Skip to main content

Myogenic Control of Airways Smooth Muscle and Cell-to-Cell Coupling

  • Chapter
Airways Smooth Muscle: Development, and Regulation of Contractility

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

  • 44 Accesses

Abstract

In smooth muscle in general, contraction is the physiologically relevant endpoint and is a Ca2+-dependent event. In addition, many of the ion conductances in smooth muscle are regulated by Ca2+ and/or are permeable to Ca2+. As a prerequisite to this discussion of myogenic contractile and electrical activity in airways smooth muscle (ASM), then, it is necessary to review briefly the regulation of contractile activity and of Ca2+-homeostasis in smooth muscle. Many of these issues will be dealt with in more detail in subsequent chapters and volumes of this series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sellers JR, Pato MD, Adelstein RS. Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem 1981; 256: 13137 - 13142.

    PubMed  CAS  Google Scholar 

  2. Gerthoffer WT. Regulation of the contractile element of airway smooth muscle. Am J Physiol 1991; 261: L15 — L28.

    PubMed  CAS  Google Scholar 

  3. Dabrowska R, Sherry JMF, Aromatorio DK, Hartshorne DJ. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry 1978; 17: 253 - 258.

    PubMed  CAS  Google Scholar 

  4. Adelstein RS, Klee CB. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem 1981; 256: 7501 - 7509.

    PubMed  CAS  Google Scholar 

  5. Nishikawa M, Hidaka H, Adelstein RS. Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 1983; 258: 14069 - 14072.

    PubMed  CAS  Google Scholar 

  6. Collins EM, Walsh MP, Morgan KG. Contraction of single vascular smooth muscle cells by phenylephrine at constant [CaZ+];. Am J Physiol 1992; 262: H654 — H762.

    Google Scholar 

  7. Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986; 233: 305 - 312.

    PubMed  CAS  Google Scholar 

  8. Nishikawa M, deLanerolle P, Lincoln TM, Adelstein RS. Phosphorylation of mammalian myosin light chains by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP-dependent protein kinase. J Biol Chem 1984; 259: 8429 - 8436.

    PubMed  CAS  Google Scholar 

  9. Noiman ES. Phosphorylation of smooth muscle myosin light chains by cAMP-dependent protein kinase. J Biol Chem 1980; 255: 11067 - 11070.

    PubMed  CAS  Google Scholar 

  10. Walsh MP, Persechini A, Hinkins S, Hartshorne DJ. Is smooth muscle myosin a substrate for the cAMP-dependent protein kinase? FEBS Lett 1981; 126: 107 - 110.

    PubMed  CAS  Google Scholar 

  11. Adelstein RS, Conti MA, Hathaway DR. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’: 5’ monophosphate-dependent protein kinase. J Biol Chem 1978; 253: 8347 - 8350.

    PubMed  CAS  Google Scholar 

  12. Somlyo AP, Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J 1989; 3: 2266 - 2276.

    PubMed  CAS  Google Scholar 

  13. van Breeman C, Saida K. Cellular mechanisms regulating [CaZ+]; smooth muscle. Ann Rev Physiol 1989; 51: 315 - 329.

    Google Scholar 

  14. Coburn RF, Baron CB. Coupling mechanisms in airway smooth muscle. Am J Physiol 1990; 258: L119 - L133.

    PubMed  CAS  Google Scholar 

  15. Ehrlich BE, Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 1988; 336: 583 - 586.

    PubMed  CAS  Google Scholar 

  16. Iino M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 1989; 94: 363 - 383.

    PubMed  CAS  Google Scholar 

  17. Iino M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 1989; 94: 363 - 383.

    PubMed  CAS  Google Scholar 

  18. Hisada T, Kurachi Y, Sugimoto T. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea. PflĂĽgers Arch 1990; 416: 151 - 161.

    PubMed  CAS  Google Scholar 

  19. Kotlikoff MI. Calcium currents in isolated canine airway smooth muscle cells. Am J Physiol 1988; 254: C793 - C801.

    PubMed  CAS  Google Scholar 

  20. Marthan R, Martin C, Amédée T, Mironneau J. Calcium channel currents in isolated smooth muscle cells from human bronchus. J Appl Physiol 1989; 66: 1706 - 1714.

    PubMed  CAS  Google Scholar 

  21. Muraki K, Imaizumi Y, Kojima T, Kawai T, Watanabe M. Effects of tetraethylammonium and 4-aminopyridine on outward currents and excitability in canine tracheal smooth muscle cells. Br J Pharmacol 1990; 100: 507 - 515.

    PubMed  CAS  Google Scholar 

  22. Tomasik M, Boyle JP, Worley JF III, Kotlikoff MI. Contractile agonists activate voltage-dependent calcium channels in airway smooth muscle cells. Am J Physiol 1992; 263: C106 - C113.

    Google Scholar 

  23. Worley JF, Kotlikoff MI. Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. Am J Physiol 1990; 259: L468 - L480.

    PubMed  CAS  Google Scholar 

  24. Loirand G, Pacaud P, Baron A, Mironneau C, Mironneau J. Large conductance calcium-activated non-selective cation channel in smooth muscle cells isolated from rat portal vein. J Physiol 1991; 437: 461 - 475.

