxford University that he had the great luck to meet
Kathleen Cooper, also studying at Oxford. They were married in June, 194o.
During the early years of the last war he worked in the aircraft
industry at Bristol before joining Birkbeck College, University of London,

in 1944 as Lecturer in Mathematics, later becoming Reader.

1) Professor J.L.B. Cooper died in London on 8. August 1979; he had been
unconscious since a heart operation on 23, July. This is an address given
on the occasion of the funeral service of Professor Cooper on 14. August,
1979. The author would like to thank Kathleen Cooper, Tom Williams of
London, as well as Wilhelmine Butzer, Rolf Nessel and Eberhard Stark, all
of Aachen, for their help in its preparation. For an obituary emphasizing
Cooper's contributions to mathematics the reader is referred to D.E.
Edmunds: Jacob Lionel Bakst Cooper, 1915 - 1979, Bull. London Math. Soc.
13 (1981) (in print).
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In 1950 Lionel Cooper was appointed Professor of Pure Mathematics and
Chairman of the Dept. of Mathematics at University College, Cardiff, Wales.
There he built up a department which came to have the best reputation of any
Welsh university college.

It was during that time, in 1959, that I first wrote to Professor Cooper.
I was stuck on a basic problem in Fourier transform theory which I needed to
solve problems in trigonometric approximation theory. Within a few weeks he
replied with the complete solution. Our contacts began then and have contin-
ued ever since. In 1963 I organized my first conference on Approximation
Theory at the Oberwolfach Mathematical Research Institute which is located
in the Black Forest of Southern Germany. Of course the first person I thought
of inviting was Professor Cooper. He accepted my invitation; what a high
honour for me considering I was pretty young at the time! It was also the
first time I met him in person.

He brought with him Kathleen and his family of four children; they came
in a Commer caravan., Deborah was four years old at the time, David seven.
What a pleasant time we had together! All of the participants lived for a
week in the old, stately hunting lodge-which has since been demolished. Since
that time I am most fortunate to say we have been good friends, not only on
a professional but also on a personal and family basis.

It was Lionel I turned to whenever I was stuck. This was not only in
mathematical problems, but also in solving problems arising in contacts with
other mathematicians, finding journals to publish articles, personal problems,
etc., Lionel inspired me and my many students; a number of them are now
Professors at various German universities. I can speak to you only of the
great help I myself and my students received from Lionel, but I am sure this
was the case with everyone who knew him.

When we planned some of our most difficult scientific adventures, such
as writing the book on Semigroup Operators of 1967 with my former student
Professor H. Berens, or on Fourier Analysis and Approximation of 1971 with my
former student Professor R.J. Nessel, we owed a good deal of our confidence
to Lionel. We knew Lionel was there, we knew we could always turns to him for

advice, not only because these projectslay in his central fields of interest.
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Lionel himself wrote three further basic papers on Fourier analysis
in 1960/64., These as well as many of the basic ideas we learned from him
we incorporated into these books.

Lionel came to all but the first of our subsequent triennial Ober-
wolfach conferences from 1965 to 1977. Each time he gave inspiring lectures
and was section chairman. He was a participant who made sure that the
conference were a success. He was a guiding and unifying spirit!

Lionel spent the years 1964/65 as visiting Professor at California
In;titute of Technology, Pasadena, and 1965 -67 as Full Professor at the
University of Toronto in Canada. He returned to England in 1967 to become
Head of the Mathematics Dept. at Chelsea College of Science and Technology
of the University of London.

In 1973 Lionel invited me to spend a month in Britain: he arranged
a grand lecture tour which took me to ten universities in England and
Scotland. My parents also came along - we were often at his home and had
a wonderful time together.

Allow me to say just a few words about his mathematical publications.
He wrote at least 45 papers to my knowledge in various journals and
conference proceedings throughout the world. These papers are mainly
concerned with two broad fields in the wide area of mathematical analysis,
namely Fourier analysis and integral transform theory on the real line and
on groups, and with functional analysis, essentially operators in Hilbert
space. Apart from these he wrote many papers in a variety of individual
topics, including measure and set theory, differential equations, quantum
theory, foundations of thermodynamics.

All in all he was a mathematical analyst in the very broad sense of
the word, with an international reputation.

He was an editor ot the Proceedings of the London Math.Soc. and of the
Russian Mathematical Surveys-Uspehi, and gave generously of his time on
numerous committees.

One can also characterize a scholar by the students he produced. Let
me just mention two of them whom I know. Dr. Finbarr Holland of Cork
University is ome of the very active young Southern Irish mathematicians;
just recently he founded the Irish Mathematical Society. Then there is
Professor David Edmunds of the University of Sussex in Brighton. He is an

international authority in differential equations. He studied under
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Professor Cooper in Cardiff and became a university professor in Britain
without ever having attended either Oxford or Cambridge. He seems to be
one of the very few exceptions to the general rule. What an honour for
Edmunds and Lionel!

Cooper had a sharp intellect, always interested in the basic assump-
tions of the problems studied. He was a scholar in the old sense of the
word, widely read, having brilliant ideas, an inspiration to those who knew
him,

He did not seek the limelight, and was somewhat reserved in public. He
worked in a quiet way but still with great influence. He radiated authority
in every situation of life, an authority based on deep respect and justice.
He had a healthy self - confidence which allowed him to be composed; there
was no rushing about him.

Lionel was of noble character, obliging and courteous; also in every
day life, a true and reliable friend in every situation. He was encouraging
and had a deep sense of humanity; he was a true gentleman. His greatness
was accompanied by his real modesty.

Apart from English he read or spoke many languages; German, French,
Italian, Africaans (enabling him to converse with Dutch people); he could
also speak and read Russian. He was a lover of music; he was fond of poetry,
even read poems in German (Rainer Maria Rilke!). It is the German mathemati-
cian Karl WeierstraB who said that a mathematician who is not a poet can

never be a perfect mathematician.

While in good company, for example at the traditional wine evenings at
the Oberwolfach conferences, he was a most charming entertainer. Since he
was somewhat shy, the fact that he could tell stories so effectively often
came as a surprise. In addition he had a dry sense of humour!

While at Oberwolfach he was a great hiker, an enthusiastic swimmer - at
one meeting he was the only participant to go swimming in early spring in a
lake with a temperature of about lo degrees centigrade. He was also a
determined tennis player. He had great staying power.

Lionel was a true family man. Whenever he could he would always take
Kathleen along on his many trips, and when they were young, his four children.
I always felt he had a very deep affection for all of them. The Cooper family

always radiated harmony, which was a pleasure to observe. The family has now
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lost a dear husband and loving father.

A testimony of the positive image that he projected to his family is
that all four of his children followed him in his study of mathematics.

In 1947 GodfreyH. Hardy of Cambridge died, in 1963 Edward C. Titchmarsh
of Oxford, a short while ago John E, Littlewood of Cambridge, all three
mathematical analysts belonging to an incomparable school of analysis,
probably the best that Britain has ever produced. Today it is Lionel Cooper
~ he was brought up in this tradition of British analysis and he belongs to
that category of mathematicians.

The world has lost a great mathematician, and if I may add another

personal word, I have lost a great, my best friend.



A TESTIMONY FROM A FRIEND

A.J.W. Hill, Esq., M.A. (Cantab.),
Heinemann Publishers Ltd.,
22 Bedford Square
London, WC1B 3HH, England

I first met Lionell) in Oxford before the war, more than forty years
ago. I was not a member of that university myself, but I used to visit my
future wife there, and she and Lionel belonged to the same group of friends.
He was a Rhodes Scholar over from South Africa, and he struck me at once as
a man of outstanding and quite unusual qualities.

Firstly, he was interested in everything. Every field of intellectual
and cultural activity - from his own specialism, mathematics, right across
to poetry, music, drama, languages, history, physical activities, and human
beings - engaged his critical and discerning attention.

In particular, he seemed to be very interested in politics. But I felt
that this interest was really a mo r a 1 concern; he was less interested
in the politics of power than in seeing that people were treated with
decency and justice. And his high view of how mankind should be treated
was exemplified in his own life - as his many colleagues and friends who
received his unfailing kindness and consideration will testify.

Lionel was a man of great intellectual power and integrity, and when
required he could be forcible - even fierce - in his attitude. But his
friends knew that beneath this exterior breathed one of the warmest-hearted
of men. In fact, the longer one knew Lionel, the more one realised that his

true gentleness was one of his most outstanding and endearing qualities. I

1) An address held at the funeral service of Professor J.L.B. Cooper
on l4. August 1979 in London.
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used to play tennis with him regularly and I cannot remember any occasion
on which I ever won a game. But always as we walked off the court he would
soften the bitterness of defeat with some kind words about how well I had
played.

Lionel was a truly happy man - happy in his friends, and above all in
his family. Together with Kathleen, whom he met at Oxford, he built an ex-
ceptionally united family, and a visit to the Coopers was always one of
life's rewarding experiences. He enriched the lives of those who were
privileged to know him. We shall always remember him with admiration and
deep gratitude.

Let me close by reading to you one of the poems that Lionel cherished

so much; it is one of the Holy Sonnets from John Donne's Divine Poems:

Death be not proud, though some have called thee
Mighty and dreadfull, for, thou art not soe,

For, those, whom thou think'st, thou dost overthrow,
Die not, poore death, not yet canst thou kill mee.
From rest and sleepe, which but thy pictures bee,
Much pleasure, then from thee, much more must flow,
And soonest our best men with thee doe goe,

Rest of their bones, and soules deliverie.

Thou are slave to Fate, Chance, kings and desperate men,
And dost with poyson, warre, and sicknesse dwell,
And poppie, or charmes can make us sleepe as well,
And better than thy stroake; why swell'st thou then?
One short sleepe past, wee wake eternally,

And death shall be no more; Death, thou shalt die.
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FIXED POINTS OF CERTAIN MAPS
ON POSITIVE SEMIDEFINITE OPERATORS

T. Ando

Research Institute of Applied Electricity
Hokkaido University
Sapporo/Japan

The usual addition A + B and the parallel addition A:B for pairs of posi-
tive semidefinite operators are most basic operations; (A+B)/2 and 2(A:B)
are considered as the operator versions of arithmetic and harmonic means res-
pectively. An operator version of the geometric mean is characterized as a
unique solution of the equation (A+X):(B+X) = X.

1. Introduction and Theorems

Motivated by parallel conmnection of electrical networks, Anderson and
Duffin [1] introduced the notion of parallel sum of positive semidefinite ma-
trices. Subsequently Anderson and Trapp [2] extended it to the case of bound-
ed positive semidefinite (p o s 1 t 1 v e, for short) operators on a Hilbert
space. Given positive operators A, B their parallel sum, A:B
in symbol, is defined by e5%1 {(A+£I)-1 + (B+€I)_1}-1, where I 1is the ide?-
tity operator; in particular, if A and B are invertible then A:B = (A
+ B_l)—l. In electrical network theory the resistance of a multiport network
is considered to be represented by a positive operator (see [1], [2]). Given
two networks, one Vith resistance A and the other with B, the parallel sum
A:B 1is considered to represent the joint resistance of parallel connection.
On the other hand, the usual sum A + B represents the joint resistance of
series connection.

The operators (A+B)/2 and 2(A:B) are considered the ar it hme -

tic andthe harmonic me an s, respectively, of positive opera-
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tors A and B. Pusz and Woronowicz [9] introduced the notion of geometric
mean. It is shown in [4] that the geometric mean, A#B in sym-
bol, can be defined by the formula:

A#B = 11.m (A+eI);5{ (A+eI)-;EB(A+EI)-%};§(A+€I);5.
€Y0

If A commutes with B, then A#B coincides with (AB);5

as expected. From
the view point of network theory, it is natural to seek realization of A#B
by using only series and parallel connections, and there are already several
approaches (see [3], [7]).

Here we take up a cascade-type synthesis. Given two positive operators

A and B, let us consider the map ¢ defined by
1) o(X) = (A+X): (B+X)

in the set of positive operators. Starting with Xo, define successively
xn+l = Q(Xn). We ask whether Xn converges to the geometric mean A#B. This
is true if, for instance, Xo = A + B, but not clear if xo = 0, In this pa-

per we confine ourselves to determine the fixed points of &.

THEOREM 1. The geometric mean A#B 1is a unique fixed point of the map o.

Let us consider another map ¥ defined by
(2) Y(X) = A:X + B:X.
Though Y has many fixed points, for instance 0, we can prove

THEOREM 2. The geometric mean A#B is a unique fixed point of the map Y 1in

the set {X | A:B < 0X for some o = ay > 0}.

The proofs of these theorems will be given in the final section.

2. Some L emmas

In this section A, B, C denote positive operators on a Hilbert space
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H, and order relation A > B means that A - B is positive. We use ran(A)

and ker(A) to denote the range and the kernel of A, respectively. The gen-
eralized inverse A-l is, by definition, the (unbounded) operator defined on

ran(A) by A_l(Ax) = Px where P is the orthoprojection to the orthocomple-
ment of ker(A). In many cases, it is useful to extend the functional x+—
”A-lx|| over whole H by setting “A_1x|| = » for x outside ran(A). Thus
a vector x 1is in ran(A) if and only if HA_lxll < o, The following for-
mulas hold, with convention 0/0 = 0,

-1 _ (x,y)

(3 1477l = sup “ps :
@ laxll = sup L0l
Yo |la"yll

The positive square-root of A is denoted by A%. For notational con-

% -1

venience, we use A_lé instead of (A°) . If x 1is in ran(A), then obvi-
ously A-%(A-%x)==A—lx. The following well-known lemma (see [6]) is a bridge
between the order relation of positive operators and the inclusion relations

of their ranges.

LEMMA 1. There is o > 0 such that A < aB if and only if ran(A;E) c ran(B;i).

It is known (see [2]) that parallel sum admits a variational description:
(5) lam P = snedlla%]f + 182 (x-w) |},

In this connection, the following two lemmas show that usual and parallel ad-

ditions are dual notions.

LEMMA 2.
6) I a:B) | = [la7 %P + |187%IE,

and consequently

5

7) ran((A:B) °) = ran(A%),~\ran(B%).
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PROOF. Introduce a new pre-Hilbert norm H|- |H in the algebraic direct sum
K=H@H by

x @ yll? = 8% + (18%IF.

For each z € H, consider a linear functional ¢z on K defined by ¢z(x &
= (xty,z). It follows from (3) that the functional norm of ¢z’ even in

the unbounded case, is given by

Mo 1% = a2 + ||57%

Since the linear mani-

We claim that H|¢2|H coincides with H(A:B)J%z” .

fold {u @ (-u) |u € H} is annihilated by ¢z, we have

2
o, l1% = sup LGety,z) |

Y 1t [ x@y - w@Cwll* .
On the other hand, it follows from (5) that

it fl x®y - v@Cwl® -

it {[|8%Cer) | + |82 (y-w |I* )

1 (A+B);§(x+y) ||2.

Now the claim results from (3), which completes the proof.

LEMMA 3.

® a5l = sme (lla7%? + 15 o0 I,

and conseguentli

9) ran((A+B)%) = ran(A®) + ran(s?).

PROOF. Introduce a new pre-Hilbert norm IH -IH in the algebraic direct sum
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K = ran(&%) C) ran(B%) by
Iz @ yll* = 1a7%IF + 1I57%IR

Since bothh A and B are bounded, K is complete with respect to the new
norm, that is, (K, H|- H|) is a Hilbert space. As in the proof of Lemma 2,
consider for each z €H a linear functional ¢z on K; ¢z(x +y) = (x+y,2).

It follows from (4) that the functional norm of ¢z is given by
2 2 2 2
e, 1% - &%IP + N8I = 1l asmy™elP.

Then by (3) we have 2
I a+8) |2 = sup —lﬁ'-zfé—J—g
z || (a+B) 2z||
|6, x®x) /2|
= sup
z o, lI%

since (K, |||  |I|) 1is a Hilbert space, the last term in the above identity
coincides with the distance from (x & x)/2 to the subspace N consisting
of all vectors that are annihilated by all ¢z (z € H). Obviously this sub-

space consists of all vectors of the form v C) (-v) where v rumns over

35 3
ran(A®) ~ran(B9). Therefore

I a+3) "% = inf a2 /24w B + (1372 xs2-w)]| 2
= iﬂf {HA—%uIF + “B—%(x—u)nz},
which completes the proof.

Remark that (6) and (8) give quantitative improvement of (7) and (9) that
were proved in 2] and [6].

LEMMA 4. If A:C + B:C & C, then for all x,y € ran(C%)

-1,
[ 5,c % | < 7% 15 7%l
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PROOF. Since assumption means that for all z € H

1
llac + B:0) %) < i,

we have, for x,y€ ran(C? and lz| =1,
llc™2ex + oyl
< Ilasc + 3:0 % x + o)) 2 by (3)
s lwo &P+ |e:o™f by (8)

187%0P + 1I7%IP + 1157%1F + 1Ic%IP by 6.

On the other hand, with suitable choice of g, we have
2 o
e + ey [P = 7P + 2l €] + (I IP,

which together with the above yields

2], ¢y | < 17K + (1875 IP

Replacing x and y by Ax and A-ly respectively in the above inequality
and computing the minimum of the right hand side with respect to A, we arrive

at the assertion of the theorem.

LEMMA 5. Suppose that the following conditions are fulfilled;
(a) A:C+B:CgC
(b)  (A+C):(BHC) < o€ for some a > O.

Then for all x,y in ran(C%)

L€ ™%,c %) | < |l k|| | o) Tyl

5 |

PROOF. Take x,y in ran(C By Lemma 4 it follows from (a) that for each

ue€ ran(C%)
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I(C';ix,c'%wl < |(C—;%K,C_;§(y-u))| + I(C'%n,c_;ﬁu)]
< a7 E 2wl + 187 14l
< Lla7%IR + 87% R VR a5 P + (| R YR

Since the first factor of the extreme right hand side is equal to ”(A:B)_%x|
by (6), the proof will be completed if

H(A+B)—%y|F = inf {”A_%u|ﬁ + HB-%(y—u)|F |ue ran(C)} .

To prove this identity, it suffices, by (8), to show that u is in ran(C%)

whenever u 1is in ran(A%) and y -u is in ran(B%), or even more

(10) {ran(A%) + ran(C%)},\{ran(B%) + ran(C%)} C ran( %).

But (10) is equivalent to (b) on the basis of Lemma 1, and (7) and (9). This

completes the proof.

3. Proof of Theorems

Recall that & and Y are the maps induced by given A and B accord-
ing to (1) and (2), respectively. Suppose that C 1is a fixed point of ¢ or
that it is a fixed point of Y and satisfies A:B < aC for some a > 0. We
claim that the conditions (a) and (b) of Lemma 5 are fulfilled in each case.
Since (5) implies
(11) A:C + B:C £ (A+C): (B+C)

(see [2]), this is immediate for the case of ¢, i.e.
(12) (A+C): (B¥C) = C.

In the case of VY, i.e.

(13) A:C+B:iC=C
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the condition (a) is immediately fulfilled. It remains to show (b) or its
equivalent form (10). Remark that (13) implies,on the basis of Lemma 1, (7)
and (9),

1 1 1
ran(A;é)nran(C'ﬁ) + ran(Bli) r\ran(Cﬁ) = ran(C?)
while the additional assumption A:!B £ @C does
1
ran(A;é) A ran(Blé) c ran(Ci) .

These two inclusion relations yield immediately (10).
With the claim established, in view of Lemma 5 we are in position to as-

1
sume that for all x, y in ran(Cé)
(14) [, | s Nl I am Tyl
and further that
(15) 0(A:B) < C € (A+C):(B+C) for some O > 0.
Since (5) implies
(A+C): (B+C) € (A+C+BHC) /4
(see [2]), the right hand inequality of (15) implies C < A + B. A conse-
1 - -

quence is that the operators (A:B)é(A+B) & and C(A+B) & are uniquely ex-
tended to bounded operators, say K and L respectively, with the restric-
tion that they vanish on the orthocomplement of ran((A+B)%) (see [6]).

Take w € ran((A+B)%) and let z = (A+B)-%w. Since the left hand ine-

quality of (15) implies ran((A:B);i) c ranl(clﬁ) by Lemma 1, it follows from
(14) that

|(x,2)| = |(c';%(,c';§Cz)| < |l (A:B)_;EXH H(A+B)—;§Cz||.

Therefore we have by (4)
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|| casBy2asm) 5l = || caimy%e|

sup 82 || (arm) e |
X || as) ||

| (A+B)-¥§C (A+B)_;5w||.

In terms of K and L the above inequalities are written in the form K¥K

< (L*L)Z. Since the square-root function preserves order relation between
1

positive operators (see [4]), we have (K*K)ﬁ<§ L¥L, hence

%(K*K)%(A+B)% < (A+B)%L*L(A+B)%.

(16) (A+B)
The left hand side of (16) is just the geometric mean of A + B and A:B
that is known to coincide with A#B (see [4, 5, 9]) while the right hand side
is equal to C by definition of L. Thus we have proved A#B < C.

To prove the reversed inequality, remark that the right hand inequality

of (15) is equivalent to an inequality between operator matrices

c -C A+C O
< ¢ < 0 B+C
A C

(see [2, 5]), hence the operator matrix [ ] is positive. Since the

C B
geometric mean A#B 1is the maximum of all positive X for which the operator
X

matrix [; B] is positive (see [4,5]), we have C < A#B. This completes

the proof of the theorems.
That the geometric mean A#B is a fixed point of ¢ was already pointed
out by Nishio [8].
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A REMARK ON THE SPECTRAL BOUND OF THE
GENERATOR OF SEMIGROUPS OF POSITIVE OPERATORS
WITH APPLICATIONS TO STABILITY THEORY

Manfred Wolff
Mathematisches Institut
Eberhard-Karls-Universitit

Tiibingen

In [3] we proved that the spectral bound of the generator A of a strongly
continuous semigroup of positive operators is always contained in the
spectrum of A. Here we apply this result to some problems in stability
theory. Moreover we give an example of an irreducible group of positive
operators on a Banach lattice of continuous functions such that its type
differs from the spectral bound of its generator. This solves an open
problem of [3] and serves as a counter example to some conjectures in
stability theory.

1. Introduction

In the last few years the theory of strongly continuous semigroups of
positive linear operators on ordered Banach spaces became more and more im-
portant in its own right as well as in applications (see e. g. [l, 2, 3, 5, 6,
7, 8, 11, 12, 15, 16, 17]).

One of the most interesting questions in this field is that one about the

limit behaviour of the semigroup cl = (Tt) (for t tending to infinity)

2
which in turn is closely related to the si;eoof the spectrum o(A) of the in-
finitesimal generator A of 7‘(see e. g. [7, 8, 13, 14]).

As a major step towards the answer of this question we proved in [3],

that for a strongly continuous semigroup 7 = (Tt) of positive operators on a
(non-pathologically) ordered Banach space the well known formula for the re-

solvent of the generator A
00

-zt
Rz(x) = Se Ttxdt
0
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does not only hold for all z with Re z > Wy where

w, i= lim t-] ln" Tt“

t oo

but for all z with Re z > s(A) where the spectral bound s(A) is given by
s(A) = sup {Re z: z€ o(A)}

Here o0(A) denotes the spectrum of A.

In the present paper we will apply this theorem to stability theory.
From the foregoing we get a feeling for the important question whether or not
s(A) equals w_. In fact in [5] this seems to be tacitly assumed. This, how-
ever is not true in general for semigroups of positive operators as was shown
by an example in {3]. But there the problem remained open whether s(A) = W
holds at least for all gr oup s of positive operators.

This, however, is not true, too, as we shall show by an example. Sur-
prisingly this example is quite easy and is furnished by the group of trans-
lations on a suitable Banach lattice of continuous functions on R. (Note that
in the nonpositive case examples of similar kinds are already well-established,
see [4, 18], but these examples are quite more complicated than our one. On
the other hand the underlying space in these cases is the Hilbert space, and
here our problem remains open.)

The paper is organized in the following manner: In Section 2 we recall
some notions and the most important results of [3]. Section 3 is devoted to
stability theory whereas in Section 4 we give our counter-example. For notions
not explained here we refer to [4] in the case of strongly continuous semi-

groups and to [9] ([10], resp.) for ordered vector spaces (Banach lattices,

resp.).

2. A Formula for the Resolvent of the Generator

2.1 Notations. In the following let E be a real Banach space ordered by a

closed, normal cone E satisfying E,_ - E_ = E. Denote by E, the complexific-

(¥

ation of E, i. e. E, = E @ iE, equipped with an appropriate norm inducing the

C
product topology and such that Ec becomes a complex Banach space (e. g.
Ix + iy| = sup{ !x cost + y sintf : 0 gt ¢ 2n}). Then E is called an

ordered Banach space over €.
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A linear operator T from one ordered Banach space Ec to another one FC is
called positive (T 20)if T(E+) c F*. Such an operator is necessari-
1y bounded (apply [9], V.5.6 together with 5.5). We set S 2 T whenever

S - T 2 0. As usual € is ordered by R,.

2.2 Examples. a) A complex Banach lattice is defined as the complexification
of a real Banach lattice; in particular the classical Banach lattices of
functions (or of measures) fit into our frame (see [10], II.11).

b) Every complexification of a real order unit space (see (91, v).

c) Every C*—algebra A. The real space Ao consists of the selfadjoint
elements, A consists of the nonnegative selfadjoint elements.

The most important result of [3] now is the following one: Let

;= (Tt)t>0 denote a strongly continuous semigroup of positive linear oper-
ators on the ordered Banach space EC over €. Let A be the infinitesimal
generator of '7» and denote by o(A) its spectrum and by s(A) the spectral

bound.

THEOREM 2.1. a) If o(A) is nonempty then s(a) € o(A).
b) For u > s(A) the resolvent (u - A)_l

for Re z D> s(A) the net ( Se-zs

I —_— (-]

=: Ru(A) is positive. Moreover
Ts ds)t?o converges to RZ(A) with respect to

the operator norm (for t —»o0),

(v € R) is another pole then its order is < m.

An easy corollary is the following one:

COROLLARY 2.2. Let ¢ = (Tt)tEIR be a strongly continuous group of positive

linear operators on Eg. Then o(A) # @. More precisely: o(A) N R+ 0.
Note, that o(A) # @ for uniformly bounded strongly continuous groups on
an arbitrary Banach space. Thus the interesting case here is that the group

may be unbounded.

3. Applications to Stability Theory

3.1 Basic Notions. Let ?= (Tt)t>o denote a strongly continuous semigroup on
4
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the Banach space E. Let X denote a (not necessarily closed) linear subspace

of E.

DEFINITION 3.1. a)z is called weakly (strongly, or uniformly, resp.) asymp-

totically stable on X if (T )l) converges to O with respect to the weak

t/X
(strong, uniform) topology for t->o9,

b) ¥ is called exponentially asymptotically stable on X if there is

0 <u € R such that for every x € X there exists M(x) 2 0 satisfying
[T < e™ M0 for all € > 0. 1f sup fM(x): x € X, x|l = 1f = M <00 holds

then 7 is called uniformly exponentially asymptotically stable on X.

DEFINITION 3.2. 22 called weakly (strongly, uniformly) integrable on X if

( g’STS ds/x) converges with respect to the weak (strong, uniform) topology for

t —oo,

3.2 Preliminary Results. Let 7, E, X be as in 3.1. The uniform boundedness

principle implies that ; is uniformly bounded if 7 is weakly asymptotically
stable on the whole space E. Thus fromnowon we make the
assumption that ¢ is uniformly bounded.

We need the following

LEMMA 3.1. Let a- (Tt)t>o be a strongly continuous semigroup on the Banach

space E with infinitesimal generator A. If for an x € E and z € C

t

(3.1) lim S e %5 T xds = y
t= o s

exists (in the weak topology) then y is in the domain D(A) of A and
(z - A)y = x.
The easy proof is omitted.

The next proposition should be known, we have taken it from (8].

PROPOSITION 3.2. Let z= (Tt)t% be a uniformly bounded strongly continuous
semigroup on the Banach space E with infinitesimal generator A. The following

assertions are equivalent:

a) z is weakly (strongly) asymptotically stable on E.
b) The image Im(A) of A is dense and g,ﬁ weakly (strongly) integrable
1) T

/X: restriction of T to X
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on Im(A).

c) There exists a dense subspace X on which ; is weakly (strongly)

integrable.

PROOF, a)= b): Since 4' is weakly asymptotically stable, O is not an eigen-
genvalue of the adjoint A" of A, hence Im(A) is dense. For x € ImA there
exists y € D(A) with Ay = x hence
t
0‘/Tsxds = Tcy -y

which converges to -y by assymption.

c) =»b): follows from Lemma 3.1. 0

b) :23): By Lemma 3.1 for x € D(A) dSc-Ts Ax ds)= X holds, hence
Tt X = T
bounded the assertion follows.

T  Ax ds converges to 0. Since D(A) is dense and Z is uniformly

In general weak stability does not imply strong stability. Thus the follow-

ing corollary is of interest.

COROLLARY 3.3. Let q = (Tt)t>o be a strongly continuous semigroup of positive

linear operators on the ordered Banach space E, over €. Let A denote the in-

C
finitesimal generator.

If 2 is weakly asymptotically stable and if Im(A)* i= {y € ImA : y 2 0}

separates the points on the dual space E' then ; is strongly asymptotically

stable.

PROOF. Since Im(A)+ separates the points of E', the linear hull“} of

Im(A) is dense in E. If x € Im(A)+ then the weak limit z := of Tsxds exists
by Prop. 3.2 because of our assumption. But by the theorem of Dini-Schaefer
([9], v.4.3) this implies that (ojt TSde)t>O converges strongly to z. The

assertion now follows from Prop. 3.2.

3.3 The Main Result. If a strongly continuous semigroup 7 = (Tt)t>o is

exponentially asymptotically stable on the whole space then by the uniform

boundedness principle 2 is uniformly exponentially asymptotically stable
hence its type Wy (see Sect. 1) is strictly less than zero. So we turn to the
following problem: under which conditions does there exist a dense subspace on

which l is exponentially asymptotically stable?
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First of all there may exist such a subspace even if s(A) = w, = 0
happens. Consider the space E = Co(RW) of all complex-valued continuous
functions vanishing at infinity. Define Tt by (th)(x) = f(x + t). Consider
X = {f €E: lf(x)[ < ne ™ for all x and a suitable n € N not depending on x}.
Clearly X is dense in E with respect to the sup-norm, and for f € X
"th“ < M(f) e_t holds. Since every function eut (u < 0) is an eigenfunction
of the generator A, s(A) = w, = 0.

From now on we restrict our considera-
tions to (complex) Banach lattices E.Letus re-

call the notion of an ideal and related subject.

DEFINITION 3.4. a) A linear subspace J of E is called an ideal if y € E and

|yl € x for some x € J always implies y € J.

b) A linear subspace X of E is called positively generated if X is the

linear hull of the set X, :=X (]E+ of its positive elements.

c) Let X be a positively generated linear subspace. Then J(X) = {y: there

exists x € X satisfying |y| < x} is called the ideal generated by X.

Note, that J(X) is the minimal ideal containing X.

The following lemma is nearly obvious but important.

LEMMA 3.5. Let A denote the infinitesimal generator of a strongly continuous

semigroup ? of positive operators on the Banach lattice E. Then the domain

D(A) of A is positively generated.

PROOF, For u > s(A) we know by Theorem 2.1 that the resolvent Ru(A) > 0.
Since E is the linear hull of E+ and Ru(A)(E) = D(A) the assertion follows.
We need one further notion. In fact it looks a little bit strange at first

glance but the examples and the theorem succeeding it may justify it.

DEFINITION 3.6. Let E be a Banach lattice. A linear operator A from D(A) € E

into E is called inverse monotonously continuous (imc for short) if every in-

creasing sequence (zn) in D(A) for which (Azn) is decreasing and convergent

itself is convergent.

EXAMPLES. a) Let A be the generator of a strongly continuous semigroup of
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positive operators. If s(A) < O then A is imc, since then (—A)_l exists on
E and is positive.

b) Let Z = (Tt) be the group of shifts on E = Co(]R)= {f € CR: f is
continuous and %}m f(t) = 0}. Then the generator A: f = Af = f' is imc

-~ 0o
though 0 € o(A). For if (fn) is increasing and (Afn) is decreasing then
A(f ~-f ) €0 hence f = f_  for all n.
n 1 n 1
c) Let E = Co (R+) and (th)(x) = f(x + t). Then Af = £', and A is not

~1/n

imc. For consider fn(x) = n(l + x) . Then (Afn) is decreasing and conver-

gent, but (fn) increases and fails to converge.

These examples show the following: s(A) < O implies A to be imc, but not
conversely. Example c) shows that Z may be exponentially asymptotically
stable on a dense ideal (see the paragraph at the beginning of 3.3), but
neither A is imc nor s(A) < 0. Nevertheless in this example Z is strongly
asymptotically stable (use Prop. 3.2).

Thus in view of these remarks the following theorem is best possible.

THEOREM 3.7. Let ¥ = (Tc)tzo be a uniformly bounded strongly continuous

semigroup of positive operators on the Banach lattice E, and denote by A its

infinitesimal generator. The following assertions are equivalent:

a) The spectral bound s(A) is strictly less than O, in particular ; is

strongly asymptotically stable.

b) ; is exponentially asymptotically stable on the domain D(A) of A

and A is imc.

c) A is imc and 7 is exponentially asymptotically stable on the ideal

J(D(A)) generated by D(A).

d) A is imc and there exists a positively generated dense subspace X on

which ?- is exponentially asymptotically stable.

e) A is imc and there exists a dense ideal on which ;’ is exponentially

asymptotically stable.

PROOF. a)=» c): Let s(A) <u < 0. Toy € J(D(A)) there exists x € D(A)+ with
lyl € x; now x = (u - A)-lz for z = (u - A)x. But (u - A)_] = Ru(A) 2 0 by
thm. 2.1, hence

Iyl <€ x € Ru(A)(lzl) = OI P Tslzlds .

This implies \Tsyl st [yl <1, R (W)(|2]) < el R,([z]), and thus
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HTSy” < eus“Ru(A)(|z|)". Finally A is imc by example a) above.

The only remaining nontrivial implication is e) =a): Let J denote the
ideal in question. There exists O < u such that "Ttx "S e-UtM(x) for all

x € J. Hence for v < u the integral
oo

gthTxdt=:Sx
o t v

exists (even with respect to the norm), thus there is defined a positive
linear operator SV from J into D(A) satisfying (v - A)Sv =1 (on J) (use
Lemma 3.1).

Hence z-is strongly asymptotically stable by Prop. 3.2. Now Ax = 0
implies Ttx = x for all t, hence x = 0, thus A is injective.

We now prove that A is onto. Then A_l exists on E hence O ¢ o(A) and
Theorem 2.1 yields s(A) < 0, since wy £ 0.

Now let O < x € E be arbitrary. Since J is dense in E, there exists a
sequence (yn) in J converging to x.

Let wo o= inf(x,lyn(). Then O € v < Iynl, hence v € J and lim v, X,
since the lattice operations are continuous. Then (vn) defined by
v, = sup (wl,...,wn), is in J, it is increasing and converges again to x.
For zn =S v (zn) is increasing in D(A), and Azn = -v_ by Lemma 3.1.

O'n n
Now A is imc, hence y = }‘Hna_zn exists, and since A is closed, (-A)y = x.

COROLLARY 3.8. Let E be equal to the space C(X) of all complex-valued con-

tinuous functions on a compact space X, and let 2, A be as before. Then

the following assertions are equivalent:

a) 2 is uniformly bounded, A is imc, and there exists a positively

generated dense subspace on which ?I is exponentially asymptotically stable.

b) 3 is uniformly exponentially asymptotically stable on E.

The same equivalence is true in case E is of type L](X,Z,u).

PROOF. In both cases s(A) = w, holds ([2,3]).

4. A Group of Positive Operators with s(A) <w_ =0

First of all we point out that for a group ?-= (Tt)tE]R of positive opera-
tors s(A) $ -00 by Corollary 2.2. The idea behind our example is the follow-
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ing: the group will consist of all translations on the intersection of C(R)
with three weighted function spaces.

The weight functions are chosen in such a way, that (i) "Tt“ = | for
t > 0, (ii) the space is translation-invariant, (iii) s(A) <0, i. e. we
eliminate the functions et for -1 €u <o0.

We give the construction in a series of particular steps.

4.1 Construction of E. Let E consist of all complex-valued continuous func-

tions f on R satisfying

Oo
lim £(x) = lim e>® £(x) = 0 and Jez"[f(x)ldnz p () <0Q
X =200 X=> =00 % |

Set p2(f) = sup {(f(x)l: X 2 Oi and p3(f) = sup{ e3xlf(x)|: x € Oj. Equipped
with the norm “fu = p](f) + pz(f) + p3(f) E is easily seen to be a Banach

lattice.

4.2 Construction of the Group. For f € E set (th)(x) = f(x + t). Since

2t

p, (T f) € e p,(f), and moreover lim f(x + t) = lim e3xf(x +t) =0 we get
't 1 X =200

X =~

Tt(E) € E and all Tt are positive, hence continuous (see Sect. 2.1). In fact
“Tt“ € | holds for t > 0.
To show that 7 = (Tt)tGR is strongly continuous we choose w. 1. o. g.

0<f €E. If ¢ > 0 is given then there exists a > O such that

S (F(x + t) + £(x))e> dx < ¢/2 for |e| €1
x| >a

Since f is uniformly continuous on [-(a + 1), a + 1] there exists 0 < d < |
such that

lex + &) - €x)] <e - (2 j e dx)”! for [t <d, x| € a.
|x| €a

But then pl(th -f) <e¢.

Similarly we prove that 2 is strongly continuous with respect to Py
and Py: Obviously the domain D(A) of the generator A equals {f €EE: f'€ E},
and Af = f' (derivative of f).

4.3 w = 0. More precisely we prove that “Ttu = | holds for all t > 0. In 4.2
we showed already "Tt“ <1,
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Fix t > 0. For € > O there exists f € E, with compact support contained
in [t,e[ and satisfying pl(f) <eg, pz(f) =21, (p,(f) = 0). Now obviously
-2t
Py(T,£) = 0, p,(T £) = I, and p (T £) € e °" p (£), hence | < lthfff $1+¢.

Since € > O was arbitrary, the assertion follows (because of | Sﬂf“ <1 + ¢g).

4.4 s(A) < -1, Obviously for u 2 =1 (u - A) is injective since pl(eu') =00.
Hence it is enough to show that E, c Im(u - A).

For f € E and u 2 -1 set
+ oo

F(x) = j et £(t + x)dt = " 6(x)

o
where o

G(x) = f e " £(s)ds
X
We show that F € E; obviously then (u - A)F = f.
(i) If a < b then using G'(x) = —e UX f(x) we obtain via integration
by part

jb eZ* F(x)dx = 2Tlu [e(2+u)x G(x)]: . [" e2* £(x)dx.

a a

The second summand converges to p](f) (for a-> -0, b—~»00). Now

o0
e(2+u)x G(x) € \f e28 f(s)ds,
X

hence the first summand converges, too, and we obtain p](F) < 2p](f).

(ii) For t > 0 we have

Q0
G(t) = Jtve_us f(s)ds ¢ j‘ eZs f(s)ds
t t

hence for -1 € u <0 lim F(t) = 0. The case u 2 0 is obvious.
t—200

00
(iii) e3t F(t) = et S e2t+ut—us f(s)ds € et p](f), thus
t

lim e3t F(t) = 0.
t=>-00

Thus s(A) < -1 is proved.

4.5 Summary and Final Remarks. (i) The group 1 of translations on E is ex-

ponentially asymptotically stable on the dense ideal generated by D(A), and is
strongly asymptotically stable, but not exponentially
asymptotically stable on E.

(ii) There is no nontrivial closed ideal J on E which is invariant under
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2, in other words ? is irreducible (see [10], III.8).
(iii) The following problem remains open: does there exist a group of

positive operators on E = LZ([O,I]) with property (i) above?
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LOCAL OPERATORS, REGULAR SETS, AND
EVOLUTION EQUATIONS OF DIFFUSION TYPE

Gunter Lumer
Institut de Mathematique
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Mons, Belgique

The purpose of the present paper is twofold, and correspondingly it is divided
into two different but closely related parts.

In Part I, which is expository, we give a very brief and sketchy account of

- or merely indications on - some of the developments since around 1975 con-
cerning the evolution equations of diffusion type associated to a local ope-
rator A-on a locally compact Hausdorff space Q2. We also mention some of the
applications to parabolic partial differential equations. While quite incom-
plete, this account, together with the bibliography at the end of the paper,
should be useful in giving the interested reader a first idea and orientation
on the mentioned subject.

The local operators A which are considered in the developments mentioned above
are assumed to have decisive potential - theoretic properties, i.e. to satisfy
a "maximum principle" (local dissipativeness), and to have "enough regular
sets” (open sets in 9, regular with respect to A in some sense related to the
usual potential - theoretic meaning of '"regular open set").

Part II is not expository. In it we deal with several aspects concerning regu-
larity. In particular, in section | of Part II, we discuss relations between
restricting of "local" Feller semigroups and evolution equations of diffusion
type as treated, respectively, in [21] and [3), and give improved results
along such lines (somewhat better suited for applications to partial differen-
tial equations).

PART I: LOCAL OPERATORS. SOLVABILITY, AND STUDY OF THE
SOLUTIONS, OF ASSOCIATED EVOLUTION EQUATIONS OF DIFFUSION TYPE

In the brief survey below, we can by no means go through a general detailed
recalling of definitions, notations, and terminology, but shall refer the
reader instead to the appropriate references. However, we recall a few things
explicitely to make Part I, as much as possible, directly readable "in a
first approximation", and refer for the rest, concerning notions, notations,
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and terminology, to [3], [4], [5], unless otherwise mentioned.
Part I deals with work by G. Lumer, L. Paquet, J.P. Roth, and L. Stoica.

1. Local Operators and Associated Evolution Equations.

A local operator A on  (Q a locally compact Hausdorff space satisfying
possibly some additional conditions l)) will play a role somewhat similar to
that of a differential operator (on, say, an open set of RN). We recall that
a local operator A on R is a family of operators ("operator” meaning "linear
operafor") Av, indexed by VEO(R) ( O(2) being the set of all non empty open
subsets of Q), with D(Av) =D(A,V) cC(V), Av :D(A,V) +C(V), and such that for

Vl, V2€ 0@, Vl CVZ’

f€DA,V,) = £ |v] ED(A,V)),
(n v, v,
(A°E) |v =A (£lv).

(Here, as in (5}, we always write D(Av) =D(A,V), while not assuming a priori

A "completed" or "locally closed", see [5]. We shall however assume hence-

forth that our local operators are "semi - complete" in the sense of [5].)2)
Given a local operator A on §, one can associate to each V€ 0(), or to

each V€ CQ(Q) ( GL(Q) being the collection of all relatively compact

VE 0(Q)), certain basic evolution equations (initial -value problems with

boundary conditions) of the type

%—%*i Au, t>0, x€V, (u=u(t,x)),

(2) u(o,x) = f(x), x€V,

u(t,*) |3V =0, t>0

or

1) To simplify, we shall assume in any case below, that Q has a countable
base.

2) A very similar notion of "local operator" was already introduced by
E. Dynkin [2] p. 145, in 1965, in connection with the characteristic
operator of a continuous Markov Process.
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au
— = Au, t>0, x€eV,
3t
3) u(o,x) = f(x), xE€V,
u(t,*) 'av = f(.) av, t=>0,

where in (2) VEC (), u(t,*) :V €C0(V) (i.e. u(t,*) |V tends to O at infinity
in V) V t20, and in (3) V€ C;(Q). These problems, loosely described in (2),
(3), are set up precisely (in sup -norm context and with specific uniform
convergence behavior) as Banach space Cauchy problems, respectively in CO(V),

c¢(V), in the following way:

& aapn,  t20, (tmu(e) €D(A) SC (M),

2"

u(o) = f (£ ED(A),
or

du _~ A

YKy, (u(t) € DAY cC®)
a1 a "N

u(o) = f (£ €D(R)),

where the boundary conditions (behavior on dV) are now embodied in the way the
operators Av, X&, associated to V, (operating in the Banach spaces CO(V),
C(V)), are defined. (AV’ Av, will be described explicitely in the next sec-
tion).

By saying that the problem (2'), or (3'), "is solvable", we mean that it
is uniformly well posed as a Banach space Cauchy problem, and assuming that
Av, or XV’ respectively, is closed, this is equivalent to saying that Av, or
Av, generates a semigroup on, respectively, CO(V), c).

If T generates the semigroup (P(t)) (on some Banach space), we shall

2
often use the symbolic notation exp{tT} Ensgead of P(t), and also say merely
"the semigroup P(t)" or "the semigroup exp{tT}".

Given A on @, V € (™(9), we say that "the Cauchy problem for V (corres-
ponding to A) is solvable" iff (2') is solvable. We abbreviate ""Cauchy pro-

blem" by "c.p.". Similarly, we say that "the Cauchy problem with continuous

boundary values (c.p.c.) is solvable" iff (3') is solvable.
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2. Operators Associated to V€ ((Q) (Given a Local Operator A on Q).

Given as in the previous section A on {2, the following Banach space ope-
rators, in CO(V), or C(V), associated to VE (%), or V€ (rc(ﬂ.), are of basic
importance in the results we are concerned with:

VVE O, Av is defined by

D(Av) = {f ECO(V) ND(A,V) : Afeco(v)},

(4)
Avf = Af in V, for f€D(Av).

vV VE (DC(Q), KV is defined by

D('Kv) = {fECV) : £ |VED(A,V), 3g€C(V) with g | 3V = 0, g = Af in VI,

(5) . .
Avf =g, for fED(Av).

VVE O (), Xv is defined by

D(KV) = {f€C(V) : £|av =0, f|VED(A,V), 3 g€C(V) with g = Af in V},
(6)

-

At = e for fen(Kv).

Moreover, given the local operator A, and ) €C (usually we consider the

case A >0), we write A, for the local operator A -\, and thus may also consi-

-—

AV? AXV' A)\V'

~
As we have seen in Section !, the operators Av, Av, come up 1n connec-

der the operatorsA
tion with problems of the type (2), (2'), (3), (3'); the operators KV come up
in problems of perturbation (see [6]), and approximation of solutions (see

[7]).as well as other related matters.

3. The Potential - Theoretic Assumptions on Local Operators, and the Potential-

Theoretic Techniques.

We make essential potential - theoretic assumptions on our local opera-
tors A.

A is assumed to be real and locally dissipative (see [3]), and to have
Yenough regular open sets" (with precision we mean by this, unless otherwise

mentioned, the existence of an exhaustive family % of open A -regular sub-



Lumer 55

sets of I such as in Theorem 5.4 of [3]). We also assume, until further no-
tice, A to be locally closed (although one can deal adequately with the case
of non locally closed local operators satisfying the other assumptions above,
as is shown in {5]). Under these circumstances, A has strong potential - theo-
retic properties; in particular global maximum principles are availab1e3),
and AA-superharmonic functions play a fundamental role (see [3], [4]). Such
local operators are also intimately connected with the theory of Markov pro-
cesses (see [23]).

Necessary and sufficient conditions for solvability of the c.p. (or
c.p.c.) for general open sets V, can be given in terms of the existence of a
"Cauchy barrier" for V (we shall return to such results below). For the no-

tion of Cauchy barrier see [4], Definition 3.14).

4. Some Basic Results.

The context and hypothesis are those described above, unless otherwise
mentioned.

Concerning solvability of evolution equations of diffusion type, we have

THEOREM 4.1. Given any V€ (" (Q), the c.p. for V (corresponding to A) is sol-

vable iff D(Av) is dense (in CO(V)) and 3 a Cauchy barrier (relative to A)

for V. 1f these conditions are satisfied, the solution u(t,f) corresponding

to the initial value f €D(Av) is given by u(t,f) -exp{tAv}f
(u(t,x,f) -(exp{tAv}f)(x), t>0, x€V), and exp{t&v} is a Feller semigroup.

A quite similar result holds also for the c.p.c., see Theorem 1.2 of
[8].

Furthermore, it is often necessary to work with non locally closed local
operators A. A very useful variant of 4.1 above, using the "closure" A of a

non locally closed A, is given in [5], Theorem 6. Whether A is assumed to be

3)  including "complex variants" of such maximum principles, useful for in-
stance in estimating resolvents R(},*) for complex A, and thus studying
the holomorphy of solution semigroups; see [14].

4) This is a less restrictive variant of the notion "V is quasi -regular
at infinity with respect to | - A" used earlier in [3]; see (5.1) of
(3], and { 4] Theorem 2.11.
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locally closed or not, Theorem 6 of [5] also gives a less restrictive variant
of Theorem 4.! in another direction, by assuming only (instead of an
exhaustive .# as described in the previous section) the existence of an
exhaustive family .# of "A - Cauchy regular"” open sets (with, correspondingly,
the appropriate interpretation of '"(A-1) - superharmonic" in the notion of
Cauchy barrier).

On the other hand, at least when considering concrete situations with
Q€ ((RN), problems such as loosely described in (2), or (3), can be set up
in an L2 -variational context (i.e. using appropriate Sobolev spaces and
variational formulation of the problems) instead of the sup -norm set up con-
sidered above. The corresponding 'variational problem" is a less stringent
one, and the 'variational solution' may exist when the sup - norm solution
fails to exist (there are simple examples of this in R3, involving non regu-
lar V€ C;(R3) and the Laplacian). Such matters are treated in [ 9] using both
variational and potential - theoretic techniques. Results are obtained first
of all in the general context of the previous sections, a measure u being
given on 1, and a "variational structure'" defined on UE(Q) (to each V€ (E(Q)
is associated a subspace Hv of Lz(V), and a sesquilinear form a HVXlR,+C,
satisfying appropriate assumptions - see Section | of [9]). A "variational
operator afv in LZ(V) is then defined, and concerning the "comparison of the
L2 -variational and sup - norm set ups", we have, with the terminology and

assumptions described in l9]5).

THEOREM 4.2. Assume we have a variational structure defined on (E(n), com-

patible with A, satisfying a coerciveness condition. Then for all V (3 (L(Q)

we have

€] Av c.c:fv.
A useful application of Theorem 4.2 to partial differential equations is
described in [ 9] (Section 2), in which 2 is an open connected (non empty)

subset of RN, and A is the local operator on R induced6) by the differential

2 ..
5) For the L -variational operator & see [9] p. 551. See also [15] Chap.
IV, and [ 1] p. 63-65, (except for a change of sign in the definition of
the operator).

6) In the way explained in [ 10], Section II.
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operator
. N N
(8 A(x,D) = ] c(®= [ a.()pD + | b.(x)D. +c(x),
lal'<2 ij=1 M T = ]
Di=3/3xi, where one assumes the <, real, measurable and bounded on @ for
la] <1, with co<0 on £, and for |a] =2 continuous with distributional deri-
vatives belonging to L“(Q). A(x,D) is moreover assumed to be elliptic in Q.

The variational structure is obtained here by taking for V€ (”c(ﬂ),

|
= H (V),
9) Hy = H,
] faniTac- [ [stowies - [ v
a (u,v) = a..D.uD.vdx - b*(D.u)vdx - [ cuvdx,
v i,j=1v 131 jmrv 33 v
where b¥=b. - JN D.a,. €L7(V); and for f €D()
ere . %0y T lial Vil ; v’
1

10) a (f,v) = =(f £,v) s VVvEH (V).

A \Y L2(V) o

Theorem 4.2 is shown to apply yielding Avc.dv, VVE O (D). It follows that
if the sup - norm Cauchy problem (the c.p.) is solvable for V€ (DC(S!) and we

are in the selfadjoint situation, (i.e., a, is a selfadjoint form), then the

sup - norm solution u(t,f), for f ED(AV), (zonsidered as an element of LZ(V))
can be computed by a spectral expansion convergent in L2(V), of the form
oo At \
(m u(t,f) = [ eco, < = (f,0),
el n'n n n
see [9] .

Let us consider again the sup -norm set up only. Using potential - theore-
tic and semigroup approximation techniques, rather strong results on approxi-
mation of solutions (in sup -norm) can be obtained, see{7], both in the gene-
ral context, and in the classical context., It would be a somewhat lengthy
matter to describe these results with any degree of precision, and we thus
rather refer the reader to the paper just mentioned. Let us merely say that
in the classical context one shows that, roughly speaking, solutions (of
Cauchy problems in the sense of Section 1) corresponding to second order
elliptic operators with real -valued coefficients having little regularity,
posed in regions with "bad boundaries", can be approximated in a strong sense
by solutions corresponding to "approximating operators" having C coeffi-

cients and very regular regions (with c boundaries).
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J.P. Roth, [21], has treated evolution equations closely related to those
considered above, in the following context (we keep our notations and general

7)

conventions from Sections | and 2 above ’; but we mention that the results of
Roth also hold without assuming a countable base for Q2): let P(t) be a Feller
semigroup on CO(Q) with pregenerator Ao, where A is "local" as an operator
in CO(Q) (this means that whenever f ED(AO), ve O(R), f=0 in V, we have
Aof=0 on V), and satisfies an additional condition on D(AO) (see [21] p. 55).
Interesting results are obtained in [21] concerning the "restriction" of the
generator X; to "regular" open subsets of Q (regular in a certain sense, spe-
cified in [21], Chap IV, p. 578)). We state now such a result, after intro-
ducing some corresponding notations. (We follow directly [2]] but adapt every-
thing to the notations specified here above. This translation may cause a bit
of trouble to the reader, but still it seems the best procedure. What we call
here 1, Ao' v, Coo(v)""’ would be called X, A, Q,X(9),..., in [21]). Also
in [21], to the pregenerator called there "A", one associates a family of

. \ . .
operators A_ which wewould call here A, and which constitute a local opera-

Q
tor in the sense of Section | above; that local operator we shall call here A.

Thus A is the local operator on induced by Ao’ via

D(A,V) = {f €C(V) : ¥x €V, Jan open neighborhood of x, Vx, and
gx€D(Ao), with f =g in Vx},

and for f €D(A,V) (Af)(x) -(Aogx)(x). Now, ¥ V € (0(Q), fECo(V), let us denote
by f the extension of f to Q by O outside V. One defines V VE (@(Q), the fol-

lowing two operators, A , and A , in CO(V):

o,V,1 o,V,2

D(A, v,1) = (£€C_(V) :3g€C (V) such that ®PWE-T)/t~g

’
(12) uniformly on compacta of V,as t =0},

A f=g, for f ED(Ao,V,l);

o,V,I1

7) Except that in the context of [21] all functions are real-valued, so we
shall interpret, while dealing with that context here, C(V) as C(V,R)={real-
valued functions in C(V)}, C (V) as C (V,R), etc....; see furthermore
{3} p. 422 concerning complexification.

8) If V is regular in that sense, Roth says "V satifies the regularity
hypothesis #".
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D(Ao,V,Z) = D(A,V) ncoo(V) .
(13)

A f = Af in V, for fED(A

o,V,2 ).

,V,2
One has ([ 21], Chap. IV)

THEOREM 4.3. Let V€ OC(Q) satisfy the regularity hypothesis "4" of [21].Then

(i) 3 a unique Feller semigroup Q(t) = etB on CO(V), such that
v f€ co(v), K compact c V, we have (considering restrictions to K)

(14) Ie(e)t - QUE)El ey = 0(t) (as t=0);
(ii) B -Ao,V,l -Ao,v,l = Ao,V,Z , where the closures (of the graph) are

taken in CO(V) XCO(V), the first space being provided with the usual

sup-norm convergence, the second with uniform convergence on com-

pacta 2£ V.
=C,t
(iii) 3 constants c,, c, > O, such that ¥ £ €C_(V), NQ(e)fll <c e TR

In connection with Theorem 4.3, an evolution equation of diffusion type,
of the type (2) above, is solved; and a Dirichlet problem for V regular in the
sense considered in Theorem 4.3 is also solved thereafter in [21] Chap. IV.
From these results one can derive useful consequences concerning the above
considered c.p., c.p.c., A-Cauchy regularity, i;l, etc. (see Section ! of
Part II, where we consider such direct consequences, and also give improved
results in such directions).

Very recently, J.P. Roth, [22], has also proved a quite interesting and
useful result on the "patching together of compatible local Feller semi-
groups", and on "patching together” the corresponding generators.

Also very recently another sort of intertying of local operators, the
"connecting of local operators Ai given on the branches Qi of a ramified
space 1, via connecting operators" has been taken up in [y, 112, (13),
where the results concern essentially "networks" (one-dimensional ramified
spaces) except for a brief mention in [13] of the general theory (which is
presently being written up). In this sort of intertying, the local operators

A, live on disjoint open subsetsof a"ramified space" Q and the "connecting
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operators" have their "support" contained in ﬂ\(Uiﬂi)(uhich isthe "ramifi-
cation space of Q"). The corresponding evolution equations of diffusion
type, with respect to the local operator on Q obtained by connecting the Ai,
constitute a certain type of generalized transmission problems.

Some applications of the results obtained in the general context to

partial differential equations have already been mentioned above, in con-
nection with Theorem 4.2 ( (8),(11) ), and approximation of solutions corre-

sponding to second order elliptic operator problems in which little regularity
is assumed. Other applications, to second order elliptic operators having
merely continuous coefficients, are given in [10}, [16], [17]. Other results
concerning the c.p. for degenerate elliptic second order operators with very
regular coefficients, and second order operators on manifolds, are also given
in the last two references just mentioned. L. Paquet also makes an extensive
study of time-dependent local operators (on a "space-time" locally compact
space QT = QX [0,7[) and the c.p. in that context; this is then applied to
the c.p. corresponding to second order parabolic equations with merely con-
tinuous coefficients depending now on time also, as well as to the inhomoge-
neous Cauchy problem with continuous boundary values depending on time, [16],
(18], [19], [20].

Finally, without attempting to go into any detail, we mention again the
interesting recent work of L. Stoica, [23], which deals with local operators
A (in the sense of Section | above, but real-valued), locally closed, locally
dissipative (that notion defined slightly differently), having a base of
"Dirichlet" (D-) and "Poisson" (P-) regular open sets, (i.e. local operators
with strong potential-theoretic properties, closely related to those con-
sidered in Section 3 and thereafter), and studies these objects in connection
with Markov processes and the potential theory of the "quasi-harmonic spaces"
associated to such local operators A. The matter of existence of "enough D-
and P-regular open sets" brings up, of course, problems directly related to

the c.p. and c.p.c. considered above.
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PART II: COMPARSION BETWEEN DIFFERENT TYPES OF
REGULARITY, IN RELATION WITH THE CAUCHY PROBLEM
FOR LOCAL OPERATORS

Throughout Part II, we use unless otherwise mennoned, the notions, general

conventions, notations, and terminology, indicated in Sections 1 and 2 of Part 19) .

|. Cauchy Problems (c.p.) for Local Operators, and Restriction of Feller

Semigroups whose Generators are Local.

We consider first the context described in the paragraph containing
Theorem I.4.3; we show that under these circumstances the local operator A
induced by Ao has a closure A, and if VE ("(Q) is regular in the sense of
Roth (footnote 8)) then the c.p. (corresponding to A) is solvable for V, and
B -Kv, so Q(t) -exp(tzv}. These facts are rather easy to derive from Theo-
rem I.4.3, [2]], and [5]. Somewhat deeper and more useful are the facts we
establish next, showing that one has similar results but with everything
happening in terms of one a priori given local operator A (which is what one
wants in applications to partial differential equations), and under weaker
hypotheses, applicable for instance to classical diffusion equations in open
sets with boundary in RN (for which the assumptions of Theorem I.4.3 are too
restrictive).

Let us thus first consider the already mentioned context of the paragraph
containing Theorem I.4.3. We are thus considering in CO(Q), (2 locally com-
pact Hausdorff with countable base), an operator Ao which is local (i.e. for
fED(Ao), Ve O(R), "fl v=0" implies "(Aof)l V=0"), pregenerates a Feller
semigroup, and is such that Vf €D(Ao). wEC‘Z (R) = {¢p real-valued in Cm(R):
©(0)=0}, @ f ED(AO). Also as described in the mentioned paragraph of Sec-

tion 1.4, AO induces a local operator (in the sense of Section I.1) on 2, A.

We have

PROPOSITION 1.1. The local operator A is locally dissipative.

9) To refer to Definition a.b, Theorem a.b, etc., of part I(part II), we
say Definition I.a.b (Il.a.b), etc.
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PROOF. Let WE 0 (1), aW#9, f €C(W) with £ WED(A,W) and

(15) max (f| < sup f
oW W

We must show that 3 x €W with !f(-xo)l =sup !f and (Af) (x)f(x ) <O. Set
W
K={x€W: £(x)| =sup f!}. K is compact by (15). By what is shown in [21]
W
(Iv.1.3, Lemma | of III.1.4, of [ 21}), 3 g€D(Ao), g=f near K, say in
W, open c W, and 3 Vv € D(A ), O < ¥<I, supp Ve, V=] near K. Then h=yg
€ D(Ao), max thl occurs necessarily on K, and Ao is dissipative as pregene-
rator of a Feller semigroup, so 3 x € Kc W, !h(xo)[ = |f(x°)} = sup, £l
= < .

(th)(xo)h(xo) (Af)(xo)f(xo) 0

The case 0W=@ is handled similarly since in that case W is both open

and compact.
(We could also alternatively prove our proposition using for f, or -f,

a gED(Ao) as above, and the local positive maximum principle of [21] p. 55).

LEMMA 1.2. A admits a closure Xi_n the sense of [5] (which is again a locally

dissipative local operator, locally closed, semi-complete, extending A).

PROOF. Since D(Ao) is dense in CO(Q), and there exist for any K compact in

VE O0(Q), some w€D(Ao) 0<y< |, supp y<V, y =1 near K, it follows readily
that 3 a base for @ of WE G?C(Q) such that D(Aw) is dense in CO(W). In view
of this and Proposition IIL.1.1 above, Theorem | of [5] applies to yield our

statement.

If a set V€ 0 (Q) satisfies the regularity hypothesis 'p" of Roth (see
footnote 8) above), we shall say henceforth, in order to avoid confusion

with our own notations and terminology, that "V is regular (R)".

THEOREM 1.3. Let V€ (7(Q) be regular (R). Then the "restricted" Feller

semigroup Q(t) corresponding to V according to Theorem I.4.3 is equal to

exp {ch). i.e., the generator B of Q(t) ﬁxv (defined as in (4)). Thus the

c.p. corresponding to KE solvable for V. In particular V is X—Cauchx
regular in the sense of [5].

PROOF. By (13), Theorem I.4.3 (ii),and Lemma II.1.2, we have BCKV, where
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the latter is dissipative (and closed). Since B is a generator, we have by

maximality B =K§.

There are, however, some serious difficulties in applying Theorem I.4.3
. . . 10) .
as stated here in part I, i.e. in [21] , or its above consequences, to
partial differential equations. Actually, from the point of view of such
applications, the natural thing is to look at a local operator given a priori
on @ for which Ar (playing the role of the Ao of Theorem 1.4.3) is the pre-
‘

Q) if fED(A)),
@€ C: (R), will often not hold (for instance for Q an open set with boundary inR"),

generator of a Feller semigroup. However the condition ¢ e f € D(A

even if we have @°f€ED(A,V) for f €ED(A,V), wECm(V); moreover the barrier condi-
tions for "V is regular (R)" are expressed in terms of the local operator A'

induced by A but should be expressed in terms of A rather than A'. The

Q ’
approach and results below tend to eliminate these difficulties.
We shall now assume for the rest of this section that there is given on

Q a local operator A, completed (see [5] footnote 2)). As above in this

section, all functions, function spaces (C(V), CO(V),...) are real.
(16) ®= {p real-valued € c°°(R): 0 € supp 0}.
We assume:
( 1) A is locally dissipative.
(17) ( ii) 3 a base B for 0, of WE ( (2) such that D(A) = C_(W).
(iii) vVeE C(Q), £ € D(A,V), » € @, implies Yo f ED(A,V).

LEMMA 1.4. Let VE ((R), £ €D(A,V), supp £CV. Then f (extension of f toall
of @ by O off supp f) belongs to D(A,R).

PROOF. f belongs locally to D(A,:) in V; f is locally O, hence belongs to
D(A,.), in Q\ V since supp f cV. A being completed; we conclude that f €D(AQ).

10) We mention that F. Hirsch has told us recently that -~ while it is not
published - Roth has known for some time that his result,Theorem I.4.3,
is valid under weaker assumptions easier to apply to partial differen-
tial operators.
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LEMMA 1.5. Let VE ((R), K compact © V. Then 3 f€D(AQ), 0<f<], f=1

near K, supp f compact < V.

PROOF. (a). We assume first that V belongs to the base B; K compact c V.
For this case, the proof goes much like that of IV.1.3. of [21}]. 3 wECoo(V),
O<y<I1, supp yc V, ¥ =1 near K; and by (17)-(ii) 3 ‘”1 € D(%) with

e =w i, W) < 1/4. Take W€ ® such that 0<Sp< |, 9=0 on ]J-=,1/4], ¢=1 on
o

[3/4,+°].Then by (17)-(iii) f]'£0°‘l',€ D(A,V), and O<fl< 1 onV, fl.l near K,
and’ supp I:'l C supp ¥ compact < V. By Lemma II.l.4, and supp fl compact,
f -fl€ D(AQ)and has the required properties.

(b). Given now any V€ 0 (2), K compact <V, then V X €K, 3VI€ 3,
IEVICVICV, and 3 fIE D(AQ) constructed as in (a) corresponding to {x} and
Ve » with £ =1 onV% open, X€ v;cv;c V, - Cover K with v;i, i=1,2,...,N.
Set W =Yv_, W =UV* . Then WcWcV, KcW*cW*cW. Set

1 . : .

i 1 7i

N
(18) velf

i=1 71

Then supp YcWcV, and $>1 on W*, Hence, if Y€ @ is the same as considered
in (a) of this proof, f =¢° ¢ € D(A,Q), and moreover f€D(AQ) since

supp f CsuppycW compact; supp f <V, f =1 on W* hence near K.

REMARK 1.6. If gED(AQ), Q@€EQD, then Yo gED(AQ). Indeed, Y°g €D(A,N).
3 §>0 such that ©=0 on [-6,5], and since |g| <6 off some compact Kcg@,
weog=0 off K, hence A(p° g ECOO(Q), and so w°g€D(AQ).

THEOREM 1.7. If £, g € D(A,V), (VEO(R)), then fg€D(A,V).

PROOF. (a) Let VE (@ (9), £ €ED(A,V); let € >0 be given. 3 ©, €® such that
L coincides with 1»12 outside {-e,e ] . Since LA f €D(A,V), then if we
2
write Vc for the open set {X€V: |f(1‘)| >¢}, we have f IVC- (&pco f)IVEGD(A,VE).

Now U V -Vo-{IEV: f(x)# 0}, and therefore, since A is completed,
€>0

2

f |V° ED(A,VO).

(b) Again let VE 0O (), f €D(A,V). Then V X€V, by Lemma II.l.S5,
3 Wxﬁ GC(Q), IGWICWICV, and WED(AQ), oKyY< I,y =1 on Wx. Let
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Hflw "c(wx) M. Then if M =0, flw =0 €ED(A,W ), otherwise f*2MW>0 on W,
so by (a) of this proof, (f +2My) |W €D(A,W ), and similarly U' IW €ED(A,W ),
while wa -flw €D(A,W ), hence f Iw s(f+2~w) Iw -lmfdw -tm ¢ |w € D(A W )
Since A is completed we have f2 ED(A,V).

(c) YVE €(2), f,g €D(A,V), we have by (b) above fg=(1/2)[(£+g)>f>g’]

€ D(A,V).

COROLLARY 1.8, If f,gED(AQ), and fg has compact support, then fg€D(AP).

, . N . .
THEOREM 1.9. Let K be compact in £, Ui-l Vi D K be an open covering of K (Le.,
ViE c@), i=1,2,...,N). Then 3 aiED(AQ), supp aiCVi, o< ai<l, with

ZN a. = | near K.
i=] 1 —_—

PROOF. 3 W, € ( (), W.cW.cV., Kc oy
1 C 1 1 1

i=] wi, and by Lemma II.1.5, 3fi€D(AQ),
0<f <1, £, =1 on ﬁi, supp £, compact cV.. 3 € ®,0<9<2,such that ¢ coin-

cides with x=1/x on [1, +=[. Set £ =]\ f,, and

i=1

(19) g =9ef, ﬂi-fig for i=1,2,...,N.

By Remark II.l.6 and Collary II.1.8, g, BiED(AQ). Also,3 hED(AQ), o0<h<l,

supp hc Ur?

i= wi, h =1 near K. Set finally

(20) a, = h8, = hgf .

Then a €D(A ), supp a cv, i and on U iml
f>21, so g-l/f 20 -h(l/f)f-l near K, a = hf . /Z fi<l at all points

where cxi >0.

Wl, and in particular on suop a.,

LEMMA 1.10. Let VE ((Q), K be compact <V, and f €D(A,V). Then 3 gED(AQ),
supp g compact €V, with g =f near K.

PROOF. By Lemma II.1.5, 3 h€D(AQ), O0<h<1l, supp h compact €V, h =1 near K.
So g = (hf)~ will do in view of Lemma II.1.4, and Theorem IIL.1.7.

LEMMA 1.11. Suppose g€C°o(Q), VE (DC(Q), K is compact cV, and giV €D(A,V).
Then3f€D(Aﬂ), f2g on 9, f =g near K.

PROOF. 3 $ED(A)), 0S ¥ <1, ¥= | neark, suppv<V. Thus gi=l(glVIWIV)] €D(A),
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and (g -gV¥)IVED(A,V) and is O near K. Set h=g-gV¥. supp h is contained in
some Vl open, chI cvl compact; 3W open, so that KCWCﬁCV, h=0 on W. Then

Vl\ W is compact and disjoint from K. So 3 a€D(AQ), 0< a <1, a=1near \_11 \ W

and a =0 near K. Set [ hll =M, and h' =Ma. Then it is easily checked

c ()
that °

(21) h' 2 h on all of Q.
Thus f =g Y+h' €D(AQ), f>g, f =g near K.

Let us next look at the local operator A' on @, induced by AQ (via
D(A',V) = {f €C(V): f coincides locally in V with elements g€D(Ap)}, and if
f€D(A',V), f coincides with g near X €V, then (A'f)(x) = (AQg)(I)). We have

now
THEOREM 1,12, A' = A,

PROOF. The fact that A'cA is immediate from the definition of A' and the
fact that A is completed. Conversely, if f €D(A,V), VE O(R), then V X €V
3 HIE (DC(Q), x € WICWICV, and by Lemma II.1,10 3 gED(Aﬂ), f =g near WI

so fl WI€D(A',WI). It follows that f €D(A',V) and A'f =Af.

The definition of "V is regular (R)", as given in [21] p.57, is in
terms of the local operator induced by the pregenerator Ao (in the notation
of Theorem I.4.3). We shall recall now this definition but stated relative

to any a priori given locally dissipative local operator. Thus:

We shall say, given a locally dissipative local operator A on §, that
VE O(Q) is "regular (R) relative to A", iff: VE OC(Q) and,

(1) V admits a barrier at every x €9V in the following sense: 3 wI open
containing x, and a function hxéc(wx) such that

( 1) hr(x) =0 _

(ii) b > 0 on (V an)\ {x}

(iii) hxl vnwxe D(A,V nwx), Ahx<0 on V nwx, _
(2) 3 functions y, 6 in D(A,W), W some open set containg V,¥,6, >0 in W,
and satisfying A¥ <0, A®>0,in W.

We have then the following result
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THEOREM 1.13. Let A be a local operator on {, which satisfies the hypothesis

(17) and is completed. Suppose AQ pregenerates a semigroup on CO(Q) (which is

then automatically a Feller semigroup). Let VE ((Q) be regular (R) relative

to A. Then the c.p. (corresponding QK) is solvable for V, i.e., (3 the
closure A of A and) Av generates a (Feller) semigroup on CO(V).

Moreover, Q(t) -exp{txv} satisfies (and is the unique Feller semigroup
on CO(V) satisfying): V fECO(V), K c~om2act cv, Ilexp{tAn)f -Q(t)fIIC(K)
as t -0, where exp{tAp} -exp{tAQ}, f being the extension by 0 of f to oD

=0(t)

PROOF. AQ plays here the role of Ao of Theorem I1.4.3, A' the role of the local
operator induced by Ao. Here ®replaces CO(R); but having shown under the pres-
ent assumptions the validity of the properties II.1.4 to II.1.12 concerning
AQ. and A=A' (by Theorem II.1,12), the rest of Roth's arguments in [ 21}
Chap. IV needed for the above statement will then work in the present situa-
tion yielding a Feller semigroup Q(t) of generator B, satisfying the con-
clusions of Theorem I.4.3, so that BCR', .KV' and by the maximality of dissi-
pative generators among dissipative operators, B-AV. (Also by maximality

A—Q-XQ). The statement thus follows.

Theorem II. 1.13 shows in particular that under the given assumptions on
A, Ag regularity (R) relative to A, for a VE((R), implies A -Cauchy regulari-
ty of V.

In the next section, we deal with several relations between basic oper-
ators associated to a local operator, and the different types of regularity,
(relations rather easy to estabiish, but useful in clarifying the situation).

2. Hv, _._;I;L A-Regular, Dirichlet Regular, A-Cauchy Regular, and Poisson

Regular, Open Sets.

NOTATION 2.1. The context here is the general context of Sections | and 2 of
Part I. For V€ (0 (Q), Av, IV' are as defined in the sections just mentioned.
"Hv", "A-regular open set" are as defined in [3]; "A-Cauchy regular open set"

has the meaning defined in [5]}; "Dirichlet-regular open set", "Poisson-regular

11)  As in the statement of I.4.3, the terms inside |l "C(K) are to be under-

stood as being the corresponding restrictions to K.
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open set", has the meaning defined in [23]. Throughout this section,

(22) A will be a local operator on 2, real, locally dissipative.

Since in [ 23] all functions considered are real, we shall when refering to
that context - as already done for the context of Theorem I.4.3 - consider

our local operator A as restricted to the corresponding real functions.

PROPOSITION 2.2, For VE ((Q) with 3V #@, the following two are equivalent:
( i) V is P-regular (with respect to A),
.. -1 -
(ii) 3 IV €B(C(V)) and DZAV) CO(V).
Again, in another direction, the following two are equivalent, X >0 being
given:
( i")V is A-regular and A)‘-regular,
(ii')V is D-regular with respect to A and A)‘.

PROOF. We need only to consider real functions. That (i) implies (ii) is
proved using the codissipativeness of —’K;l, and the closed graph theorem in
essentially the same manner as one procedes in the proof of 3.1, 3.6, of [3].

Suppose now (ii) holds. Then all we need to check is that for f € C(V),
f 20, we have -% f>0 in the present situation. But by the usual perturba—
tion argument (from Av to Av-)\z we have that 3 I €B(C(V)) and IIAv !I -0
as A =0; on the other hand -AW f 20 follows merely from the local dxssxpa-
tiveness of A, A being > 0; so we conclude that -&;l f 20,

Next, in considering the equivalence (i')-(ii'), Hv denotes the same
object as H but corresponding to A instead of A. For the mentioned equi-
valence, all that needs really to be checked is that under the present
circumstances, if (i') holds, and f €EC(3V), f 20, then va 20. Consider thus

such an f, and write va =y, H‘;f =u .. Since A is locally dissipative, the

K
maximum principles for A, imply u)‘>0.« Set W) Tu-u,. Then

a = - - 1
(23) w)‘l V=0, wa Au)‘ <0 in V,

20 in V, u”u, 20 in V.

80 W, is Ax-superhamonic, and hence v, , N

PROPOSITION 2.3. Suppose that A is locally closed (in addition to (22)). Let

v, V'E 0. (D), VcVcV'. Then, if V and V' are A-Cauchy regular, the fol-
lowing two are equivalent (as additional properties), given any A >0:
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(i) vis A, -regular,

(ii) 3 K;‘IIEB(C(V)).

PROOF. Suppose (ii) holds. Let E={p€C(dV): 3g €D(A )=D(Av,) with

Av!
gldv =@}, Since V' is A-Cauchy regular,

(24) E is dense in C(dV).

Let WEE, and g be as in the definition of E; set y =-A)‘g in V. By the

. ¥. Set u=v+g in V. Then u€C(V), u|V€D(A)‘,V) and

assumption (ii) 3Jv = KJ\V

AxunAxv*A)‘g=‘+’+A)‘g=0mV,
uldv = viav + glav = o,

since VED(‘RW). In view of this,(24), and the maximum principle for Ay-

harmonic functions, we see that V is A -regular. Thus (ii) implies (i).

A
To show that (i) implies (ii), one has by a standard argument (as in
3.1 of [3] for instance) that I(Iw) =C(V), and the rest goes then as for

"(i) = (ii)" of the preceding proposition.

REMARK 2.4. The argument in the preceding Proposition IT.2.3 also shows that,
. . .. . -1 -
(A being as in Proposition 1I1.2.3), if V€ (DC(Q), A>0, 3 AWGB(C(V)), then

V is A)‘—regular whenever

E, = (WECE@V): 3 g€C(V), glav=yp, gl VED(A,V), Ag in V

(25) extends continously to V)

is dense in C(9V).

Finally, let us simply mention that examples can be given where A on 2 is
locally dissipative, real, locally closed, V€ OC(Q) is A-Cauchy regular

but not P-regular.



70

Lumer

(10]

(WR)

(12]

(13]

(14]

[15]

REFERENCES

Caroll, R.W., Abstract Methods in Partial Differential Equations.
Harper & Row, New York, 1969.

Dynkin, E., Markov Processes I and II. Springer Verlag, 1965.

Lumer, G., Probléme de Cauchy pour opérateurs locaux et "changement
de temps". Annales Inst. Fourier, 25 (1975), fasc. 3 et 4,
409-446.

Lumer, G., Probléme de Cauchy et Fonctions Surharmoniques. Seminaire

de Théorie du Potentiel, Paris No.2, Lect. Notes in Math. vol. 563
p. 202 -218, Springer Verlag, Berlin, 1976. I

Lumer, G., Equations d'évolution pour opérateurs locaux non localement
fermés. C.R., Acad. Sci. Paris, 284 (1977), serie A, 1361 - 1363,

Lumer, G., Perturbations additives d'operateurs locaux. C.R. Acad.
Sci. Paris, 288 (1979), serie A, 107 -110.

Lumer, G., Approximation d'opérateurs locaux et de solutions d'equa-
tions d'evolution. Seminaire de Theorie du Potentiel, Paris No. 5,
Lect. Notes in Math. vol. 814, p. 166 -185, Springer-Verlag,
Berlin, 1980.

Lumer, G., Probléme de Cauchy avec valeurs au bord continues, com-
partement asymptotique, et applications. Seminalre de Theorie du
Potentiel, Paris No.2, Lect. Notes in Math. vol. 563 (1976),

p. 193 -201, Springer-Verlag.

Lumer, G., Evolution equations in sup-norm context and in L2 varia-
tional context. Linear Spaces and Approximation, I.S.N.M. vol. 40
(1978), p. 547 -558, Birkhduser-Verlag, Basel.

Lumer, G., Equations d'evolution en norme uniforme pour operateurs
elliptiques. Regularite des solutions. C.R. Acad. Sci. Paris,
284 (1977), ser. A, 1435 -1437.

Lumer, G., Connecting of local operators and evolution equations on
networks. Potential Theory Copenhagen 19/9 (Proceedings), Lect.
Notes in Math. vol. 787, p. 219 -234, Springer-Verlag, Berlin,
1980.

Lumer, G., Equations de diffusion sur des réseaux infinis. Séminaire
Goulaouic-Schwartz, 1979-1980, Ecole Polytechnique, Palaiseau,
p. XVIII.1 - XVIIIL.9.

Lumer, G., Espaces ramifiés et diffusions sur les réseaux topologiques,
C.R. Acad. Sci. Paris, 291 (1980), ser. A, 627 - &30.

Lumer, G.-Paquet, L.,Semi-groupes holomorphes, produit tensoriel de
semi-groupes et equations d'evolution. Seminaire de Theorie du
Potentiel, Paris No. 4, Lect. Notes in Math. vol. 713, p. 156 =177,
Springer Verlag, Berlin, 1979.

Lions, J., Problémes aux limites dans les equations aux derivées
partielles. 2nd. ed., Les Presses de 1'Univ. de Montreal, 1965.




Lumer 71

[ 16} Paquet, L., Sur les equations d'evolution en norme uniforme. Thése,
Universite de 1'Etat 3 Mons, 1978.

[17}]  Paquet, L., Equations d'évolution pour opérateurs locaux et equations
aux derivees partielles. C.R. Acad. Sci. Paris, 286 (1978), ser. A
215 -218.

(18] Paquet, L., Semi-groupes genéralises et equations d'evolution.
Seminaire de Theorie du Potentiel, Paris No. 4, Lect. Notes in
Math. vol. 713, p. 243 -263, Springer Verlag, Berlin, 1979,

{19] Paquet, L., Operateurs locaux dependant du temps et probléme de Cauchy.
C.R. Acad. Sci. Paris, 286 (1978), ser. A, 613-616.

[ 20] Paquet, L., Probléme de Cauchy avec valeurs au bord dépendant du
temps et comportement asymptotique. C.R. Acad. Sci. Paris,
286 (1978), ser. A, 819 -822.

[21] Roth, J.P., Opérateurs dissipatifs et semi-groupes dans les espaces
de fonctions continues. Annales Inst. Fourier, 26 (1976), fasc. 4,
1-97.

[ 22] Roth, J.P., Recollement des semi-groupes de Feller locaux. Annales
Inst. Fourier, 30 (1980), fasc. 3, 75-89.

[ 23] Stoica, L., Local operators and Markov processes. Lect. Notes in Math.
vol. 816, Springer-Verlag, Berlin, 1980.




AN OUTLINE OF THE SPECTRAL THEORY OF PROPAGATORS

P. Masani
Departments of Mathematics

University of Pittsburgh
After indicating recent improvements in the propagator theory of Hilbertian

varieties and some applications to Banach algebras, we outline the spectral
theory of propagators.

1, Introduction

In this paper

A 1s a non -void set
(1.1 W is a Banach space over F (F=R or C)

H'is a Hilbert space over F.

In many mathematical problems, pure and applied, we have to deal with

J -vector -valued functions x(-) on A, or with W to .# linear operator -va-
lued functions X(-) on A. Propagator theory is concerned with the changes in
the functions x(+) and X(*) when a transformation semi -—group (s.g.) T acts on
A. Specifically, it is concerned with the case in which the changes are ex-

pressible in the form
x(t®)) = S(t){x(\)}, X(t @X) = S(t)-X(1),

where t €T, A €A, @ denotes the action of T on A, and S(+), called the pro-
pagator, is a function on T whose values are linear operators from K to ¥.

The need for a spectral theory of propagators stems from the realization that

in many applications T is abelian and the S(t), t €T, form a commuting family

of normal operators, and that a "spectral theorem" for the entire family would

yield the integral representation encountered in various analytical problems.
To provide the necessary background we shall begin with a resume of

propagator theory in the "time domain" so - to - speak as developed by us in
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[8,9] , but incorporating recent improvements (§2). It transpires that the main
theorems in [8,9] are valid even when the involutory s.g. I is unitless, and
that the Gelfand - Naimark representation theorem for C¥* algebras is a corol-
lary of our generalized version [8:4.14] of Stinespring's Theorem.