    PubMed  CAS  Google Scholar 

  25. Inoue R, Isenberg G. Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J Physiol 1990; 424: 57 - 71.

    PubMed  CAS  Google Scholar 

  26. LĂĽckhoff A, Clapham DE. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Cat+-permeable channel. Nature 1992; 355: 356 - 358.

    PubMed  Google Scholar 

  27. Murray RK, Fleischmann BK, Kotlikoff MI. Receptor-activated calcium influx in human airway smooth muscle cell: use of Ca imaging and perforated patch-clamp technique. Am J Physiol 1993; 264: C485 - C490.

    PubMed  CAS  Google Scholar 

  28. Murray RK, Kotlikoff MI. Receptor-activated calcium influx in human airway smooth muscle cells. J Physiol 1991; 435: 123 - 144.

    PubMed  CAS  Google Scholar 

  29. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355: 353 - 356.

    PubMed  CAS  Google Scholar 

  30. Berridge MJ. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 1987; 56: 159 - 193.

    PubMed  CAS  Google Scholar 

  31. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 1989; 341: 197 - 125.

    PubMed  CAS  Google Scholar 

  32. Kamm KE, Stull JT. Regulation of smooth muscle contractile elements by second messengers. Ann Rev Physiol 1989; 51: 299 - 313.

    CAS  Google Scholar 

  33. Janssen LJ, Sims SM. Emptying and refilling of Ca`+ store in canine tracheal myocytes as indicated by membrane currents and contractions. Am J Physiol 1993; 256: C877 - C886.

    Google Scholar 

  34. Bourreau J-P, Abela AP, Kwan CY, Daniel EE. Acetylcholine Cat+ stores refilling directly involves a dihydropyridine-sensitive channel in dog trachea. Am J Physiol 1991; 261: C497 - 0505.

    PubMed  CAS  Google Scholar 

  35. Bourreau J-P, Kwan CY, Daniel EE. Distinct pathways to refill Ach-sensitive internal Cat+ stores in canine airway smooth muscle. Am J Physiol 1993; 265: C28 - C35.

    PubMed  CAS  Google Scholar 

  36. Kitazawa T, Somlyo AP. Desensitization and muscarinic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Cat+ in smooth muscle. Biochem Biophys Res Commun 1990; 172: 1291 - 1297.

    PubMed  CAS  Google Scholar 

  37. Ozaki H, Kwon SC, Tajimi M, Karaki H. Changes in cytosolic Cat+ and contraction induced by various stimulants and relaxants in canine tracheal smooth muscle. PflĂĽgers Arch 1990; 416: 351 - 359.

    PubMed  CAS  Google Scholar 

  38. Janssen LJ, Daniel EE. Characterization of the prejunctional beta-adrenoceptors in canine bronchial smooth muscle. J Pharmacol Exp Ther 1990; 254: 741 - 749.

    PubMed  CAS  Google Scholar 

  39. Janssen LJ, Daniel EE. Pre-and postjunctional muscarinic receptors in canine bronchi. Am J Physiol 1990; 259: L304 - L314.

    PubMed  CAS  Google Scholar 

  40. Janssen LJ, Daniel EE. Pre-and postjunctional effects of a thromboxane mimetic in canine bronchi. Am J Physiol 1991; 261: L271 - L276.

    PubMed  CAS  Google Scholar 

  41. Janssen LJ, Daniel EE. Depolarizing agents induce oscillations in canine bronchial smooth membrane potential: possible mechanisms. J Pharmacol Exp Ther 1991; 259: 110 - 117.

    PubMed  CAS  Google Scholar 

  42. Kannan MS, Jager LP, Daniel EE, Garfield RE. Effects of 4-aminopyridine and tetraethylammonium chloride on the electrical activity and cable properties of canine tracheal smooth muscle. J Pharmacol Exp Ther 1983; 227: 706 - 715.

    PubMed  CAS  Google Scholar 

  43. Kroeger EA, Stephens NL. Effects of tetraethylammonium on tonic airway smooth muscle: Initiation of phasic electrical activity. Am J Physiol 1975; 228: 633 - 636.

    PubMed  CAS  Google Scholar 

  44. Suzuki H, Morita K, Kuriyama H. Innervation and properties of the smooth muscle of the dog trachea. Jap J Physiol 1976; 26: 303 - 320.

    CAS  Google Scholar 

  45. Inoue T, Ito Y. Characteristics of neuro-effector transmission in the smooth muscle layer of dog bronchiole and modulations by autacoids. J Physiol 1986; 370: 551 - 565.

    PubMed  CAS  Google Scholar 

  46. Ito Y, Tajima K. Actions of indomethacin and prostaglandins on neuro-effector transmission in the dog trachea. J Physiol 1981; 319: 379 - 392.

    PubMed  CAS  Google Scholar 

  47. Fujiwara T, Sumimoto K, Itoh T, Suzuki H, Kuriyama H. Relaxing actions of procaterol, a ĂźZ adrenoceptor stimulant, on smooth muscle cells of the dog trachea. Br J Pharmacol 1988; 93: 199 - 209.

    PubMed  CAS  Google Scholar 

  48. Ito Y, Itoh T. The roles of stored calcium in contractions of cat tracheal smooth muscle produced by electrical stimulation, acetylcholine, and high K+. Br J Pharmacol 1984; 83: 667 - 676.