In treating the spectral theory (§3), it is fruitful at the outset to
disregard the confines of propagator theory, and taking T to be an arbitrary
set, to prove a "Kolmogorov extension theorem" for any commuting family
(Et :t €T) of spectral measures for J over € with compact spectra. In con-
junction with the spectral theorem for a single self - adjoint operator, this

yields a general spectral theorem 3.6 for any commuting family (S(t) :t €T)

of normal operators on J to J. Then assuming, as in propagator theory, that
I has an abelian algebraic structure and that S(+) is the appropriate
morphism on I', we show that the spectrum o(E) of the spectral measure E(*) of
(S(t) : t €T) falls within the class of appropriate '"characters" of I'. For in-
stance, for I'=A, an abelian involutory Banach algebra, and S(-), a xrepre-
sentation of A, we find that o(E) SG(A) U {0}, where o(f) is the Gelfand
spectrum of A, and that for an abelian C* algebra A, we have o(E) =o(h) U{0}.
The "commutative" version of the Gelfand - Naimark Theorem follows at once
from the last equality. For an involutory abelian s.g. I' with neutral ele-
ment, our spectral theorem yields the integral representation for a positive -
definite function discovered by Lindalil and Maserick [ 7], and rediscovered
by Berg, Christiansen and Ressel [1].

Space will allow the ennuciation of only very basic results, and permit
only stray remarks on the proofs. A fuller version of the paper will appear

elsewhere.

2. Propagator Theory in the Time - Domain

Since a vector in ) can be regarded as an TFF-to - ¢ linear operator,
the vectorial case x(*) mentioned at the outset of §1 is subsumed by the
operatorial case X(+). We shall accordingly deal only with the latter.

More fully, let CL(W,3¥) be the space of continuous linear operators on

W to#, cf. (1.1); then we are given that

(i) X(+) is a function on A to CL(W,¥)
(2.1)
(ii) 2, = U X(A)W) c #.
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For brevity we refer to such functions X(+) as Hilbertian varieties. The line-

ar manifold in J spanned by 9)( is denoted by < 9X>, and its closufe, called
the subspace of X(-), by & ; thus

(2.2) %{ = cls. <9)g.

Also associated with X(*) is its covariance kernel KX(°,-) defined by
(2.3) KX(A,A') = X(A")*.X(2), A, AT EA.

It is a triviality that

(2.4) KX(-,-) is a PD kernel on AXA to CL(W,W*),

where W* is the adjoint (not dual W') of W, and PD means "positive -definite"

in the obvious sense as defined in [ 8:2.5] for instance.] Conversely, the
Kernel Theorem of Kolmogorov, Aronszajn and Pedrick tells us that given a PD
kernel on A XA to CL(W,W¥), there exists a Hilbert space J¥ and a function
X(*) on A to CL(W,) such that K(.,*) =KX(-,'); moreover K(*,*) determines
X(*) up to unitary equivalence, cf. [8:2.10, 2.9] . This theorem is crucial in
several applicationms.

Now let an additive semi —group I', possibly non - abelian and unitless, act on

A in the sense that there is a binary operation ® on I' XA to A such that

V s,t €A & VAEA, (s+t) ®) = s D (tH)),

(2.5)
when T has a neutral element 0, 0®X=).

It is convenient to regard the elements of I' as moments of a (multidimensio-

2, and to think of t D) as the phase of an evolving system t time -

nal) "time"
units after its phase is ). The assumption that T is a s.g. satisfying (2.5)
then amounts to assuming that our system is deterministic and time - invariant
("temporarily homogeneous") cf. [9:3.4] . As the phase of the system advances
from A to t ®A, the variety X(*) attached to the system changes from X(A) to

X(t ®1). When and only when this change is expressible in the form

1 The definition of positive definteness rests on the concepts of a hermi-
tian operator and a non - negative operator on W to W*, cf, [8:2.3].
Throughout the sequel, "A=2B" will mean that B-A is non -negative hermi-
tian.

2  Hence our use of the letters s,t, etc. for the elements of T.
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(2.6) X(t®A) = S(t)-X(}), t€Tr, X€EA,

where the S(t) are single -valued linear operators whose domains and ranges

contain <@x>, do we say that the variety X(*) possesses a (linear)3 propaga-

tor S(+).

Whether or not a given variety X(-) possesses a propagator S(*) and
whether or not the S(t) have other desirable properties such as continuity de-
pends on the nature of X(*) and therefore on its covariance kernel KX(-,-),
cf. (2.4) et seq. Thus it is natural to seek conditions on KX(-,-) which en-
sure the existence of propagators of various sorts. In this paper we shall

deal only with involutory semi - groups I, i.e. with s.g.'s I' which admit a

one - one function * on T onto T such that

VY s,t €T, s** = g (s+t)* = t* +s*;
(2.7)

when T has a neutral element O, O* = 0.

For involutory s.g.'s I there are two sets of conditions on the propagator
S(+) which are natural and important for the applicationms:

Condition A. V t €T, S(t) is a closed linear operator such that4

S(t) = cls. Rstr. S(t) and S(t*) < S(t)*.
<gx> -
Condition B. Vt €T, S(t) €CL( yX’ y;() and S(t*) =S(t)*.

The following theorem gives a complete characterization of these cases:

2.8 MAIN THEOREM. Let A,W, #,X(+) be as in (1.1), (2.1), and let the involu-
tory s.g. I' (possibly non - abelian and unitless) act on A in the sense of (2.5).
Then

(a) X(+) has a propagator S(+) satisfying Condition A, iff. KX(-,-) has the

transfer property:

V t€T and V A,A' €4, Re(E@X,1A1) = K(A,t*@1");

(b) X(*) has a propagator satisfying Condition B, iff. KX(',-) has the

transfer property and satisfies the mild translational inequality:

3 The qualification "linear" will be omitted in the sequel, as non - linear
propagators will not concern us in this paper.

4 Rstr.SF means the restriction of function F to the domain S.
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3 y()E(R y' such that

+

V t €T and VAEA, Kx(t @A, tP)) 3 Y(t)'Kx(}\,)\).

The results 2.8 (a), 2.8 (b) are proved in [8:4.7 and 4.10] under the
assumption that T has a neutral element O. But inspection of the proof shows
that this assumption is redundant. For the many applications given in [ 8],
in particular to dilation theory, a neutral element is required. The scope of
propagator theory is wider, however, and the admission of unitless I is a
necessary improvement.

While Thm. 2.8 is deep, it is a triviality that the propagator S(*) has

the semi -group property; more precisely

V s,t €T, S(s+t) € cls.{S(s)-S(t)}, under Condition A.
(2.9)

S(s+t)

S(s)*S(t), under Condition B.

Thus under Condition B, S(+) is a * homomorphism on I' into the multiplicative

* s.g. CL(,9%,(9%); furthermore when I' is abelian, (S(t) :t€T) is a commu-

ting family of normal operators.

In many applications A=T, i.e. the s.g. I or A acts on itself, the ope-
rations ® and + being identical, cf. [8: 4.12-], [9: §5] and Szafraniec
[13], who discovered a new formulation of the Condition B for this case. A
significant instance is the following generalized form of a theorem due ori-

ginally to Stinespring [12]:

2.10 THEOREM (Stinespring). Let
(i) A be a Banach algebra over T (possibly non - abelian and unitless)
with an isometric involution *,
(ii) R(*) €L, CL(W,W*)),
(iii) the kernel K(*,-), defined by

K(a,b) = R(b**2a), a,b€AR,
be PD on AXA to CL(W,W*),
(iv) X(*) be the Hilbertian variety with convariance kernel K(-,-).
Then
(a) X(+) possesses a propagator S(-) on A to CL( ¥, yx);

(b) S(*) is a contractive * homomorphism on & into the C* algebra
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CL( H, K)s
(¢) when A has a unit 1, B(t) =X(1)*S(t)X(1), t€A.

This theorem follows from its unitized version given in [8: 4.14 and
4,15] by dint of the isometric * isomorphism between A and its standard
unitization.

By associating with A a canonical Banach space WA and a canonical func-
tion RA(') on A to CL(W, ,Wé';), we can deduce the Gelfand —Naimark representa-
tion theorem from Thm. 2.10. Since A is trivially isometrically * isomorphic
to its standard unitization, and this unitization preserves the C* property,
cf. [3: §12,#19], we may without loss of generality assume that A has a unit
1 such that |1]| =1. The Banach space we associate with A is the Bochner -
Legesgue class
@.11) Wy = Ly(#2%card; &) = £,(F5)

d d
of A -valued functions on the space & of normalized states @ of &, i.e. of

® such that

gEL@M,F), |@] =1, @(a*) = F(a), B(a*-a) >0, a€A.
We define the function RA(-) by
(2.12) [R, (@) (w)I(w,) = [ Bw B)*aw @],
Rpla) (w)l (v, b2 1

where a €EA and LAY EWA‘ It is then a straightforward exercise to show that
RA(-) is well ~defined and fulfills the premises 2.10(ii), (iii), that RA
is a non -negative hermitian contraction, and that for a C*algebra A,

|RA(t*-t)| = [t|2, t EA. The conclusions 2.10 (b), (c) yield the following:

2.13 THEOREM (Gelfand - Naimark representation). Let A be a unital Banach

algebra over FFwith an isometric involution *, Then

(2) 3 a contractive * homomorphism S(+) on A into CL(J#,3#), where ) is a
Hilbert space over TF ;

(b) when A is a C* algebra, S(*) is an isometric * isomorphism;

(c) when A is abelian, the S(t), t €T, form a commuting family of normal

operators.
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3. Spectral Theory of Propagators

In the spectral theory of propagators, I' is an abelian s.g. and (S(t):te€r)
is a s.g. of normal operators. It is desirable, however, to commence with an
arbitrary set ' and a family of commuting spectral measures Et(-), t€Tr, with
compact spetra o, , and to seek a single "Kolmogorov'" spectral measure which re-

presents the family. Accordingly our initial data will be:

(1) I' is a non -void set;

(ii) V t€T, o_ is a compact subset of C,

t
T, is the tc—relative topology for o,
where e is the standard topology for C;
(3.1 (iii) T= X o

t€eT t

VtEer, é’t is "evaluation at t" on 'F;

(iv), A= U g_l(r ), T = the topology generated by .4 ;
t t
d t€T d

(v) V te€r, # =o-ring(t.), #_ = o-ring(1).
T 4 t T4

Thus 1 is the topology of pointwise convergence for T, and by Tychonov's

Thm.
(3.2) ('F,r) is a compact Hausdorff space.

Also, gart s Brare the o—-algebras of Borel subsets of the topological spaces

(ot,rt), ('F,r), respectively. We now assert the following fundamental result:

3.3 THEOREM. (Kolmogorov extension for spectral measures). With the notation
(3.1), let
(i) s be a Hilbert space over C,
(ii) v t€T, Et be a strongly countably additive (s.c.a.) spectral measure
for # on QT , such that
t

G(Et) Z the spectrum of Et=ot,

(iii) V s,t€Tl, Vv A€.@T and V BE QT . Es(A) and Et(B) commute.
s t
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Then 3 a unique inner regular s.c.a. spectral measure E(:) for # on QZT such

that V finite L<T and V Bt€ .@T , t€L,
t

E[ N g’ (B )] = 1 Et(Bt)'
t€EL t€L

The proof consists in affecting a Kolmogorov extension of the Et - family

to .@JV 3
on to g . These extensions are made by applymg the class1ca1 Kolmogorov and

o-alg.(#4), and then (since in general .93 . C.@ ) a further extensi-

Prokhorov theorems to the families (IE ( )x[ :L finite €T), where E t€L E,
and x € #, cf. Kolmogorov [5: p. 29, Fund. Thm.] and Bourbaki [ 4: Ch. 9, §4,
Thm, 1] .

We shall call the measure E(*) given by Thm. 3.3 the Kolmogorov measure

of the commuting spectral family (Et(-) :t€r). Its spectrum o(E) is obvious-
ly a compact set:
(3.4) c(E)E?‘ X D(Or ) r, = max |z|,

t
ter dont

where B(O,rt) is the closed disk in C with center O and radius .. The follo-

wing simple corollary of Thm. 3.3 plays a central role:

3.5 FUNDAMENTAL COROLLARY. With the notation of Thm. 3.3, let

t€r, S(t) Z j’ot AE,(d)), g(t) RStT. gy &,

Then
(a) V€T, 5(t) =[x & (HEWD), 0, =o{s5(t)} =& () {a(E) };
d

(b) é”o(I‘) is a o(E) - separating subset of C(d(E),C);

(c) é’o.s ! is an isometry on S(T') SCL(J#,5f) onto the set é’o(l") cC(a(E),C);

(d) The following conditions are equivalent:
(@) o(E) is separating on T
(B) @‘c(-) is one -one on I' to C(o(E),C)
(Y) S(+) is one-one on I' to CL(Jf,5¢);
(e) The following conditions are equivalent:
(o) é"c(I‘) is uniformly closed in C(o(E),C)
(B) S(I') is uniformly closed in CL(J#, ).
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At this stage we have to invoke the spectral theorem for a single conti-
nuous self adjoint operator H on ¥ to ), referring to its direct proof ba-
sed on the s,quare -root and the explicit exhibition of the spectral measure
of H, as given e.g. in [ 11: pp. 279-280] .5 Now let T be a continuous normal
operator on J to J#, I'={1,2} and E|,E, be the spectral measures of the real
and imaginary parts of T. Then the premisses of Cor. 3.5 are fulfilled, and
from the conclusion 3.5 (a) we readily obtain the spectral theorem for T.

Next, let (S(t) :t€T) be a commuting family of continuous normal opera-
tors on . to S, and E_ be the spectral measure of S(t). Then the premisses

of Cor. 3.5 are again fulfilled, and we arrive at the following conclusion:

3.6 GENERAL SPECTRAL THEOREM. Let
(1) (S(t) : t €T) be a commuting family of continuous normal operators on ¢
to ),
(ii) o, = o{S(t)}, t€r,
d
(iii) ., T, ‘/V’T’é’;:’g'r s B, be defined as in (3.1).
t

t!
Then 3 a unique inner regular, s.c.a. spectral measure for J# on .@T such that
o(E) €T & s(t) = j‘?gt(f)n(df), tE€erT,

and all the conclusions 3.5 (a) - (e) hold.

We shall call E(-), given by 3.6, the spectral measure of the family
(S(t) :t€D.

An important theorem of Kuratowski asserts that if two complete, sepa-

rable metric spaces 4, % have the same cardinality, then there is a one - one
function ® on 4 onto % such that both ® and 4)-1 are Borel measurable, cf.
Parthasarathy [ 10: p. 14,#2,12] . The combination of this theorem with Thm. 3.6

immediately yields the following explicit version of a theorem of von Neumann
(cf. [11: pp. 358 -]):

5 The deep intrinsical nature of this proof is revealed by its adaptibility
to the general spectral theorems of H. Freundenthal and U. Krause, cf.
G. Birkhoff [2: pp. 362-364] and U. Krause [6: 3.4].
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3.7 THEOREM (von Neumann). Let

(i) T be a countable set,

(ii) (S(t) :t€T) be as in 3.6 (i), and E(+) be its spectral measure,

(iii) © be the Kuratowski function on o(E) onto the closed unit disk D in €.

Then

VEED, s() = (&0 KD, T-= f oy OOEWED);
d

i.e. all the S(t) are the values of Borel measurable functions at the same

normal operator T.

Thm. 3.6 remains valid of course when, as in propagator theory, I' has an
algebraic structure and S(-) is the corresponding morphism whose values are
commuting normal operators. But this additional structure together with the
inner regularity of the spetral measure E(*) allows us to infer that o(E) lies
within the set of appropriate characters of I'. There are many such speciali-

zations of Thm. 3.6. It will suffice to state just two:

3.8 THEOREM. Let
(1) I be an involutory abelian s.g.,
(ii) S(-) be a xhomomorphism on I' into the multiplicative s.g. CL(J,5¢),
where # is a Hilbert spcce over €,
(iii) E(+) be the spectral measure of (S(t) :t€T),
(iv)
Tw{f: f€C &V s,t €T, £(s+t) = £(s)E(t), £(t*) = F(D)}.
d
Then
0@ <¥nT & veer, s = [ye (DEGEH,

and all the conclusions 3.5 (a)-(e) hold.

3.9 THEOREM. Let

(i) & be an abelian Banach algebra over §, with isometric involution ¥,

6 Since T is countable, the compact Hausdorff spaces o(E) and D are com-
pletely metrizable and separable, and have the same cardinality, viz. c.
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(ii) S(+) be a * homomorphism on & into CL(J#,#), where J# is a Hilbert
space over C,

(iii) E(:) be the spectral measure of (S(t) :t€T),

(iv) o(@) be the Gelfand spectrum of A. Then

(a) o(B) cEn{o@®) U{0}} & VEtEA, S(t) = [p & (DEQED,

and all the conclusions 3.5 (a) - (e) hold;

(b) é"c(') is a contractive * homomorphism on A onto the subalgebra é’c(A) of
C(c(E),C);

(¢) when A is a C* algebra, we have o(E) = o(A) U{0}, and é,‘;(-) is an iso-
metric * isomorphism on A onto the C* algebra C(o(&) u{o},¢).

If in Thm. 3.9 we take the J# and the S(-) given by the Gelfand -
Naimark Thm. 2.12, then the conclusion (c) gives the so -called "commutative"
Gelfand - Naimark Thm., cf. Bonsall & Duncan [3: p. 189, Thms. 4,5].

As an application of Thm. 3.8, consider a bounded € -valued PD function
® on an additive abelian involutory s.g. I with a neutral element 0. By de-

finition, the kernel K(.,:) such that
K(s,t) = @(t* +s), S,t €T

is PD on TxT to ¢, and is therefore the covariance kernel of a vectorial
variety x(-) on T toJ#. It follows easily that the conditions of the Main
Thm. 2.8 (b) are fulfilled and that y(t) <1, and consequently that x(-) ‘has
a propagator S(.) whose values are normal contractions. Since, cf. (2.9) et
seq., S(+) is a *homomorphism on I' into the multiplicative *s.g. CL( 32, 5;),
therefore Thm. 3.8 applies. Thus S(t) =fc(E) d;(f)E(df), and so

B(t) = K(t,0) = (S(6)x(0),x(0)) = [ .y & (Du(dD),

where u(*) =|E(-)x(0)|2. This establishes the result of Lindahl & Maserick,
and of Berg et al, mentioned in §1, which they prove by appeal to Choquet
theory.
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ON GENERALIZED INVERSES AND OPERATOR RANGES

M. Z. Nashed
Department of Mathematical Sciences
University of Delaware

Newark, Delaware 19711

Aspects of the theory of operator ranges, factorization and range in-

clusion are brought to bear on some operator and approximation-theoretic
problems for generalized inverses on infinite dimensional Banach and Hilbert
spaces. Several criteria are given for an operator to have a bounded outer
inverse with infinite rank. It is also shown using one of these criteria that
the set of all bounded linear operators with a bounded outer inverse is open.
The set of all bounded linear operators with a bounded inner inverse is dense
in the space of all bounded linear operators. Comments on related topics in
generalized inverse operator theory and some open problems are given.

1. Introduction

A unified approach to the operator theory of generalized inverses has
been developed in recent years; see Nashed and Votruba [17]. Within this
framework, the algebraic, topological, extremal and proximinal properties have
been separately considered and analyzed. Although the algebraic
theory of generalized inverses is virtually complete, there are still a number
of operator-theoretic questions and approximation-perturbation aspects that
merit further investigation.

The purpose of this paper is to show that close relationships exist
between operator ranges (specifically the notions of majoriza-
tion, factorization, range inclusion, and topological complements) and the
operator theory of generalized inverses oninfinite dimen-
sional spaces (specifically, bounded outer inverses with infinite rank, the
structure of all bounded operators with a bounded outer (or inner) inverse).
By an outer inverse toa linear operator A: X + Y we shall
mean a nonzero linear operator B: Y > X such that BAB = B.
For other notations and properties of generalized inverses which are used,

but not specifically defined or established, see [17].
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2. Outer Inverses and Operator Ranges

Let X and Y be (real or complex) Banach spaces and let L(X,Y)
be the space of all bounded linear operators on X into Y. The range
and null space of A € L(X,Y) are denoted by R(A) and N(A) respec-
tively. Let D o R(A). A linear map B: D ¢ Y + X 1is called an
inner inverse of A if ABA= A, If B 1is an inner inverse

with domain Y, then
(2.1) X = N(A) + R(BA) , Y = R(A) + N(aB) ,

where + denotes algebraic direct sum. Similarly, a linear map B is an
outer inverse of A if BAB = B. Each outer inverse induces the

direct sum decompositions
(2.2) X = R(B) + N(BA) and Y = N(B) + R(4B).

It is well known that A has a bounded inner inverse on Y if
and only if N(A) and R(A) have topological complements in X and Y
respectively (see, e.g., [17]). The same result holds if A 1is a closed
linear operator with dense domain.

Henceforth by a complement we shall mean a topological complement. A

topological direct sum will be denoted by & .

REMARK 2.1 If A has a bounded outer inverse B then the alge-
braic decompositions (2.2) are also topological decompositions. Various
necessary and sufficient conditions for a linear operator B to be an
outer inverse of a given linear operator A are collected in [17; Propo-

sition 1.13].

We are here interested in conditions under which there exists a bounded
outer inverse with a given nullspace and a given range. The following two

remarks address this question.
REMARK 2.2 Not every closed complemented subspace Yl of Y can be the
null space of an outer inverse (of A) which has the given range Xl. 1f

Xl = R(B) then R(AB) = AX So Y. must be a complement to the given

1’ 1
subspace AXl in Y.
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REMARK 2.3. 1If Xl is a closed complemented subspace of X such that

Xl n N(A) = {0} and Y, is a complement to AX, then there exists a bounded

1 1
outer inverse B of A such that R(B) = Xl’ N@B) = Yl. For y e AXl define
By = (A/Xl)_ly and extend B linearly to all of Y such that N(B) = Yl. It

then follows that B is an outer inverse with the prescribed properties.
Combining Remarks 2.1 - 2.3 we have

THEOREM 2.1. Let X,Y be Banach spaces. A e L(X,Y) has a bounded outer

inverse with given range X

1 and given nullspace Y, if and only if the

following conditions are satisfied:

a) X is a closed complemented subspace of X and X, 0 N(a) = {0};

b) Y, is a complement for the subspace AX,.

An excellent survey on operator ranges is given by Fillmore and Williams
[7]. They consider a number of elegant but little-known results concerning
the ranges of bounded linear operators in Hilbert space. As Fillmore and
Williams remark there is reason to believe that the results and techniques
of the theory of operator ranges will find increasing applications, for
instance in formulating and proving infinite-dimensional versions of finite-
dimensional theorems. Here we shall use some results on operator ranges to
establish criteria for the existence of bounded outer inverses and related
properties. The following result is due to Douglas [4]; since it plays an
important role in what follows we include a proof using in part the notation

of generalized inverses.

THEOREM 2.2. Let A and T be bounded linear operators on a Hilbert space

H. The following statements are equivalent:
a) R(A) < R(T).
b) A = TC for some bounded operator C on H.

c) AA* < Az TT* for some A = 0.

PROOF. Suppose that (a) holds. Set C = TtA. Then C 1is bounded and
TC = TTTA = A, where 1t is the generalized inverse of T. That (b) implies
(a) is trivial. If A = TC then
*
W = [[8%] 1% = [1errtsl 17 < et 21T 12 = {1e*]1? ar'en;

thus (b) implies (c). Finally if (c) holds, then llA*x|| < A||T*x|| for
all x e H. Therefore, the linear map D: R(T*) > R(A*) defined by



88 Nashed

D(T*x) = A*x is bounded. Extend D to the closure of R(T*) by continuity
and put D=0 on R(T*)l = N(T), then DT* = A*, so A = TD*. [ |

If we consider operators A and T with domains being the Hilbert spaces
H. and H2, respectively, but with range in a common space, then the operator

1
C in the statement of Theorem 2.2 is defined from H. to H,. In [4] Douglas

remarks that the equivalence of statements (a) and (b} in Thegrem 2.2 persists
in Banach spaces; however this is false since (a) does not imply (b) in Banach
spaces. A counterexample (due to Douglas) is published in a paper by M. Embry
(Proc. Amer. Math. Soc., 38 (1973), 587-589).

THEOREM 2.3. Let X,Y be Hilbert spaces. An operator A ¢ L[(X,Y) has a

bounded outerinverseof infinite rank (i.e., with in-

finite dimensional range) if and only if the range of A contains a closed

complemented subspace of infinite dimension.

PROOF. Suppose B 1is a bounded outer inverse with infinite rank. Then AB
is a projector and R(AB) 1is a closed complemented subspace of infinite dimen-
sion which is contained in R(A); compare with (2.2).

Conversely, suppose M is an infinite dimensional closed subspace contained
in R(A). Let Y=M®& S and let P be the projector on M along S. Since
R(P) c R(A) it follows from Theorem 2.2 that there is a bounded linear operator
C such that P = AC. Then P> = P implies CP = CPACP, so that B := CP is a

bounded outer inverse of A of infinite rank. B

COROLLARY 2.4. If A 1is a bounded linear operator on an infinite-dimensional

Hilbert space, then A has a bounded outer inverse of infinite rank if and only

if A 1is not compact.

PROOF. This follows from Theorem 2.3 and the fact that a bounded linear
operator on a Hilbert space is compact if and only if its range contains no
closed infinite-dimensional subspaces (see, e.g., [5 ; Corollary 5.10] or

[7 ; Theorem 2.5]; a simple proof is given in [8 ; p. 2941). @

REMARK 2.4. Let A be an mxn matrix of rank r. For all integers s,t with
0<s <r and r <t <min (m,n), A has outer inverses of rank s and inner

inverses of rank t. For operators with infinite rank, we can similarly con-

struct outer inverses with any rank.
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EXAMPLE 2.1. Let Hl and H2 be Hilbert spaces and let K: Hl > H2 be

compact linear operator with infinite dimensional range. Let {un; un,vn}

bea singular system for K, i.e.,

un = un K vn , v =u K u

where 0 : My Sy S eee 2w < ... with w > . We assume that {un}:
and {vn}l are orthonormal systems. Then (see, e.g., [14])

ke = 5wl (v)

- Ya *Vn’ Un
n=1

and

K+}=;U(YU)V

n’’>n’ 'n
n=1

for y € D(K+) = R(K) + R(K)l, where K+ is the (Moore-Penrose) genera-

lized inverse of K.

let n be a fixed positive integer and define the operator Bn by

n
B y:= I yu, (yyu,) v, .
n j=1 3 i’ 73
It follows that
n
KB y= I (y,u,) u,
n j=1 J J
and
n n
KB = Z yu, | I (y,u)du,,u,| v,
Bn ny 521 j L:l y’l *Y 3
n
= I u, (yyu,) v. =B vy.
jo1 3 A B

Thus for each positive integer, Bn is an outer inverse of K, dim R(Bn) =
n, and ||Bn vl 2T [|y]|. Also for each y e D(Kf), IIBny—K+y|| +0 as

n + o, but not uniformly, since l(.r is unbounded. Thus the operators Bn

are not uniformly bounded: Ianll +® as n > @,

COROLLARY 2.5. A bounded operator A on an infinite dimensional Hilbert

space has a bounded outer inverse with infinite dimensional range if and only

if for each positive integer n there is an outer inverse B with
it tor 45 20 outef inverse &5, ¥=2
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dim R(Bn) = n and the operators Bn are uniformly bounded:|an|| <y for

all n.

REMARK 2.5. In the case of Banach spaces, the existence of an infinite-
dimensional closed complemented subspace M contained in R(A) is necessary
for the existence of a bounded outer inverse of infinite rank. In addition, we
need that N(A) is topologically complemented in the Banach space {x : Ax e M}.
Details and related topics will be discussed elsewhere. A partial result was
also given by R. Khalil [9] using the fact that every closed subspace of a

Banach space has a b a s i ¢ sequence.

REMARK 2.6. A ¢ L(X,Y) has a bounded inner inverse if and only if N(A) and
R(A) are complemented in X and Y, respectively. If X and Y are Hilbert
spaces, these conditions are satisfied if and only if R(A) 1is closed. Comparing
these conditions with the necessary and sufficient conditions for the existence of
a bounded outer inverse (Theorem 2.3 and Corollary 2.4) it follows immediately
that if an operator has a bounded inner inverse then it has a bounded outer in-
verse, but not conversely. This last assertion is known and has been established
directly. For if A has a bounded inner inverse B, then it follows immediately
BAB is a bounded outer inverse (as well as an inner inverse) of A. To

prove directly that the converse is false, one has to construct (in view of our
criteria for the existence of bounded inner, respectively outer, inverses) an
example of a noncompact operator with nonclosed range. Such examples abound,

for instance, in the theory of singular integral equations and Fredholm integral
equations of the first kind on the whole line. A rather technical example,

based on a construction due to E. Asplund, is given in Caradus [2]. Now that

the set of all bounded operators which have bounded outer inverses has been
characterized in the above simple manner in both Banach and Hilbert spaces,

more transparent examples can be given.

REMARK 2.7. Theorem 2.3 is also valid iﬁ A 1is a closed densely defined
operator. The modification of the proof is only in the use of the following
immediate extension of a part of Theorem 2.2. If R(P) < R(A), then there
exists a densely defined operator C such that P = AC and C is boanded

in the graph norm of A. Moreover, if P is bounded, then C is bounded.
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3. Topological Properties of the Set of All Operators with Bounded Inner

(Outer) Inverses

Let Gl(X,Y) denote the class of all A ¢ L(X,Y) which have a bounded
inner inverse and GZ(X’Y) the set of all A ¢ L(X,Y) which have a bounded
outer inverse. The set of invertible operators (which is a proper subset of
Gl n 62) is open. What can we say about Gl and Gz?

Using Corollary 2.4 we obtain a simple proof that GZ(X’Y) is open in
the (uniform) operator topology. This result was first established by the
author in [12] for Banach spaces and used in [13] for the stability of inverse
mapping theorems when the derivative operator is noninvertible. The analysis

in [12], [13] provides also perturbation bounds.

THEOREM 3.1. The set G2 of all bounded linear operators on an infinite-

dimensional Hilbert space with a bounded outer inverse is open.

PROOF. By €orollary 2.4 the set G2 is the complement in the space L(X,Y)
of the set of all compact operators. Now the latter set is closed (see,

e.g., [ 81), so G2 is open. [ ]

THEOREM 3.2. Let H, and H, be Hilbert spaces. The set Gl(Hl’HZ) of

1
all bounded linear operators with a bounded inner inverse is demse L(Hl’Hz)'

PROOF. Let A ¢ L(Hl,HZ) and write its polar decomposition A = VP where
V is a maximal partial isometry and P 1is a positive operator (see, e.g.,
[ 8]). For any € > 0 there exists an invertible positive operator Q
such that ||o-P|[ < e . Thus [[a-vo|| = [lve-vo|| < [|e-q|| <& .
Since V is a partial isometry if and only if VV*V =V and since V 1is
maximal, it follows that V has a bounded inner inverse. But Q 1is inver-
tible, so VQ has a bounded inner inverse. This proves that G1 is dense
in L(Hl’HZ)' | |

Graves has shown that the set of all bounded linear operators of X
onto Y, where X and Y are Banach spaces is open in the Banach space
L(X,Y). Dieudonné has shown that the set of all right (left) boundedly in-
vertible operators in L(X,Y) is an open set in L(X,Y). Clearly if A 1is
onto a Banach space, or if A 1is right (left) boundedly invertible operator
then A has a bounded outer inverse (see also [13] for references to the

literature).



92 Nashed

4, Related Topics, Comments and Problems

4.1 Invariance Properties of Inner, Outer and Generalized Inverses. If A

is a linear operator acting between two vector spaces V and W, then every
inner inverse of A determines algebraic complements to
N(A) in V and R(A) in W, and conversely. What properties of inner in-
verses (or expressions) are invariants under all choices of inner inverses to
a given operator (or equivalently all choices of algebraic complements to

N(A) and R(A))? Although fragments of results of this nature are given in
several contexts, there does not seem to be a systematic study of invariance
properties under choices of projectors or complements, either in the algebraic
context or in Banach space. We mention some examples of invariants of inner

and generalized inverses.

(i) The transformation B - BAB is invariant under change of projectors
(or complements); this transformation is a "measure" of the departure of an

inner inverse from being an outer inverse. See [17; Corollary 1.9].

(ii) In the theory of so-called "alternative problems" or operator equa-
tions of the form Fx = Lx where F 1is a nonlinear operator and L is a
linear operator with closed range and nontrivial nullspace, some topological
complements to subspaces R(L) and N(L) are used to "split" the operator
equation into a pair of equations (equivalent to the problem ), or to study
existence of solutions based on topological degree or coincidence degree. For
operators in a certain class, Mawhin has shown that coincidence degree has the
invariance properties under choice of different complements to N(L) and

R(L). See [11] and references cited therein.

(11i) For a bounded linear operator A on a Banach space, the generalized
inverse A+ depends on the projects P and Q (see [12]). Continuity of
A+ is invariant under these projectors. Bounds for the norm of the difference
of two generalized inverses of the same linear operator, but corresponding to

two different pairs of projectors are given in [12].

4.2 Extremal Characterizations and Operator Ranges. Engl and Nashed [6]

have recently established new extremal characterizations of generalized in-
verses of a closed or bounded linear operator between Hilbert spaces, which
generalize the extremal characterization in the Frobenius norm for matrices

due to Penrose (see [15] for a comparison of all extremal properties). The
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generalization utilizes Hermitian order and Schatten norms. For example,

for A e L(Hl,HQ) with closed range, then for any Y ¢ L(Hl,H3), where H,
are Hilbert spaces, the set {(XA-Y)(XA-Y)*: X ¢ L(H2,H3)} has a smallest
element with respect to the Hermitian order on L(H3) and the set of all such
smallest elements has a unique element which minimizes XX* with respect to
the Hermitian norm; this element is X = BAT. Theorem 2.2 on range inclusion,
factorization, and majorization of operators can be used with the results

in [6] to provide equivalent "extremal-like'" characterizations. For example,

with X = BAf, we have

(4.1) R(XA-B) < R(ZA-B)
for all Z € L(HZ,H3) and

(4.2) R(eA") < R(X)

for all other X that satisfy (4.1).

4.3 A Problem on Drazin Inverse. Find a direct extremal characterization of

the Drazin inverse. For definitions and literature on the Drazin inverse, see

[16], [2], [17]; some operator-theoretic properties are developed in [16].

4.4 An Operator Equation of the Invariant Subspace Problem. The open ques-

tion whether every operator on an infinite-dimensional Hilbert space has an
invariant subspace other than the zero subspace and the whole space is called
the invariant subspace problem. Since this problem deals with an infinite
dimensional extension of a problem whose answer is well known in finite di-
mensional space, operator ranges play an important role in various formula-
tions. The invariant subspace problem can be equivalently formulated in
terms of an innocent looking operator equation, namely, a bounded linear oper-
ator A on a Hilbert space H into H has a non-trivial invariant subspace
if and only if XAX = AX has a solution in L(H) other than zero and the
identity operator (see, e.g., [18]). Although this equation is quite dif-
ferent from the equations defining various generalized or approximate in-

verses, some connections might exist.
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4.5 Topological Complements as Operator Ranges. The theory of generalized

inverses for a bounded operator acting between Banach spaces X and Y
hinges on the existence of topological complements to N(A) and R(A), in
X and Y, respectively. In the case of Hilbert.spaces, such complements
always exist, and among them the complements N(A)l = R(A*) and R(A)l =
N(A*) are especially distinguished. In particular, when R(A) 1is closed,
these complements are, respectively, the range and nullspace of another dis-
tinguished operator, A*. No analogous situation exists in Banach spaces.

If topological complements can be chosen in Banach spaces so that
(4.3) X=NQA) ® R@B) and Y=RA) ® N@®) ,

then the generalized inverse of A relative to complements induced by B
can be defined as usual: A; is the linear extension of (A/R(B))_l to all
of Y such that N(A;) = N(B). Of interest is the study of properties of
operators B that satisfy (4.3), together with additional restrictions on

B so that analogues of results on generalized inverse operator theory in
Hilbert space can be immediately comstructed in Banach spaces (e.g., itera-

tive methods, spectral approximations, etc.). A restricted attempt is given

in [10].

4.6 Quasicomplementation, Quasi-Regularizers and Metric Generalized Inverses.

There are still open problems and useful directions for investigations on

relationships among these topics; see, e.g., [3], [15].
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MODULAR APPROXIMATION BY A FILTERED FAMILY
OF LINEAR OPERATORS

Julian Musielak
Institute of Mathematics
A. Mickiewicz University
Poznah
There is introduced the notion of boundedness of a filtered family (Ty) of
linear operators in a modular space. This notion is used to get a general

theorem on modular convergence Tyx +x. Applications in cases of generalized
Orlicz spaces of functions and sequences are given.

1. Introduction

Let X be a real vector space. A functional p:X~+[0,9] is called a
modular onX, if p(x) =0 iff x=0, p(-x) =p(x) and p(ax +by)
< p(x) +p(y) for a,b>0, atb=1, x,y€X. If p(ax +by) <ap(x) +bp(y) for a,b>0,
atb=1, then p is called a convex modular onZX. The
modular space X generated by p is defined as X ={x€X: p(ax) +0
as a-—+0+}., The formula |x|p'-1nf{u >0: pGﬁ <u} defines an F -norm in X o and
in case of p convex, |l xllp =inf{u >0: p(—l;) <l} defines a norm in Xp equlvalent
to [ | . Convergence xn-+0 in norm in Xp is equivalent to the condition

(ax )->0 as n~+> for every a >0. Besides this, there is defined in Xp a

m o d ular convergence (p-convergence) X »-o by the
condition: there exists an a >0 such that p(axn)~+0 asn»>>°, The p —clo -~
su rpe of a set SCXp is defined as the set of all elements x€Xp such that
xn-x+0 for a sequence of xn€S. Obviously, norm convergence implies p -
convergence but not conversely. Let us remark that if X is a normed space
with norm Il I, then p(x) =llxll is a convex modular in X, Xo==X and |l Hp =\,
p - convergence and norm convergence being thus equivalent.

An important example of a modular space is provided by a generalized
Orlicz space Iﬂ)=Lw(Q,Z,u), defined as follows. Let (2,Z,u) be a measure

space with a nonnegative, nontrivial ¢ -finite and complete measure u, and
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let X be the space of all extended real -valued, I -measurable functions
x=x(*) over f, finite u~almost everywhere; two functions equal u-a.e. will
be treated as the same element of X, Let pbe a9p-function with
parameter , i.e. g:2xR>R =[0,), ¢(t,u) is an even, continuous
function of u, equal to zero iff u=0 and nondecreasing for u=>0 for every
t€Q, and is a measurable function of t €Q for every u€R. If, moreover,
@(t,u) is a convex function of u€ER for all t €Q, then it is called a convex

¢ - function with parameter. Now, taking

1) p(x) = fo(t,x(t))du,
Q

p is a modular on X (convex modular, if ¢ is convex). The respective modular
space Xp is denoted by Lm(ﬂ,z,u)(or briefly, Lm) and is called a gene -

ralized Orlicz space.Incase when 2 is the set of nonnega-
tive integers, I is the o ~algebra of all subsets of Q and u(A) is equal

to the number of elements of the set A, the respective generalized Orlicz

space of sequences x==(ti) defined by the modular

(2) p(x) = ] w.(t;)
1=0

is denoted byl(p and is called the generalized Orlicz
sequence space (for definitions, see e.g. [3]).

We shall be concerned with problems of approximation by singular inte-
grals (convolution operators) and of moduli of smoothness in modular spaces.
It is quite natural to consider approximation with respect to p - convergence;
the respective theorems concerning convergence in norm | ‘p or || Hp are then
easily deduced making the number a >0 in the condition p(axn)-+0 variable.
Also, as a norm is a special case of a modular, the results may be inter-
preted as theorems for normed spaces. Problems of the above type were investi-
gated in [ 1] and the present paper may be considered as a further contribu-
tion in this direction.

In order to put together theorems on convolution operators and on
moduli of smoothness, there will be adopted here the technique of filters
which makes possible to give a uniform treatment of seemingly different

problems.
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2. A General Theorem

Let p be a modular on a real vector space X and let X‘J be the respective
modular space. Let V be an abstract nonempty set and let ¥ be a filter of
subsets of V. A function g:V-+R tends to zero with respect to ¥;g(v) 1-(0, if
for every € >0 there is a set VOE“I/such that |g(v)| <e for all v€V0. A
function G: ¥ >R tends to zero with respect to ¥ ,G(V) 1-{0, if for every
€ >0 there is a set V€€“V such that |G(V nva)[ <¢ for every VEV ,

A family T = (Tv)v€ v of linear operators TV:Xp ->Xp will be called
¥ -bounded (briefly: bound e d), if there exist positive numbers
k],k2 and a function g:V->lR+ such that g(v) 1:0 and for every x€Xp there is
a set VXE“V for which

p(TVX) < ke (kyx) +g(v)

for all v€Vx.

Let us remark that if p is convex, then the constant k1 may be always
taken equal to 1 and, moreover, if p is convex and linear operators ‘I‘v:Xp+X
are ¥-bounded, then TV:Xp -*Xp for every ve€Vl.

If X is a normed space with norm | | and we take p(x) =llxll, then the
family (TV)VEV of linear operators TV:X—>X is ¥ -bounded, iff there
is a constant M >0 such that for every x €X there exists a V€Y for which
Il Tvxll <Mixll for all vE€V.

The following theorem is a general tool in various approximation problems:

THEOREM 1. Let T = (T ) vep bea ¥-bounded family of linear operators
T X "X and let S cX satisfy the following conditions:

(a) for every xES there is an a >0 such that p(a(T X - x))->0

(b) Xi is the p - closure m X of the set of all finite linear combinations

of elements of the set S .

V
Then for every XEX there ex1sts 2 b>0 such that p(b(T x=-Xx))+0.