    PubMed  CAS  Google Scholar 

  49. Ito Y, Takeda K. Non-adrenergic inhibitory nerves and putative transmitters in the smooth muscle of cat trachea. J Physiol 1982; 330: 497 - 511.

    PubMed  CAS  Google Scholar 

  50. Coburn RF. Neural co-ordination of excitation of ferret trachealis muscle. Am J Physiol 1984; 246: C459 - C466.

    PubMed  CAS  Google Scholar 

  51. Gill KK, Kroeger EA. Effects of indomethacin on neural and myogenic components in equine airway smooth muscle. J Pharmacol Exp Ther 1990; 252: 358 - 364.

    PubMed  CAS  Google Scholar 

  52. Tesarowski DP, Kroeger EA. Effects of indomethacin and leukotrienes on equine airway smooth muscle tone. Am Rev Respir Dis 1987; 135: A91.

    Google Scholar 

  53. Kondo T, Tamura K, Onoe K, Takahira H, Ohta Y, Yamabayashi H. In vivo recording of electrical activity of canine tracheal smooth muscle. J Appl Physiol 1992; 72: 135 - 142.

    PubMed  CAS  Google Scholar 

  54. Kirkpatrick CT. Excitation and contraction in bovine tracheal smooth muscle. J Physiol 1975; 244: 263 - 281.

    PubMed  CAS  Google Scholar 

  55. Cameron AR, Kirkpatrick CT. A study of excitatory neuromuscular transmission in the bovine trachea. J Physiol 1977; 270: 733 - 745.

    PubMed  CAS  Google Scholar 

  56. Souhadra M, Souhadra JF, Cherniack RM. Evidence for a sodium electrogenic pump in airway smooth muscle. J Appl Physiol 1981; 51: 346 - 352.

    Google Scholar 

  57. Brink C, Grimaud C, Guillot C, Orehek J. The interactions between indomethacin and contractile agents in human isolated airway muscle. Br J Pharmacol 1980; 69: 383 - 388.

    PubMed  CAS  Google Scholar 

  58. Davis C, Kannan MS, Jones TR, Daniel EE. Control of human airway smooth muscle: in vitro studies. J Appl Physiol 1982; 53: 1080 - 1087.

    PubMed  CAS  Google Scholar 

  59. Honda K, Tomita T. Electrical activity in isolated human tracheal muscle. Jap J Physiol 1987; 37: 333 - 336.

    CAS  Google Scholar 

  60. Ito M, Baba K, Takagi K, Satake T, Tornita T. Some properties of calcium-induced contraction in the isolated human and guinea-pig tracheal smooth muscle. Respir Physiol 1985; 59: 143 - 153.

    PubMed  CAS  Google Scholar 

  61. McCray PB, Joseph T. Spontaneous contractility of human fetal airway smooth muscle. Am J Respir Cell Mol Biol 1993; 8: 573 - 580.

    PubMed  CAS  Google Scholar 

  62. Ahmed F, Foster RW, Small RC. Some effects of nifedipine in guinea-pig isolated trachealis. Br J Pharmacol 1985; 84: 861 - 869.

    PubMed  CAS  Google Scholar 

  63. Allen SL, Foster RW, Small RC, Towart R. The effects of the dihydropyridine Bay K 8644 in guinea-pig isolated trachealis. Br J Pharmacol 1985; 86: 171 - 180.

    PubMed  CAS  Google Scholar 

  64. Allen SL, Cortijo J, Foster RW, Morgan GP, Small RC, Weston AH. Mechanical and electrical aspects of the relaxant action of aminophylline in guinea-pig isolated trachealis. Br J Pharmacol 1986; 88: 473 - 483.

    PubMed  CAS  Google Scholar 

  65. Boyle JP, Davies JM, Foster RW, Morgan GP, Small RC. Inhibitory responses to nicotine and transmural stimulation in hyoscine treated guinea-pig isolated trachealis: an electrical and mechanical study. Br J Pharmacol 1987; 90: 733 - 744.

    PubMed  CAS  Google Scholar 

  66. Boyle JP, Davies JM, Foster RW, Good DM, Kennedy I, Small RC. Spasmogenic action in guinea-pig isolated trachealis: involvement of membrane K+-channels and the consequences of K+-channel blockade. Br J Pharmacol 1988; 93: 319 - 330.

    PubMed  CAS  Google Scholar 

  67. Dixon JS, Small RC. Evidence of poor conduction of muscle excitation in the longitudinal axis of guinea-pig isolated trachea. Br J Pharmacol 1983; 79: 75 - 83.

    PubMed  CAS  Google Scholar 

  68. Foster RW, Small RC, Weston AH. Evidence that the spasmogenic action of tetraethyl-ammonium in guinea-pig trachealis is both direct and dependent on the cellular influx of calcium ion. Br J Pharmacol 1983; 79: 255 - 263.

    PubMed  CAS  Google Scholar 

  69. Honda K, Satake T, Takagi K, Tomita T. Effects of relaxants on electrical and mechanical activities in the guinea-pig isolated tracheal muscle. Br J Pharmacol 1986; 87: 665 - 671.

    PubMed  CAS  Google Scholar 

  70. Mansour S, Daniel EE. Maintenance of tone, role of arachidonate metabolites and effects of sensitization in guinea-pig trachea. Can J Physiol Pharmacol 1986; 64: 1096 - 1103.