PROOF. First, let us remark that the thesis holds for all x €S, since
supposing x = clxl+. . .‘h:nxn with 3 € S(J we have, writing c = Zril____l |ci| R

t v
p(b(T x -x)) < iZI p(be(T x; ~x,)) >0,
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if we take b >0 sufficiently small. Now, let € >0 be arbitrary and let x€X§

be given. Then there-exists a b >0 and an element s €S such that

p(3bk,(x-5)) < 3{-]- and p(3b(Tvs-s))1-{0,

>
where we may assume k],k2 1. Let VEV3b(x _ 3b(x -

according to the definition of ¥ '-boundedness of (TV)V€V corresponding to the

s)’? the set V s) being chosen

element 3b(x -s). Then we have

p(b(Tvx-X)) S p(3bT _(x-8)) + p(3b(T s -5)) + p(3b(s -x))
< k,p(3bk,(x ~5)) + g(v) + p(3b(T s -5)) + p(3b(s-x))
< 2Zkp(3bk, (x =8)) + g(v) * o(3b(T s -5))

<§ +g(v) + 0(3b(T s -5)).

Now, let V] ,VZE“V be so that g(v) <e/3 for vEVl and p(3b(Tvs—s)) <e/3 for
v€V2. Taking V=V] nvznv

s)? we obtain p(b(Tvx—x)) <¢ for all v€vV,
Hence p(b(Tvx-x)) 1-{0.

3b(x -

REMARK., If we assume (a) for every a >0, then the thesis of Theorem 1 holds

for every b >0.

One may define the T-modulus of smoothness of an

element x€xp by means of the formula

wT(x V) = sup p(T X - X) for every VEV¥ ",
veEV

It is easily seen that mT(x,V) 1-{0, iff D(Tvx-x) 1:0. Hence Theorem 1 may be

reformulated in terms of T -moduli of smoothness in the following way:

THEOREM 2. Let T =(T )V€ y be a ¥’ -bounded family of lipear operators
T X"X andletS _g_asubgg;ofX.L_iq;gmeS _;hgr_e_u__ana>0
such that (ax V) 7:0 then the same holds for every x€X

These results will be applied below to cases of genmeralized Orlicz
spaces, where S is p —dense in Xp, i.e., X‘S) =Xp; application in case where

p 1is the norm in a normed space X is left to the reader.
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3. Application to Generalized Orlicz Function Spaces

In this Section p will be given by formula (1), limiting ourselves to
the case of Lebesgue measure over an interval [0,b). We shall investigate
two families of operators in X‘; =1®: the translation operator and the con-
volution operator (singular integral operator).

Let 2 =[0,b) <R, 0 <b <*°, u=Lebesgue measure in the o -algebra I of
all Lebesgue measurable subsets of [0,b). The translation
operator TV:X+X will be defined by the equality 'rvx(t) =x(t+v),
where x is extended to the whole R b -periodically. Also, the ¢ - function
with parameter generating the modular p by formula (1) will be extended
periodically with respect to the variable t €[ 0,b) to the whole R, i.e.,
©(t+b,u) =@(t,u) for u,t €ER.

We shall say that the function @ is ® - b o un d e d, if there exist

positive constants k],k2 such that
o(t =v,u) < k]cp(t,kzu) + £(t,v) for u,v,t ER,

where the function f£:R xR *R, is measurable and b -periodie with respect to the
first variable and such that writing h(v) =f: f(t,v)dt for every vER, we have
H=squ€R h(v) <*° and h(v) -0 as v=+0.

Let us remark that if ¢ is convex with respect to u, then we may take in
the above definition k, =1. The above condition was introduced in [2] in
connection with the investigation of the translation operator in a generalized
Orlicz space. A trivial example of a T ~bounded function is obtained taking
¢ independent of the parameter t, as in case of usual Orlicz spaces; non-
trivial examples are given e.g. in [1].

Now, taking V=R and denoting by ¥ the filter of all neighbourhoods of

zero in R, we prove first the following statement, writing t= (Tv)vel{:

PROPOSITION 1. (a) If ¢ is T -bounded, then the family 1 of translation

operators is ¥ -bounded. (b) If 1€1®, then the linear combinations of the

set S0 of all characteristic functions of Lebesgue measurable subsets of [0,b)

form a p -dense set in ch and for every x€S° there is an a >0 such that
p(a(Tvx—x))KO.
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PROOF, ¥ -boundedness of 1 follows from the inequality

b
p(1,x) = [ 0(t,x(tiv))dt < k;p(kyx) + g(v),
o]

where g(v) =h(v) =f2 f(t,v)dt. p -density in L(p of linear combinations of So’
i.e.,of simple functions, is easily proved first for positive functionms,
applying Lebesgue's dominated convergence theorem, and then for arbitrary
x€r? by splitting x in positive and negative part. Now, if x is the charac-

teristic function of a set Ac[0,b), we have for every v €ER,

p(a(t x-x)) = f ¢(t,a)dt, where A = (A-v) *A,
v A v
v
But f: @(t,a)dt <= for sufficiently small a >0, since | EL(‘O, and u(AV) +0 as
v >0, Hence p(a(rvx—x)) +0 as v->0.

From Proposition 1 we deduce easily, applying Theorem 2, the following

THEOREM 3. If ¢ is 7 -bounded and 1 EL(D, then for every x €LY there isac>0

such that
b
mT(cx,G) =  sup fCD[ tyc(x(t+v) -x(t))l dt +0 as §+0+.
lv] <6 o

Let us still remark that the same holds with respect to the norm of L"D,
if we restrict ourselves to x from the closure E® in L of the set of simple
functions.

Now, we are going to investigate the convolution operator Tw’ where
w€W, W is an abstract set and # is a filter in W . Let KW:[O,b) +R, for

wEW be integrable in [0,b) and s ingular, i.e.

b b-§
2 W
ow) = | K (£)de>1, og(w) = ) K, (t)dt >0 for every 0<6<-}3,
o §
b
o= sup [ K (t)dt <,
wEWo ¥
and let us extend Kw b -periodically to the whole R. Let
b
(3) T x(s) = £ K, (t -s)x(t)dt.

We prove first
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PROPOSITION 2. Let ¢ be a convex, T-bounded ¢-function with a parameter,

. g9, .0 = i
and let (Kw)WEW be singular. Then Tw'L +L" for every w€EW and T (Tw)WEW is

W - bounded.

PROOF. It is sufficient to prove that T is %'™-bounded; henceforth follows

that Tw:Lw+Lw. Applying b -periodicity of ¢(*,u) and x(+), Jensen's inequali-

ty and T - boundedness of ¢ with k] =1 k,=k=>1, we obtain for xer?:

2

b b
p(T X) £q><s,-o(l—w) £ Kw(t)o(w)x(s+t)dt) ds

1

< o(w)

o —|oU

b
i K_(£)0(s,0x(s+t))dt ds
(o]

1 b b

?:TJ)'C{ K8 <{‘f><u-t,ox<u))dudt

[t}

N

o (kox) +g(w),

where

b
1
g() = sy {) K (t)h(t)dt.

Splitting the last integral in three integrals over intervals [a,at§],
[at+8,b-6] ,[ b-8,b] and applying the usual procedure concerning singular inte-
grals, we obtain g(w) 0.

Now, we are able to prove the following

THEOREM 4. Let @ be a convex, T -bounded ¢ -function with a parameter, 1 €Lw,

and let (Kw)wew be singular. Then the operators Tw defined by (3) satisfy

the condition
W
o(a(wa—x)) >0 for some a >0,

for every x EL"p (with a dependent on x).

PROOF. By Proposition 2, wa €1? for xEL‘p.' Let x GLw, then, by Theorem 3,

wt(cx,d) +0 as §+0+ for sufficiently small c >0. Now, let us choose a >0 so
small that 2ac<c and p(4okax) <=, where k is equal to the constant k, from
the definition of 1 -boundedness of «, k] being taken equal to l; we may

suppose k>1. We estimate now



Musielak

b b
p(a(wa—x)) = £ Qp(s,g(lw) £ Kw(t)o(w)ax(s-l-t)dt-ax(s)) ds

b b
<3 £ ‘D(s,ﬁ £ R (£)20(wa(x(s+t) -x(s))dc) ds
1 b
+ 5 [ o(s,2a(o(w) - 1)x(s))ds
o

b b

+ % 0(2a(o(w) - 1)x).

Now, we split the first of the integrals on the right -~hand side of this

inequality into three integrals over intervals [0,8],[ §,b-8] [b-§,b], where

0<§<b/2 is arbitrary. The first integral is estimated as follows:

§ b
[ & (&) [ o(s,20a(x(s+t) ~x(s5)))ds dt
[o]

o

8
< £ K_(t)p(20a(Tx -x))dt < o(ww,_(20ax,8).

and the third one, by substitution t =b-u,

b b
| R (t) [ o(s,20a(x(s+t) -x(s)))ds dt
b-6 ¥ o
8
< f Kw(b-u)p(an(r_ux-x))du < o(w)wT(Zoax,G).
0

Finally, the second integral

b=6 b
i K_(t) | @(s,20a(x(s+t) -x(s)))ds dt
[ o

b~3$
< 3 ,g K_(£)[p(4oat x) + p(4oax)] dt

—
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1 b-§

<3 [ K (t)[p(4oakx) + h(t) + p(4oax)]dt
s w

b-§
< (o(4oakn) + 5 B) [ K (t)dt.
s w

Hence
b-§
p(a(wa-x)) < u_(20ax,8) + (4“:(}3)+H/2 {; Kw(t)dt +%p (2a(o(w) - x).

Let us take any € >0. By Theorem 3, taking § >0 sufficiently small, we may
make the first term on the right -~hand side of the above inequality smaller
than €/3. Then, by singularity of (Kw)’ the second term may be made less than
e/3, taking WEWl with an appropriate W, €. Since x€L? and o(w) +1, the
third term becomes less than e/3 for w€W2 with some W2€“IV. Thus,
p(a(wa-x)) <g for WEWI nw2.

Let us remark that taking as W the set N of all nonnegative integers
and as # the filter of all sets of the form N\ A with A finite, ACN, we
obtain an. approximation theorem for a summability method defined by the
kernil (Kn(u)), n=0,1,2,... Taking as W an interval on R and a point
woew (may be also =) and as W the filter of all (may be also one - sided)
neighbourhoods of W » we get an approximation theorem for summability method
defined by the kernel K(u,w), where u€[0,b), wEW. In the next Section we

shall investigate the case of matrix summability methods.

4, Application to Generalized Orlicz Sequence Spaces

We are going now to apply Section 2 to the case of the space X of all
sequences X = (tj)‘ and to a modular of the form (2), where @= ((pi) is a
sequence of ¢ - functions, i.e. Q:N xR+R, . We shall investigate two families
of operators: a sequence of translation operators and a family of convolu-
tion operators in the generalized Orlicz sequence space 2. Here, V will be
the set N of all nonnegative integers and the filter ¥ will comsist of all
sets Vcl which are complements of finite sets. The set W and the filter
W of its subsets will be abstract, as previously.

The translation operator -rm,m=0,1,2,...,wi11be
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defined by the formula TX= ((rmx)i), where (tmx)i =t:i for i<m and (me)i=

t., for i>m, x=(tj). Hence 'rmx—x=(0,...,t ) with

1+m 2m+1 —tm+l’ Com+2 " Fme2o e
zeros on the first m+l places, and the T -modulus of smoothness of x = (tj) is
equal to

w_(x,V) = ] @.(t. -t.);
T j€y 1 im i
we shall write w (x r) for V={r+l r+2,...}.

In the sequel we shall say that ¢ = (o, ) is T.-bounded, if there

i’i=o
exist constants kl,k2>l and a double sequence (nn j) such that
’
(pn(u) < kl"pni-j (kzu) + nn,j for u€R,n >j =0,
where n_ . >0, " —0 r . <= uniformly with respect to j. We shall
n,J n=o n,J

say that ¢ is 1, - b ound e d, if there are constants kl,k2>1 and a

+
double sequence (en J.) such that
, ,

(pn+j(u) <kltpn(k2u)+sn i for u€R;n,j =0,1,2,...,

where en j>0’ en’ = Yq_o nJ +0 as j >, s—sup GNE <o,

Let us still write e[' (6 )w

i=0? where Gi,ﬂ is the Kronecker symbol.

PROPOSITION 3. (a) If ¢ is T_ - bounded, then the family t=(r )~ of

translation operators is ¥ -bounded.

(b) The set of linear combinations of sequences e ,e,,e,,... is
1€ set 9° — 0’ 1?72 —
p —dense in 2.
(c) p(a(tep-ep)) >0 as m+ for every £ and every a>O.

PROOF. (a) is obtained, because for xEKw,
m

m o0 - -]
p(rx) = [ o (t)+ [ o, ) <] o (£) +k; ] 0.(k,t,) +el,
o i=o * ' i=m#1 ! i=o ! j=2m+l1 it n

where ¢’ =Z°.° +0 as m+>%, (b) is obvious and (c) follows from the

m “i=m+l ni m
fact that 1 e E_O for m>2.

By Proposition 3 and Theorem 2, there holds the following

THEOREM 5. If ¢ is 1_-bounded, then for every x €£% there is an a>0 for
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which m_ﬂ(ax,r) +0 as r >,

In order to investigate the convolution operator Tw in ﬂw, let # be a
filter of subsets of an abstract set W/ and let KW:N R, for wElW be

singular, ie.

()'EK <o<m, K 31 K"’"->o for j=1,2
o(w) = ik - g <™, w071 500 or j=1,2,...
Let T x— ((wa)1)1= , where (T x) —z fmo w 1-JtJ' We prove first
PROPOSITION 4. Let (K ) wew e be singular, ¢ = ((pl)l_o +-bounded and let ©;

be convex for 1—0,1,2,... Then T AR Al for every w€l and T = (T ) wew is is
W -bounded.

PROOF. It is enough to show that T is ¥ -bounded. We have for every xe®

s Zl K . 21 K .o(wt.. .
J=0 W,] J=0 W,] i+j
p(TWX) izo wi i )
o9 Li=1 %a, 5
1 -]
< oy jzo L IZJ @; (oGt )i < ko (kyox) + (W)

1
where c(w) = ) Y:, Kw JeJ. But taking any n >0 one may choose an index r

such that supJ >y eJ <n/2 Then

oo

r K .
n W] 40
0<c(w)< Z U(W) _—o(w) j=§+l K ,J 2<S jz_ G(W) +2.

Now, taking WE %  so that the first term on the right -hand side of the
last inequality is less than n/2 for all w€W, we obtain c(w) <n for w€W.
Thus, c(w)al-{o and so T is ¥ -bounded.
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-]
THEOREM 6. Let @ = ((Di)i_o be a T, -bounded sequence of convex ¢ - functions (Di.
]

)

Let (Kw)WEW be singular, Kw= (Kw,j » where the family of elements

j=o

x£=(0,...,0,K oK .,...) with zeros on the first £ places satisfies the
W w1’ w, 2 —_— e 2 -

condition p(azxf, ):/[0 for some a£>0 for £=0,1,2,... Then for every xef?

there is an a >0 such that p(a(wa-x)) > 0.

PROOF. By Theorem 1 and Proposition 4, it is sufficient to show the theorem

for x=e£,l’.=0,l,2,... However, it is easily calculated that
p(a(T e, -e,)) = @, (a(K -1)) + (axl’) for a>0
wi 2 1 W, 0 A - *

. v .
Choosing a >0 so small that p(axf;) + 0, we obtain the theorem,
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The purpose of this article is to provide a simple proof of the result
of N. M, Riviere - Y. Sagher that the real interpolation spaces between H
and L® can be identified with the Lorentz LP9-spaces. In contrast to exist-
ing proofs, which make heavy use of Hl—structure, the proof given here
relies only on the well-known result of E, M, Stein-G. Weiss characterizing
the distribation of the Hilbert transform of an arbitrary characteristic
function of a set of finite measure, and a simple technique for applying
that result due to R. 0'Neil-G. Weiss.

1. Introduction

For simplicity only the case of the circle group T will be considered
here, When T is equipped with normalized Lebesgue measure, the decreasing
rearrangement f* of a measurable function £ on T is the unique nonnegative,
decreasing, right-continuous function on the interval (0,1) that is equi-
measurable with | f|. Recall that the Lorentz space P4 (l<p<=, 1<q<=)

consists of all measurable f on T for which
(.1) £l g = ¢ Soret/Peece ae/ey®

is finite.

The periodic Hilbert transformor conju-
gate-function operator, His defined on Ll(T) by the
principal-value integral

lThe research of both authors is partially supported by National Science
Foundation Grant MCS80-01941,
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Hf) (x) = T(x) = %;-I?“ f(x-t) cot% dt.

The (real) Hardy space Hl(T) consists of those f in Ll for which f belongs

also to Ll: it is a Banach space under the norm

(1.2) Hell = el + [E .
H1 L1 L1

The Peetre K-functional K(f,t,XO,Xl) for a com-
patible couple (XO,Xl) of Banach spaces is defined for every f in X0+Xl and

every t>0 by

(1.3) K(f3t3X ,X.) = dnf  (J|£.]], + t]1£ 0]y ).
R N |

The following result is well-known (cf. [2, p. 1841]).
THEOREM 1.1. (J. Peetre) For each f in Ll(T),
(1.4) R(£3e5Lt,07) = [% t(s)ds = terk(r) (t>0).

The real interpolation space (X.,X,) between X, and X, consists of
0°"1’8,q 0 1

those f in XO+Xl for which

e = £ ,1/q
(1.5) Hell = (SoeR(E; ek, ,x )10 48 )2
EgoX1)g g fo 0°"1 t

is finite (cf. {2, p. 167]). Hence, in view of Theorem 1.1 it is a simple
matter to use the classical Hardy inequalities to identify the real interpo-
lation spaces between Ll and L~ as follows:

COROLLARY 1.2, If 0<8<l, 1<qs», and 6 = 1-1/p, then

(1.6) (Ll,rf")e,q = 1P

with equivalent norms.

The purpose of this note is to establish by simple methods the same
result but with Ll replaced by Hl. The following well-known result
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(cf. [4, p. 197]) will be crucial.

THEOREM 1.3. (E. M. Stein-G, Weiss). Let E be an arbitrary measurable

subset of T and let X, denote its characteristic function. Then

(1.7) (xg I*(8) = %-sinh_l (%iﬁlgﬁég ) (0<t<1).

2, Interpolation between Hl and L~

Let f be a measurable function on T. For each t> 0, define the trun-

cates ft and ft of £ by
(2.1) (£5) (x) = £(x) - £%(t) sgn £(x)
(2.2) £ =f - £F,

t

The decreasing rearrangements are given by

N fx(s) - f*(t), O<s<t,
(2.3) (£)*(s) =
0, t<s<1,
and
fx(t), O<s<t,
(2.4) (£)%(s) =
f*(s), t<s<l,

so, in particular, for each t>0,
t. *
2.5) f£x(s) = (£7) () + (£)%*(s) (0<s<1).
If £ belongs to Hl, then since £, is bounded and hence belongs to Hl,
it is clear that ft = f-ft is also in Hl. The Hl—norm may be estimated

as follows.

LEMMA 2,1, If £ Dbelongs to Hl, then

(2.6) HEDTT ) s el (0<t<1),
H
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where c¢ is a constant independent of f.

PROOF. It follows directly from (2.3) that
@.7 [ES] | = [oLex(s) - £%(t)1ds = tlEx*(t) - £x()].
L

In order to estimate the Ll-norm of (ft)~ we use a technique employed by

R. 0'Neil-G. Weiss [4, p. 192]., Let

= {x: EH7x) 20}, F={x: £ (x)<0}.
Then

5™, 5% [oED @ax - 5 [ (0 ax

2" (f )" (x) [xE(x) - XF(x)]dx

D@ O - xp 1 G
5% JLED @) LixgI*(e) + (xp I*(s)Tas
Hence, by (2.3), and the monotonicity of sinh —,

HEDT]. s =2 [EEx(s) - £5(e)) 2 rginn~t(@inUEl/2) + sin(|F|/2)
1" 2n70 T 2 tan ws/2

) 1ds
< ;% fg(f*(s) - £x(t)) sinh_l(cot ws/2)ds

<

N

t -1,1
- fo £%(s) sinh ~ (S )ds

An integration by parts gives
t~
HED T s 5 sf**(s);r—-—— [GE**(s)ds
1 ﬂ
= —%-t(f**)**(t).
m

Combining this with (2.7) we obtain
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HED™I = HE, + 1EDT]
gt ! il
< ctlf**(t) + (f*x*)*%(t)] < ct(f*x*)**x(t).
THEOREM 2.2. If 0<@<l, l<q<» and 6 = 1-1/p, then
1l o - Pq
(2.8) (a,L )B,q L

with equivalent norms.

PROOF. Since the Ll—norm is dominated by the Hl-norm it is clear that
K(f;t;Ll;Lw) < K(f;t;Hl,Lw) so by Corollary 1.2,

1l e 1l = - 1Pq
(H,L )G,q < (L,L )e,q L

with a continuous embedding. Thus it remains only to show the reverse
inclusion.
Fix t>0 and write f = f +f_as in (2.1) and (2.2). Then

l o t
R(EsesH,L0) s €] 4 +ellE ]l
H L

so from (2.4) and (2.7) we obtain

K(E363HY,L7) < ct(Ex*)**(t) + tf*(t)
(2.9)
< ot (£%%)**(t)

Hence from (2.5)

Hell | o se(fyre™ (£x%) w% (1) 1%t ) /9

(", 8,9

whence two applications of Hardy's inequality yields

o 1/p q 1/q _
Hf“(Hl,L°°) < e Jole P ex(©)1 at/e) c“fHLPq

0,9
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This establishes the reverse inclusion LPY c (Hl,Lm)e q and hence completes
3

the proof.

Riviere and Sagher [5] were the first to establish (2.8). Shortly
thereafter Fefferman, Rividre, and Sagher [3] discovered the K-functional
for HP and L” within constants for 0<p<~ by making heavy use of the then
newly developed Fefferman-Stein HP theory. In [1] equation (2.9) was
established using L logL estimates and was incorporated into the framework
of weak type inequalities. The proof presented in this paper, although
simple, does not extend to 0<p<l, but does have an easy generalization to
Hl(Rn) by using the analogous estimate for Riesz transforms that we stated

in Theorem 1.3 [4, p. 193-1961].
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THE FRANKLIN ORTHOGONAL SYSTEM
AS UNCONDITIONAL BASIS IN ReHl AND VMO

Zbigniew Ciesielski
Mathematical Institute
Polish Academy of Sciences
Sopot

The aim of this lecture is to present a simplified proof of P. Wojtaszeczyk's
theorem that the Franklin orthogonal system is an unconditional basis in ReH .

1. Introduction

The Hardy space Hp, 1 <p <>, on the unit disc {z€C:|z|<]} is a separable
Banach space. The question of constructing a basis or unconditional basis in
wP spaces can be considered. According to the celebrated result of M. Riesz
[13] (on the boundedness of the Hilbert transform) HP with 1 <p <= ig linearly
isomorphic to Lp, and therefore in this case positive answers to the above
questions can be given. The case p=1 is more difficult. P, Billard [1] in 1971
constructed in H1 a basis by means of the Haar orthogonal system. It was shown
in 1976 by S. Kwapien and A. Pe¥czynski [ 10] that Billard's basis is not un-
conditional. In the same paper the authors pose the question of existence of an
unconditional basis in Hl. A positive but non - constructive answer to this
question was given by P. Maurey [11] in 1979. He simply proved that H] is
linearly isomorphic to the dyadic (martingale) H] in which the Haar system is
an unconditional basis. In 1980 L. Carleson [ 3] constructed an unconditional
basis in Hl, and recently P. Wojtaszczyk [ 14] proved simply that the orthogo-
nal Franklin system is an unconditional basis in ReHl. For the sake of comple-
teness we mention that H  is non - separable and the basis questions make sense
only in separable subspaces, e.g. in A, the space of functions analytic in the
unit disc and continouus on its boundary. S.V. Bofkariov [2] in 1974 construc-
ted an orthogonal basis in A by means of the Franklin system. On the other

hand it is known that A has no unconditional basis (cf. A. Petczyﬁski [12],
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p. 65).

Our contribution concerns the ReH1 space. We simplify the "most delicate"
place in the proof of P. Wojtaszczyk [ 14], Lemma 2 (see also L. Carleson [3],
Lemma 4).

It is apparent (cf. [6] and [7]) that the method of proof is such that
it can be extended to obtain simultaneous unconditional bases in HL, i.e. the
closure of polynomials with respect to the Sobolev norm in WT on a given

polydisc.

2, Preliminaries

The main tools in this note, as well in Wojtaszczyk [ 14], are the
Franklin orthogonal system and the atomic characterization of the space R@Hl.
In both cases we recall the basic properties and the relevant results. More-
over, we shall use elementary properties of the Haar and Schauder bases which
we recall below as well.

The dyadic partitions n of I :=<0,1> are defined as follows:lI1 ={0,1},

mo={s 5 j=0,...,n} for n=2"+k, u>0, IS k< 2% ,with
’

'LJ:T' 320,452k

n,j .
’ Ik | je2ksl,...,n.
211
It is also convenient to have the following notation: t =0, t, =1, t 2k
o 1 n 2u+1

and (n) =<(k-1)/2",k/2">. Clearly T ={t ,...,t } and |(n)| ~1/n.The
spaces of all step functions (splines of order 1), say right -continuous, and
of all polygonals i.e. piece —wise linear continuous functions (splines of
order 2) correspondlng to H are denoted by S (I) and S (I), respectively.
Clearly Sn(I) cS (I) cL (I) and dim §¥ (I) n+r—1, r-l 2.

Using the L (I) scalar product

(f,8) = [ fg
I
we now define, for given r =1,2, an orthonormal system {f( ),11>2-r} such that:
i‘% 1, fiﬁ es oD f( ) is orthogonal to § (1), and Ilf(r)ll . Now

{hn,n>1}:={f1(1]),n>l}isthe orthonormal Haar systen
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(2)

and {f , n=>0} :={f
n n

system,

, 0120} isthe orthonormal Franklin

The properties of the Haar system we are going to use later on are the

following:

H.1. {hn, n=1} is a basis in L'(I).

H.2. TFor £€LI(I) let

Then

n,j
L f f(s)ds for s 5- <t<s_ ., J=l,...,n.
Hl

an(t) = s 1 n,]j

n,] n,j-1 sn,j-l

and (cf. [5], Theorem 7)
IE-H £l < 6wf‘)(f;;1'-), n>1;

where

(1 1-h
w T (£58) = sup [ |£(t+h) - £(t) |dt.
0<h<é§ o
H.3. supp hn = (n).

H.4., If n=2"+k, 120, 1<k<2", then

M2 for k-2 <2" e <ok,
hn(t) =

H+l1

M2 for 2k-1 < 2"l <ok,

Introducing the integration operator Gf(t) =f§ f we now define the

Schauder system as follows:
s =1, s = Ghn, n=1.

These functions have the following properties:

S.1. {sn, n>0} is a Schauder basis in C(I) and for f € C(I) we obtain

£ = £(0)s _+ Yy h df)s .
n=l I
S.2., Let £f€C(I) and let
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n
S £ = f(O)s°+jZI ({ hjdf)sj.

Then Snf(tj).=f(tj) for j=0,...,n.
§.3. If f is absolutely continuous on I and D denotes the differentiation

operator, then

DS £ = H Df.
n n
S.4. Let {NIEZJ?, j=0s...,n} be the set of B -splines of order 2 corresponding
: (2) -2 (2) _ : -
to Hn’ i.e. Nn,_}' E)Sn(I), supp Nn,j _<sn,j-1’sn,j> with Sn,-1 =0,
2
sn,n+1 =] and Nn,j(sn,i) -Gij. Then, for £ €C(I)
n
Sf= ) f(s N2,
n j=0 n!J n’J

It is now time to pass tothe Franklin system. For later

convenience let, for a given dyadic interval (n) and an interval JcI, t€I,

r(t, () = dist (t,(n))

@
£, () = el @),

Now, Theorem ! of [4] and Theorem1 of [5] imply:
F.l. {fn, n=0} is a basis in Ll(I).

F.2. There are constants q, 0 <q <1, and C >0 such that for n=>1, t,tl,tZEI

we have

(i) £ (e)] < cn!/2gE(E ),

(ii) £ (e)) = (e)] < e/ P e, |qF (e (@),
(iii) lo_(6)] < en” M/ 3qF(E @),

It should be noticed that (i) implies both (ii) and (iii).

In order to construct a basis (unconditional basis) in the Hardy space H1
over the unit disc it is sufficient to do this in I?eH1 and then by conplexifi-
cation to pass to Hl. It has been shown by Wojtaszczyk [ 14] that the Franklin
system is an unconditional basis in ReH], and consequently the basis construc-

ted by S.V. Bo¥kariov [2] in the disc algebra A is an unconditional basis in H .
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Following the work of R.R. Coifman and Guido Weiss [8] we recall their
new real variable characterization of ReHl. A function a(t), t €I, is called

an a t om ifeither a(t) =1 or if it is measurable and such that:
A.(i). supp a is contained in an interval JcI,

AGD). |a@)| <] for teT,

A.(iii) (a,l) =0.

ReHl can be identified with the set of functions in H1 with imaginary
part vanishing at zero. The space Rel{1 with the norm induced from H1 is a
Banach space. This Banach space has the following description:

f€Ren' if and only if

(2.1) £=7 ra, ) |r]<=
CRNN N | : ]
J ]
where the a__.l 's are some atoms. Moreover, the infimum of Z|Aj| taken over all
such decompositions defines an equivalent norm in ReH and it is denoted by
I £0i 1
ReH

The dual .space to ReHl, i.e. (ReHl)*, was characterized by C. Fefferman
[9] as the space of Bounded Mean Oscillation (BMO)
functions. A function 1’_€L1(I) is said to be in BMO if

1
"!'”BMO = [(£,1)] +s;1p T £ |£-mJ(?_)| <o,

where the sup is taken over all subintervals JcI, and mJ(fi.) = [Jl_lfJf-. Now,
to each L€ (ReHl)* there exists a unique £ €BMO (the correspondence L+Z{ is

linear) such that

L(f) = (4,8), [(4,6)] <llg Nl |
ReH

holds for f€L2(I) cReH]. The extension of L to Ii’eH1 is denoted by the same
symbol (£,f). Finally we define the space of Vanishing Mean
O0scillation (VMO) as a subspace of BMO of those £ for which

/ IZ—mJ(f_)| = o(|J3|) as |J]| 0.
J

The norm in VMO is the one induced from BMO. In this setting we have
*
(o) * =Rert! (cf. [8], Thm.4.1).
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3. Characterization of the BMO and VMO spaces.

It is convenient to introduce for a given sequence of real numbers

(ao,a],...) the quantities

A (n |a|2)"2, n>2.
n (mc@ "

THEOREM 1. (P. Wojtaszczyk [ 14]). Let £ €L!(I) and let

(3.1) £= 7 af.
n=o0
Then,
£EBMO  iff A = 0(1).
£EWMO iff A = o(l).

Following Wojtaszczyk we know that this result follows from the following

three lemmas.
LEMMA 1. If A =0(1)[0(1)] and f is given by (3.1), then f €BMO[VMO].

LEMMA 2. For the Franklin functions we have

-1/2

anﬂ = O(n ).

ReH !

LEMMA 3. If f € BMO[VMO], then An=0(1)[0(1)].

The proofs of Lemmas | and 3 as given in [14] are simple and they will not
be repeated here. We mention only that following Carleson's way [3] of decom-
posing the sum (3.1) into three parts one finds that Lemma 1 essentially
follows from F.2,(ii). Similarly, using Lemma 2 and F.2.(ii), one proves

Lemma 3.

PROOF OF LEMMA 2. Let N=|(n)|™' for n>2. Then by H.1
o0

3.2 f =Hf + f ,h.)h..
(3.2) . j=§+1 (£,,h)h,

Since (fn,l) =0 it follows that an(O) =an(1) =0. Thus properties 5.3 and
S.4 give
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N

= = (2)
Hyf, = DS,Gf =D Z an(sN’j)NN’j
J=0
(3.3) N-1 o N
= Gf (s, .)DN "7 = A.a.
jzl o N,J) N,j jZl %3’

where Aj =2fn(sN,j) and aj =.%DN§?§,These aj's are atoms. Property F.2.(iii)

now implies

N-1
(3.4) I a] = o3,

o

]
The second sum of the right hand side of (3.2) can be written as
(3.5) Y 2a,

jeN+1 1)

) . . 1/2
with A, = <fn,hj)l(1>|

that these aj's are atoms. On the other hand, by H.2, F.2.(i),

and a, =hjl(j)l"”z. It now follows by H.3 and H.4

. oo 2v+1N
j=N+1 V=0 j=2vN+1
= ) lIn £ -0 £l
veo zvle n oy 1

(3.6)

S () v
<c § oo U(F ;1/2°N)
V=0 1 n

/2).

< ¢'(var fn)/N = O(N_1

To obtain the last but one estimation we have used the inequality
wgl)(f;G)‘;36 V%r f. Combining the formulas and estimates (3.2)-(3.6) we

complete the proof.

4, Unconditional basis in ReHl and in VMO,

THEOREM 2, The Franklin orthonormal system is an unconditional basis both

in ReH1 and in VMO.

PROOF. Using the notation of Section 3 and applying Theorem | we obtain
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uniformly in n

and

(1

[2]

[3]

[ 4]

[5]

[6]

[7]

[8]

(9]

n n
Iy #b.£.l ~sup{ ) b.a,:l|a|<1, |a]<1, A <1, m>2}
j20 1 3 Ren! jmo 13 O ! m
n n
) ta fll e ~ Iy 25 oo
j=o j=o
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BESSEL POTENTIAL SPACES AND GENERALIZED LIPSCHITZ SPACES ON LOCAL FIELDS

H. Ombe and C. W. Onneweerl
Department of Mathematics
University of New Mexico

Albuquerque, NM 87131

In this paper we prove an embedding theorem for Bessel potential spaces and
generalized Lipschitz spaces in L _(K), 2 <r < » , where K 1is a local
field. This theorem complements a result of the second author who has
proved a similar embedding theorem for such spaces in Lr(K) when
l<r<2.

1. Notation and Definitions.

In this paper N , Z and R will denote the natural numbers, the
integers and the real numbers, respectively. Let K be a local field, that
is, K 1is a locally compact, non-discrete, totally disconnected topological
field. Let dx denote a Haar measure on K+ , K considered as an
additive group. For each a € K with a # 0 the measure d(ax) 1s again
a Haar measure on K' . Thus d(ax) = ||a]| dx for some |la]| ¢ R . If
llo]l is defined by IIOH = 0 then it can be shown that the function

a —*l|a” fromn K to R defines a (non-archimedean) norm on K . This

|bll and |la+b|t<max{|alf, ||6l]}

norm has the properties that ||ab]| = ||a]
for all a,beK.

Next, let P, = {xeKy|x]| < 1} and P, = {xeKy||x]| < 1} . Then P, is
a ring in K , P1 is a maximal ideal in P0 and PO/P1 z GF(q) , the finite
field of q elements, where q 1is a power of some prime number p . For

each ke Z let

o= {xeksllxl<a™.

lThe research of the second author was partially supported by NSF grants
MCS 79-01957 and MCS 80-01870.
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. c
Then (i) each Pk is a compact open subgroup of K , (ii) Pk+l 4 Pk s
(1i1) N P, = {0} and U P, =K, (iv) if m is the Haar measure on

Y keZ “k keZ 'k i
K" normalized by m(Po) =1 then m(Pk) =q for each ke Z . From
here on m or dx will denote this particular Haar measure on K+ .
To describe the dual group ﬁ of K+ ,» choose a character ¥ ¢ ﬁ, SO

that x(x) =1 for x ¢ P0 and x(x) # 1 for some x ¢ P_l . Then
K= {xy;y € K} , where xy(x) = x(yx) . 1if E(xy) is defined the notation
f(y) will be used for %(xy) . For each k € Z 1let the function A

K be defined by

kon

qk if xeP ,
k
A (x) =
0 if x ¢ P -
Then ||Ak”l =1 and
. 1 if ye P—k s
)" =

0 if y ¢ P -

We now present the definitions of two spaces of functions which were
given first by Taibleson in [3] and [4], respectively. These definitions
can also be found in [5]. We first observe that for each a > 0 there
exists a function Ga € Ll(K) such that llGa”l_ =1 and

1 if ye P0 ’

©) (3 = _
; Iyl™ 1 y ¢, .

DEFINITION 1. For o >0 and 1 <r < «» the Bessel potential space

L(r,a) is defined by
L(r,a) = {f ¢ Lr(K);f =G, * g for some g € Lr(K)} .

If we set llf”L(r,a) = llg"r when f =G *g then L(r,a) isa

Banach space with respect to the norm ||-||
L(r,a)
In order to study the smoothness properties of the functions in L(r,a)
we introduce the generalized Lipschitz spaces (or Besov spaces) A(o,r,s)
on K.
DEFINITION 2. Jlet 1< r <o, 1<s<w and a>0. Then
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Mayr,9) =18 ¢ L3 [y I e, - £l )%y [Tay < = .

Here fy denotes a translate of f : fy(x) = f(x-y) . In [4] Taibleson
proved that the following two expressions define equivalent norms on
A(a,r,s) :

@ el + Gl l™le, - €l )2 llyl e/,

® il + ] lla*a, - a0 * £lI5H)E

We shall denote the second of these norms by ”.IIA(a £,s) °
s

2. The Embedding Theorem.

In [1, Theorem 7] we proved that for 1 < r < 2 we have
A(o,x,1) © L(r,a) c A(a,r,2) ,

where c denotes a continuous embedding mapping. In this paper we will

prove the following complement of this result.

THEOREM. If a >0 and 2 <r < o then
A(a,r,2) c L(r,e) < A(a,r,r) .

Before giving a proof of the theorem we review some results needed
later on. We begin by stating the relevant facts about the generalized
Littlewood-Paley function Gr(f) of a function f ¢ Lr(K) . For

fel and 1 <r <o let

l,loc(K)
1/r .

= : - * r
6_(£) (%) (kz_ml(Ak Ay * £ D
Then we have the following.
(1) 1If f ¢ Lr(K) , 1 <r <o, then Gz(f) € Lr(K) and the norms Ilf”r
and IlGZ(f)”r are equivalent.
() If £eL(K) ,2<r <=, then G(f) e¢L (K) and lle el < c|&|k.
A proof of (1) and (2) can be found in [4] or [5].
We now prove that the Bessel potential spaces L(r,a) can be identified
with the spaces D(Dr[a]) of strongly differentiable functions in Lr(K)
of order o > 0 . We repeat here two definitions that can be found in [1]

and [2], respectively.
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DEFINITION 3. For f ¢ Lr(K) ,1<r<eo,a>0,meN and x € K 1let

m-1
Em af(x) = z

4 ==

@D - e - W .

If lim Em, f exists in L (K) the limit is cal%zg the strong derivative
of order o« of f , the limit will be denoted by D
Also, we set D(D [a]) = {f ¢ L (K); D [a]f exists}

For later reference we now state some results that were proved in [1].
(3) If 1 <r < o then D(D [a]) is dense in L (K) .

(4) If 1 <r <2 then f ¢ D(D [a]) if and only if there exists a
[a]
f .

g € L (K) such that g(y) =||y|Pf(y) a.e.; moreover g =
(5) 1If 1 <r <2 then D [o]

D(D [u]) is a Banach space with respect to the norm

hell +lin, e

is a closed linear operator and, hence,

Hf”D(r,a) =

DEFINITION 4. If for f e L (K) ,1<r<e,and a >0 and r' satis-
fying r 4+ r' = rr' there ex1sts a ge L (K) so that for all
¢ € D(D_ '[a]) we have

J £ [y = [ smemax

we say that f 1is differentiable of order a in L (K) in the weak semse.
[a]

We call g the weak derivative of f , demoted by g = w-D,
Also, we set D(w-Dr[a]) ={f ¢ Lr(K); whDrIqu exists} .
In [2] we proved that if o« >0 and 2 < r < » then
D(Dr[u]) = U(w—Dr[a]) . Moreover, if f ¢ D(Dr[u]) then its weak and
strong derivatives of order a are equal a.e. As a simple consequence we

can prove that (5) holds for all r with 1 <r <o,

LEMMA. let o >0 and 1<r <o . Then D(Dr[a]) = L(r,a) and the norms

in these spaces are equivalent.

PROOF. For 1 <r < 2 the lemma was proved in [1, Theorem 6]. So we shall
assume that 2 < r <o, Let f € L(r,a) and assume f = Ga * fu for

some fa € Lr(K) . For any ¢ ¢ D(Dr.la])
¢ € L(r",a) and, hence, ¢ = Ga * ¢a for saome ¢a € Lr'(K) . Also, in [1,
page 161] it is shown that Dr.[a]¢ = ¢a * B, s where B, = 60 - AO + D’{a]A0

and 60 is the Dirac é&-measure concentrated at O ¢ K . Therefore, since

, where r + r' =rr' , we have
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both Ga and ua are inversion-invariant, we have

[ £eop ooax
K

[o, * £ (e, *n (x)dx
K

f Ga * ¢a(x)fa * u“(x)dx
K

Kf $(f * n (x)dx .

Since fa * € Lr(K) , we see that f e D(nrDr[a]) = D(Dr[a]) and
p 8¢ ¢ %y . 1In addition,
r a o

lelpee qy = NEll, + oMl
= lley * £ 0l + ll£, *w Il
scllEll, =clill o -
Conversely, let f ¢ D(Dr[a]) . Define the function h by

= p lol [a]
ho=D "f+ (Ag =D A * £ .

1
Clearly, h ¢ Lr(K) . We shall show that f ¢ L(r,a) by proving that

f =6, * h . Take any ¢ € D(DIE“]) . Using the characterization for
D(Dr,(‘zl ) given in (4) we can easily show that Ga * ¢ ¢ D(DrE“]). Further-
more, we have

[ 6 * h(x)¢(x)dx
K o

f h(x)6 * ¢(x)dx
g o

J p_[Hle@c * ptx)ax + J @ p,*lag * £, * pexrax

]

/ f(x)DrEa](Ga*¢)(x)dx~+ JE@) (8 - Dl[“]Ao) * G * p(x)dx .
K K

A computation of the Fourier transform, in which we use (4), and an ap-

plication of the Uniqueness Theorem shows that
[a] * _q lal X k4 =
D+ (G, *¢)+ (8g - Dy A ¥ G, * o =¢ .