    PubMed  CAS  Google Scholar 

  71. McCaig DJ. Electrophysiology of neuroeffector transmission in the isolated, innervated trachea of the guinea-pig. Br J Pharmacol 1986; 89: 793 - 801.

    PubMed  CAS  Google Scholar 

  72. Small RC. Electrical slow waves and tone of guinea-pig isolated trachealis muscle: effects of drugs and temperature changes. Br J Pharmacol 1982; 77: 45 - 54.

    PubMed  CAS  Google Scholar 

  73. McCaig DJ, Rodger IW. Effects of leukotriene D4 on the mechanical and electrical properties of the guinea-pig isolated trachealis. Br J Pharmacol 1988; 94: 729 - 736.

    PubMed  CAS  Google Scholar 

  74. Foster RW, Okpalugo BI, Small RC. Antagonism of Caz+ and other actions of verapamil in guinea-pig isolated trachealis. Br J Pharmacol 1984; 81: 499 - 507.

    PubMed  CAS  Google Scholar 

  75. Allen SL, Beech DJ, Foster RW, Morgan GP, Small RC. Electrophysiological and other aspects of the relaxant action of isoprenaline in guinea-pig isolated trachealis. Br J Pharmacol 1985; 86: 843 - 854.

    PubMed  CAS  Google Scholar 

  76. Allen SL, Boyle JP, Cortijo J, Foster RW. Morgan GP, Small RC. Electrical and mechanical effects of BRL 34915 on guinea-pig isolated trachealis. Br J Pharmacol 1986; 89: 395 - 405.

    PubMed  CAS  Google Scholar 

  77. Thompson DC, Cibulsky SM. Tension-dependent contribution of tachykinins and prostanoids to resting tone of the guinea-pig bronchus and trachea. Am Rev Respir Dis 1993; 147: A708.

    Google Scholar 

  78. Daniel EE, Bourreau J-P, Abela A, Jury J. The internal calcium store in airway muscle: emptying, refilling, and chloride. Biochem Pharmacol 1992; 43: 29 - 37.

    PubMed  CAS  Google Scholar 

  79. Ito Y, Tajima K. Spontaneous activity in the trachea of dogs treated with indomethacin: an experimental model for aspirin-related asthma. Br J Pharmacol 1981; 73: 563 - 571.

    PubMed  CAS  Google Scholar 

  80. Raeburn D, Roberts JA, Rodger 1W, Thomson NC. Agonist-induced contractile responses of human bronchial muscle in vitro: effects of Cat+ removal, Lai+ and PY108068. Eur J Pharmacol 1986; 121: 251 - 255.

    PubMed  CAS  Google Scholar 

  81. Welling A, Felbel J, Peper K, Hofmann F. Hormonal regulation of calcium current in freshly isolated airway smooth muscle cells. Am J Physiol 1992; 262: L351 - L359.

    PubMed  CAS  Google Scholar 

  82. Imaizumi Y, Watanabe M. The effect of tetraethylammonium chloride on potassium permeability on the smooth muscle cell membrane of canine trachea. J Physiol 1981; 316: 33 - 46.

    PubMed  CAS  Google Scholar 

  83. Murray MA, Boyle JP, Small RC. Cromakalim-induced relaxation of guinea-pig isolated trachealis: antagonism by glibenclamide and by phentolamine. Br J Pharmacol 1989; 98: 865 - 874.

    PubMed  CAS  Google Scholar 

  84. Aickin CC. Chloride transport across the sarcolemma of vertebrate smooth and skeletal muscle. In ed. Alvarez Leefmans FJ, Russell JM, Chloride channels and carriers in nerve, muscle, and glial cells. pp 209 - 249. New York, Plenum Press. 1990.

    Google Scholar 

  85. Aickin CC, Vermuë NA. Microelectrode measurement of intracellular chloride activity in smooth muscle cells of guinea-pig ureter. Pflügers Arch 1983; 397: 25 - 28.

    PubMed  CAS  Google Scholar 

  86. Gerstheimer FP, MĂĽhleisen M, Nehring D, Kreye VAW. A chloride-bicarbonate exchanging anion carrier in vascular smooth muscle of the rabbit. PflĂĽgers Arch 1987; 409: 60 - 66.

    PubMed  CAS  Google Scholar 

  87. Himpens B, Somlyo AP. Free-calcium and force transients during depolarization and pharmacological coupling in guinea-pig smooth muscle. J Physiol 1988; 395: 507 - 530.

    PubMed  CAS  Google Scholar 

  88. Panettieri RA, Murray RK, DePalo LR, Yadvish PA, Kotlikoff MI. A human airway smooth muscle cell line that retains physiological responsiveness. Am J Physiol 1989; 256: C329 - C335.

    PubMed  CAS  Google Scholar 

  89. Kotlikoff MI Murray RK, Reynolds EE. Histamine-induced calcium release and phorbol antagonism in cultured airway smooth muscle cells. Am J Physiol 1987; 253: C561-0566.

    Google Scholar 

  90. Takuwa Y, Takuwa N, Rasmussen H. Measurement of cytosolic free Cat+ concentration in bovine tracheal smooth muscle using aequorin. Am J Physiol 1987; 253: C817 - C827.

    PubMed  CAS  Google Scholar 

  91. Takuwa Y, Takuwa N, Rasmussen H. The effects of isoproterenol on intracellular calcium concentration. J Biol Chem 1988; 263: 762 - 768.