Therefore,
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[6, * Mme@ax = [ £(x)¢()dx .
K K

Since, according to (3), D(Drga]) is dense in L  (K) , we may conclude that
r

Ga * h(x) = f(x) a.e., that is, f ¢ L(r,¢) . Finally, we observe that

IA

el g =lnll, < el + lcay -0, e = el

(ele)_ + |lag - o, a il Il

IA

llo,

This completes the proof of the lemma.

PROOF OF THE THEOREM. Let f ¢ A(a,r,2). For each n ¢ Z define fn by
= * i =
fn f An . Then 11mn+m fn f in Lr(K) . Also, according to

[1, Theorem 1(b)1, fn € D(Dr[a]) and
n
D [a]f = z qla(Al_ %-l) x £,

D [a]f -D [a]f Then, according to (1), we have
r n r m

For m <n let f =
m,n

IE: ) ||

n,nle

< ¢| 6, (£

m,n” ''r

Also, a simple computation, compare [1, page 163], shows that

6y(Ey ) = 2 g8 %@ -0y, ) % €D

Therefore, it follows from the generalized Minkowski inequality that

= (2"‘1)“ r/2
ll6,¢e, DI, = ¢ f <2§m| (Bybyyy) * £G0) [
< { Z ( f (lq(H-l)a(Al_A!Hl) * f(x )| r/2 2/r 1/2
2—m K
2

Since f ¢ A(a,r,2) , we see that for each € > 0 there exists an M e N

so that for all m,n > N we have IIGZ(f Y|, <€ . Hence
m,n” 'r
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[a]

is a Cauchy sequence in Lr(K) . Consequently, lim D [a]f

[a] m>o r m
Dr is a closed operator, we may conclude

{Dr fm}meN
exists in Lr(K) and, because

that f e D(Dr[a]) . Furthermore, since

we see that for each n e 2Z

n-1
c( z “ q(JH'l)(!

==

2)1/2

o 1 || 2

IA

(4ymtyy) * o]

A

C(”f “ A(a,r,Z) - ”f“r) .
Therefore,
[a]
o el < clllelly g r g - NENLD

and, hence, [[£]l; . o s cliElly o g

Conversely, assume f ¢ L(r,a) . We first show that for each k € Z we have

ko _ - [a]
(6) q (Ak—Ak+l) * f =q (Ak-Ak+l) * WD f.
Take any ¢ € U(Dr!a]) . A comparison of the Fourier transforms shows that
(-0 ) * ¢ = q (8,8 ) *D [“]¢ .
k kt+l k k+l r'

Therefore,

[ b)) * £G4 G
K

ka
Kf £G)q (B mbyyq) * o(x)dx

J T by p_*oax

L}

[al, -a
Kf £GOD (a7 (B -8y ) *9) () dx

[}

[l ey, ) * s

-A
K k kt+l

/ q'a(Ak—AkH) * vFDr[a]f(x)q)(x)dx .
K
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An application of the Hahn-Banach theorem implies that (6) holds. Next,
applying (6), Fubini's Theorem and (2), respectively, we see that
_ s Lo r.l/r
1l e,z ey = NEll + (zz_m la™ay-ag,p) * £l

r

lell, + oL Sty w-> e Tan V/

= 00

/r

Ilf”r + q—u(KIIQZ_m(Al_AR+l) * 'W-Dr[a]f(x)lrdx)l

lell, + a6, e [*ley|_

lell, +c I w e

IA

A

c Il < clgfl

D(r,a) L(r,a) <® .

Thus f ¢ A(a,r,r) . This completes the proof of the theorem.

REMARK. The first author recently proved that the inclusion relations
stated in the main theorem are sharp. For each k ¢ Z let y(k) denote
the element p_k in K where p 1is a fixed element of Pl\P2 . The
following holds.

(i) Assume 2 <r <o and o >0 . Let f be defined by

_ T -fa,-1/2
f(x) = AO(X)gzlq L xy(l)(x) .

Then f ¢ A(a,r,s) for s > 2 , but f ¢ L(r,a) . Thus
A(a,r,s) ¢ L(r,a) for s> 2.
(ii) Assume 2 <r <o and a >0 . Let g be defined by

© -1 -1
g = [ M TG, @)

=1
Then g € L(r,a) and g ¢ A(a,r,s) for s <r . Thus L(r,a) ¢ A(a,r,s)
if s<r.
A detailed proof of (i) and (ii) will appear elsewhere.
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ON THE MINIMUM NORM PROPERTY OF THE

FOURIER PROJECTION IN L]—SPACES

P.V. Lambert
Department of Mathematics
Limburgs Universitair Centrum

B - 3610 Diepenbeek

Let G be a compact abelian group, € its dual, N a finite part of €, and EN the
(complex) linear hull of the characters ey, Y €EN. The Fourier projection

x +x *k, where k is the Dirichlet kernel z en & ° has minimum norm among all
projections L (G)-+E . We proved in [ 4] that the Fourier projection is the

unique minimum norm projection L (G) »E,, whenever the kernel k is determined

N
up to a constant factor as an element of E by its roots in G. Hence if G is
the circle group T and EN the space of trlgnometrlc polynomials ?=—n cJelJt,

t €T, the Fourier projection is characterized by its minimum norm. On the
. 1 o .
other side we also showed there that the convex set C, of minimum norm projec-

k
tions L](G)-+E can have arbitrarily large dimension by suitable choices of G

and E « In thlg paper we prove a partial converse to those results: if the
kernel k is real and if the Fourier projection L (G)-+EN is characterized by
its minimum norm, then the kernel k is continuously determined up to a con-
stant factor as an element of EN by its roots in G; moreover, when the real
kernel k does not satisfy this condition, we give a lower bound for dimension
(Ci), which can reach the power of the continuum. These results as those in
[4] are valid and written for more classes of operators then only the class of

projectors.

1. General Setting and Generalization of D.L. Berman's Relation

DEFINITION 1.1. We say that the compact abelian To-g;oup G operators conti-
nuously on the Banach space E, when a mapping:
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(1.1) @ : (gyx) *gx :GXE~>E

is given, which is separately continuous in g and x and such that g > (x »gx)

is a representation of G in Lin Aut (E). If furthermore for each g the mapping

tpg :x+>gx is an isometry, we say that G operates continuously and isometri-

cally on E.

REMARK 1.1, It is a corollary of the Banach - Steinhaus theorem that these

assumptions imply the continuity of (g,x) ~gx.

E is defined by:
(1.2) EY = {x€E : gx = (-g,Y)x for every g€G}.
The mapping SY :E~>EY is then defined by:

(1.3) Syx 1= xY 1= x*eY :=é (gx) (g,y)dm(g)

strongly, where m is the normalized Haar measure of G and eY is the character y

considered as a mapping G-+€, i.e., eY(g)' =(g,Y).

REMARK 1.2. xYEEY: first of all the integral converges strongly, furthermore

hﬂ=hf(yﬂ&wm@) [ (hgx) (g,v)dm(g)
G G

[ (£x) (£-h,y)dm(£)
G

(—h,y)xY if hEG.

DEFINITION 1.3. For a finite subset N of G and a finite subset {e, tY€N} of

¢\ {0} let EN=2Y €N EY and k=2Y €N cYeY . We then define the mapping

Sk:E->EN_1:_i_3_r_

(1.4) §, = ) c.S.,
k yEN Y Y

l1.e.

VXEE:5 x = z

c.x_ =x*k = [ (gx)k(g)dm(g)
K en VY G

gﬁ denote sklEN by Si*
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REMARK 1.3. The spaces EY are linearly independent, i.e. the sum zyEN Ej is
a direct sum: the SY are projections with ranges EY’ and SY vanishes on EY' ,

for y'#vy.

THEOREM 1.1, If the C.A. group G operates continuously on the Banach space E,

then any continuous linear extension S : E ->EN of the transformation

s, ix>x*k of EN (see Def. 1.3.) satisfies the relation:

k

(1.5) V x€E :Skx = f (g_Ing)dm(g),
G

strongly.

COROLLARY. If furthermore G operates isometrically on E, then the norm of S

k
is minimum among those of the centinuous linear extensions E *Ey of s,.

PROOF OF THEOREM 1.1, AND OF ITS COROLLARY. The relation (1.5) is first proved
when x€EY. The relation (1.5) will then be true if we can show that @ EY is
dense in E.

The complex linear hull >8< :=> {eY 1y €8} < of the characters is a
self-adjoint complex algebra, which vanishes nowhere in G and which separates
the points of G. Hence by the Stone -Weierstrass theorem >€< is dense in
CO(G) =C(G). It follows thus

(*) >8< contains a continuous approximation of the identity, i.e., a family
of positive continuous functions Yy with IG yadm= 1, and such that for
every neighbourhood U of the origin in G, and every e >0, ay, can be

found such that [ya(g)[ <e for gdu.
Let U denote the set of all neighbourhoods of 0E€G, A={(U,e) :UEU, >0},
A is a directed set with respect to the partial ordering
(U,e) < (V,e') ® VcU and €' < €.
For each a =(U,e) €A let
Fq ={y :y€>C< and y meets all the conditions of (*) with respect to (U,e)}.

Then F' ={Fa 10 €A} is a filterbase in >8<, which approximates the iden-
tity. One obtains a directed family associated with F' by choosing precisely
one y, in each Fa and setting Y, <yB « a <B.

Let now x€E, o €A and yeFa. It follows then from the definition (1.3):
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x*y=x*(2 ae) = z ax*xe = ) a S x€® E
finite Y finite finite Y

Hence for every x €E H = {H: :a €A}, with H:;={x*y :yEFa} for every a €A,

is a filterbase in ® EY. One then ends the proof of Thm. 1.1 by showing

(**) If G operates continuously on E then for every x €E the filterbase Hx

converges to x in E.

We now prove the corollary.
If x+gx is an isometry it is also a bijective isometry of E. Hence
X +Sgx has the same norm as S and S(g) i=x +g_Ing has the same norm as Sg’

i.e. as S. Hence from
Skx = é S(g)x dm(g)

strongly,it follows

s xi < (j; IIS(g)xﬂdm(g)

<[ hs, I lxidm(g) = [ ISl xidm(g) = Isi I ;
z (g) e

hence IS Il <Il sl

Comments

1. If cY =1 for each y €N, then k =dN = is the Dirichlet kernel,

) e
YEN 7y

84 is the identity transformation of Egs and its natural extension
N

Sd :x+x*dN to E>E
N

(1.6) F_:x->x*d_, where x*d_ = z f (gx) (g,v)dm(g) .

N N LI

N is the Fourier projector:

The continuous linear extensions of sq are the projectors E +E
N

2. In the future we shall be concerned with the case where G operates on

N

C(G) or on Lp(G), 1<p <=, in the following way:
(1.7) (hx) (g) = x(g-h) .

The operation is continuous, the representation operators are isometric.

Theorem 1.1, its corollary,and Comment 1 are applicable. The convolution con-
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sidered above is the usual convolution of functions. Furthermore, for any

vy €8, the space EY ={x€E : gx = (~g,Y)x for every g €G} is the one-dimensional
space spanned by the character e : if, for every g€G, gx=(-g,y)x, i.e.,1if,

for every (g,h) EGZ, (-g,v)x(h) = (gx) (h) =x(h-g), then it follows in particu-
lar for h =0 that (-g,y)x(0) =x(-g), i.e. x=x(0) eY.

3. Michael Golomb in his lectures on Theory of Approximation at the
Summer School on Numerical Analysis in "Le Bréau-sans—nappe" France in 1963
mentioned the original D.L. Berman's relation in the special case of C(T) and

LP(T), 1<p<e, yhere T is the circlegroup, and where S, is the Fourier pro-

k

jection F_, in addition to which E_ is the linear span of the classical set

N . N
of characters {elkt :-n<k<n} of T. He mentioned also the then open problem:

it was not known whether FN is the unique projection of minimum norm C(T) +E

resp. LP(1) ->EN, i.e. whether other continuous projections, having the same

N)

norm as FN, might not also exist.
Of course the case p =2 is trivial.

The general case S, :C(G) +EN has been most satisfactorily settled in

k
1969 in the one side by a group of five mathematicians: E.W. Cheney,

C.R. Hobby, P.D. Morris, E. Schurer and D.E. Wulbert, and in the other side
by our previous work (see § 2). The purpose of this paper is to settle the

general case S :Ll(G) +E . In 1969 (see § 3) we gave a sufficient condition

k N

in order that Sk should be the unique minimum norm extension Ll(G) +FN of §p*

In § 3 of this paper we shall prove that if this condition is slightly weak-

ened, it is also necessary. The case LP(G) E_ with 1 <p<2 or 2 <p <® is

N
still an open problem.

4. Let us assume that G operates continuously and isometrically on E.
The set of minimum norm extensions E-*EN of 8y is then convex. It is a facet
of the sphere with radius |l Skll of the complex normed space L(E;EN): this facet

consists of the common points of this sphere with the complex affine subspace:

vk ={§:8=8 +R, R €L(E;EN), R(EN) = {0}}

k
of L(E;EN), i.e., the complex affine subspace of continuous linear extension
E-)EbI of Syt We denote this facet by Ck’ and dim(Ck) will be the complex

dimension of the complex affine subspace of Vi generated by Cy+
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2., The Case of Spaces of Continuous Functions

We first consider again the circle group T and for any n €N the linear
span E_ of the classical subset of characters {t ->eikt :-n<k<n} of T: It
was proved in an outstanding work in 1969 by E.W. Cheney, C.R. Hobbey,

P.D. Morris, F. Schurer and D.E. Wulbert [ 1], that Fn is the unique minimum
norm projection CR(T) +En. The proof of this uniqueness is based on the

peculiar form of the Dirichlet kernel dn, i.e. is based on the facts that

a) a trigonometric polynomial vanishing at the 2n alternating points of dn

in T is determined up to a constant factor,

b) the Fourier coefficients
™ .
1 -ikt
([dn|)k T _J'ﬂ ldn[(t)e dt
are # 0 for k § {-2n,-(2n~-1),...,0,...,(2n-1),2n}. The proof that these

Fourier coefficients are indeed # 0 is difficult.

Let us now return to the general case E-*EN of § 1 when E =C(G), G being
any compact abelian group. Simultaneously and independently of the above

result we proved in 1969 [ 3] the following general theorem,

THEOREM 2.1. Let A, be the symmetric set {x €G:xEN-N and (|k|)x =0}. Then
d1m(Ck) >card(Ak). More precisely the real parts and the non-zero imaginary

parts of the characters ex, x€Ak, yield linearly independent mappings

R :x+*x(Re e ) *xk and R _:x5>x(Im e ) xk = =
. ( X) and R :xo ( Y) s RX(EN) R_X(EN) {0}, such that

the mappings SX =Sk +RX, S‘X =Sk +R_X are all minimum norm extensions
C(G) +Ey of s, .

For examples see [ 3].

We now specify G=T in order to be able to combine Theorem 2.1 with a
slight extension of results of [1]. This combination leads to a criterion for
uniqueness of the minimum norm extension C(T) +EN of Sy 0 whenever the kernel

k has a special form.

DEFINITION 2.1. The point g €T will be called an alternating point of a con-

tinuous real function x : T +R iff x vanishes and changes sign at g.
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DEFINITION 2.2. We say that an element x of E

N —= ==
stant factor, by a subset H of {g€G :x(g) =0} if and only if every element

yGEN, which vanishes at every point of H satisfies, y =cx for some c €C.

COROLLARY OF THEOREM 2.1, Assume G =T and the kernel k real and determined,

up to a constant factor, by the set of its alternating points. Then

S :x>x*k is the unique minimum norm extension C(T) +Ey of its restriction

s, to Ey if and only if the symmetric Eit_Ak={X6T :X EN-N and ([k[)x=0} is
empty. Furthermore dim(Ck) 2 card (Ak) .

REMARK 2.2. (Connection with approximation theory.) Our C.A. groups G are at
least To-spaces, so they are also T4-spaces (normal and separated). Let now P
be the set of all continuous linear projections P :C(G) +Ey. We look for a

projection Po €P, which minimizes the maximal normalized approximation error

of any x €EC(G) by its projection Pox in EN’ i.e., we look for a P°€P such

that
2.1) I1-E lI= inf IIT-Pl = inf sup [ (I-P) ()N .
PEP pEP  x€C(G)
=l =1

The solutions are given by the minimum norm projections because
VPEP:II-Pl = 1+IH,

if either G has no isolated point (Thm. of Daugavet-Arens,
using the fact that G is T4 and that the linear operators P are of finite
rank) or G is metric (Thm. of Krasnose l's kii, using the fact that

the operators P are compact linear operators).

3. The Case of Ll-Spaces

We now consider Sk :X+x *k :Ll @) -*.EN and the bounded linear extensions

S :L](G) +EN of 8y :=Sk]EN. In 1969 we proved (see [4]) that if k is deter-
mined, up to a constant factor, by the set of its roots in G, (see Def. 2.2),

then Sk is the unique minimum norm extension L (G) +EN of its restriction Sk

to EN' We shall now first weaken this condition.

DEFINITION 3.1. We say that an element x of EN is continuously determined, up
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to a constant factor, by the set of its roots in G, iff:

v yEEN : i—continuous on G=y€C x,

REMARK 3.1. Of course if x€EN is determined, up to a constant factor, by the
set of its roots in G (see Def. 2.2), then it is also continuously determined,

up to a constant factor, by this set.

LEMMA 3.1, If xGEN\ {0} is not continuously determined, up to a comstant

factor, by the set of its roots in G, then there is an yEEN such that y/x is

continuous on G, dim (>x, y<) =2 and IG y(g) (sgn X) (g)dm(g) =0. Moreover, if

LEMMA 3.2. The kernel ks{yEN cer, v Y€N:cY¢0, if real if and only if N

is symmetric and V yEN: ::_Y ='¢? .

LEMMA 3.3. Any continuous linear mapgmg of finite rank S : L G) ->L (G) of the
special form S=22=1 x]!.®yi€C(G)®L (G), n€N, satisfies

It Sll1 = suplll( (h, -)I|
h€G

where K (h,g) Z i=1 xi(h)yi(g) for all h and almost all g and Ks(h,~) is the
l-functl.on g kg (h,g).

PROOF. We know that C(G) CLm(G) = (Ll(G))' and we use the known inclusions:
L (G) 8, L G) CL(L ©G); L (G))C(L ©G) ® L (G))' and the fact that the unit
ball B (G) of L (G) is o(M(G), C(G)) dense in the unit ball B (G) of M(G). We
also use the following:

Let e be the neutral element of G and § the Dirac-measure on G i.e.,
§(E) =1, if e €E, and 8(E) =0 if e ¢E, for any Borel set E of G. The Borel
measure g8, g €G, on G is then defined by g8(E) =8(E-g) for any Borel set E
of G. Then it is known that {cgé : g €G, c€T} are the extremal points of the
unit ball BM(G).

This, together with Krein ~Milman, yields:

sy = sup 2 <xl, x>yl | = sup | Z <zl x>yll | =
x€Bl(G) i=1 L (G) x€BM(G) i=1 L (G)
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n

n
sup e } <xi,h6> yill 1 = sup Il ] x]!_(h)yill )
h€G,c €T i=1 L' (G) he€G i=l L (G)

"

sup IIK_ (h,o)ll, .
hee O !

THEOREM 3.1. If the kernel k is real and if Sy is the unique minimum norm

to EN’ and if 8\ (N-N) #¢, then k is

. 1 . ..
extension L (G) ->EN of its restriction 8y

PROOF. Assume that G\ (N-N) #¢ and that k=zy€N cYeY, cY=/=0, is real and not
continuously determined, up to a constant factor, by the set of its roots inG.
Then N is symmetric (Lemma 3.2 ) and there is a real yEEN such that y/k is

continuous in G, dim¢(>k,y<) =2 and IG y sgn k =0, (Lemma 3.1). Consequent-—

ly ay :=lly/kl _ is defined and >0, and of course:

3.1 Va:0<ac< a—l- = ggn(k +ay) = sgn k .
y
Consider now a function u GCR(G) such that u#0 and V YEN-N:
'(G u(h) (h,y)dm(h) =0, i.e. a non-zero continuous real function on G such that
(since N-N is symmetric) its Fourier-coefficient U(y) vanishes whenever
y EN-N, Such a function u of course exists and there is no restriction in

assuming that

(3.2) 0 <lull, <= .
y

The function y has the form y =ZY €N dYeY, dY €€; consider then the kernel
H(h,g) =u(h)y(g-h) =ZY EN dYu(h) (-h,v)(g,Y) and the continuous linear mappings

1
L (G) +EN

x+fG x(h)H(h,e)dm(h) = ZY €N dY <ue; ,x>eY,

where e' is the character e-y considered as an element of the dual space
L°(6) of L'(¢), and

S =S5 +R :Ll(G)->E
u u

k N °

According to Lemma 3.3 and to (3.2) and (3.1) this yields
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Il SuII sup |l (k+H) (h, *)li , = sup f |k(g-k) +u(h)y(g-k) |dm(g)

h€G h€G G

sup [ [k(g-h) +u(h)y(g-h)] (sgn k) (g-h)dm(g)
h€G G

sup [ [k(g-h)[dm(g) = IS Il = Ik, .
h€G G

So Su has minimum norm. It remains to show that

S = s, i.e. that Ru(EN) = {0},

u|EN

and that

S #§S , i.e. that R_#0.
u k u

First according to the choice of u, we have

VXENY gEC: (R (e ))(p) = [ 1 d_u(h) (b, x71) (g, ) dm(h) = 0.
G YEN

Hence Ru(EN) ={0}.
Not let ho be a point of G where u(ho) #0, and consider the extension

R to M(G) +E_ or R . Then
u u

N

R(h8) =uth) ) d (h,y)e #0€E_,
u o [¢) yEN Y o Y N
since there is a dY #0 and since the ey's are linearly independent. Then

Lemma 3.3 yields

1 Rull = hSleqz; IIH(h,-)II] = lIH(ho,-)IIl = || Ru(hOG)ll1 > 0.

Let now C, be again the convex facet of the sphere with radius || Skll of Ll(G)

k
consisting of the minimum norm extensions L](G) +EN of 8y Then we have

COROLLARY. Assume that the real kernel k is not continuously determined, up

dimc(Ck) > card (E\ (N-N)).



Lambert 149

PROOF. We keep the notations of the proof of Theorem 3.1. Let first'

~ . .
Ak :=G\ (N-N) and Ar—{y EAk .e\Y is real}. Then A.k\ Ar can be written as a
disjoint union Ac U (_Ac) i.e.,we use the disjoint union A.k =A_ UAC ] (—Ac).
Choose then a fixed a €R s.t. 0<a< I/ay and let for each x €A’ :=ArUAc:

- =1 ‘= -5 (e -
ax 1= Re(eX) 5 (eX+e_x), u_x Im(e ) (e e X)

1 1
L (G) ->EN L (G) ->EN

X »(aaxx) Xy X x - (aa_xx) xy

S =S +R, S =8 +R .
X =X =X

It follows from the proof of Theorem 3.1.that both S and S__  are minimum

norm extensions L G) +EN of Skt It remains to show that the elements of

R :YEA'}U{R :x€A}
{Xx {_Xx .

are linearly independent., In order to show this let N, be a finite subset of
A' such that

3.3 (AR +2x R =0, where A, A €Cand A =0 if €A .
G- XEZN e e U x> "=x X A
1

We put again y =ZY€N dYeY' Then (3.3) yields
A ®d + A ®d
a z [ z (aXe'Y YeY) = z (a' e"Y YeY)]

which is equivalent to:

G.4) 7 L U] 2o vy * &=y

- i (

x B (y=x) 'e_(Y+X))]] 8de =0.

Let N :={y€EN :dY=#0}. We know that N #@¢. Then, since the eY's are linearly

independent, (3.4) is equivalent to
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(3.5) VYEN : ] [OAA e oy * QA de 1 =o,

)(EN]

i.e., since }\_x =0 for xEAr,

= (y+x)

V YEN : T e ,_y+re_ )
X €N, NA_ X =) x - (y+x)

(3.6)
+ 7 [(Ax-ix_x)e_

X ENI\Ar

-0 P O ! T 0

Of course Y-xl=#y-x2 and X, ¢y+x2, whenever XI:#XZ' But also, by the defi-

nition of A' it can not occur that Y7X] =X*Xys i.e. that Xo*Xy =0, whenever

X, 9*)(2. Hence it follows from (3.6) and the linear independence of the charac-

ters that A =0, whenever x EN, NA , and A =iA =0=X +iA , i.e.,, A =1 =0,
X 1 r X X X X X X

whenever x ENl\ Ar.

This achieves the proof, since then we have
dlmc(Ck) = d1mC(>Ck-Sk<)
> dimg(>{R :x€A'JU(R_ :1x€AI<) = Card G\ (N-N)).

REMARK 3.2, If the set Ak is infinite, i.e. if G is infinite, one can of course
find a set of algebraically linearly independent vectors e which has the
power of the continuum and which is in the closed convex hull of

{aeX :x_EAk}, O<a <1/ay.If follows easily from the preceeding proof that
these vectors a_ can be chosen such as to define linearly independent elements
of the facet Ck’ the dimension of which has hence the power of the continuum.

Furthermore it is easily seen that Sk is the center of the facet Ck'

EXAMPLE 3.1. (Uniqueness)

a) (This is the first example of [4]) . Let G be the circle group TER/ZTrz
and N the classical part {-n,-(n-1),...,0,...,(n~1),n} of T =£. The Dirichlet

kernel dN is then given by:

sin(2n+1)t/2

fogke | smez if O<t<2n
e =

dN(t) =
1+2n , if t=0
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and has the 2n distinct roots xj =2jn/(2n+1), j=1,2,...,2n, in T. It is easy
to show that any element yEEN vanishing at these roots satisfies

y= (Y(O)/dN(O))dN. Hence the Fourier projection

x+x*dN:L](G) ->EN

is the unique minimum norm projection L1 (G) ->EN.
b) Let again G=T and for any n, k €N, k>1, let N be as in a) and M =kN. For
any y €EM there is precisely one y¥ EEN with V t €T : y(t) =y*(kt), i.e.,
* =
dy = dy:

Hence, if y vanishes at the roots of dM’ then y* vanishes at the roots

X = s vk = i =
of dM dN. It follows by a) that 3 c€C:y ch, i.e. y TdM Hence the
Fourier projection is the unique minimum norm projection L (G) +Ey.

c¢) Other examples of uniqueness are given in [4].

EXAMPLE 3.2. (Non-uniqueness) Let again G be the circle group T and

N ={-4,-3,-2,0,2,3,4}, Putting a =cos t, we know that t +~cos kt is also a
function of o for each k EN. We denote this function by T, (= the kth
Tchebyshev polynomial of the first kind).

It follows that t >~dy(t) is also a function of a, i.e.

§ 4 3 2
dN(t) = 1+2[ Z T, (@)] = 160 +8a~ -120° -6a +1 =: P(a).
k=2 X

Some study of the signs of P shows that P has only two distinct roots @ and

o, in [-1,1]. A study of the derivative P' shows then that these roots are

simple. Hence, since V :=> T s Ty Tgb T < is four-dimensional, it is not

s Ty
difficult to find a real QEV S\zxch 3t:hai dim¢(>P,Q<) =2 and Q(al) =Q(ot2) =0.
Since the roots @, and @, of P are simple, the function Q/P is continuous in
[-1,1] . The element y of EN’ defined by V t €T :y(t) =Q(cos t), satisfies
then: dimc(>dN,y<) =2 and y/dN continuous on T, The corollary of Thm. 3.1

then yields dlmG(CdN) =0,
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BANACH SPACES OF DISTRIBUTIONS OF WIENER'S TYPE
AND INTERPOLATICN

Hans G. Feichtinger
Institut filir Mathematik
Universit&t Wien

Wien

In the parallel paper [9] we have introduced "spaces of Wiener's type", a fa-
mily of Banach spaces of (classes of) measurable functions, measures or di-
stributions on locally compact groups. The elements of these spaces are cha-
racterized by - what we call - the global behaviour of certain of their local
properties. In the present paper it is to be shown that interpolation methods
can be applied to these spaces in a very natural way. Using the results on
interpolation it is not difficult to extend various theorems of analysis to
the setting of Wiener -type spaces. As illustration we present a version of
the Hausdorff - Young inequality for locally campact abelian groups. As a
consequence, one obtains a sharpened version of Sobolev's embedding theorem.

1. Definitions and Basic Properties

Throughout G will be a locally campact group with left Haar measure dx.
We shall mainly be interested in non-discrete, non-campact groups (e.g.
G =R™). k(G) denotes the space of all continuous, complex-valued functions
on G with campact support (supp), endowed with its natural inductive limit
topology. (LP,H Il p), 1<p<£ =, denotes the usual Lebesgue spaces. Given a
subset MC G we write ¢, for its characteristic function. The space L; ()
consists of all (classes of) measurable functions f on G such that chs L (G)
for any campact subset KSG. It is a topological vector space with the family
of seminorms f > “ch” . A BF-space on G is a Banach space (B, H HB) which
is continuously embedded into Lg 0c(G) . As usual we shall speak of "functions"
in such spaces, identifying two measurable functions in B, if they are equal
locally almost everywhere (l.a.e.). A BF-space is called solid if any measura-
ble function g, for which there exists fe B such that | g(x)|< [f(x)| 1l.a.e.
belongs to B, with ||g||B§ ||f||B A BF-space B is called left translation
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invariant ¢ranslation invariant) if the left (left and right) translation
operators, given by

LEG) o= £y %), AE() = £0y)

act boundedly on B. Their operator norm is written as ||| ”IB Corresponding
terminology is applied to spaces of measures or distributions, to which the
translation operators are extended by transposition. A left invariant BF-space
will be called ahamogeneous Banach space on G if G acts (by left translati-
ons) isametrically on B, and if translation is continuous in B, i.e. if

]imy_)e HLyf - |/ 5 = 0 for all fe B. The hamogenecus Banach spaces which are
dense in L' (G) are exactly the Segal algebras in the sense of Reiter ([15]).

A triple (8',8%,8%) will be called a Banach convolution triple (BCT),
if convolution, given by

£y 2 (x) = Jf1 (v W Ei(y)dy for £ e k(@ B, i=1,2, -

G
extends to a bounded, bilinear map (of norm 1) fram B1><B2 into B3. Clearly

(aA,A,A) is a BCT for same AgL1 (G) iff A is a Banach convolution algebra.
Any weighted L1-space

1 _ 1 =
L,@ ={flfaer @}, ll£ll | o == llswll,

is a BCA, called Beurling algebra, if w is a continuous function satisfying
w(x)< 1, and wixy) < w(x)w(y) for all x,yeG. (cf. [15] ). Such functions are
called weight functions. A Banach space B is a (left) Banach convolution mo-
dule over the Banach algebra A iff (A,B,B) is a BCT, and a (left) Banach
ideal in A if furthermore BCA. Any hamogeneous Banach space is known to be
a left L'(G) Banach convolution module. Constants without importance will be
denoted by C,C1,... .

General Hypothesis

As a standing assumption we suppose throughout this paper that for any
Banach space B used below there exists same "nice" Banach algebra A acting
on B by "pointwise" multiplication.

More precisely, we suppose that there exists a hamogeneous Banach space
o, )+ continuously embedded into the Banach algebra with respect to
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pointwise multiplication (i.e. separating points from closed sets), and
vhich is closed under complex conjugation, and that B is a Banach module over
A with respect to "pointwise" multiplication, i.e.

| nf || <linll I£]l5 for all hea, feB.

Here same camment concerning the term "pointwise" multiplication is in
order, Of course, there is no problem of interpretation, if B happens to be
a BF-space on G (which covers the most important examples). In this case the
pointwise product of a continuous function with a locally integrable function
is to be taken in the ordinary sense, In order to cover more general situ-
ations (which occur naturally in the investigations) we assume in the sequel
that the following situation is given:

B is continuously embedded into the topological dual A(') of AO = ANK(G)
(endowed with its natural inductive limit topology). On Ac'a an action of A by
"pointwise multiplication" is given in a natural way, i.e, by transposition
of the operation of A on Aj by ordinary multiplication (remember the defi-
nition of a "pointwise product" of a test function and a distribution). Since
the assumptions imply that A is always a dense subspace of K(G), R(G) (the
space of all Radon measures on G) and in particular L Zogc) (identified with
the closed subspace of all absolutely continuos measures) is alway continuo-
usly embedded into Ac') in a natural way. Since the action of A on a subspace of
L Zocdefined in the way just mentioned coincides of course with the natural
action mentioned above we gain flexibility in adopting our assumptions con-
cerning the definition of pointwise products. We define B, , . to be the space of
all elements ¢ of A(') such that ho € B for all he A o (Otherwise we would have
to restrict our attention to spaces of locally integrable function, which
would sametimes be a quite unnatural restriction ).

EXAMPLES. The most important examples of algebras A which are defined for
arbitrary locally compact groups are the spaces @), [| I|,) of continuous
functlons vanishing at mfmlty, and Eymard's Fourier A(G), which coincides
with 71! (G) = {FrlfeL (&)} if G is a locally campact abelian group with
dual group é (a is identified with G). Therefore any solid BF-space B on G, in
particular the spaces P (G), 1L pL> , is included in our consideration
(considered as C°(G)-module), but  may take B = C°(G) itself. If G is abelian,
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one may consider B = 7 P, 1 <P< o (the Fourier transform being taken in
the sense of tempered distributions or as a quasimeasure, cf. [8]or [12]) as
a module over A(G). As further examples we only mention here the spaces of
Besov-Hardy-Sobolev type B° andF° , seR, 1<p,gg = , as considered by
H. Triebel (see [18], [1 9]),cilncludiné Lipschitz and Bessel potential spaces
(cf. [16]). For further examples cf. [9]. The Wiener type spaces W(B,C) are
now defined as follows:

DEFINITION 1.1. Let B satisfy the general hypothesis, and let C be a solid,
translation invariant BF-space on G. Given any open subset Q of G with

campact closure and f€ By, . we set: F := F: Z+”f”B(zQ)’ with

IEll5(zq) = inf (llglly | ¢ €B, g coincides with £ on 20, i.e.

hf = hg for all he A with supp hg z0}.
The Wiener-type space W(B,C) with local component B and global component C is_
then defined by

1.1 W(B,C) :={ f|[feB, .+ FeC}.
@ natural norm on W(B,C) is given by
(1.2) w0 = IIFllc

THEOREM 1.1. Let B,C be as in Definition 1.1. Then W(B,C) is a Banach space,
continuously embedded into B, . It does not depend on the particular choice
Q, i.e. two different open subsets of G with campact closure define the same

space and equivalent norms.

It should be mentioned here that good examples of solid translation inva-
riant BF-spaces are weighted LP-spaces Lg(G) ={ flwelP @}, || £l pw =
14
= || fw ”p’ for w being a continuous weight function on G.

In the present paper we shall consider mainly spaces of the form
wP,19) or w(* 1P,19), 1<p,g < « . Practically all spaces of Wiener's type
that have been considered in a number of mostly recent papers (only to mention
[2—4,6—11,13,15,17,20]) arise as special cases of the above families, most of
them are even of the first kind. In order to give the reader some orientation
concerning inclusions among these spaces we state the following lemma:
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LEMA 1.2. Let 1< P/Py/Pyidqsdpc o be given. Then

i) w(IP IP) =1P@©);

2
2 2,
) if pi2Py 3L %y
P2 %2
iii) W(FL )CW(FL ) if PSPy 44 9y

. P4
ii) W(L L )CW(L

1)
iv) WPt ewEP ,nl) for 1<pg2, ad
1
W(?”LP ,Lq)gc_W(Lp ,Lq)_fg‘ 2¢ pg>, forall q,1<qgg=

and 1/p' :=1 - 1/p.

REMARK 1.1. If G is nondiscrete and noncampact it can be shown that equali-
ty holds in ii) and iii) only for Py =P, and qq = dyr and in iv) only for
p=2.

REMARK 1.2. One also has WM(G) LY wFL” ,L3) for all g (here M(G) =
(€°(G)) ' denotes the space of bounded measures on G). The spaces

¥
wWM(G) ,Lq) , 9> 1, arise as dual spaces of the spaces W(CO(G) ,Lq ) (cf. [10,
11,13,17)).

2. The Abstract Main Result

The following theorem is the basic result of this paper:

THEOREM 2.1. Let A,B,C be as in Definition 1.1. Assume furthenmre that C is
a left Banach convolution module over same Beurling algebra L (G) . Then W(B,C)
is a retract of the vector-valued function space C(B), i.e. there exist

bounded linear operators T: W(B,C) » C(B) and S: C(B) » W(B,C) such that
SoT = IdW(B,C) .

REMARK 2.1. It can be shown that C satisfies the above condition for asolid
translation’ invariant BF-space containing K (G) as a dense subspace, or if C
is of the form C = LS(G) ; 1< p £ »,for same weight function w.

PROOF. The proof is given in four steps.

Step 1. In order to define a mapping T in a suitable way we choosescmeger
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satisfying Ig(x_1)dx = 1, and supp g<Q. Then we set:
G

(2.1) Tf(z) := (ng)f, zeG.

We show first that z + (ng)f defines a continuous mapping fram G into B,
for g as above and for every fe W(B,C)gB&]c . In fact, let xeG and same
relatively campact neighbourhood V of x be given. Then there exists he Ao
such that h(x) = 1 on V(supp g). This implies for x,ye V:

(2.2) |l 9= @aflly =l @g-Lg fhllps [[Lg-Lgll, Il 5> ©

for y + X (in V), since translation is continuous in A. It therefore remains
to give an estimate of z » H(ng)fHB in the space C. Making use of the
following inequality

(2.3) @l g< gl jll£ll g, gy for any zeG
we obtain
(2.4) IITfIIC(B) < Nall Nl £ll g ¢y for all fe W(B,C).

This completes the proof of step 1.

Step 2. Having defined T as above we are now looking for the corresponding
operator S: C(B) # W(B,C). Choosing g1€ Ao’ satisfying g1 (x) =1 on supp g
(g as above) we shall define SF (at first formally) by

(2.5) SF := J(ng1)F(z)dz for £eC(B).
G

Before we can verify that S satisfies all requirements we have to make (2.5)
precise: At a first stage we claim that it makes sense to interprete SF as
the element of A('), given by

(2.6) <SF,h> 1= ] <(L.g)F(z) ,h>dz, he A .
G b4 [o}

We have now to verify that the right hand expression is well defined as an
element of Ac') (i.e. as a measure, quasimeasure or distribution in our appli-
cations). In order to show continuity of the functional defined in (2.6) let
same campact subset K of G, and any he A w1th supp hS K be gJ.ven. Writing

K for supp g and using the fact that (L -9 )h 0 for z¢KK first, and the

cont.muous embeddings B& A' and CG)L1 (G) then, we obtain
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2.7) | J<(ng1)F(z) h>dz
G

;li | <(ng])F(z) h>ldz <
-1
1

1
< o linll, _Jnng)mz)anz; S, llg Il Inll, IF@I]

KK,

c@B)’

where C, denotes a constant depending on the space C and on K (and K1) only.

Step 3. We intend to prove now the boundedness of S as a mapping fraom C(B)

into W(B,C) . That SF belongs to B, .,i.e. that h(SF)¢B for all he A, can be
shown as follows: Since multiplication of heA o with SF EAé is to be understood
in the usual sense, i.e. as being defined by <h(SF) ,h1> = <SF,hh1> for all
hie A, one has h(SF) = JG h(LZg1)F(z)dz. But the last integral is convergent
in B, since the integrand is an integrable function on G with values in B and

campact support (recall C + L LG,

In order to show that SF belongs to W(B,C) let us look for an estimate
for y»||SF||B(ZQ),for FeC(B). Let gzer be choosen such that gz(x) =1 on Q,
Then one has (as in step 2) for any y eG:

1 2 1
28 115811y 2 11059 [ tgemnae Iy <l iy il e

if we set N ;= (supp g2) (supp gi)—l. Noting that the function ¢: 2z [|F(2)] B
belongs to C, and that C is a left Banach convolution module over same Beurling
algebra L;(G) we obtain, as a continuation of (2.8)

2.9) 158 llg g gy < 12 I l1al, Tl g N611

Cambining (2,8) and (2.9) we arrive at

(2.10) | SF(| W(B,C)éc3 o]l ¢ =Gl F ”C(B) for all FeW(B,C).

Step 4. In this last step it is shown that under the assumptions made the re-
lation SOoI(f) = f holds true for all fe W(B,C), Since W(B,C) is continuously
embedded into B, .rand hence into A('), it will be sufficient to verify that
this identlty holds in A' Given any he A, one has (using the identity

91 =g g and applying Fublm. s theorem) :
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(2.11) <S(Tf) h> =< J(ngz) (L gV E,h> = I((L gV E,h> dz =
G z c?

- H g (z”'y) £ (y)h(y) dzdy =[ J g <x")dx]<f,h>= <£,h>,q.e.d.
G

GG
This campletes the proof of Theorem 2.1.

REMARK 2.2. There is also a more elementary, but samewhat longer proof showing
that the spaces W(B,C) can be represented as retracts of vectorvalued sequence
spaces. In this case one makes use of the characterization of W(B,C) by means
of uniform, bounded partitions of unity (cf. [9], Theorem 2).

THEOREM 2.2. Suppose that the same algebra A acts on B1 @Bz, and assupe
that C| or c? has absolutely continuous norm (i.e. that £ (x)+ O for n+

and £ ()] < |£(x)| a.e. implies ||£ ||c+o). Then one has for 6 €(0,1):
w',ch, W(Bz,Cz)] 6] = ¥ [(131 %) [e],(c1 ,cz)[e]].

PROOF. As a consequence of Theorem 2.1 and general interpolation principles

the interpolation results follow fram the corresponding interpolation results

for the vector-valued function spaces ct (Bi) (cf. [1], § 6.4). The needed
"camplex" result is then found in § 13/6 of Calderon's paper ([5)).