    PubMed  CAS  Google Scholar 

  92. Bagby RM, Young AM, Dotson RS, Fisher BA, McKinnon K. Contractions of single smooth muscle cells from Bufo marinus stomach. Nature 1971; 234: 351 - 353.

    PubMed  CAS  Google Scholar 

  93. Fay FS, Delise CM. Contraction of isolated smooth muscle cells - structural changes. Proc Natl Acad Sci 1973; 70: 641 - 645.

    PubMed  CAS  Google Scholar 

  94. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. PflĂĽgers Arch 1981; 391: 85 - 100.

    PubMed  CAS  Google Scholar 

  95. Benham CD, Bolton TB. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol 1986; 381: 385 - 406.

    PubMed  CAS  Google Scholar 

  96. Janssen LI, Sims SM. Acetylcholine activates non-selective cation and chloride conductances in canine and guinea-pig tracheal myocytes. J Physiol 1992; 453: 197 - 218.

    PubMed  CAS  Google Scholar 

  97. McCann JD, Welsh MJ. Calcium-activated potassium channels in canine airway smooth muscle. J Physiol 1986; 372: 113 - 127.

    PubMed  CAS  Google Scholar 

  98. Boyle JP, Tomasik M, Kotlikoff MI. Delayed rectifier potassium channels in canine and porcine airways smooth muscle cells. J Physiol 1992; 447: 329 - 350.

    PubMed  CAS  Google Scholar 

  99. Green KA, Foster RW, Small RC. A patch-clamp study of K+-channel activity in bovine isolated tracheal smooth muscle cells. Br J Pharmacol 1991; 102: 871 - 878.

    PubMed  CAS  Google Scholar 

  100. Kume H, Kotlikoff MI. Muscarinic inhibition of single Kca channels in smooth muscle cells by a pertussis-sensitive G protein. Am J Physiol 1991; 261: C1204 - C1209.

    PubMed  CAS  Google Scholar 

  101. Kume H, Kotlikoff MI. Muscarinic inhibition of single Kca channels in smooth muscle cells by a pertussis-sensitive G protein. Am J Physiol 1991; 261: C1204 - C1209.

    PubMed  CAS  Google Scholar 

  102. Kotlikoff MI. Potassium currents in canine airway smooth muscle cells. Am J Physiol 1990; 259: L384 - L395.

    PubMed  CAS  Google Scholar 

  103. Jones TR, Charette L, Garcia ML, Kaczorowski GJ. Selective inhibition of relaxation of guinea-pig trachea by charybdotoxin, a potent Ca++-activated K+ channel inhibitor. J Pharmacol Exp Ther 1990; 255: 697 - 706.

    PubMed  CAS  Google Scholar 

  104. Jones TR, Charette L, Garcia ML, Kaczorowski GJ. Interaction of iberiotoxin with Ăź-adrenoceptor agonists and sodium nitroprusside on guinea pig trachea. J Appl Physiol 1993; 74: 1879 - 1884.

    PubMed  CAS  Google Scholar 

  105. Murray MA, Berry JL, Cook SJ, Foster RW, Green KA, Small RC. Guinea-pig isolated trachealis: the effects of charybdotoxin on mechanical activity, membrane potential changes, and the activity of plasmalemmal K+-channels. Br J Pharmacol 1991; 103: 1814 - 1818.

    PubMed  CAS  Google Scholar 

  106. Fleischmann BK, Washabau RJ, Kotlikoff MI. Delayed rectifier potassium currents control resting membrane potential in ferret airway smooth muscle cells. Am Rev Respir Dis 1993; 147: A207.

    Google Scholar 

  107. Arch JRS, Buckle DR, Bumstead J, Clarke GD, Taylor SG. Evaluation of the potassium channel activator cromakalim (BRL 34915) as a bronchodilator in guinea-pig: comparison with nifedipine. Br J Pharmacol 1988; 95: 763 - 770.

    PubMed  CAS  Google Scholar 

  108. Black JL, Armour CL, Johnson PRA, Alouan LA, Barnes PJ. The action of a potassium channel activator, BRL 38227 (lemakalim), on human airway smooth muscle. Am Rev Respir Dis 1990; 142: 1384 - 1389.

    PubMed  CAS  Google Scholar 

  109. Black JL, Armour CL, Johnson PRA, Alouan LA, Barnes PJ. The action of a potassium channel activator, BRL 38227 (lemakalim), on human airway smooth muscle. Am Rev Respir Dis 1990; 142: 1384 - 1389.

    PubMed  CAS  Google Scholar 

  110. Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 1979; 59: 606 - 718.

    PubMed  CAS  Google Scholar 

  111. Janssen LJ, Sims SM. Histamine activates Cl-and K+ currents in guinea-pig tracheal myocytes: convergence with cholinergic signalling pathway. J Physiol 1993; 465: 66 1677.

    Google Scholar 

  112. Kume H, Takagi K, Satake T, Tokuno H, Tomita T. Effects of intracellular pH on calcium-activated potassium channels in rabbit tracheal smooth muscle. J Physiol 1989; 424: 445 - 457.

    Google Scholar 

  113. Drazen JM, Fanta CH, Lacoutre PG. Effect of nifedipine on constriction of human tracheal strips in vitro. Br J Pharmacol 1983; 78: 687 - 691.

    PubMed  CAS  Google Scholar 

  114. Marthan R, Armour CL, Johnson PRA, Black RL. The calcium channel agonist Bay K8644 enhances the responsiveness of human airway muscle to KCl and histamine but not to carbachol. Am Rev Respir Dis 1987; 135: 185 - 189.

    PubMed  CAS  Google Scholar 

  115. Brown AM, Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol 1988; 254: H401 - H410.

    PubMed  CAS  Google Scholar 

  116. Kotlikoff MI, Kume H, Tomasic M. Muscarinic regulation of membrane ion channels in airway smooth muscle cells. Biochem Pharmacol 1992; 43: 5 - 10.

    PubMed  CAS  Google Scholar 

  117. Kamishima T, Nelson MT, Patlak JB. Carbachol modulates voltage sensitivity of calcium channels in bronchial smooth muscle of rats. Am J Physiol 1992; 263: C69 - C77.

    PubMed  CAS  Google Scholar 

  118. Ito Y, Tajima K. Dual effects of catecholamines on pre-and postjunctional membranes in dog trachea. Br J Pharmacol 1982; 75: 433 - 440.

    PubMed  CAS  Google Scholar 

  119. Cameron AR, Johnston CF, Kirkpatrick CT, Kirkpatrick MCA. The quest for the inhibitory neurotransmitter in bovine tracheal smooth muscle. Quar J Exp Physiol 1983; 68: 413 - 426.

    CAS  Google Scholar 

  120. Kume H, Takai A, Tokuno H, Tornita T. Regulation of Cat+-dependent channel activity in tracheal myocytes by phosphorylation. Nature 1989; 341: 152 - 154.

    PubMed  CAS  Google Scholar 

  121. Weston AH. Smooth muscle K’ channel openers: their pharmacology and clinical potential. Pflügers Arch 1989; 414: S99 - S105.

    PubMed  Google Scholar 

  122. Miura M, Belvisi MG, Stretton CD, Yacoub MH, Barnes PJ. Role of potassium channels in bronchodilator responses in human airways. Am Rev Respir Dis 1992; 146: 132 - 136.

    PubMed  CAS  Google Scholar 

  123. Goldie RG, Spina D, Henry PJ, Lulich KM, Paterson JW. In vitro responsiveness of human asthmatic bronchus to carbachol, histamine, Ăź-adrenoceptor agonists and theophylline. Br J Pharmacol 1986; 22: 669 - 676.

    CAS  Google Scholar 

  124. Li CG, Rand MJ. Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical field stimulation is mediated by NO. Br J Pharmacol 1991; 102: 91 - 94.

    PubMed  CAS  Google Scholar 

  125. Inoue T, Ito Y, Takeda K. The effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the dog mesenteric artery and trachea. Br J Pharmacol 1983; 80: 459 - 470.

    PubMed  CAS  Google Scholar 

  126. Allen SL, Foster RW, Morgan GP, Small RC. The relaxant action of nicorandil in guinea-pig isolated trachealis. Br J Pharmacol 1986; 87: 117 - 127.

    PubMed  CAS  Google Scholar 

  127. Richards IS, Ousterhout J, Sperelakis N, Murlas CG. cAMP suppresses Cat+-dependent electrical activity of airway smooth muscle induced by TEA. J Appl Physiol 1987; 62: 175 - 179.

    PubMed  CAS  Google Scholar 

  128. Small JV. Geometry of actin-membrane attachments in the smooth muscle cells: the localization of vinculan and alpha-actin. Eur Mol Biol Org J 1985; 4: 45 - 49.

    CAS  Google Scholar 

  129. Moreno AP, Campos de Carvalho AC, Christ G, Melman A, Spray DC. Gap junctions between human corpus cavernosum smooth muscle cells: gating properties and unitary conductance. Am J Physiol 1993; 264: C80 - C92.

    PubMed  CAS  Google Scholar 

  130. Bennett MV, Verselis VK. Biophysics of gap junctions. Sem Cell Biol 1992; 3: 29 - 47.

    CAS  Google Scholar 

  131. Loewenstein WR. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 1981; 61: 829 - 913.

    PubMed  CAS  Google Scholar 

  132. Revel JP, Hoh JH, John SA, Laird DW, Puranam K, Yancey SB. Aspects of gap junction structure and assembly. Semin Cell Biol 1992; 3: 21 - 28.

    PubMed  CAS  Google Scholar 

  133. Kumar NM, Gilula NB. Molecular biology and genetics of gap junction channels. Semin Cell Biol 1992; 3: 3 - 16.

    PubMed  CAS  Google Scholar 

  134. Beyer SC, Paul DL, Goodenough DA. Connexin 43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 1987; 105: 2621 - 2624.

    PubMed  CAS  Google Scholar 

  135. Willecke K, Henneman H, Dahl E, Jungbluth S, Heynkes R. The diversity of connexin genes encoding gap junctional proteins. Eur J Cell Biol 1991; 56: 1 - 7.

    PubMed  CAS  Google Scholar 

  136. Beyer EC, Paul DL, Goodenough DA. Connexin family of gap junction proteins. J Membr Biol 1990; 116: 187 - 194.

    PubMed  CAS  Google Scholar 

  137. Winterhagen E, Slutenkemper R, Traub O, Beyer E, Willecke K. Expression of different connexin genes in rat uterus during decidualization and at term. Eur J Cell Biol 1991; 55: 133 - 142.