COROLLARY 2.3. For 8 e(0,1), 1< Py/Pysdy/9p=<® v 9, < * one hag

. P % Py % _ P .4
[wee ) HCE ,sz)] o] = WP,

and

— - P 9 Py 94 P +d
[.W(FL ,Lw]),W(FL ,sz)J [6] = W(FL 'LW)"

with 1/p = (1-8)/pyt 6/py, 1/q = (1-6)/q,+6 (3 W = w:'ewg.

REMARK 2,3. There are of course corresponding results for real interpolation
spaces, based on the real interpolation results for - say - weighted vector-
valued IF-spaces (cf. [1], [18]). Since we do not need these results here we
leave it to the reader to cambine known results to new explicit statements,
if they should be useful to him,
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3. Applications

As in related fields interpolation results for a family of functional spaces
imply a number of results concerning operators (convolution operators, Fourier
transform, etc.) on these spaces. A typical application of this kind is the
following one:

THEOREM 3.1. Let £ ELZO (G) be given, such that swp YQJlf(x_.1)\dx <c
for same open set Q with campact closure. If Te: k » k # £ acts boundely
fram (K (G), | H into IP(G), then T, defines a bounded operator from
w(L",1%) into 1° (G) forany re [1,p] , with s = r'(p-1).

PROOF. It is easily checked that the first assumption implies IIL h*£]]

L CHhH for any yeGandany heL (G) with supphCQ OonsequentlyT
is bounded operator from W(L L ) into I’ = W(L” . Complex interpo-
lation between W(L °°,L1) and IP(G) yields just the spaces W(L',L°) with
s = r'(p-1), while interpolation with the same parameter § e (O,1) between
L* and IP gives exactly L°(G).

The following result is an extension of the usual Hausdorff-Young
inequality:
THEOREM 3.2. Let G be a locally campact abelian group. For 1 <r< p< « the
Fourier transform defines a bounded linear mapping from W( 7LP,L”) into
W(?'Lr,Lp) . In particular, W(FLp,Lp) on G is mapped onto the corresponding
space on é by the Fourier transform.

The theorem will follow essentially by means of camplex interpolation
fram the following proposition, which is of interest for itself.

PROPOSITION 3.3. For 1<p<~ the Fourier transform maps W( FLp,L1) into
w(rL' o).

PROOF. It is known (see [ 9], Theorem 2, cf. also [7]) that there exists same
campact set K€G and C> O such that any feW( TLp,L1) has a representation of

the form £f = ) a L f , with ®la_]<cllf supp £ €K and
. Fagk, £ with I7la l¢cll | rapaty S50 5o
Il an ;_Lp;1 for all n.
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Applying Theorem 5 of [9] to 7f_(take B= 7L'(@), C = IP(§) there) one
obtains

£ F£ =C, || £
IEall ot ) g St PSRl p = CillEyl g

and

[ £1] . <C | l”(L f)H <C,|IE]| .
w(r L @,1P) Za =2 )

PROOF (of Theorem 3.2). We first consider the case r = p. By Proposition 3.3
F (and also 77 map W( Fi! 1)) onto the corresponding space on the dual
group (cf. also [8], Theorem A2 i), W( SRR ,L ) =8, (G) !). By Plancherel's
theorem the same assertion is true for W( 7 L ,L ) = L (G) , hence for all

p €[1,2] by camplex interpolation. For p > 2 it can be proved by transposi-
tion (i.e. as in the case of tempered distributions, as we shall prove in de-
tail elsewhere one has W(7L¥,15)" = W( FL¥ ,1%') for 1<1,s ¢ »). The general
case is then derived by means of further camplex interpolation between the
"diagonal" case and the result of Proposition 3.3.

REMARK 3.1, The above result is in various direction best possible. We shall
show below that the Fourier transform does not map W( 7 L1 ,IP) (which is
contained in W(L",LP) and W(7 L¥,IP) for any r> 1) into W(7 L1,L®) nor into
W(FL” ,Lq) for any q <p. In particular, the assertions of Theorem 3.2 break
down for r< p. It also follows therefram that the Fourier transform is never
surjective in Theorem 3.2 for r # p.

REMARK 3.2. Cambining Theorem 3,2 with Lemma 2,2 one obtains the main result
of [3], which has been proved by F. Holland for the case G = R. Theorems 3.4,
3.5 and 4.2 of [17] (cf. Remark 1.2) also arise as consequences of our result.

PROOF (of Remark 3.1). It will be sufficient to shcm that for any p<~ , and
q<p there is a bounded sequence (£ ) ~, in W( 711 (6),IP) for which (7 £ D
is unbounded inw(rFL*,19 or W(FLg,L ) respectively. Given any f $ 0,
£,€W( FL! ,L ) let us consider expressions of the form g =7 1 Ly M £, (re-
call that M ,te G, denote the operator of pointwise multiplication wi the

character t) .
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since K(G)n W( FL1 ,Lp) is a dense subspace of W( 7L1 ,Lp) for p<wit is
possible to choose (yk)k_r__l1 ("sufficiently large") such that

1/p 1/q
g Il c2n/F£ || and||g |l 2(1/2n "3 ||g H
AR TS A o wirL! 1P n'q

for an arbitrary sequence (tk)k 1CG On the other hand one has

: . . . 1/9

Fg_ =]"M L_F7£f, which implies||7 g || > (1/2)n /| £ ||

n "z o wrn 9 ° w(rL 19
for an appropriate choice of (tk) k21 e G. Hence fn = n_1/ p 9, is a suitable
sequence for our first assertion.If 7 fO has suitable campact support, then the
second assertion follows if tk = to for all k, because then

_ - 1/3-1/p

7€l w = NFEIL =lE ]l 2 ¢/2m lle Il
Tw(rnI,L”) Do nda ° g

As the last application to be mentioned here we give a version of
Sovolev's embedding theorem (cf. [16] Chap. V, § 2.2) for the (fractional)
potential spaces L.Is) in the setting of Wiener type spaces:

THEOREM 3.4. i) For s> m/2 one has the following continuous embeddings:

L ';’mm),., wir' 1A e wic?,Lhs R
ii) More generally, one has for p ¢ [1,2] and s>m(1/g-1/p) 0 the embedding
PE) «u( 13,19,

PROOF. (i) By definition one has 7L’ = (mm) e=( h| e I } o with

ws(x) = (1+]x]9) S/2 S;anew eL ]Rm) for s> m/2, Holder's 1nequa11ty

implies L‘i = W(L ,Lfl yo W(L ,L ). Assertion (i) follows now fram 3.3.
s s

(ii) We apply camplex interpolation to the pair of inclusions given by (i)

and 1P > W( FLp',Lp) (cf. Lemma 2.2). Using the fact that

(L PL ) 6] =L S for 0e(0,1), 1/s = (1-8)/r +6/r and u = (1-6 )s+ Ot.
[_'14 Chap. 5, Theorem 5).

Further results concerning Wiener-type spaces, in particular on their multi-
plier spaces, Tauberian theorems, as well as a characterization of the Banach
dual of W(B,C) will be given in subsequent papers.
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APPROXIMATION THEORY ON THE
COMPACT SOLENOID

Walter R. Bloom
School of Mathematical and Physical Sciences
Murdoch University
Perth

The compact solenoid I is the a-adic solenoid with a2 = (2,3,...). It is a
compact connected metrisable abelian group with dual the group of rational
numbers. We give an analogue of the M. Riesz theorem on the boundedness of
partial sums of the Fourier series of functions in Lp(Z), and use this to
characterize the Lipschitz functions on I in terms of the rate of con-
vergence of their Fourier series. In addition we prove a factorization
theorem for these functions.

1. Introduction

We write R, T, Q, Z and A for the groups of reals, complex numbers of
modulus one, rationals, integers and a-adic integers respectively, where
a=(2,3...). For u = (1,0,...) let B denote the cyclic subgroup of Rx A
generated by (1,u), and put £ = (Rx A)/B. Then I is the a-adic solenoid
described in [9], (10.12). It is a compact connected metrisable divisible
torsion-free abelian group with character group isomorphic to Q; to each
rational number of the form m/n!, where m € 7 and n is a non-negative

integer, there corresponds a character Yo.n of I given by
’
= i B o(p- 1 ~1)1!
Ym’n((g,x) + B) = exp [ 2wi n!(5‘(x° + 2! X+t (n-1)! xn_z)) ]
for E €ER and X = (xo,xl,...) € A.

A metric on I will be given as follows. Write Ao = A and,

for n=1,2,..., put
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An = {Xx € A: x = 0 for k<n}.

Then (An) is a neighbourhood basis at zero consisting of a strictly de-
creasing sequence of compact open subgroups of A. Let (Bn) be any strictly
decreasing sequence of positive numbers tending to zero, and define d' on

AxAby d'(X,X) = 0 and
1] = -
(1.1 a"(X,¥) =B ., 0 XYEANA

Then d' is a translation-invariant metric on A compatible with the given
topology. The real line will be given its Euclidean metric, and then a

(translation-invariant) metric d on I will be specified by
d( (£,X)+B,B ) = inf {max {|n|,d(y,0)}: (n,y) € (E,X)+B};

this is just the metric assigned in the usual way to products and
quotients.

We are interested here in how the classical approximation theorems
carry over to the solenoid, and in particular the properties of Lipschitz
functions on I. Some results in this direction have been obtained already
by Walker [11] and Bloom [1], [2] and [3]. In Section 2 we give an analogue
of the M. Riesz theorem on the uniform boundedness of partial sums of the
Fourier series of a pth-integrable function, 1 < p < e, Section 3 will be
concerned with the characterization of Lipschitz functions on I by the rate
of convergence of their Fourier series, and in Section 4 we consider their

factorization properties.

2. M. Riesz Theorem for I

The classical theorem of M. Riesz hotds for R, T, Z and finite products
of these three groups; see [6], Chapter 6. To extend the result to I we define
for positive integers £,n the (£,n)th partial sum Sl,nf of the Fourier series

of £ €L(D) by

S.?_,nf =T{ E(Y)W y € Tl_,n}’
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where Tl = {Ym o |m/nt]| €£}. For each p € (1,#) the operators Sl;n will
be shown to be uniformly bounded on Lp(X), the proof using results from
multiplier theory on locally compact abelian groups.

Let G be any locally compact abelian group, with character group FG
Given p € [1,2] a function ¢ on Te will be called a mu1t1p11er of LP(0) if
for every f € Lp(G) there exists T¢f € Lp(G) with Tgf ¢f The smallest
admissible K for which IT¢fIp < Klfﬂp for all f € L*(G) will be denoted by
N¢Ip,p, and termed the multiplier norm of ¢.

A bounded measurable function h on G is called regulated if there
exists an approximate unit (k) in Ll(G) such that ﬂktll = 1 and
lim k\ * h = h pointwise. Finally, given any non-empty set E C G, KE will
denote its characteristic function and A(FG,E) its annihilator in T.; for

G’
the latter see [9], (23.23).

THEOREM 2.1. For each p € (1,#) there exists a constant Kp such that

Is, £l <k Il for all £ € LP(D).
Lo p p o p —= 2o @

PROOF. First consider p € (1,2]. The M. Riesz theorem for R shows that
there exists K; independent of £ such that ﬂg[_z = K;; see [6],
9

Theorem 6.2.2. Then

1
4 p,p

< 1 1
2.2) S-g,0] T fr-t) T TH-0 T E(0)

'E[-l.llnp.ﬁ' Furthermore (X(An)-li

EL , where Ln = A(FA,An), from which it follows that ELn € MP(FA) and

is regulated and “E[-Z,lep,p = An)

= 1. Note also that since T', is discrete, £

EL yP A . s regulated.

n
Define ¥ on R XI‘ by ¢ = g ® E. (the tensor product).

4n £,n (-¢,e1" "1 __,
Then ¢1Ln € Mp(R xT,) (I5], Lemma 1, p. 375) and wﬁ,n is regulated. Hence,

appéaling -to [10], Corollary 4.6, the restriction o2 0 of ¥p ot
’ ’
AR x FA,B) satisfies

= K'.

= 1g I A
opn'ep € Men'ep = r-n01eip ELn_1 Psp P

oo . c )
Identifying A(R x FA,B) with Ty we have that ¢£,n Mp(Fz)
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Under this identification we can write
([-£,L1xL ) N AR xT,,B) = {Ym,n’ |m/nt|< 2}

see [9], (25.3). Furthermore ({-£,£} xL )N AR x r,»B) = {-£,2} so that,

by (2.2), ¢Ln = E‘I‘ -1/2 gf'-l,l}' It follows that for any f € Lp(E),

4n

s, £l =11 nf + /2 £-0Y_, |+ 1/2 f([,)yz’lﬂp

b,

< (K' + DIfL .,
(Kp l)fp

This takes care of the case p € (1,2]. A standard duality argument

gives the same result for q € [2,») with constant KI" + 1, where p—l + q—l =1,

COROLLARY 2.3, For p € (1,») the Fourier series of f € LP(E) converges in

the sense that Sl nf = f in LP(Z) as L,n > ® ,
2RSS 28T S, 2 as

For p = 1 or » the convergence no longer holds. This is a standard
result once the unboundedness of the Lebesgue constants IDZ n|l is
a 9
established, where D =g ; see also Hawley [8].
L,n TI. n
t]

=2 .
THEOREM 2.4. lDI.,nll ~ 4n © log(nlZ).

PROOF. Let i: Z = Q denote the inclusion map and define o, on Q by

_ -1 . : . : eiohlet
pn(r) = (n!) r. Then D[,n DI,,.n° iep where D 2 is the Dirichle

polynomial on T of order n!£ and %, p, are the adjoints ([9], (24.37)) of
i, L respectively. The result now follows by appealing to [9], (28.54) (V).

COROLLARY 2.5. There eéxist functions in L](Z) and C(I) whose Fourier series

do not converge E norm.

3. Lipschitz Spaces

For p € [1,#] and a € (0,1) the Lipschitz space Lip(a;p) is defined by
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Lip(a;p) = {£ € LP(D): 1 £ - i = 0(d(a,0%), a > 0} ,
where af: x > f(x - a); when p = » the members of Lip(a;p) are taken to be
continuous. It is known ([2], Theorem 5) that for certain choices of (Bn) in
(1.1) the members of Lip(a;p) can be characterized by the rate of decay of
F) = i -t &) C
Ez’n(p,f) inf {0 f tﬂp. supp (t) Tﬁ,n} ,
the best approximation in LP(z) of £ by trigonometric polynomials of degree
(£,n). Important in this characterization is the following analogue of the

classical approximation theorem of Jackson (for a proof see [1], Theorem 4).

THEOREM 3.!. The Banach algebra L‘ (£) admits a bounded positive approximate

unit (k n) such that for each £,n, kl,ne c(), kl,n(o) =1,

b
supp(k, ) CTp  and

Ik[_,n * f_flp < K sup {I‘f - flp: a€ wB((-l'l,C'l) x An-l)}

for every f € Lp(Z) if p€ [1,e), or for every continuous f 1;_f p = ». Here

my denotes the natural homomorphism of R X A onto I and K is a constant.

In particular if f € Lip(a;p) and B;l is an integer then

E -1 (p;f)=0(sg). The converse of this result holds for Bn = 2" (see [2],
B_",n
n

Theorem 5). Using Theorem 2.1 we can give the characterization in terms of

the partial sums of the Fourier series of f.

THEOREM 3.2. Take 8 = 27" and let p € (1,»). Then f € Lip(a;p) if and only

ifls  £-£1 =002™™.
— 2% P

PROOF. Since supp(S n f) €T a ° one implication follows immediately from
2°,n 2°,n

{2], Theorem 1. Conversely if f € Lip(a;p) then, by the remark following

Theorem 3.1, E n (p;f) = 0(27™%). Now let t be any trigonometric polynomial
2°,n :

. ~ c .
with supp(t) TZ Then S£

. t =t and
s 11 >0



172 Bloom

Is, £f-fl <ls, £-8, tl +H0f -t < (K + 1DIf - ¢k
£,n P L,n L,n 'p p S &+ p’

where Kp is the constant of Theorem 2.1. Since t was chosen arbitrarily

we have

(3.3) ISy of = £, € (K + DE, (p;f),

and the result follows on putting £ = 2",

4, Factorization of Lipschitz Functions

The problem of factorizing Lipschitz functions on Euclidean space or
the torus was first considered by L.-S. Hahn [7]. More recently Bloom [4]
has given a factorization theorem for Lipschitz functions on an arbitrary
locally compact metrisable zero dimensional group; see also the references

cited there for other results in this direction.

2
THEOREM 4.1. Take B = 2 and let p € (1,2]. There exists g € LP(2) such

that for all f € Lip(a;q) with a > q_l there corresponds h € Lq(E) with

f = g * h, where p-l + q_] =1,

PROOF. Choose BG(q_l,a) and put
2
» —nB _
g Dl \R2 n=1 2 (Dn+l Dn)’

- 2
where Dn =D 2 . Now, from Theorem 2.4, IDnl ~ 4% 2 1og(n!2n )

2" ,n !

2
and Plancherel's theorem gives IDnI2 = (n12% 1, 1)1/2. Using Holder's

inequality we obtain for some constant K

2 2 - 2 -1Y/
EICIRIES Wi B(log((m+1) 12™ 204 )2 /P 1y 20 #2042,y () R
which is finite for 8 > (p - 1)/p = q_]. Thus g € tP(z). write

2
n<p
h = D1 * f +) 1 2 (Dn+1 Dn) * f,
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As the Fourier transforms of the (D - Dn) * f are pairwise disjoint,

n+l
we have

g*h=Dl*f+Zn=l(D -Dn)*f=1imDn*f-f,

+1
n .

the last equality following from Corollary 2.3 since S n2 f= Dn * £,
2" ,n
Also, by (3.3) and the remark following Theorem 1,

Il <D, * £l + 7%

2
nB
q 1 q n=1 2 lDn+

* £ -D x £l
1 n q

2 -2
o B(Kp + K2 n‘a+l < -

<
<lIp, » fIq +X n=1

1

since a » B, so that h € Lq(Z).

It should be noted that a version of Theorem 4.1 holds also when p = 1

since in this case for o > O,
Lip(as=) € €(2) = L' (2) *» L7(D)
by [9], (32.45)(b).

2 -
COROLLARY 4.2, Tske B_ = 2™ and p € [1,2]. Then for a > q |,
Lip(a;q)A C zr, where r = 2p/(3p - 2).

The proof of Corollary 4.2 just uses Theorem 4.1, the Hausdorff-Young
theorem and HSlder's inequality. This result has been obtained previously
([3], Theorem 3 and the remarks following it), where it was also shown that
the range of values of o could not be extended. In particular the same is
true of Theorem 4.1. Corollary 4.2 is also given in [11], Theorem ! in the
case p = 2, but for the smaller Lipschitz space obtained by taking

=(n+1)!
Bn = e .
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BERNSTEIN AND MARKOV TYPE ESTIMATES FOR THE DERIVATIVE
OF A POLYNOMIAL WITH REAL ZEROS

Jozsef Szabados
Mathematical Institute
of the Hungarian Academy of Sciences
Budapest
Starting from an old result of P. Erdés [1], we give Bernstein and Markov type
estimates for the derivative of algebraic and trigonometric polynomials with

real zeros. As for the order of magnitude, in some cases these estimates turn
out to be optimal.

1. The Algebraic Case

Denote by P(n,k) (0<k<nj; n=1,2,...) the set of those algebraic poly-
nomials p(x) of degree n which have only real roots, k of them in the interval
(-1,1), and for which max|x| <1|p(x)|<l.. P. Erdés [1] proved that if
p(x) €P(n,0) then

'@ | <3en (x| <1);

and this is the best possible estimate in the sense that there exists a se-
quence of polynomials pn(x) €P(n,0) (n=1,2,...)such that limn*“ n p;(l)ﬂe/Z.
In a joint paper with A.K. Varma [3] we generalized this result by showing

that if p(x) €P(n,1) then
lp' )| < epn (|x]<n)

with an absolute constant < >0 l). Later I was able to further extend

)

In what follows, Cys Corene will denote absolute positive constants.
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this to
czk
lp' )| <{e © /n (x| <1
whenever p(x) €P(n,k). Nevertheless, I did not publish this result because
2)

meanwhile A. Maté [2] has shown that

c3\/E)
m |p'(x)| n (Ix|<1)

provided p(x) €P(n,k), First I would like to state the following

PROBLEM 1. Is it true that

2) ‘p'(x)|<c4kn (|x] <1,

if p(x) €P(n,k) ?

I think the answer is yes, but even the ingenious method of Maté canmnot
give (2). (He used a result of D. Newman on rational approximation of |x|
which cannot be further improved.) Being rather far from the best estimate,
I can only show that (2) already cannot be sharpened, by the following

h

Example 1: Let (denoting by Péa,B) (x) the k™ Jacobi polynomial with para-

meters a,B) n-k  (2n -2k _.%.,o)

peo = (1) 2, .

Then by Szegs [4], (7.21.2), p(x) €P(n,k). Further, by Szegs [4], (4.21.7)
and (4.1.4)
| L dn-Zkty kel
p'(-1) = (n_k)(_f) -~ + 2

K+l [ 3k+l . b+l
= (=D (“ 7 "k 4)

2) Actually, he proved (1) even under somewhat weaker restrictions for the
roots of p(x), and extended the result for higher derivatives and Lp-metric.
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i.e.,

max |p'(x)|

1 x|€1
2< — <2 (0 <k<n).

To finish this section, I mention a problem concerning the pointwise

estimate of derivatives of polynomials from the class P(n,0).

PROBLEM 2. Is it true that

lp' @ | <es]l/—5 (x| <1)
1-x

whenever p(x) €P(n,0) ?
A slightly different form of this inequality (when p(x) has no root in
the unit circle, and l—x2 is replaced by (1-x2)2) has been proved in the

cited paper of Erdss [1].

2. The Trijggnometric Case.

It is easily seen that the obvious transformation x' =cos x reducing the
trigonometric case to the algebraic one does not work in our case. Therefore

we make a direct approach to the problem similar to the method of Erdds [11.

Denote by 'J?n the set of all trigonometric polynomials of degree n, and
by Tn(w) (CTn, O0<uw <) that subset which contains those trigonometric poly-
nomials of degree n which have only real roots, outside of the interval

(~w,w) 43). Generalizing the classical Bernstein's inequality

max |t'(x)| <n( max |t(x)|) (t(x)ETn),

—00<K < —00<K <™

3) For w=0, Tn(O) denotes the set of trigonometric polynomials of degree n

which have only real roots.
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V.S. Videnskil [5] proved that

(3) max |t'(x)] < 2n? cot%’- max |t(x)]| (t(x) €T ,0<w<m)
x| <w x| <w

and

, 1
(%) lt'(x)| <n l/m:'f‘% l;lla:w le| (@ ET,[x|<wcm.

The polynomial

sin 2
2

cos (2n arc cos( m ) )
sin 7

shows that these inequalities are sharp. It is our purpose to show that for

the class Tn(w), the order of magnitude in (3) and (4) can be essentially

improved.

THEOREM 1. If t(x) €Tn(w) then

max [t'(x)| < ¢, L )max lex)].
x| <w sin% x| <w

For the proof we need some lemmas.
LEMMA 1., If O0<B-a<m,t(x) ETn(o),t(x)t'(x) >0 in (a,B) and

(5) x, = sup{x : t(x) =0, x<a}

then

X-X 2n-1
sin 2l (“si;i)
[tx)<e = — |e(®)] (o <x<B).

sin

2

Of course, similar statement holds when t(x)t'(x) <0 in (a,B). Then

denoting
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x, = inf{x : t(x) =0, x>8}

2
we have
X, =X ( X—a 2n-1
in ) cos—z—)
[tx)| <e |t(e) | (a<x<x,).
xz—a 2
sin 5
PROOF OF LEMMA 1. Let
2n X~
(6) t(x) =c 0 sin 53
k=1
then
Xx- X=X,
2n \sin sin _o\2n-1 2n _ B-x
0< ::?B(; = I 3‘2 = B—z (cos—B-z—}-{-) I (l—tans—ziscot—zk) .
k=1} . Pl . PR k=2
sin sin
2 2
Here, using that 1-u<e " and
2n B~
t'(f) _
2 TB) Z] cot—; =0,
we get
2n B-x B-x B-x 2n B-
it (l-tan —5—cot 2k)< exp | - tan—— ] cot :kt
k=2 k=2
B-x B—x1
< exp tan—z- cot —— <e (x1<x<6)

which proves the lemma.

LEMMA 2. If t(x) €Tn(m) (0<w<m/2) and x°€ (-w,w) is such that t'(xo) =0

then with the notation (6) we have
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2n X -
1 leot °2xk| < 2n cot

L
5

PROOF. t'(xo) =0 implies

0)) cot — o,
k=1
i.e.,
def -X -
A= Z cot 2K - z cot kz 2
X "X, X X
> . >
cot 3 0 cot 7 0
We have

X +W w=-x
A< max min| £ cot °2 ,(2n-L) cot 20 .
1<4£2n

Here the maximum is attained when £ is one of the two integers nearest

m-xo m+x0 m—xo
2n cot 7 ) 2n sin 7 CO8—5
wx wx ’
+ .
cot 3 cot 5 sin W
Thus
w+x wW=x
cos —5— cos— 0 w
A<2n <n coti .
sinw
Q.E.D.

PROOF OF THEOREM 1. First we prove the theorem when w<m/8. We distinguish

two cases.
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Case 1: t'(x) #0 in (-w,w); say t(x)t'(x) >0. Let X, be defined as in

(5), provided -0.=B=w. Then evidently

2n X=X
t'(x) _ k
(8) 0 <2 =7 kzl cot —
X=X
< 1 cot ke 2n (x| <w).
2 X-X
x-1r<xk<x .
1 sin—
Thus we have by Leimma |
XX w=X 2n-1
n sin—y (co 2 ) n
1
[t'@) | < [e@)| —F—<e — [t (W—=
sin— sin—; sim——
= max [t(x)] .
. W
sins  |x|<w
2
The proof is similar when t(x)t'(x) <0 in (-w,w).
Case 2: t'(xo) =0,x_€ (-w,w). We may assume that t(x) >0 in (~w,w).
Apply Lemma | with a=—m,6=xo:
x-x,
sin 3
(9) 0 t(x) e % %, t(xo) (-w<x<xo).
sin 02

We now distinguish two subcases.
Subcase 2a: X~ X 2w, Then similarly as in (8), we get from (9)

0<t'x) < Zen max |t(x)] .
sin-?? | x| <uw

Subcase 2b: X, "X <w. The function
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X-u
co ————
t=3

X -u
2

@(u) = (-m<x<xo)

cot

X +x
0

2

L

being monotone increasing for | -u| < 3

we get by Lemma 2

2n X=X, X=
] cot 57— < ) cot —
k=1 x-T1< xk<x]

X=X

) )cot >
w-1r/2<xk< -w

+

- )
(x—n <xk <w-1n/2
X=X
n
2 } |ecot

*0 X1 k=1
7]

xo-xk I
2

cot

<2ncot-g-+

cot

8 X=X 2

cos Lsin
2

2

T sin 2 w
< 2n cot = + —m———e———cot = .

Thus by (9

2n x—xk . e
t(x) 2 cot 5 <n| t(x) cot§+ m t(x ))
k=1 sini °

0 t"(x) =

N -

<c7 L max [t(x)].
sin3 |x|<w

The interval [xo,w] can be treated analogously.

Finally, if w >7/8 then the interval (-w,w) can be divided into sub-
intervals of length < 7/8 and repeated application of the just proved part
of the theorem gives the desired result. Q.E.D.

Apart from the constant c_ in Theorem 1, the estimate given there is

5
asymptotically best possible when w-+0 or n-+«, This can be seen from
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Example 2: Let

tl(x) = (sin m—sinx)n—1 (sin w + sinx) (0<w<-12r-).

Indeed, then tl(x) ETn(w) and

n
max |t (x)] =2 sinnw, |t'(-w)lE 2n—1 sin" ]mcosm,
1 en 1
x| <w
thus
max [t;(x)|
[x|<w = c cos w
max [t](x)| 8 sinw ‘
x| Sw

The following problem remains open.

PROBLEM 3. What is the best constant c in Theorem 1 ?

6

2n-1

So far we have not used the (co 8'2'1) factor in the estimate of

Lemma 1. This will be done in the proof of the next pointwise estimate.

THEOREM 2. If t(x) ETn(m) then

Vi cot (w/4)
le'(x)| < e — max |t(y)| (x| <w).
2 si.n-z—x sin-‘%— ly| <w

PROOF. First we prove the statement when w<m/2. Just like in the proof of

Theorem 1, we distinguish two cases.

Case 1: t'(x) #0 in (-w,w); say t(x)t'(x) >0. Then applying Lemma I

with -a =B =w and using

(10) sin X (cosu) <

we obtain
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X-x
ec, . sin——
e | < —1— 2 |t(u)] (~0<x <w).
\/EsinmsinT
Hence by (8),
c, Vh
n 11 t(w)
0 < t'(x) < t(x) — < — | | (x| <w).
sin—; s$in —— sinw

Case 2: There exists an xOE (-w,w) such that t'(xo) =0. We may assume
t(x) >0,x € ( -w,w). Using (7) and Lemma 2 we get with lxo—xkl <7

2n X- 2n X=X X =X
0 < Z cot zxk = z (cot k = k)
k=1 k=1

-1
= 8sln pl z sin sin——s——

k=1 2 2
X ~X P X X -1
- sin 90| (sin %) ] ( )
2 2 2
X, <—u)
k
=1 x -x \"}
. WX . %k
+ (smT) z><s1n > )
x 20
x =X |
<e¢ ) 2211 lsinxo-xk|
12 . w=x . wx 2
sin ——=sin —— k=I
2 2
X -Xx
sin =2 —x
<ec 2 ) leot 2k | 4 ) o
13 sin—m_xsinw—ﬂ-[ |x -x [<1r/2 2 1r/2<|x -X |<1r
2 2 ok ok
X -x
n sin 02 cot‘—é’-
<c14 . WX . WX (-w<x<xo).
sin == sin—5—
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Thus Lemma | with o =-uw, B=x0 yields

1 2n X=X
o0<t'(x) = 7 t(x) Z cot 7
k=1

X =X

x -x\2n-1 n sin—%— cot =
<2 cos—=2 c 2 2 |t(x ) |
2 2 14 w=X w+x o

sin——sin——
2 2

Vv cot (w/2)
< ¢5s TToew '( e max |t(y)| (—m<x<xo).
sin=5= sin=5= |y <w

The proof for the interval xo<x <w is analogous.

It remains to settle the case m/2 <w<w, If t(x) €Tn(m) then

t(2x) €T2n(w/2). Applying the just proved statement for t(2x) we get

' 4
£ < e TR max fcanl (] <ol
sin=5—sin—5— lyl<w/2

i.e.,

V1 cot(w/4)
17 . w=X . w+x max |t(y)l
sin——=sin—= ]y!‘iw

[t' )< e

_yon coL W Va_cot(u/4) max |t(y)] (]x] <w).
18 . w-x . wtx l ‘<
s1n—2 sm——2 yisw

<c

Thus Theorem 2 is completely proved.

The following example shows that Theorem 2 cannot be essentially improved.

Example 3: Let

(si WX gin wx ) "
1 2

sinzn(m/Z)

tz(X) =
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Then tz(x) €Tn(w) and maxthw |t2(x)| = 1. We have

sin——s8in——t'(x) =n

(s insX sin Cic Al
w=X wx 2 2

2 2

n

COS X ~ COS W .

—_— sinx.
I -cosw

. n
sinx=+= (
2 sinzn(w/Z) 2

Put here x =y, defined by

then

(1]

(2]

[3]

[4]

(5]

_ 2sin’(u/2)

. 2 sin(w/2
cos yo=| —_— sin yON——M—)’

" Vo
w-y wty
. o . 0 .4 - . W
sin —— sin ——t (yo) V1 sin 5 .
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PROJECTIONS WITH NORMS SMALLER THAN THOSE OF THE
ULTRASPHERICAL AND LAGUERRE PARTIAL SUMS

E. Gérlich and C. Markett*)
Lehrstuhl A fiir Mathematik
Rheinisch ~ Westfdlische Technische Hochschule

Aachen

Norm estimates from above and below for partial sum operators of ultraspheri-
cal and Laguerre expansions on a class of weighted Lebesgue spaces are esta-
blished, using ultraspherical and Laguerre weights with parameters different
from the parameters of the orthogonal expansions. It turns out that a suit-
able shifting of the parameters leads to a considerable reduction of the
rate of growth of the operator norms. In this way projection operators on
weighted Lebesgue spaces can be constructed, the norms of which are smaller
than those of the corresponding partial sums. Thus first upper estimates for
the minimal projections in these spaces are obtained.

1. Introduction and Main Results

As is well known, the Fourier partial sums are the minimal projections

from C21T onto the trigonometric polynomials, but the Chebyshev partial sums

8;1/2 do not have the corresponding property with respect to C[-1,1] and the
algebraic polynomials. The latter fact has been established by Cheney and
-1/2

Rivlin [ 3] for each n by showing that the Lebesgue function of S attains

its maximum at the two end points of the interval only, a fact w;ich contra-
dicts a necessary condition for minimal projections due to Morris and Cheney
[10].

In the present paper it will be shown that a similar negative statement
holds for the ultraspherical partial sum operator S: for a>-1/2 as well as
for the Laguerre partial sums Sz for a>-1/3. In both cases we explicitely
give projection operators on the corresponding spaces with norms smaller than

those of the partial sums. Indeed, it will be shown that, on a fixed space,

*)  This author was supported by a DFG grant (Ne 171/4) which is gratefully
acknowledged.
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such "better" projections consist e.g. in partial sum operators corresponding
to a weight with parameter shifted. The main purpose of this paper is to give
a quantitative description of this effect. Concerning the convergence of par-
tial sums on weighted Lp-spaces, Muckenhoupt already tried to enlarge the
p —interval of convergence by a variation of the weight parameters. In the
Jacobi case [ 11] he succeeded, while in the Laguerre case [12,I] he could
prove that the p - interval cannot be enlarged this way.

Let Pn be the set of algebraic polynomials of degree<n, n€ P={0,1,2,..},
IN the set of naturals. By M we always denote a minimal projec-—
t i on from the given space onto Pn' By Lg(a) and Lg(u) we mean the Lebes-
gue spaces with ultraspherical or Laguerre weight, respectively, as indicated
below (cf. (2.3), (2.11)). Denoting further by C a positive constant which
may have different values at each occurrence and writing a -~ bn for two se-
quences {an},{bn} with the property that an_=0(bn) and bn:=0(an) as n>%°, our

main results are as follows:

THEOREM 1. (Ultraspherical case) Let a >-l. For each n€ N there exists a pro-

. . 1
jection operator P 'Lw(a)_+Pn such that

(1.1) ™I
n (L

<[P < C log(n+1).
n [L]

1
w(a)]

w(a)]

In particular, for a>-1/2 the IIM | are asymptotically smaller than

1
(L (ay)

the Lebesgue constants of the partial sums HSiH

a+l1/2
n s

n >,

1
(L, (a)]

THEOREM 2. (Laguerre case) Let a>-1. For each n€ IN there exists a projec-

. 1
tion operator Pn 'Lw(a)-)Pn such that

(1.2) i <ueg o <cal/S,
(Lo (Ly(a)]
In particular, for a>=-1/3 the HMnM . are asymptotically smaller than the
w(a)
Lebesgue constants HSEH I n? +1/2, n >,

[(Ly(a))

These results will be obtained as corollaries of Theorems 3 and 4 below which

describe the asymptotical norm behaviour of the partial sums with parameters
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o>a. The latter two theorems generalize results of Rau [ 13] and Lorch [7] in
the ultraspherical case and of the authors [5] , [8] , [9] in the Laguerre

case, respectively.

REMARKS. i) Theorem | was formulated for convenience only for the ultraspheri-
cal case, but it can be extended to general Jacobi weights. Moreover, Theorems
1 and 2 may be extended to Lg(a) - and Lg(a) - spaces for p>1 (cf. the remark
following Thm. 4).

ii) In contrast to the ultraspherical case, the Laguerre results are gi-
ven here in terms of spaces Lg(a) which have not been customary so far. But
these spaces appear to be particulary suited for Laguerre expansions under se-
veral aspects which will be discussed in a subsequent paper. In particular,
they lead to a marked similarity between the statements in the ultraspherical
and the Laguerre case.

iii) Besides the upper bounds of the HMnH given, it would of course be
of interest to have lower bounds, too. In this context let us only mention
that the usual tool for lower bounds of minimal projections, namely a Berman -
Marcinkiewicz - type identity, does not yield any new information here. In
fact, there exist generalizations of this identity to Jacobi and Laguerre ex-
pansions. Instead of the ordinary translation operator, they contain the ge-
neralized translation which corresponds to the respective orthogonal system
(see [2], [4] for the Jacobi case and [ 6] ,[ 9] for the Laguerre case). But for
reasons of normalization an additional multiplier operator appears, so that a
straightforward generalization of the argument used in the trigonometric case

only yields

(1.3) 1s ) <ca?* M (mEN),
L F AN LEEAPN
'w(o, B) w(a, B)
where Sg’B are the Jacobi partial sums, a=>g=>-1/2, a>-1/2, and
(1.4) 1S4 <ca®* iy (meW),
LN EANN LN EANN
w(a) w(a)

where Sz are the Laguerre partial sums, a>0. In both inequalities, however,
. . +
the left hand sides behave like n® 1/2 as n+> (cf. Thms. 3 and 4 below),

so that one is still far from obtaining a non -trivial lower bound for HMnH.
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More sophisticated adaptations of this device yield minor improvements only.

2, Preliminaries

The following definitions and formulas will be used (cf. [14]). Denoting

the Jacobi polynomials by

n
a,B _ n+a, n+8, x-1.k x+! n-k
.1 Rt = L QoD e

where o,8>-1, x€[-1,1], n€P, the partial sums of the Jacobi expansion of

a function f are defined by
1
Sg’B(f;x) = f f(t) Kg’B(x,t) wa’B(t)dt:,
-1
vPe) = 0% b,
(2.2)
n
a,B _ a,B -l a,B a,B
K> (x,t) = kgo (") B TR (),

2% B L bt 1) T (k++1)

(2k+a+8+1) T (k+1) T'(k+a+p+l)

1
8= e P01 ? W Bax -
_.] N

Here f is supposed to belong to one of the spaces

1
(50 [ 100 P Pax) /P ewl,  1<p <
p - -1
(2.3) Lw(a,b)
{f; ess sup |f(x)| <=}, p==
-1 <x<]
where a,b>-1., In particular, a#a, B#*b are admitted, as far as (2.2) makes
sense for such f (further restrictions will be made in Thm. 3). One of the
two parameters will be dropped in order to denote the ultraspherical case of
(2.2) and (2.3), thus 8 = s*% , LP

=Lp
w(a) w(a,a
(4.1.3), (7.32.5), (8.21.18), (7.34.1)], the Jacobi polynomials satisfy

)’ etc. According to [ 14;

(2.4) Pg’ﬁ(x) - (-1)“95”(-;:) (-1<x<1, n€P),

a/2=HA g <1

n—l/z(l-x)
(2.5) lp:"’(x)| <c

n , l-n-2<x<l (n€EN),
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n®2H 2y <okl /2
(2.6) max BP0 (1-0Y| ~
0<x<l M2 ausarl/2 (w30, naw),
nG-ZU"Z , 2u<a-3/2
1
2.7 / IPz’B(x) l(l-x)udx ~ n_llzlog n, 2p=a-3/2
° -1/2
n , 2u>0-3/2 (u>-1, n>>).

The Laguerre polynomials and - functions will be written as

n k
(2.8) e = ] OE L
k=0 :
a _ 1/2 =x/2_a/2. a
(2.9) £n(x) = (n!/T(n+a+l)) e X Ln(x),

respectively, where a>-1, x>0, n€ P, and the partial sums of the Laguerre

expansion of an f are defined by

Sg(f;X) = £ f(t)Kg(x,t)e-ttadt,

(2.10)

n
Kg(x,t:) = kzo T(—k%c!'ﬁ-_l')- Lz(x)Li(t)o

Here f is supposed to be a member of one of the spaces

{£;{ f [f(x)e_X/2|pxadx}]/p<°°}, 1<p <
o
P =
(2.11) LW(a) =

{f; ess sup If(x)e_x/2| <o}, p==

x 20
as far as (2.10) makes sense. For properties of the Laguerre polynomials to

be used we refer to [9].

3. Norm Estimates for Partial Sums, Proof of Theorems 1 and 2

The following theorem describes the asymptotic behaviour of the ultra-

spherical partial sums Sz as operators on L:;(a) for a=a>-l.
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THEOREM 3. (Ultraspherical case) For each a=>a>-1 one has

n23—a+!/2’ a<a <2a+l/2
(3.1) I Si" , ~{ logn , 2a+l/2<a<2a+3/2
(L 1 P
w(a) o 2a 3/2, «>2a+3/2 (n +o),

In particular, for o =a this covers the known rates of increase of the

Lebesgue constants obtained by Szegd,Rau,and Lorch (cf. [13],[7]), namely

na+l/2 . na+l/2

c, o( ), a>-1/2

a -
(3.2) I Snll =

1
[Lw(a)] (4/112) log n+0(1), a=-1/2 (n+%).

The counterpart of Thm. 3 for the Laguerre system is

THEOREM 4. (Laguerre case) For each o=>a >~ one has

n2a—a+l/2 , a<a <2a+l/3
, N n'/8 , 2a+1/3<q < 2a+3/2
(3.3) "Sn" 1 ~ 1/6
[Lw(a)] n logn , a=2a+3/2

na-2a-4/3 , a>2a+3/2 (n +),
The similarity between the ultraspherical and Laguerre cases mentioned
above, which is due to the particular norm L':)(a) chosen here, can be read off
from the exponents in the first lines of Thms. 3 and 4. Thm. 4 also includes
an estimate for the usual type of norm, as employed e.g. by Askey and Wainger

{1l, i.e., the case a=a/2>0, namely

(3.4) 1S°% ~n!/? (0 +%)
npgt ]

w(a/2)

(cf. [8]). The particular case a=a/2-1/4>-1/2 has been treated in [ 9] ; here

(3.5) %% ~nll® (n+).