    Google Scholar 

  138. Tabb T, Thilander G, Grover A, Hertzberg E, Garfield R. An immunochemical and immunocytologic study of the increase in myometrial gap junctions (and connexin 43) in rats and humans during pregnancy. Am J Obstet Gynec 1992; 167: 559 - 567.

    PubMed  CAS  Google Scholar 

  139. Beyer EC, Reed KE, Westphale EM, Kanter HL, Larson DM. Molecular cloning and expression of rat connexin 40, a gap junction protein expressed in vascular smooth muscle. J Membr Biol 1992; 127: 69 - 76.

    PubMed  CAS  Google Scholar 

  140. Lash JA, Cutser ES, Pressler ML. Cloning of gap junctional protein from vascular smooth muscle and expression in two cell mouse embryos. J Biol Chem 1990; 265: 13113 - 13117.

    PubMed  CAS  Google Scholar 

  141. Li Z, Zhou Z, Daniel EE. Expression of gap junction connexin 43 and connexin 43 mRNA in different regional tissues of intestine in dog. Am J Physiol 1993; 265: G911 - G916.

    PubMed  CAS  Google Scholar 

  142. Li Z-Y, Zhou Z, Anwari M, Daniel EE. Multiple connexin messenger RNAs expressed by human gastrointestinal smooth muscles and mucosa. In: Kanno, Y (ed) Gap Junction Progress in Cell Research. Elsevier, 1994.

    Google Scholar 

  143. Li Z-Y, Zhou Z, Daniel EE. Expression of gap junction protein Cx43 and mRNA in canine tracheal smooth muscle, bronchus and lung. Am Rev Respir Dis 1993; 147: A53.

    Google Scholar 

  144. Kadle R, Zhang ZT, Nicholson BJ. Tissue specific distribution of differentially phosphorylated forms of Cx43. Mol Cell Biol 1991; 11: 363 - 369.

    PubMed  CAS  Google Scholar 

  145. Fitzgerald DJ, Murray AW. inhibition of intercellular communication by tumor-promoting phorbol esters. Cancer Res 1980; 40: 2935 - 2937.

    PubMed  CAS  Google Scholar 

  146. Hasler CM, Frick MA, Bennick MR, Trosko JE. TPA-induced inhibition of gap junctional intercellular communication is not mediated through free radicals. Toxicol Appl Pharmacol 1990; 103: 389 - 398.

    PubMed  CAS  Google Scholar 

  147. Takeda A, Hashimoto E, Yamamura H, Shimazo T. Phosphorylation of liver gap junction protein by protein kinase C. FEBS Lett 1987; 210: 169 - 172.

    PubMed  CAS  Google Scholar 

  148. Gainer HC, Murray AM. Diacylglycerol inhibits gap junction communication in cultured epidermal cells: evidence for role of protein kinase C. Biochem Biophys Res Commun 1985; 126: 1109 - 1113.

    PubMed  CAS  Google Scholar 

  149. Ramon F, Riviera A. Gap junction channel modulation: a physiological viewpoint. Prog Biophys 1987; 48: 127 - 153.

    Google Scholar 

  150. Arellano RO, Riviera A, Ramon F. Protein phosphorylation and hydrogen ions modulate calcium induced closure of gap junction channels. Biophys J 1990; 57: 363 - 367.

    PubMed  CAS  Google Scholar 

  151. Saez JC, Spray DC, Nairn AC, Hertzberg E, Greengard P, Bennett MVL. cAMP increases junctional conductance and stimulates phosphorylation in the 27 kDa principal gap junction polypeptide. Proc Natl Acad Sci 1986; 83: 2473 - 2477.

    PubMed  CAS  Google Scholar 

  152. DeMello WC. Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells. Biochem Biophys Res Commun 1984; 119: 1001 - 1007.

    CAS  Google Scholar 

  153. Burt JM, Spray DC. Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol 1988; 254: H1126 - H1210.

    Google Scholar 

  154. Murray SA, Taylor F. Dibutyryl cyclic AMP modulation of gap junctions in SW-13 human adrenal cortical tumour cells. Am J Anat 1988; 181: 141 - 148.

    PubMed  CAS  Google Scholar 

  155. Cole WC, Garfield RE. Evidence for physiological regulation of myometrial gap junction permeability. Am J Physiol 1986; 251: C207 - C239.

    Google Scholar 

  156. Crow DS, Beyer EC, Paul D, Kobe SS, Lau AF. Phosphorylation of connexin 43 gap junction protein uninfected and RSV-transformed mammalian fibroblasts. Mol Cell Biol 1990; 10: 1754 - 1763.

    PubMed  CAS  Google Scholar 

  157. Berthoud VM, Ledbetter ML, Hertzberg EL, Saez JC. Connexin 43 in MDCK cells: regulation by a tumor-promoting phorbol ester and CaZ+. Eur J Cell Biol 1992; 51: 40 - 50.

    Google Scholar 

  158. Dookwah HD, Barhoumi R, Narasimhan TR, Safe SH, Burghardt RC. Gap junctions in myometrial cell cultures: evidence for modulation by cyclic adenosine 3’:5’-monophosphate. Biol Reprod 1992; 47: 397 - 407.