1
[Lyyasa-174) )
The analogues of Thms. 3 and 4 for Lp—spaces, p>1, are easily derived by the

familiar interpolation and duality methods, by making use of Muckenhoupt's re-



Gorlich/Markett 195

sults on norm convergence [11], [12,II].

PROOF OF THEOREM 3. We use the representation of the operator norm via the Le-

besgue function An(t):

[}
I Snll = sup An(t) ,

1
[Lw(a)] -1<t<]

1
A(6) = A (t;0,8) = ;ﬂ |Kg(x,t)l(l-—x2)a dx (1-t

(3.6)
Z)a—a

In case a =a=>-1/2,as a consequence of the positivity of the Jacobi transla-
tion operator [4], the supremum is attained at t =+1. Hence, in view of [ 14;
(4.5.3)],

-2a-1 T (n+2a+2) IIPa+1,a|I

a ——\nrears)
3.7) s i T(a+1)T(n+a+l) n

1
(Loca)

and by (2.7) an evaluation of the norm of Pi+

= A1) =2 Lo
La(a)

]

l,a yields (3.2).

In the remaining cases we need an estimate of An(t) for all t €[~-1,1].

For the upper estimate weuse (cf. (2.4))

1
(3.8) sup A (t) < sup 2 f |Ka(x,t)|(1<—x2)a dx (1 _tZ)a—a
-1<e<) -1<t<1 o ¢

and represent the kernel by means of the Christoffel -—Darboux formula [11;
(2.6-10)] as

K (x,t) = a_h (n,x,£) +b [hy(n,x,t) +hy(n,x,t)],

h,(m,x,t) = (n+1) Po(x) PO(E),

(3.9)
a+]

hy(n,x,8) = n(1-t%) B2 B 1(e) (x-0)7),

h3(n,x,t) = hz(n,t,x),

where the a, bn are uniformly bounded in n. Since h, and h3 contain singula-

2
rities at x =t, we split up thé integral into
1 a 2.a 2,0-a
(3.10) f|&$x¢)“l-x -t ax=( [ + [ }.. &
) v () fu (o
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where
{(x>0; |x-t| <el, t€[-l,l—n-2)
U (t) =

(t-¢,1] , tel1-n 1,

1 =2
EUe(t) =[0,1]\ Ue(t), e = g(n) = 70 .
The first integral in (3.10) is now easily seen to be uniformly bounded with
respect to t, in view of (2.5-7). Using (3.9), the second integral in (3.10)
may be estimated by

3
f ... dx<C Z J' th.(n,x,t)!(l—x"z)a(l--t:?')m-a dx
fu j=t fu_(v)
3
=Cc ) I,
j=
say, the first term of which having the upper bound
1:12a-oz+1/2 ., a<a<2a+l/2

1 , 2a+l/2<a <2a+3/2

log (n+l) , a = 2a+3/2
a-2a-3/2
n Ty

a> 2a+3/2,

uniformly in t, t €[-1,1}. A careful estimation of 12 and 1, carried out by
means of (2.5-7), separately on the t -invervals [-1,-1/2], (-1/2, l-n_z),
[l—n-2,1] , then yields the same bound as obtained for I,, except for the fact
that the number 1 in case 2a+1/2<a <2a+3/2 has now to be replaced by
log (n+l).

For the lower estimate the inequality
a,-1/2)

(o/2] [Lé(a,-l/Z)]

(3.11) s > s
n [L] ]

w(a)

is used, which may be established as follows. Setting f(x) =g(2x2— 1),

1 1 . . .
x€[-1,1], for some gELw(a,—l/Z) one has fELw(a) and, by the first identity

. Qrc.oy o a,=1/2 vl _
from [ 14; Thm, 4.1], Sn(f,x) _S[n/2] (g;2x" -1). Then
a,=1/2 a a+l/2
IIS[n/2] gIILl < "Sn"[Ll 2 Il £} i

w(a,=1/2) w(a)] Laca)



Gorlich/Markett 197

o
=ls It el

[Loy)  Loga,-172)

which proves (3.11). The right hand side of (3.11) can now be estimated from
below in several different ways. In order to verify the middle line of (3.1)
we show that the right hand side of (3.11) is always bounded from below by
C:log (n+l). Indeed,

»=1/2 -1/2, o

If = {8
[n/2] [a/2] |
[Lw(a -1/2)]

Ist

[Lw( 1/2, a)]

-1/2,a
sup | " (x,t) | (1 -%)
1<t <1 - KI“/ZI

"”2(1 +x)2dx (1+0)*72

1/2,a

‘K[n/zl SHIES I

\%

(1 +x)a dx 2%78

(3.12)

{KI'ZI“( =020 0% ax

\%

-a-1/2 T([n/2] +a+3/2)
r(1/2)T([n/2] +a+1)

1/2,0

=2 [n/2]

e 1

[Lw( 1/2,0))

(4/7%) log n+c_+0A%ED) 0372, (n +)

where in the last step an asymptotic expansion due to Lorch [ 7,II] has been
used.

The first line of (3.1) is obtained by an application of the partial

sum operators Sa’ -1/2 to the functions
u _I'2n+o+u+3/2) jo+u+1,-1/2
(3'13) on(x) = I'(2n+1/2) Pzn (X) (]J€]N),

which, according to [14; (9.4.3)], may also be written as

2n
u = (2n+k+a+u+3/2) I'(k +o +1/2) -1/2
£20®) kzo CrErTry Rl MG LR Vb ey r) ma A O
where Ak = (n:k)‘ After a | fold partial summation one obtains
(3.14) Sa’ 1/2 Z T'(3n~j+a+u+3/2) Au-JI‘(n+a+3/2) PG+J+1’_1/2(x).

I'(3n+a+3/2) n+jl (n~j+1/2) "n-j
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Setting u=[2a-a+1/2] +1, it can be shown that the term for j =0 is the

principal one. So, in view of (2.7),

a,-1/2 a,-1/2_u u
It s, II[Ll : = | s, f2nll /1l on"
w(a,-1/2)
I'(3n+a+u+3/2) ,u T'(n+a+3/2) ,_a+l,-1/2 u
(3.15) =>C TOnras3/) An T IIP (A fzn"

>Cn2a-ot+l/2 (a<a<2a+1/2, n+),

The third entry in (3.1) is obtained in a similar way, using the test

functions f (x), p=[a=2a-3/2] +1, and the dual norm

15520 -0
(!,—]/2 - n L
s [ = sup —
(o, -1/} £40 HE@U-0"TA
@ae > usPT A o a-n® T ne a0t T,
L L

a-2a-3/2

Z2Cn (a>2a+3/2, n+=).

This completes the proof of Theorem 3.

PROOF OF THEOREM 4. Proceeding as in the ultraspherical case, we start with
the representation of the operator norm by means of the Lebesgue function,

which we denote by An(t) again, thus

= sup A (t),

I s;u
t=20

(Ll

w(a)!

_ . _ * -x/2 a -t/2 a-a
A_(t) = A (t;0,2) -£ |/<‘;(x,c)|e x2dxe /%72,

(3.17)

As for the ultraspherical system, the case when the parameters o and a coin-

cide (0>0) is exceptional in the sense that the Lebesgue function attains its

supremum at the end point t =0 of the interval. (This is one of the properties

to be proved in the forthcoming paper mentioned.) Hence

a+l
I

1
w(a)

(3.18) 3 ,  =a(0) = _(;?1)‘“

[Lw(a)] L
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Using [9; (2.9)] for the rate of increase of the latter term, the assertion
for a =a follows.
In the general case, we have to proceed as in [9; Thms. 1 and 3] where
the particular case a=a/2~1/4, 0. >-1/2, has been treated (note that
1 .1 . e . . .
Lu(a) —Lw(a/Z))' We indicate the main steps only. The Lebesgue function in

(3.17) may be written as

a=-o/2 dx.

© n

(3.19) Ay =[] & )|/t
n k k

o k=o
In order to deduce an upper bound of An(t) for each t >0 we use
- Il:=o fﬁ(x) ﬁi(t), as well as
estimates of | tn(x)| and | £§+l(x) - £z_l(x)| and of their norms, which can
be found in [9; (2.11), (2.5-6), (2.9-10)] (cf. also [12,II}]).

For t >3v/2, v=4n+20 +2 one immediately obtains

the Christoffel - Darboux formula for the kernel Z

2 a a-a/2 a a/2-a
A () < Yo 2, (0x Iys sup [ (0)t | <c.
k=0 L t>3v/2

For 0<t<3v/2, in view of the singularity at x=t in two terms of the

Christoffel - Darboux formula, we make the decomposition

(3.20) A () = { /

+ [ }o..dx =L (t) +L,(t),
Ue(t) CUe(t) : 2

say,where

{x=>0; |x-t]|<e}, t>1/v
U (t) =
[0, t+€), O<t<I1/v,

fu() =10\ U _(8), e=1/(2v).

Now a rough estimation shows that Ll(t) is uniformly bounded for t €[0, 3v/2].
In Lz(t), we represent the kernel by the Christoffel - Darboux formula and
make estimates for the resulting three terms, the first of which already fur-
nishes the final upper bound as given in (3.3), by (2.6-7). The other two
terms have to be treated separately for t €[0,1/v], (1/v,v/2], (v/2,3v/2].
Since the Laguerre functions show a different behaviour on each of these in-
tervals, also the integrals have to be split up accordingly. The upper esti-

mate given in Thm. 4 then follows by carefully estimating the various terms
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obtained.

As tothe lower estimate, the second and third entry of (3.3)
can be obtained as in [9; (5.9)] by estimating the Lebesgue function in (3.19)
at the parﬁicular point t =v(a), and using asymptotic expansions of the
Laguerre functions. The first entry in (3.3) follows by an application of Sz
to the test functions

(3.21) £ =13, (HEN),

by observing that (cf. (3.13-14))

H 141
(3.22)  SE(Eh w) = 2 A LG = Z " ng* x).

For p=[2a-oa+1/2] +1, the first term is the principal one again, and thus

with [9; La. 1] it follows that

a a U
IlsnlllLl | > "Sann"Ll / "on"Ll
w(a) w(a) w(a)
(3.23) >c A¥ i /st
n n L1 Ll
w(a) w(a)
>Cn23—(!+1/2 (a<a<2a+1/2, n-)un).

The last entry in (3.3) is obtained by estimating the dual norm from below by
means of the test functions f;n, u={oa-2a-4/31 +1, as in (3.22-23):

HSg(f;x)e_x/zxa_a" o
1s2 = sup L

1 -x/2 a-a
[L ] f£#0 tE£(x)e x
w(a) L
(3.24) 12 0™ B0 i e B
L L
>c not-2a-4/3 (a>2a+4/3, n+).

PROOF OF THEOREM 1. If in Theorem 3 the parameter a of the space L;(a) i
fixed, the Sg, for the various o admitted, form a particular set of projec-
tions, containing several elements which liemuch closer to the minimal pro-

jection than the Si. For example, choosing a=2a+1 for a>-1, Thm. 3 gives
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1s2at < C log (n+l) (nEW),

n 1
[Lw(a)]

which, for a >-1/2, increases less rapidly than the Lebesgue constants

s (cf. (3.2)).

n [Ll ]

w(a)

PROOF OF THEOREM 2. Choosing Pn:=S§a+l for some a >-1, assertion (1.2) follows

immediately by Theorem 4. By Theorem 4 again, the behaviour of the Lebesgue

constants is

na+]/2, a>-1/3
s ~
[Lyp(ay! 276, S1<a<-1/3 (0 )
which increases more rapidly than HSia+1H 1 ,provided a >-1/3.
[Lw(aﬂ
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THE REGULAR CONVERGENCE OF MULTIPLE SERIES

Ferenc Moricz
Bolyai Institute
University of Szeged

Szeged

Denote Zd the set of d -tuples k —(k ,...,k ) w1th positive integers for coor-
dinates. A d -multiple series 2 U —Z{u t k€Z } where the summation is exten-
ded over k€Z + is said to converge regularly if for every positive n there
exists a number N =N(n) so that li{uk kGER}I <n for every rectangle

R= {k€Z+. £<k<m} provided max(l1 ..es€.) >N and m>£. Convergence in
Prlngshexm s sense follows from regular convergence, “but the converse implica-
tion is not true in case d>2., A benefit of the notion of regular convergence
is that it makes possible to extend the validity of Kronecker's lemmas from
single series to multiple series and these extensions meet a number of appli-
cations, among others, in the theory of multiple orthogonal series and of
random fields.

1. The Notion of Regular Convergence

Consider a single numerical series Z:;l u,. The statement that it conver-
ges to a finite number s, roughly speaking means the following:

(i) The partial sums su1=z?=l u, are as close to s as we wish if m is
large enough;

(ii) The remainder sums 22=1 u, (= sn-sm_]) are as small as we wish if
n and m are large enough, n=m.

It is well —known that (i) and (ii) are equivalent to each other. But the
situation is different in the case of multiple series.

Let Zg be the set of d - tuples k,=(k],...,kd) with positive integers for
coordinates, where d is a fixed positive integer. As usual, we write kim=
(k +ml,...,k +m) k<m iff k. <mJ for each j, and N=(N,...,N) for N=0,1,....

* = =
Finally, we set k* =max, <j<d kJ and ky =min, <j<d kJ

We shall consider the d -multiple numerical series
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Moéricz
©o o0
m ) =) ... ] u
d "k . L MK,k
K€z, k=l k=l d
with the rectangular partial sums
) Lot ;
s = u, = u (EEZ ).
Boi<k<m X k=l kgl 1ok *
More generally, given a rectangle R={k€ Zi : L<k<m}, set
d
s(R) = ) u (Lm€Z, ; L<m).
KER K

It is clear that s(R) =s in case £= 1, further, s(R) can be considered as a
remainder sum of series (1) in case £* is large enough.

We remind that the multiple series (1) is said tobe convergent
in Pringsheim's sense tothe sums if for every positive

number n there exists a number N =N(n) so that

|sm-s| <n whenever m, >N,

~

or equivalently, if

|sm—sn| <n whenever m, >N and n, >N.
~

In other words, convergence in Pringsheim's sense means that the rectangular
partial sums s, are as close to s as we wish if each coordinate of m is large
enough.

We shall say that the multiple series (1) regularly conve r-

g e s if for every positive number n there exists a number N =N(n) so that
[sR)| <n whenever £* >N and m>£.

We recall that £ is the bottom left -hand corner of the rectangle

R={k€ Zi :L<k<m}, while g is its top right -hand corner. Thus, regular
convergence means that the remainder sums s(R) are as small as we wish if at
least one of the coordinates of the bottom left -hand corner £ of the rectang-

le R is large enough.

It is not hard to see that convergence in Pringsheim's sense follows

from regular convergence. The converse statement is not true in general. For
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example, the double series indicated in Fig. 1 converges to O in Pringsheim’s
. iy . m n
= =0 i >
sense, since its rectangular partial sums Sun = Lk=1 Z£=1 L) 0 if m2>2 and
n>2; but it fails to converge regularly, even its terms are not bounded. We
note that if the terms w of series (1) are of constant sign, then these two

. ~n .
notions of convergence coincide.

Z

Fig. 1: Uep (k,£=1,2,...)

The definition of regular convergence is due to Hardy {3] in case d =2,
and to the present author [5] in case d>2. The former paper, unfortunately,
had escaped the attention of the present author, and this is the reason why
this kind of convergence of multiple series was rediscovered and called in
[5] convergence in a restricted sense.

We remark that in [3] regular convergence is defined by an equivalent
condition which is true only for d =2, namely: "A (double) series is said to
be regularly convergent if it is convergent in the ordinary sense (i.e. in
Pringsheim's sense) and all its rows and columns are also convergent." The
treatment of the case d >3 is not clear from here. In fact, the triple series
Yl;l 21;1 z:-—-l W om whose terms U pm for m=1,2 are indicated in Fig. 2 and
“k£m=° for m=3,4,... is such that it converges to O in Pringsheim's sense
and all the single series Z;___l U fm (for each £,m=1,2,...), Yl;l U (for
each k,m=1,2,...), and :ﬂ uktm(for each k,£=1,2,...) converge, but the
triple series in question fails to converge regularly.

The reason why this triple series does not converge regularly is that the
double series Z;;] YL] Y pm does not converge even in Pringsheim's sense for

m=1 and 2. Indeed, the following theorem holds.



206 Moéricz

L L
0 0 0 -1 1... 0 0 0 1 -l...
0 (] 0 1 -l... 0 0 0 -1 l...
0 0 -1 1 [¢] O... 0 0 1 -1 0 O...
0 0 1 -1 0 O... 0 0o -1 1 0 O...
-1 1 0 0 O... 1 -1 0 0...
1 -1 0 0 O... -1 1 0 O...
k k
Fig.2:
m=1: f’k@i_ (k,£=1,2,...) m=2: W gy (k,£=1,2,...)

THEOREM 1. The d -multiple series (1) regularly converges if and only if

(i) it converges in Pringsheim's sense,and
— —— ,—

(ii) the (d-1) -multiple series

-] -] (-] -]
ol syl o) o ukl,...,kj_l,kj,kj+l,...,kd

regularly converges for each fixed value of kj =1,2,... and for each
j=1,2,...,d.

The following corollary hence follows by induction.

COROLLARY 1. Let U={j],...,je} and v={£e+1,...,£d} be two disjoint subsets
of {1,...,d}, where l<j, <... <je<daLd 1<[‘e+l <... <£d<d with 1 <e<d

(V is empty in case e =d). The d -multiple series (1) regularly converges if

and only if the e -multiple series

e Low

k., =1 k, =1 d
g Je
converges in Pringsheim's sense for each choice of U with 1<e<d and for each
fixed valueo_f_kz =1,2,00030003 k£ =1,2,... .
e+l d

In addition, if series (1) regularly converges and
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z coe z u =8 ’

K. =] K. =1 kl’ .,kd k£e+],...,k£d

3 Je

then

00 o0 [~

) vee ) s = J . u (1<e<d-1).
- o1 kp o seeank d 'k
k[' 1 kZ =1 £e+1 Zd .IS€Z+

e+l d
The main goal of the present paper is to point out that the notion of re-
gular convergence is more appropriate in the study of convergence properties

of multiple series than the notion of convergence in Pringsheim's sense.

2. Kronecker's Lemmas for Multiple Series

Beside series (1) we shall consider the tranformed series

%
@ (bt T
~ + ~
with the rectangular partial sums
u
K d
s = -_— (EGZ )
Boi<k<z 'k )

where X = {Ak tk€ Zi} is a given d -multiple sequence of positive numbers.
As usuzl, the finite differences A&:)‘k and Ve}‘k are defined as follows,
where ¢ = (el,...,sd) is a d - tuple with €, =0 or 1 for coordinates. In case

E=9. set

- d
Bodye = Xy (kezd),

~ ~

while in case g #0 let ej =] iff j =jl""’je with 1<e<d and set

d
AX =8, (8. (...(8.
e ™ 85, (85 (e85 10-00) (kezd),
where

8.\ = A - ;
T T L TWTTIp Kpsoenske okopke punnsky

finally set

d .. .
VA =4 ('15‘€Z+; kj>2 for _‘|=Jl,...,_‘|e).
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Observe that the order of succession 0f the "operators™ §, ,...,6J. is .indiffe-

1 e
rent.

The use of the forward and backward Abel transformation formulas leads to
expressions for the rectangular partial sums s, of series (1) in terms of the
remainder sums

Y

£<£<2 %

of series (2), in particular, in terms of the rectangular partial sums Sm’

S(R) = S(£,m) = &mezs, L<m)

and in terms of the differences of the sequence A.
Indeed, the forward Abel transformation formula can be given as

€ +...+€

_ iy 1 d ¢ ()
(3 s, = L -1 I~ 880
® g EooosEk
where the sum 2 is extended over all 24 possible choices of g with EJ =0

or 1 for coordinates; Zk(~) means the single term Sm)\ in case £ =0, while in

~

case £ #0 with EJ. =1 iff J—_]l,...,_‘le it means the € - fold sum

m, -1l m., -1

I Je

Z« cer ) A with k,=m, for £+j,...,j .
k. =1 K, =1 K&K Lt ! ¢
1 Je

Ij mJ.=l for at least one j=jl""’je’ then this e - fold sum is neglected. For

instance, in case d =2

mil nil
S (A - +A ,)
Smn kel £=1 K\ k41,841 “k41,8 7 k 241 " "kl
m-1 n-1
i kzl Skn(}‘kﬂ,n z Sm!l(xm 241 " ) *Spp?

provided that m=>2 and n=>2, while if, e.g., m>2 and n=1, then
m-1

=] s (A -
ml =L Tkl k1 Kkl

The backward Abel transformation formula is the following:

] )+S A

ol

_ (e)
(4) SE"E 25(‘(‘“)55’

~

(=%

where the sum Zs: is again extended over all 2 possible choices of ¢ with

Ej =0 or 1 for coordinates; (E)Zk means the single term S(L’E))‘l in case g=0,

~
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while in case ¢ #0 with ej =] iff j =j1,...,je it means the e -fold sum

m, m.

Jl Je

I ... ] s(k,m)V A with k,=1 for £#j,...,j. .
k, =2 k., =2 £k £ : €
3 Je

If mj=l for at least one j=j],...,je, then this e - fold sum is also neglected.

These Abel transformation formulas in case d =1 are wellknown (see, e.g.,
[1, p.71]), and their various forms in case d =2 have been used by a lot of
authors. We only mention here that formula (3) in another notation eccurs in
[2] , while in this form it is in [6] . As to formula (4), see also [6].

After these preliminaries we turn to the Kronecker lemmas. A benefit of
the notion of regular convergence is that it makes possible to extend the vali-
dity of Kronecker's lemmas from single series to multiple series and these ex-
tensions meet a number of applications, among others, in the theory of multiple
orthogonal series and in probability theory (see [6]).

One of the Kronecker lemmas in case d =1 states that if {Ai: i=1,2,,..}
is a non -decreasing sequence of positive numbers, tending to infinity, then
the convergence of the series 2‘;1 ui/)\i implies the estimate sm=z?=l u, =
= O(Am) as m+*> (see, e.g., [1, p. 72]). The generalization of this lemma

whose proof is based on (4) reads as follows.

THEOREM 2. Let A be a d-multiple sequence of positive numbers such that for

each g #0 with Ej =0 or 1 for coordinates, eJ. =1 iff j=j1,...,je where

1<e<d, we have

non -negative if e=1,

(5) AE)‘}E,'—S
of constant sign in k if e»2,
and
(6) A, >0 as k¥ »e (or ky +).

k

If the d -multiple series (2) regularly converges, then

(7) s =

m U © 0()‘2) as m* > (or m, +*).

)
A<k<m ~
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Another Kronecker lemma in case d =1 asserts that if {Ai} and {vi} are two
non - decreasing sequences of positive numbers, Ai tending to infinity as i -+°°,
. m . . . m

then the e-stlmate sm_Zi=l ui/Ai—o(vm) implies the estimate sm—zi=l u, =
=0(>‘mvm) as m >, Making use of (3) this lemma can be generalized in the follo-

wing form.

THEOREM 3. Let A =“k :5623} and v ={vk tkE€ Zi} be two d -multiple sequences

of positive numbers Such that for A conditions (5) and (6) are satisfied, and

for v we have

v, <% whenever k <m.
< shenever k<
if
P
(8) S = —_ = 0(v) as m* >,
Bo<k<g xR
then
(9 s = ) u, = 0(Av) as m¥* > (or m, +°)
\ —_— —_— K *
b 1<k<m k Do

Theorems 2 and 3 seem to be new and a detailed proof of them will appear
in a forthcoming paper [6] of the present author.

We are going to make a few remarks. Conditions (5) are obviously satis-

d (i -
j=1 M O T Ve, O M

{)‘l(cj) :kj =1,2,...} and {ui :1,2,.3.} are non -decreasing sequences of posi-

fied, among others, if )\ =1 or A or A = Hyko where each

]
tive numbers.
It is somewhat striking that Theorem 2 is no longer true if series (2)
converges in Pringsheim's sense only. This is illustrated by the following

example, Let d =2 and

- lk/2 +14/2]

A (k,£=1,2,...),

ke

where [ ] means the integral part. Conditions (5) and (6) are clearly fulfilled.
Let

k+£ ,2[ (k-1)/2]

-1) Mg for £=1,2; k=1,2,...;

Ykt =
0 for £=3,4,...5 k=1,2,... .,
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On the one hand,

m n

S
mn

Uk

= —— = 0
k=1 221 Mt

form=1,2,...; n=2,3,...

(see Fig. 3). Consequently, the double series k=1 2};] ukl“kﬁ converges in

Pringsheim's sense. On the other hand,

2m

s. -
2m,n

(see Fig., 4). Thus

L

n

k=1 £=1

Ykt T %wm' D

0 0 0 0...

0 0 0 0...

-1 1 -4 4 -16 16...

1 -1 4 -4 16 -l6...
k

lim s2m!2m -

m->° 2m,2m

form=1,2,...;3 n=2,3,...

m>o 74"

i.e. statement (7) does not hold even in the special case m=n.

£
0] 0 0...
0 0 0...
-2 4 -16 32 -128 256...
1 =2 8 -16 64 -128...
k
Fig.4 : Up
el R

The same example shows that Theorem 3 becomes also false if condition (8)

is required in the less restricted case when m, »*. To be more concrete, since

S
m

even with v' =2
mn

1/3
mn

lim

m>® 2m,2mv2m,2m

s2m,2m

which is opposite to statement (9).

m >

gh-1

= ’
7-48.423

©o

n=0 for n=2, we have (8) with val as min(m,n) +°, On the other hand,
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3. Regular Convergence of Multiple Orthogonal Series

Let cp={cpk(x) tk€ Zi} be a multiple orthonormal system (in abbreviation:

ONS) on Id =[0':1]d, the unit cube in the d - dimensional Euclidean space, i.e.,
0 if k+m,

/ 9 (00, (x)dx =

¢ | if k=m (mezd).

We shall consider the d -multiple orthogonal series
(10) Y 43,0 (x)
 é2d e S

where a={ak tk€ Zi} is a d -multiple sequence of numbers (coefficients). The

rectangular partial sums of (10) will be denoted by

d
sp(x) = ]<E<m 2, () (me€z)),

and more generally, if R is a finite rectangle in Zi, then set

s(R3x) = aktpk(x).

!
kER ~~

In this section we follow the definitions and arguments due to Tandori
[9], [10] in the special case d =1. Denote by M the class of those d -multiple
sequences a for which series (10) regularly converges a.e. for every d —multip-
le ONS ¢ on Id. The set of measure zero of the divergence points may vary with
every .

The embedding MCK2 follows from the fact that the d —multiple Rademacher
system {rll&(x) =II§=l rk.(xj), x=(x1,...,xd)} is such that the series

EkEZd a r (x) diverges in Pringsheim's sense a.e. for every a with

o
P

+ ~ ~
2—0:1
Igezd % =™

For any given d -multiple sequence a of coefficients set

(11) ||a||2=sup sup f ( max ls(Q;x)|)2dx (<),
R o Id QcR

: . o s .d
the first supremum being taken over all finite rectangles R in Z,, the second

supremum over all ONS ¢ on Id, and the maximum over all rectangles Q contained
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in R.

The main result which is proved in [7] reads as follows.

THEOREM 4. (i) a€M if and only if llall <, and

(ii) M endowed with the norm |l ‘|l is a separable Banach space.

Part (i) of this theorem says, roughly speaking, that the a.e. regular
convergencé of series (10) for every ONS on Id is equivalent to the following
"boundedness' property: the sums s(Rjx) are majorized by some square integrab-
le function on I, the square integral of which depends only on the sequence
a of coefficients.

Using the d -dimensional generalization of the famous Rademacher - MenSov
inequality (see, e.g., [ 5, Corollary 2]), it is not hard to give an upper
bound for llal. Namely, for arbitrary a we have

(log 2k;) 3172,

1

lI:ﬂﬂ-

2
(12) lall < ¢, ( )
GZE ak'_]

where C1 is a constant depending only on d.

An exact lower bound for llall is not known in general. But in the special
case when {la.k| kEZ } is non - increasing in the sense that |a |>[a l when-

ever k<m, an opposn:e inequality to (12) is true:

hal >c,( ] a 2

d 1
I (log 2k) )
€Z =

1

=N

Z

j

where C2 is a positive constant also depending on d. This lower estimate
follows from the results of [8] in a routine way.

This approaching method which uses the notion of Banach space in the stu-
dy of convergence of orthogonal series, makes it possible to deduce the follo-

wing theorems (for the case d =1, see also Tandori [10]).

THEOREM 5. Let a={ak :hEZi} ﬂd b ={bk :hez‘i} l’f‘._t_‘E d -multiple sequences
of numbers for which |a, | <|b,|, k€20.7If beM, then a€M and lall <Ibl.

THEOREM 6. (i) If a€M, then there exists a d -multiple sequence u= {uk 'k€Z}

of positive numbers, uk tends to infinity as k* +%, such that {akuk k€Z Y emM.
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(ii) If adM, then there exists a sequence u with the same properties as

in (i) and such that {ak/uk :’ISEZi}CM.

It is a remarkable thing that Theorem 4 remains valid if regular conver-
gence is replaced by convergence in Pringsheim's sense in it. This can be simp-
ly motivated by the fact that the norm defined by (11) is equivalent to the
following one:

2 2
flally = sup sup f ( max |sk(x)|) dx,
nezd o 1¢ A<k<p *~

where

max |s (x)| = max max |s

l<k<mp ~ 1<k, <m 1<k,<m

Kpseensk .
150 aS%

d

Thus we can obtain the following

COROLLARY 2. Let a d -multiple sequence a is given. If the a.e. convergence of

series (10) is considered for every ONS on Id, then regular convergence and con-

vergence in Pringsheim's sense are equivalent.

For individual ONS the notions of a.e. regular convergence and a.e. con-
vergence in Pringsheim's sense may essentially differ from each other. We pre-
sent a simple example in case d =2. Let {ri(x) :i=1,2,...} be the Rademacher

system and divide it into two disjoint infinite subsystems: {ri (x) tk=1,2,...}

k
and {r (x) :p=1,2,...}.It is well ~known that the series 2‘;1 airi(x) conver-
P
ges a.e. whenever Z:=l ai <, It is clear that every subsystem {ri (x)} also
k

possesses this property. Further, let {w (x) :i=1,2,...} be an ONS such that
there exists a sequence {A ti=1 2,...} of coefficients in K such that the

series i=1 Aiwi(x) diverges a.e. on I. Then we set for k=1,2,...

r, (2x) for 0<x<1/2,

1 (%59) = ‘
W (2x=1)  for 1/2 <x<1;
r, (2x) for 0<x<1/2,
Gp (%53) = *

—q;k(2x—l) for 1/2 <x<1;
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and for £=3,4,...

V2 r, (2x) for 0<x<1/2,
Ipk, L)

0 for 1/2<x<1,

tpke(x,y) =

where p =p(k,£) is a one - to - one mapping of {(k,£) :k=1,2,...; £=3,4,...}
onto {p:p=1,2,...}. It is easy to check that {(pkz(x,y) : k,£=1,2,...} is an
ONS on 12. If we set

ak1=ak2=Ak (k = 1,2,...) and ak£=0 else,

then the double series Z:=l ZZ=1 akzmkz(x,y) converges a.e. in Pringsheim's
sense, but does not converge regularly on a set of measure at least 1/2. It is
only a difficulty of technical character to modify this example so as the re-
sulting orthogonal series converge a.e. in Pringsheim's sense and do not con-
verge regularly a.e.

This phenomenon cannot occur in the case of double Fourier series of

functions from LZ(IZ). In fact, if f(x,y)ELz(Iz) and

(13) £(x,y) ~ z , z akee-Zﬂi(kx+£Y)
k=—00 [=-00

is its Fourier series (for convenience we use complex notation), then
z:=_m fz____“ |ak£|2 <o, Therefore, by the celebrated result of L. Carleson,
all rows and columns of the double series on the right of (13) converge a.e.
It is an open problem whether the a.e. regular convergence and the a.e.
convergence in Pringsheim's sense are equivalent to each other or not for the
multiple Fourier series of functions f(xl,...,xd) ELZ(Id) in case d=>3.
Finally, we remark that for double Fourier series of functions
£(x,y) EL(IZ) the above two kinds of convergence no longer coincide. Let us
take two functions: g(x) and h(y), g(x) is drawn in Fig. 5, while h(y) EL(I)
is such a function that its Fourier series boundedly diverges a.e. (see, e.g.,
{11, p. 308]). Then f(x,y) =g(x)h(y) EL(IZ), whose double Fourier series (13)
converges to 0 in Pringsheim's sense a.e. on (1/4,3/4) X(0,1), but the columns
of (13) diverge a.e. on Iz.
It is a further open question what is the situation in connection with the

double Fourier series of functions f(x,y) ELP(IZ) in case 1 <p <2,
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0 1/4

Fig. 5 : g(x)

4. Moore - Smith Convergence and Regular Convergence

In this concluding Section we briefly sketch a possible definition of the
notion of regular convergence in the case when the index set is a general di-
rected one (instead of Zi). We begin with the repetition of the definitions of
the notion of directed set and Moore - Smith convergence (see, e.g., [4, Ch.2}).

A binary relation "<" directs asetDif D is non-void and
(i) <is transitive on D,

(ii) <is reflexive on D,
(iii) if k and m are members of D, then there is an element p in D such that
k<p and m<p.

A directed set is a pair (D,<) such that < directs D. A
net is a pair (S, <) such that S is a function and < directs the domain
of S. If S is a function whose domain contains D and D is directed by <, then
{Sm,m€D, <} is the net (SID, <) where SID is S restricted to D.

A net {Sm,mED,<} is eventually in a set V if there is an
element p of D such that if m€D and p <m, then SmEV. A net (S, <) in a topo-
logical space (X,J) converges tos relative to J (in the Moore -
Smith sense) if it is eventually in each J -neighbourhood of s.

Now let (X,+) be an Abel group endowed with a topology (X,J). Given a

formal series

(14) ) a (a, €X),
K€D K k

consider its all possible partial sums
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s = Y a (m€D)
R c€p,k<m K

for which the number of those a, with k <m which differ from O, the neutral
element of X with respect to "+", is finite. Denote by D' the subset of D for
which this is the case. If D' is non -void and the net {sm :m€D', <} conver-
ges to s relative to J, then we may say that series (14) converges and its sum
is equal to s.

After these preliminaries, our proposed definition of regular convergence
reads as follows. Series (14) is said tobe regularly conver-
gent if for each neighbourhood V of O there exists an element p of D such
that for every m,n€D for which m¥ p, m<n and the number of those a, with

k

m<k<n which differ from O is finite, we have ) akEV. It may

k€D,m<k<n
happen, of course, that a series (14) converges regularly, but it does not
converge in the Moore - Smith sense, and so we cannot attribute any sum s to
it.

There are a lot of natural questions arising in connection with these two
very general kinds of convergence of series. For instance, for which directed
sets (D, <) and for which Abel groups (S,+) endowed with a topology (X,J) the
following statements hold:

(i) regular convergence implies Moore - Smith convergence,

(ii) Moore - Smith convergence implies regular convergence,

(iii) these two kinds of convergence are equivalent, and

(iv) they are incomparable.
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NORM INEQUALITIES RELATING THE HILBERT
TRANSFORM TO THE HARDY-LITTLEWOOD MAXTMAL FUNCTION

Benjamin Muckenhouptl
Department of Mathematics
Rutgers University

New Brunswick, New Jersey

R. Coifman and C. Fefferman have shown for 1 < p < ® that the weighted

1P’ norm of the Hilbert tramsform is bounded by the weighted 1’ norm of the
Hardy-Littlewood maximal function if the weight function satisfies the
condition A . It is shown in the first part of this paper that A 1is not
a necessary condition by deriving a large class of weight functions not in
A_ for which the norm inequality holds. The rest of the paper consists of
the derivation of a necessary condition for the norm inequality; this con-
dition closely resembles the A condition.

1. Introduction

The problem considered here is the determination of all non-negative

functions W(x) such that

00 o0

(1.1) f £ (x) | P (x)dx < AJ L£* (x) 1PW(x)dx,

=00 -00

where A 1is independent of f,

£(x) = lim, I fﬁégll dy
[S548 ‘Yl>5

is the Hilbert transform of f,

1) Supported in part by N.S.F. Grant MCS 80-03098.
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y
*(x) = 1
f (x) = ;;z y_}Jx|f(t)|dt

is the Hardy-Littlewood maximal function of f and p is a fixed number
satisfying 1 < p < », The principal known result concerning this problem
is one by R. Coifman and C. Fefferman that appeared in 1974 in [3]. Theorem
III of [3] proves (1.1) for any p satisfying 1 < p < ® provided W(x) is

non-negative and there are positive constants C and € such that

Ide‘i C(|E|/|I|)€[de for every interval I and subset E of I. This
E I

condition on W, known as the A_ condition, has been a popular condition
on weight functioms since that time. It has been used in various norm in-
equalities between Littlewood-Paley functions and the Lusin area function
and in the theory of weighted it spaces,

Coifman and Fefferman did not consider whether A was a necessary
condition for (1.1); in fact A.m has not been shown to be a necessary con—-
dition for any of the norm inequalities for which it has been shown sufficient.
It is shown here that A 1s not a necessary condition for (1.1). Theorem

2.1 in §2 describes a large class of W's mnot in A for which (1.1)
holds; in particular, X[O,w) is such a function.

The rest of this paper consists of the derivation of a necessary con-

dition for (1.1). This is done by proving the following theorem.

THEOREM 1.2. If 1 < p <, W(x) is non-negative and W(x) satisfies (1.1),

then there are positive constants C and € such that for every interval I

and every subset E of I

€ * P
[w(x)dx .i C ‘l_%.‘; I MM.
E d‘,‘,l]:|p'|'|x_x]:lp

The necessary condition of Theorem 1.2 will be referred to as the Cp
condition. It does, of course, resemble the A_ condition and is clearly
weaker since the integral on the right is larger. We conjecture that the
Cp condition 1s also a sufficient condition for (1.1).

The proof of Theorem 1.2 is fairly long and is broken into several

lemmas that are discussed and proved in §§3-5. The proof is completed in §6.
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The following notation will be used throughout this paper. For a set
E, |E| will denote the Lebesgue measure of E and Xg the characteristic
function of E. If a >0 and I is an interval, al will denote the
interval with the same center and with |aI|==a|I|. If 1<p<wo, p' will
denote the number such that 1:>'-1+(p')"1 = 1. The letter C will denote

constants, not necessarily the same at each occurrence.

2. A, Is Not Necessary for (1.1)

Here we show that A is not a necessary condition by deriving
functions W that satisfy (1.1) but are not in A_. Since tranmslationms,
reflections and sums of weight functions satisfying (1.1) also satisfy (1.1),
a great many weilght functions can be generated by use of theorem 2.1.

We will need the following definition. If 1 < p < ®, then a non-
negative function U(x) is in Ap if for every interval I

p-1
L omax [ 0@ 1™ @ Ve <,
|Il |II
I I

where C 1s independent of I.

THEOREM 2.1, If 1<p<® and W(x) = U(x))([0 m)(x), where U(x) is in
’
Ap’ then (1.1) holds.

Except for the case U(x) = 0 almost everywhere, the functions W of

Theorem 2.1 are not in A_ as is shown by the following reasoning. First,
N

observe that J Udx > 0 for sufficiently large N. Since U is in Ap,
-N

then U_l/(p_l) must be locally integrable. Therefore, U(x) > 0 almost
h

everywhere and I Udx > 0 for all h > 0. Then with h >0, I = [-1,h] and

0
E = [0,h], the definition of A, for W would require that 1 < C[h/(1+h)]

™

with C and € independent of h. Since this is impossible, W is not in
A.

The proof of Theorem 2.1 will use various weighted norm inequalities.
By taking U(x) = 1, the better known unweighted versions can be used and

this 1s, of course, sufficient to show that (1.1) does not imply that W is
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in A_. To prove Theorem 2.1, it is sufficient to show that

(-] . p o0 . p

2.2) Il(f(x)xto,w)(x)) | u(x)dx < Cf[f (x) 1FU(x)dx
0 0

and
®© - p -] . p

(2.3) Il(f(x)x(_m’ol(x))_l U(x)dx < Ci[f (x) 17U (x)dx.
0

By theorem 9, p. 247 of [4], the left side of (2.2) has the bound

CI If)([o’w)lpde. This is bounded by the right side of (2.2) since
-—00

*
|£ (x)|< £ (x) almost everywhere.

To prove (2.3), use the definition of the Hilbert transform to show
that the left side is bounded by

o 0 ® =x

P P
c[l[ f{f‘é) dt| U(x)dx + cfl —f;%_-)-dt[ U(x)dx.
0 -x 0 -

Since x and t have opposite signs, this is bounded by the sum of

o x 0 ?

2.4) c[[;[ If(t)ldt:l U(x)dx
0 -x

aund
o0 X p

(2.5) c” |f£t) dt| v(x)dx.
0 -00

Now (2.4) is bounded by

®©

@ X

P

CI‘?; I |f(t)ldt] U(x)dx < c[[f*(x)]pu(x)dx
0

0 -X

*

by the definition of f (x). To estimate (2.5), it is sufficient to show
that (2.5) is bounded by (2.4). With g(t) = f(-t), this is equivalent to
showing that



Muckenhoupt 223

=]

[+2] 00| p
(2.6) J flﬁéz-l U(x)dx < c[ l-I|g(t)]dt U(x)dx.
0] x 0

X

0

With U(x) = x> for x>0 and -1<ac< p-1, (2.6) 1is a result of
Boas [1]. To prove it for all U in Ap, observe that the left side of
(2.6) is bounded by
P

1635 [Ig(t)ldt)du U(x)dx.
u
X

2.7)

Ort——3g

Boas' result now follows by an application of Hardy's inequality, see [7],
vol. I, p. 20. For general U 1in Ap, observe that for r > 0

1

K )

-1/(p-1)
(2.8) I U(x) dx . _C IU(X)—llp—l)dx
r

0
by use of Lemma 1 p. 232 of [4] since U(x)
and the definition of Ap we see that for r > 0.

A S R, A By (2.8)

r [ p-1
I U(x)dx I[pr(x)]—l/(p—l)dx <c
0 r

with C independent of r. By Theorem 2, p. 32 of [5], we have (2.7)

bounded by
r P
J L. Ilg(t)ld [u"U(u) Jdu.

This completes the proof of (2.6), and, thereby, of Theorem 2.1.

3. A Basic Lemma

In Lemma 3, p. 268 of [6], Stein and Weiss showed that if D 1is a

finite union of disjoint intervals, o > 0 and E is the set where
|§D(x)| > o, then |E| = 2|D|/sinh a. Here we treat the inverse problem;

glven a set E and o > 0 we want to find a corresponding set D so that
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|XD(x)| >0 on E and |D| < |E|sinh a. This can be done as shown by the
following lemma., Like the proof in [6], this proof is based on the fact
that the sum of the roots of a monic polynomial equals minus one times the
second coefficient.
n
LEMMA 3,1. If E= U (ci’di) 1s a finite union of open intervals with
i=1

disjoint closures and o > 0, then there exists a finite disjoint union of

n
open intervals D = U (a,,b,) such that |D| = |E|sinh o, b, € (c,,d,) and
open ‘ntervass 1P B g & leg0¢y) 20

|xD(x)| >a for x eE.
We may assume that the intervals (ci,di) are in their natural order
so that d, < ¢ .

i i+l
The polynomial

0
a(x) = 1?;

n
I (x—ci) + 5

(x-d,)
i=1 i=1 1

0 n
1l-e 1

n-k-1 Y >0 and lim (-1)"a(x) > 0.

has (rl)n‘ka(dk) >0, (1)
X =00

aleyyy
Therefore, a(x) has one root in each interval (dk’ck+l) and one in

(-w,cl). Call the root in (—w,cl), a,. Call the root in (dk’ck+1h a .-
Similarly, the polynomial

-0 n l-e® B
1 (x—ci) + 5 I (X-di)

1=1 i=1

1+e
2

b(x) =

has (—l)n—kb(ck) <0 and (—l)n-kb(dk) > 0. Therefore, b(x) has one root
in each interval (ck,dk); call this root bk‘

n
Let D= kEl(ak,bk) and note that the intervals (ak’bk) are disjoint

since (ak,bk)c (dk—l’dk)’ where d_1 is defined to be -». Since

a(x) = ll(x-a,),

2 l+ea g 1-ea o
a, = — z c, + Z d
121 - A =
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because the sum of the roots of a monic nth degree polynomial is minus

the coefficient of anl. Similarly,

n g 1
l+e .
Ib e L d,.
R T R En 1=1 1
Combining these we get
0.
|D| = z (bi-ai) = z (d = lElsinh 0.
i=1
Now
|XD(X)| I z 1°g| ll 1Ogla(x)|
x—di
If x€ (ck,dk) for some k, then I — <0 and
i
o,
LT T IR 1cE T D)
a(x) x—di

o o
1+e - (e —l)T[X_c

Therefore, 1f x € (c,,d,), |XD(x)| > g. This completes the proof of

Lemma 3.1.

4. A Preliminary Necessary Condition

The condition in the theorem of this section is in fact equivalent to
the CP condition in Theorem 1.2. The equivalence is proved in §§5-6 and
makes no use of the equation (1.1). Theorem 4.1 is a straightforward

application of Lemma 3.1 to the condition (1.1).

THEOREM 4.1. If 1< p <, (1.1) holds, I 1is an interval with center

X; and E 1is a subset of I, then

I [1]Pw(x)dx
ﬂm(|I|+|x—xI|)p

(4.2) JW(x)dx <

3P
= P
ARy
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If W is not integrable on I, the result is trivial; therefore,

assume that Ide < o, Given € > 0, there ig a finite union of disjoint

I
open intervals E, such that Ec T, |E1| < |E] +¢ and Ide‘i e+ I wdx.
E E;
By Lemma 3.1 with o = sinh-1[£ ], there is a finite union of intervals
1
D such that |D[ = |I| , each interval in D intersects El, and
> -1
IXD(x)| > sinh (|I|/|E1|) for x in E;. Therefore
S I I N
W(x)dx < € + | W(x)dx < € + |sinh i J lXD(x)I W(x)dx.
1
E El El

An application of (1.1) then shows that

[}

-1 |1 ~P * P
JW(x)dx <e+ A[sinh +ELE| J IXD(X)I W(x)dx.
1
E 0

Since each interval in D intersects El and Elc I, it follows that

*
Dc3I and Xb(x) i"ﬂ%*%lx_r' Therefore,
I

- T Pi1|P
froose < ¢+ lpim et | 2o
E

P
_m(|I|+|x—xI|)
Since € 1is arbitrary, (4.2) follows from this.

5. A Stronger Necessary Condition

The condition Cp does not follow immediately from Theorem 4.1 since
sinh~ y log 2y for large y 1instead of IylE for some € > 0. To
prove the Cp condition, we will need a form of the necessity condition
that can be used repeatedly. The conclusion of Lemma 5.1 has the desired
form; it has similar expressions on both sides of the inequality. Note
that Lemma 5.1 does not follow directly from the proof of Theorem 4.1 since
the inequality A(x) < c|xE(x)lp is not true; XE has zeros while A(x)



Muckenhoupt 2217

does not.

LEMMA 5.1. If 1< p < W is non-negative, W satisfies (4.2) for every

interval I and subset E of I, {Ik}E=1 is a set of disjoint subintervals

of an interval I, xk is the center of Ik’ XI is the center of I and

n Iz, I°
(5.2) Az = ] —E—
k=1 |Ik|p+|x—x1|p
then
7 1-p f P
(5.3) Jumwwuicmgiiﬁ jJ%lQ@%
=00 Ellkl —00 |I‘ +|X—XII

where C depends only on A and p.

To prove this observe first that since E|Ik|P < (Z|Ik|)p, then for x
not in 3I

lekf!p |1]P

Ax) < C .
T LD e P

Therefore, I AxW(x)dx 1is bounded by the right side of (5.3), and the
Gn°
proof can be completed by estimating

(5.4) J Ax)W(x)dx.
31

To estimate (5.4) we will need a Lemma of Carleson, Lemma 5 p. 140 of
[2], that asserts the existence of constants B and D; depending only on

p, such that for a > 0

(5.5) [{Ax) > a}] < Be'Dalll,

where {Ik} is any subdivision of the interval I into subintervals. Since
any disjoint collection {Ik} of subintervals of I can have intervals
added to it to become a subdivision of I and since adding subintervals
increases A(x), (5.5) 1s valid with the same constants for any disjoint

collection {Ik} of subintervals of I. Since (5.5) remains true if D is
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decreased or B 1s increased, we may also assume that B > 1 and 0 <D < 1.
Now let 3 be the least integer greater than 1og(Z|Ik|/|I|), and let

J be the least integer greater than log % logé—gl}lé}, where D
I

Iz,

is the constant in (5.5). Note that since j <0 and J >0, that j < J
Let Q, S and T be respectively the intersection of 3I with the set where
A(x) f_ej, the set where ej < A(x) f_eJ and the set where eJ < A(x). We
will estimate (5.4) by estimating the integral of A(x)W(x) over the sets
Q, S and T separately.

First, we have from the definition of Q that

g1, |
IA(x)W(x)dx <e TTT—-I W(x)dx.
Q 31

The right side is bounded by the right side of (5.3). Next
J

(5.6) JAxW(x)dx < z ei+lW(x)dx.
S =3 (axoelynar
Now since I Axdx f_fgifllkl, we. have

=00

| {ax > ei}I f_fgie—iZIIkl. Using this fact and (4.2) shows that the right
side of (5.6) is bounded by the product of

J -p

(5.7) ) Ce“l[sinh"l(i(%llm)]
i=] 2pe ZIIkI

and

5.8) I 1]Pu(x)dx

(|I|+|X-XI|)p

-=00

To complete this part we need to show that (5.7) has the bound

1-p
(5.9) cl:logﬂ{i-[- i

-1
To estimate (5.7) use the fact that the argument of the sinh = in
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(5.7) 1s bounded below by R;l e3> -’;—1. From this we obtain

J ~p
z Cei+l Eog ei—j‘H}
1=3

as an upper bound for (5.7). The change of variables 1 = mtj gives the
estimate
J-i .m J-j

&  ccdtl_e -

J+1
Ce < N
=0 (m+1)P (3-j+1)P

Since J>1 and ] <0, this is bounded by Ce’(1-)P. Using the
definition of j and J shows that this is bounded by (5.9) and completes
the estimation of the integral of A(x)W(x) over S.

Finally, we have

IMw(x)dx <7 e hi(x)ax.
T 1= (aelynar

The estimates (5.5) and (4.2) show that the right side is bounded by the
product of (5.8) and

o -1 eDei P
(5.10) C ) |sinh 5|

i=J

As in the estimation of (5.7) we use the fact that the argument of the sinh—l
in (5.10) has a positive lower bound, D >0 and J > 1 to show that

(5.10) is bounded by
) j_—p
cy log(eDe Y.
i=J

This geometric series 1s easily estimated; with the definition of J we get
the upper bound C[log(elI|/2|Ik|)]_p which is bounded by (5.9). This com-
pletes the proof of Lemma 5.1.

6. Proof of Theorem 1,2

We can now complete the proof that Cp is a necessary condition for
(1.1). To do this use Theorem 4.1 and Lemma 5.1 to choose a & > 0 such
that if I 41s an interval and {Ik} is a collection of disjoint sub-
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intervals of I with Z|Ik| < 28|1|, then

o [~} P
(6.1) j AEW(x)dx < '/4 11l weax
‘o _m|I|p+|x—xI‘p

Furthermore, § should be chosen small enough that

(6.2) PAlsinh 1 (1/28)17P < 4.

Now given EcI, let n be the least integer such that 5n|I| < ‘E| .
Define E, = E and Ej = {X; > Gj} for 1< j <n. Define Aj(x) for
1<3j<n tobe the function (5.2) based on the component intervals of Ej'

If 1<j<n, H is a component interval of Ej and x 1is an endpoint

of H, then XE(X) _<_6j. Therefore,
(6.3) lenE| < 87|ul,

and 1f J is an interval containing an endpoint of H, then |JNE| < 83 |3].

there is an interval JcH such that
> 5371y,

Consequently, if x 1s in HﬂE_l,

x isin J and |JNE| > |J|6j_]?. ‘Therefore, HnEj_l = {XEnH
By a covering lemma argument we then have lan E._ll < ZGl_leﬂ H|. Com-

bining this with (6.3) shows that lHnEj_ll < 28 H|. Now let Q be the set
of component intervals in HN Ej—l and let AQ be the corresponding function

as defined in (5.2) with {Ik} = Q. Then by the definition of § we have

[ee] o p
[ A (R)W()dx < 1/2[ 18 WGdx
Lt Ll x|

Adding these inequalities for all the components H of Ej then gives

oo o]

(6.4 [ Aj_l(x)W(x)dx < 1/2I Aj (x)W(x)dx

=00 -00

for 2 < j<n, where Aj (x) 1is the function of (5.2) for the collection of
component intervals of Ej' Similarly, using (6.2) and Theorem 4.1 , we have
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(6.5) I XE(x)W(x)dx < '/z[ A, W (x)ax.

Combining (6.5) and (6.4) for 2 < j < n shows that

(6.6) fW(x)dx < Z'nJAn(x)W(x) dx.
E

-1
Since 6" > |E|/|1]| > 6", E consists of one interval that contains I and

is contained in 26711. Therefore,
P
(6.7) A (x) ¢l
|I|p+|x—x1|p

a X
Furthermore, since n > (log +§%ﬁ/log §, we have 27 < *%% , where

a= 7%%?—%. Combining this with (6.6) and (6.7) then completes the proof of

Theorem 1.2.
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Aachen

The translation of a function f on the surface of the unit sphere in k -di-
mensional Euclidean space is defined by the integral means of f over the
circle <x,y>=h on the sphere. Via this translation there are introduced the
strong Laplace - Beltrami differential operator and the r -th modulus of con-
tinuity of functions defined on the sphere. The rate of best approximation
by sums of spherical harmonics of degree < n is then completely characterized
by higher order Lipschitz conditions and differentiability properties.

1. Introduction

The aim of this paper is the characterization of the rate of best ap-
proximation of functions defined on the surface of the unit sphere in Rk,
k=3,4,..., by Lipschitz conditions and differentiability properties.

To illustrate the problem we recall to mind the corresponding well-known
related results on the approximation of continuous, 27 -periodic functions

due to Jackson, Bernstein (1911/12) and Zygmund (1945):

THEOREM O. Denoting by Hn, n€P={0,1,...}, the set of all trigonometric
polynomials of degree < n, one has for FECZH,r €EP and O<a<l:

= 0% (n+w)

En(F;CZTr) 1= 1nft €l IIF-tnllC
n n 2m

(r) Llp,(a;czn) ’
= F €

Lipz(l;Czﬂ) s a=1 .
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This result can also be understood as the characterization of ‘best ap-
proximation on the unit circle. This case, namely k=2, could also be treated
by the same methods used here; but that would lead to a characterization of
best approximation by means of derivatives and Lipschitz conditions of
e ven order. This means that the results obtained by our methods for k =2
are somewhat weaker than those of Theorem O. So we will only consider the

unit sphere in the Euclidean space with dimension 2 3.

2. Basic Concepts

Let us denote by Sk, k=3,4,..., the surface of the unit sphere in Rk,

—{XER 2,112

11,
j=1

by C(Sk) the set of all continuous functions f defined on Sk, endowed with

the norm

I£ll . := max |f(X)|,
¢ 1{€Sk

and by Lp(Sk),l <p <», the set of all measurable functions f defined on sk

for which the norm

o 1 1/p
IEN 2= (=— [ |£(x)|P ds(x))
P B Xk

S
is finite, ds(x) being the (k-1)- dimensional surface element of Sk, and
Qk=2n"”/r (A+1), A =(k-2)/2, the surface of SX. In the following, X is
one of these Banach spaces, and H-HX the corresponding norm. Furthermore,

1. . . ..
LA is the Banach space of all functions x measurable on (-1,1) having finite
norm

Q. 1
iy o= ==L [ e [a-eH 2 e
g e -l

Now, the appropriate fundamental set for our desired approximation
theorem is the set of all "spherical harmonics" of degree n €P. A spherical

. . . . L. . k
harmonic Yn is defined as the restriction to the unit sphere S of an har-
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monic, homogeneous polynomial Qn of degree n defined on Rk. The spherical

harmonics form an orthogonal fundamental system in X, i.e.,

/ Y (x) ¥ (x)ds(x) =0 (n#m) ,

Sk

span{Y }x =X.
n

They are closely connected with the Gegenbauer (or ultraspherical) polynomials

n n
pr(p) 1= 520 T@HN) T2h) o 2)1/2-% d__ 2yn+r-1/2
! al T(}) T(2n+2)) e

(For these and other properties of spherical harmonics see e.g. [12] or [13])

By means of the normalized Gegenbauer polynomials
Aoy Lo oA A n+2)\ 1
R (t) = P /Rh (1), Ba) = (AT,

we associate to each function f € X a sequence of spherical harmonics, namely
its "spherical Fourier coefficients"

@) Y (% :=QL f Ri(<x,y>) £(y) ds(y) (n €P;x € %)
S

(<-,+> = inner product in Rk).

For this transform one has a uniqueness theorem: If f € X, then
k
Yn(f;x) =0 (n€EP,xES ) «= £f(x) =0 (a.e.)

Whereas the classical translation operator Th of functions defined on
R consists in a simple shifting of the variable, it is here more complicated.
For in defining Th one only has to decide whether the variable is to be
shifted a given distance h to the left or to the right; which direction is
taken is only a problem of convention and of no mathematical significance.
But on the sphere Sk one has infinitely many possible directions for shifting

the variable a certain distance h, none of them with any preference. So we
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define the "spherical translation” t. of f€X as the integral meams of such

h
shiftings, namely,

2.2) T £ :=—‘—“ [ £ de()
Qk_l(l-h )" <x,y>=h

where h€ (-1,1), x€Sk and dt(y) is the "curve" element of the "circle"
<x,y>=h on Sk.

This definition has the disadvantage that t, does not possess the semi-

h
group property anymore as does 'I‘h(Tu Tv =Tu+v)’ and it cannot be inverted

(Th T—h h
X into X, with operator norm Ilrhll [X] =1 and

=identity). Nevertheless, t, is a positive, linear operator mapping

hmh—»]— I f—-rhfllX =0 (f€X)..
Furthermore, for 2% there hold the product formulae

L Yn(x) = R:‘l(h) Yn(x) ’

Yn(Thf;x) = Rt)‘l(h) Yn(f;x) .

These are typical for a translation operator and correspond to the product

formulae

Th elnt ._ em(t+h) - e1nh oint ,
27 . . 2m :
[T E@®)e e T e ETO NaT
o o
. . int, +
for the trigonometric fundamental system {e }n=-°° .

This concept of translation allows one to define the "spherical convo-
lution product" of a function xéLi and f €X, namely
Gr ! 2.2-1/2

) dt

(2.3)  (x#£) (%) :=—nk:1— [ x®) £ (-t
i)

x€s") ;

which may also be rewritten in the more classical form
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(2.4) (x*£) (x) =

L
e

[ x(<x,y>)£(y) ds(y) (a.e.) .
Sk

As long as 72 years ago L. Fejér [9] wrote the second arithmetical means of
the Laplace series on S3 in this form.
Now, this convolution product has the same properties as does the usual

convolution product of periodic functions (cf. [4]), namely:

1
(2.5) x*f €X, llx*fllX < llxlll’}\ ||f||x (x GL)\,fEX) s

(2.6) Yn(x*f;x) =y (n) Yn(f;x) (n GP;XESk;XeL;\;fEX) ,

where x~(n) are the "Fourier - Gegenbauer coefficients":

9 1
2.7 X ==k [ (o Ri\l(t)(l-tz))‘_llzdt
y

%

(For the properties of translation and convolution cited here see e.g. [2].)

3. The Strong Laplace - Beltrami Derivative and Integral

Since the spherical harmonics Yn are derived from harmonic polynomials
Qn’ i.e. VZQnEO, V2 being the usual Laplace differential operator in k
dimensions, they are eigenfunctions of the Laplace —Beltrami differential

operator Vi with eigenvalues -n(n+2X) (cf. [12] or [13]):
V2 = 2 (S €Sk
* Yn(x) = -n(n+21) Yn(x) (n€P;x ).
2 . . . . . \
Here V, is a pointwise differential operator. The corresponding strong
operator, i.e. when the limit is considered in the norm, can be defined - up
to a constant factor -1/(2)A+l) - by means of the spherical difference

BEG) 1= £(0) - T, £() (-1<h<l;x €S55£€%) .

Indeed, if for f € X there exists a function Df € X such that
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I
(3.1) Lim ,,_ I 5 - il =0,

then Df( =le) is called the (first) "strong Laplace - Beltrami derivative"

of f. Higher derivatives are defined inductively by

pe := o' 0" '¢) (r€12,3,...1 .

The sets of functions differentiable in this sense are denoted by

r

Wy = {(fEX;D FEX) (reN=1{1,2,...1) .

In this respect, we have for all spherical harmonics Yn,r1€P:

n(n+2})

k
el Yn(x) (x€S87) .

1
YHEWX, DYn(x) =

. . r . .
There also exists an inverse operator to D, defined by the "spherical

integral" of fEX:

G @) = () () (x €55
(3.2)
G ) = 3T () (r€{2,3,...};x€s5),

where

A-1/2 du

t s
£(e) = @) [ (a=sD 2T 1-d?) ds (-1<t<1).
-1 -1

Since £€I&, we have in view of (2.5)

Jrex (rEN;EEX) .

The fundamental result for the strong Laplace - Beltrami derivative now

reads.

THEOREM 1. The following three assertions are equivalent to another for

feX, reEN:
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i) £EW, ;
ii) there exists 8 € X such that
o = (R )Ty gy N
Y (g,3%) ( CR¥S| Y (£5%) (n€P;x€S") ;
iii)  there exists g, €X such that
f(x) = (Jrgz)(X) (a.e.) .

The functions 88, are uniquely determined:
(3.3) DE(x) = g, (%) = g,(x) = Y (£3%) (a.e.) .

So, in analogy to the classical fundamental theorems of the differential
and integral calculus, the integral of the derivative of a differentiable
function f is equal to f (except for an additive constant) and, on the other
hand, the integral of a function f is differéntiable and its derivative is
equal to f (up to an additive constant).

. . r .,
Note that it follows from this theorem that the operator D  is closed

r
Wo.
onX

4, Moduli of Smoothness

For describing the smoothness of a function f €X it is near at hand to

use the difference Ahf. For f€X, 0< 6 <2 the (first) "spherical modulus of

continuity" is defined by

S
w](é,f,x) Rl HAthX.

Virtually one would expect to introduce higher moduli of continuity by

replacing the difference A f by the r-th difference Ar, defined by applying

h

Ah r-times. But such a definition would not lead to the desired result

(namely to the equivalence of this modulus with an appropriate K - functional,

and so to a characterization of the best approximation by higher Lipschitz
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conditions).

So for r EN we define the r-th spherical modulus of continuity of

fE€X by

S
(4.1) wr(G,f,X) PSSP, oo o) "Ah A
3 1 72 r
j=152,00 0,1

and the corresponding spherical Lipschitz classes by

Lbi@ﬁ0:={f€m é(&ﬁx)=0®%,5+o+}

h ...Ah f||X

(0<8<2),

(a>0) .

The seminorm mi has all the properties which are to be expected of a

modulus of continuity. Indeed,

LEMMA 1. For f€X, r €N, there holds:

. S o
(4.2) 11m6+0+ wr(G;f;X) =0 ;
(4.3) W63 E3X) < wo(6.3E3X)
: r 01003 023t
S S
(4.4) Oppq (835550 < qur(é;f;x)
(4.5) 1im6+0+ wi(d;f;x)&r = 0 e f(x) = const.

If furthermore f € w;l(, 0<q<r, then

s s
(4.6) W (8£;%) <M qur_q(G;qu;X)
and

4.7 wz(é;f;x) < 6%,

for a positive constant M(=M(q)).

(O<<S1 <62<2);
(qQEN;0<6<2) ;

(a.e.).

(0<8<2)

(0<8§<2)

Another concept for describing the smoothness of a function f€X is

given by the "K - functional"
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r . r
(4.8) K(t,f;X,Wx) := inf r{ll f—gllx + tll Dgllx} (t >0;T EN) .

g€WX

This seminorm is equivalent to the modulus of continuity in the fol-

lowing sense:

LEMMA 2. For r €N there exist constants 0 <m<M <= such that for
fe€x, 0<§<2:

(4.9) m wi(&;f;x) < K(ér;f;X,W;() <M mi(d;f;x) .

This result yields a further property of wi : if f€X, r€N, and

0<51,6 <2, then

2

S r, S
wr(dl;f;x) <max{l,(61/62) } wr(Gz;f;X) .

5. Best Approximation

Denoting by Pn’ n €EP, the set of polynomials of the form
n . .
Pn(x) _zk=o Yk(x) for some spherical harmonics Y,

we define the best approximation of f €X with respect to Pn by

of degree k, k=0,1,...,n,

(.1) En(f;X) := inf IIf—PnHX (n€P) .

P €P
n n

For f €X, n€P there always exists a polynomial of best approximation

P;€Pn (cf. [11, p. 17]), i.e.,
.%) = || f-P*
En(f,X) IL.£ Pn”X .

Using the kernel of Fejér - Korovkin type (cf. [1] or[6])

A 2
(t) :=c " (n€R;t € (-1,1))
9n Tn t-t_ H s s
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where

A 2
R™(t)
-1 _ n
Cn = ”<t't ) "1’>\ (nep) ’

n

tn denoting the largest root of Ri, one can show as in e.g. [15], that for

r €N, f€W§ one has the Jackson type inequality:
(5.2) E_ (£ < n T iDTEl (n EN) .

Furthermore, from this inequality and (4.9) one can derive the follow-

ing Jackson type theorem:

LEMMA 3. Let f€X, r €N; then there exists a positive constant M( =M(r))

such that
s, -2
(5.3) En(f;x) <M (n";f5X) (n€EW) .

On the other hand, the corresponding Bernstein type inequality is known
(see e.g. [15] or [3]):
2r
n |

I
< . .
(5.4) o™ I <M, (r€8;P_€P ;n€P) .

anllX
Combining these inequalities there follows, in view of (4.9), by a
general theorem on best approximation due to Butzer - Scherer [5] our central

result, namely,

THEOREM 2. Let f€X, rl,r2€fP, 0<a<! with r,<a<r,. The following six

assertions are equivalent to each other:

i) E_(£;%) = 0(n~%% (=) ;

r —2a+2r1
ii) ID P:;"X = O(n ) (n~>)

r r r =2a+2r
ii1) fEWXZ, 1D %£-p 2pXI, = O(n 2 (n+w)
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5 |
iv) K(t :f;xawx ) = O(ta) (t >0 +) 3
v) wd (8% = 0(6™) (6+0+) ;
1
r r a-r
vi) fewx2 , mil_rz(d;n 2f;x) = 0($ 2) (§+0+) .

In view of the equivalence of the assertions i) and vi) one has:

-2r-2a

En(f;X) = O(n ) (n>=)
. S
prl(a;X) O0<acxl
- DfE
Lipg(l;x) a=1.

This is exactly the counterpart of Theorem O cited in the introduction.

On the other hand, this theorem gives a solution to a problem posed by
Butzer - Johnen [3] in 197! on the characterization of the rate of best ap-
proximation by higher Lipschitz conditions. Indeed, the equivalence i) «= v)

can for 0 <a <r be rewritten as
-20 . S
En(f;x) =0 °7) (nrw») fELlpr(a;X) .

In this respect A.S. DZafarov [8] also gave a result where the modulus

of continuity was even defined by means of the r-th difference A;;
proof is wrong, since the "polynomials' used there for deriving the Jackson

but his

inequality are actually not polynomials.

For continuous functions the equivalence i) <= v) also can be found in
KuZnirenko [10] provided r =1,

From the results of Ragozin [14] one can derive (cf. [2]) a character-
ization of the rate of best approximation of continuous functions by a

Lipschitz condition of classical type. In fact for f€X, O<a<1 one has
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E_(£50(5%) = 0™ (n+=)
- [fx) -£(y)| <L|x-y|* (x,y €55 .

But if one would wish to derive such a result for a=1 there arises the dif-
ficulty in defining differences of higher order of this classical type one
the sphere.

The proofs of the results announced here are to be found in [17] for
the case k =3. The methods used there can also be carried over in a modified
form to establish corresponding results on best approximation in other func-
tion spaces, such as for Fourier — Jacobi expansions of functions defined on
(-1,1) (see [7]) or Fourier - Laguerre expansions of functions defined on
(0,») (in preperation).

The author was supported by research grant No. II B 4 -FA 8356 of
"Der Minister fiir Wissenschaft und Forschung des Landes Nordrhein-Westfalen"
which is gratefully acknowledged. He also would like to thank Professor
P.L. Butzer and Dr. R.L. Stens, Aachen, for a critical reading of the manu-

cript as well as for valuable suggestions.
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V  Best Approximation



EIN PROBLEM UBER DIE BESTE APPROXIMATION IN HILBERTRAUMEN

Hubert Berens
Mathematisches Institut
Universitdt Erlangen-Niirnberg

Erlangen

In the beginning sixties V. L. Klee conjectured that there exist nonconvex
Chebyshev sets in an infinite dimensional Hilbert space. Up to today no real
progress has been made in proving or disproving the conjecture.

The author wants to discuss a modified version of Klees's conjecture which
seems to be of some independent interest.

1. Im folgenden sei H ein Hilbertraum iiber R mit innerem Produkt <v. . >
und Norm l-l.

Fiir eine nichtleere Teilmenge K in H bezeichnet PK tH- ZK die metrische
Projektion von H auf K und dK :H- R die Distanzfunktion. D(PK) bezeichnet
den Definitionsbereich von Prs das ist die Menge {x€H :PK(x) F @), Es ist
gebrduchlich, die metrische Projektion mit ihrem Graphen in H X H zu identi-

fizieren,

(x,k) € PK bedeutet somit k€ PK(X) .

Sei K eine nichtleere Teilmenge von H. Als Verallgemeinerung der metri-
schen Projektion mdchten wir die folgende mengenwertige Abbildung auf H in
sich betrachten:

H3x » (1 cof{b_(x) N K},
r>dK(x) r
wobeil br(x) die offene Kugel um das Element x mit Radius r ist und co{...}
die abgeschlossene konvexe Hiille der Menge {...}.
Offenkundig ist D(éK) = H und coP, C &_. Ist H von endlicher Dimension

K K
und ist K eine abgeschlossene Teilmenge in H, dann gilt

(%) fiir jedes x€H coPK(x) = @K(x) und ext@K(x) = PK(x),

ext{...} ist die Extremalpunktmenge der Menge {...}.
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Wir mSchten in den folgenden Abschnitten einige Eigenschaften der verall-
gemeinerten metrischen Projektion herleiten und ihre Bedeutung fiir die beste
Approximation aufzeigen, siehe hierzu auch [2]. Die Frage, ob die Aussage (%)

in Hilbertrdumen schlechthin giiltig ist, fiihrt uns zur Kleeschen Vermutung.

2. Sei K eine nichtleere Teilmenge von H. Als eine erste elementare Ei-

genschaft von ¢, zeigen wir

K

SATZ 1. ¢K ist monoton, sogar zyklisch monoton. Letzteres besagt: Fiir n€IN und

(xo,no),..,(xn,nn)€<I>K mit (xn,nn) = (xo,no) gilt

n
0< < X, =X, ,,N. >.
—-Zl X5 T X"
]
. + u . + . 2
BEWEIS. Zu jedem ej €ER, j =0,1,...,n-1, wihlen wir rj €R mittels rj =
2
=d (x.)+e.. Ist k, €b_ (x.) N K, damn gilt
K] N i ’ &
2 2 2
x. - k. - e, <d, (x.) < |x, -k,
lJ Jl J—K(J)"lJ J+1I
oder

2 2
ey S 2< Xk mky > |kj+1| - lkjl .

Wir summieren die n Ungleichungen und erhalten .

] n-1 n-1
- z €. 5
i=0

il o~

(XJ]

] i+

n
< x.,k. -k, . >-= z < X. =X, . ,k, >.
0 177 1 [P B

j
Die Abschitzung bleibt erhalten, wenn wir die Elemente kj aus br,(xj) N K
—_ ]
durch die aus co{br.(xj) N K} ersetzen, insbesondere durch rﬁ € ¢K(xj), was
]

zur Ungleichung
n-1

il o~

n
1
- = e. < z <X, -%X,_.,n. >, (x.,n.)€Q,,
2420 d7a 1 IP 737K
fiir jedes Ej EHi+, j =0,1,...,n-1, fiihrt.
Tiefliegender als die Aussage von Satz | ist die folgende in

SATZ 2. ¢K ist maximal momoton, d.h., &, besitzt in H X H keine echte mono-

K
tone Fortsetzung.

BEWEIS. Fiir ein x €H bezeichne
v(x,u) = sup{<n,u> : nE(bK(x)} u€H, |u|l =1

die Tridgerfunktion von @K(x). Offenkundig wird das Supremum angenommen.
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Wir setzen X, = x + tu, t €R und betrachten die skalare Funktion
ROt = v(xt,u).

Aus der Monotonie von @K folgt sofort, daB die Funktion monoton wachsend fiir
wachsendes t ist. Wir zeigen, daB sie rechtsseitig stetig ist. Hierzu geniigt
es

v(x,u) = lim v(xt,u)
t-0+

zu beweisen. Fiir ein tEJR+ sei ntEQK(xt) so gewdhlt, daR v(xt,u) =< n,u>
gilt. Ist n ein schwacher Hiufungspunkt des Netzes {nt :t -» 0+}, dann ist
nE(DK(x). Denn fiir jedes e €R und jedes x'€H, lx'-xl < ¢/3, gilt br,(x') c
c br(x) mit r' = dK(x') +e¢/3 und r = dK(x) +¢. Daraus folgt aber fiir jedes X
0< t< €/3,

Ny €0 (x,) C cofb_ (x) N K} C cofb_(x) N K}, r_=d(x)+¢e/3,

t
und somit

fiir jedes cER’ nEEE{br(x) N K} oder nEcIJK(x).

Aus

v(x,u) < lim v(x_,u) = lim < n
t-0+ t-0+

fov > =< nu> < v(x,u)

folgt die rechtsseitige Stetigkeit der Funktion.
Die maximale Monotonie von QK ist nach diesen Vorbereitungen schnell be-

wiesen. Angenommen es existiere ein Paar (x,n) €H X X, das nicht zu &, gehdrt,

K
aber fiir jedes (x',n')E‘PK

0<<n-n",x-x'>

erfiillt. Aus den bekannten Trennungssitzen konvexer Mengen in H folgt die Exi-

stenz eines Elementes u€H, lul = 1, und die eines Skalars c€R, so daB
v(x,u) < ¢ < < n,u>
. . . +
gilt. Insbesondere folgt fiir die Elemente xt,t €R , aus der oben gemachten
Annahme
vix,u) < e << nu><< nesu > < v(xtu),
was wegen der rechtsseitigen Stetigkeit von t v(xt,u) zu einem Widerspruch
fiihrt. /!
Nach einem Resultat von R. T. Rockafellar kdnnen wir aus Satz | und

Satz 2 folgern, da8 <I>K das Subdifferential einer stetigen, konvexen Funktion

auf H ist. In der Tat gilt
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SATZ 3. @K ist das Subdifferential der Funktion

2
HoX m wK(X) = sup{ <x,u > —-LI%L :kEK}.

BEWEIS. Die folgende Form der Funktion ¢, :H - R ist vom approximationstheore-

K
tischen Standpunkt her gesehen um vieles aufschluBreicher:
&)
Hdx » o (x) = 2L - K
K 2 2

Es geniigt QK<: aoK zu zeigen, wobel awK das Subdifferential von O be-
zeichnet. Sei x €H vorgegeben. Sei r—:€1R+, r2 = dlz((x) +e, kEbr(x) I K und
x' €H. Dann gilt

2
I« _ && _ 1;12 _ 1x-k212-e

o (x) =5 <

|k|2 € Iklz €
=<xk> - 5 t 5 =<xk> -5 - <x'-xk> + 5 <
in(x') - <x'-xk> +%,

oder

1 L. _E
‘PK(X)Z“’K(X) +< x'-x,k> 5 .

Wie im Beweis von Satz 1 bleibt auch hier die Ungleichung erhalten, wenn wir
die Elemente k aus br(x) N1 K durch die aus ;{br(x) N K} ersetzen. Wir erhal-

ten insbesondere fiir jedes eEIR+, jedes x' €H und jedes nE(I)K(x)
1 LA - E
op(x") > op(x) + < x'-x,n> 7

woraus die Behauptung folgt. /!
Als maximal monotoner Operator auf H besitzt o alle die Eigenschaften,
die diesen Operatoren, speziell den Subdifferentialen stetiger konvexer Funk-
tionen, zu eigen sind. Wir mSchten an dieser Stelle nur darauf hinweisen, daf
QK tH- Hw n.o. halbstetig ist. Hw bezeichnet hier den Hilbertraum versehen
mit der schwachen Topologie. Im Beweis von Satz 2 haben wir zuerst die n.o.

Hemi-Halbstetigkeit von & :H - Hw gezeigt, eine schwichere Stetigkeitsaus-

sage als die oben angegebsne, und daraus die maximale Monotonie geschlossen.
In diesem Zusammenhang und fiir das folgende mdchten wir auf die Arbeit [9]
von E. Zarantonello verweisen, fiir die Behandlung von monotonen Operatoren
auf Hilbertrdumen schlechthin auf die Monographie [4] von H. Brezis. SchlieR-
lich mSchten wir noch festhalten, daR fiir jedes x€H

<I>K(x) = N c_o{éK(x') :|x'-x| < §)
§>0
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gilt, was von M. B. Suryanarayana [7] gezeigt wurde.

Dem Autor ist die Funktion ¢, : H - R erstmals in der Arbeit [1] von E.

K
Asplund aus dem Jahre 1969 {iber Tschebyscheffmengen in Hilbertriumen begegnet
und die Aussagen der bisherigen Sitze sind nichts als Beschreibungen ihres
Subdifferentials. Die folgenden Aussagen gehen direkt auf E. Asplund zuriick:

Die Eindeutigkeitsmenge U, ={x€H :#(@K(x)) = 1} ist eine dichte GG—Menge

in H, sie beschreibt genau die Elemente in H, in denen 0 Gateaux-differen-—

zierbar ist. Indirekt geht der erste Teil der Aussage schon auf S. B. Ste¥kin

[6] aus dem Jahre 1963 zuriick. Die Funktion og ist dariiberhinaus in einer

dichten GG—Menge Frechét-differenzierbar. Bezeichnen wir diese Punktmenge mit

UP dann ist ihr Bild unter QK im AbschluB von K enthalten. Fiir eine a b -

K . s
geschlossene Teilmenge K in H - als ein guter Approximationstheo-

retiker sollte man nur solche Teilmengen betrachten - enthilt somit die

Tschebyscheffmenge von K eine dichte GG—Menge, ndmlich die Untermenge, auf der

die metrische Projektion stetig ist.

In nichtendlich dimensionalen Hilbertrdumen sind abgeschlossene Teilmen-
gen im allgemeinen keine Existenzmengen. Dennoch ist fiir solche Mengen ¢K

durch die metrische Projektion P eindeutig bestimmt ist. Es gilt

K

SATZ 4. Sei K eine abgeschlossene, nichtleere Teilmenge von H. Fiir jedes x€H

ist

8, (%) =5Qo co{P(x') 10 < [x'-x| <& und x' €D(P)).

BEWEIS. Nach obigem ist fiir jedes x€H die Punktmenge auf der rechten Seite
der Gleichung nicht leer und in ¢K(x) enthalten. Die Annahme, daB die Inklu-
sion fiir ein x€H echt ist, filhrt wie im Beweis von Satz 2 zu einem Wider-

spruch. /!

Satz 4 gibt uns eine Moglichkeit, monotone Operatoren monoton fortzu-

setzen. Fiir die metrische Projektion P_ auf eine abgeschlossene Teilmenge K

K

in H besagt er, daB P, eine eindeutig bestimmte maximal monotone Fortsetzung

K
besitzt und daB sie durch

HOx +» E{PK(X') t|x -x'| <8 und x' €D )},
§>0

gegeben ist.
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3. Es ist wohl bekannt, daB abgeschlossene und konvexe Teilmengen eines
Hilbertraumes Tschebyscheffmengen sind. InR" gilt die Umkehrung, was wohl
von L.N.H. Bunt im Jahre 1934 erstmals bewiesen wurde, in einem beliebigen
Hilbertraum bisher nur unter zusdtzlichen Annahmen. Die wohl schwichste Zu-

satzvoraussetzung wurde von L. P. Vlasov [8] gestellt. Er zeigte: Ist K eine

Tschebyscheffmenge in H und gilt fiir jedes (x,k)EPK

w-1lim P (k+t(x-k)) = k,
tol+

dann ist K abgeschlossen und konvex. In [3] haben U. Westphal und der Autor

einen Beweis im Rahmen monotoner Operatoren gegeben. Wir zeigten,daB die Ste-

tigkeitsforderung maximale Monotonie von P, impliziert, d.h. P, = ¢  auf H,

K K K

was zur Abgeschlossenheit und Konvexit#dt von K dquivalent ist.

Vlasovs Arbeit erschien 1967. Schon 1965 hatte V. L. Klee [5] auf einer

Tagung iiber Konvexitdt in Kopenhagen die Vermutung ausgesprochen, daf in

nichtendlich dimensionalen, mbglicherweise nichtseparablen, Hilbertriumen

nichtkonvexe Tschebyscheffmengen existieren. Klee stiitzt seine Vermutung auf

Beispiele semi-tschebyscheffscher Mengen, sowie proximinaler Mengen mit in
sich zusammenziehbarem Bild eines jeden Elementes im Raum unter der metri-
schen Projektion, deren Komplement beschrinkt, offen und konvex ist. Solche
Mengen existieren nicht im R".

Das Problem scheint auch heute noch so weit von einer LSsung entfernt zu
sein wie vor 15 Jahren. Der wohl schinste Beitrag hierzu geht auf E. Asplund,

loc. cit., zuriick, der zeigte: Ist die Vermutung richtig, dann existieren

Tschebyscheffmengen mit beschrinktem, offenem und konvexem Komplement.

Der Autor hat vergeblich versucht, die Vermutung durch die Angabe einer
proximinalen Menge K in einem Hilbertraum H zu stiitzen, fiir die fiir ein Ele-
ment x€H ESPK(X) : @K(x) gilt. Die Annahme, daB fiir proximinale

Mengen in Hilbertr#umen schlechthin coP, = o gilt, widerspricht der Klee-—

K
schen Vermutung.

Das folgende Beispiel mag die Situation ein wenig erldutern.

BEISPIEL. 5 {ej : ] EN} sei die natiirliche orthonormale Basis von %éﬂﬂ). Wir
wihlen sie als Approximationsmenge K. Ist Z ajej die Orthogonalreihenentwick-
lung des Elementes x in {,(N), dann gilt
1 1 . .
LAN) X @K(x)—Stjlp T fiir j - o.
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Offenkundig ist U(PK) = {inLéED Po > O fiir wenigstens einen Index j €N},
und es ist nicht schwer einzusehen, daB

ESPK(X), a. > O fiir wenigstens einen Index j €N,
LN 3x B 0 () = _ J
co{O,ej :VIEN 3 oy = 0}, sonst

gilt. Ergénzen wir nun K durch ei<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>