    PubMed  CAS  Google Scholar 

  159. Filson AJ, Azamia R, Beyer EC, Loewenstein WR, Brugge JJ. Tyrosine phosphorylation of a gap junction protein correlates with inhibition of cell-to-cell communication. Cell Growth Differentiation 1990; 1: 666 - 668.

    Google Scholar 

  160. Peracchia C. Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration. J Membr Biol 1990; 113: 75 - 92.

    PubMed  CAS  Google Scholar 

  161. Burt JM. Block of intercellular communication: interaction of intracellular H+ and Cat+. Am J Physiol 1987; 253: C607 - C612.

    PubMed  CAS  Google Scholar 

  162. Fishman GI, Moreno AP, Spray DC, Leenward LA. Functional analysis of human cardiac gap junction channel mutants. Proc Natl Acad Sci 1991; 88: 3525 - 3529.

    PubMed  CAS  Google Scholar 

  163. Lal R, Arnsdorf MF. Voltage-dependent gating and single-channel conductance of adult mammalian atrial gap junctions. Circ Res 1992; 71: 737 - 743.

    PubMed  CAS  Google Scholar 

  164. Lal R, Arnsdorf MF. Voltage-dependent gating and single channel conductance of adult mammalian atrial gap junction. Circ Res 1992; 71: 73.

    Google Scholar 

  165. Veenstra RD, Wang HZ, Westphale EM, Beyer EC. Multiple connexins confer distinct regulatory and conductance properties of gap junctions in developing heart. Circ Res 1992; 71: 1277 - 1283.

    PubMed  CAS  Google Scholar 

  166. Kolb HA, Somogyi R. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev Physiol Biochem Pharmacol 1992; 118: l -47.

    Google Scholar 

  167. Rubin JB, Verselis VK, Bennett MV, Bargiello TA. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc Natl Acad Sci 1992; 89: 38112 - 3824.

    Google Scholar 

  168. Kieval RS, Spear JF, Moore EM. Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium. Circ Res 1992; 71: 127 - 136.

    PubMed  CAS  Google Scholar 

  169. Kanter HL, Scffitz JE, Beyer EC. Cardiac myocytes express multiple gap junction proteins. Cire Res 1992; 70: 438 - 494.

    CAS  Google Scholar 

  170. Rook MB, van Rinneken AC, De Jonge B, El Aoumari A, Gros D, Jongsma HJ. Differences in gap junction channels between cardiac myocytes, fibroblasts and heterogeneous pairs. Am J Physiol 1992; 263: C959 - C977.

    PubMed  CAS  Google Scholar 

  171. Rubin JB, Verselis VK, Bennett MV, Bargiello TA. Molecular analysis of voltage-dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys J 1992; 62: 189 - 193.

    Google Scholar 

  172. Daniel EE, Kannan M, Davis C, Posey-Daniel V. Ultrastructural studies on the neuromuscular control of human tracheal and bronchial smooth muscle. Respir Physiol 1986; 63: 109 - 128.

    PubMed  CAS  Google Scholar 

  173. Daniel EE. Ultrastructure of airway smooth muscle. In: Armour CL and Black JL. eds. Mechanisms in asthma: pharmacology, physiology and management. N.Y.: Alan R. Liss, 1988: 179 - 1123.

    Google Scholar 

  174. Daniel EE, Berezin I, O’Byrne PM. Structure of airway smooth muscle. In: Kaliner MA, Barnes PJ, Person CGA. eds. Asthma: Its pathology and treatment. Lung biology in health and disease. Vol. 49. N.Y.: Marcel Dekker, Inc., 1991: 189 - 1125.

    Google Scholar 

  175. Daniel EE, Daniel VP, Berezin I, Wang, M. Airway smooth muscle cells. In: Crystal RG, West JB. eds. The Lung: scientific foundations. Vol. 1. N.Y.: Raven Press Ltd., 1991: 439 - 450.

    Google Scholar 

  176. Daniel EE, Triggle DJ. Structure and function of airway smooth muscle. In: Middleton E, Jr., Busse WW, Ellis EF, Reed CR, Yunginger JW. eds. Allergy: Principles and Practice. St. Louis, MO: Mosby-Year Book Co., 1993: 629 - 649.

    Google Scholar 

  177. Kannan MS, Daniel EE. Structural and functional study of control of canine tracheal smooth muscle. Am J Physiol 1980; 238: C27 - C33.

    PubMed  CAS  Google Scholar 

  178. Henderson RM, Duchon G, Daniel EE. Cell contacts in duodenal smooth muscle layers. Am J Physiol 1971; 221: 564 - 574.

    PubMed  CAS  Google Scholar 

  179. Garfield RE, Thilander G, Blennerhesset MG, Sakai N. Are gap junctions necessary for cell-to-cell coupling of smooth muscle?: an update. Can J Physiol Pharmacol 1992; 70: 481 - 490.

    PubMed  CAS  Google Scholar 

  180. Daniel EE, Jury J, Serio R, Jager LP. Role of depolarization and calcium in contractions of canine trachealis from endogenous or exogenous acetylcholine. Can J Physiol Pharmacol 1991; 69: 518 - 525.

    PubMed  CAS  Google Scholar 

  181. Christ GJ, Moreno AP, Melman A, Spray DC. Gap junctional-mediated intercellular diffusion of Cat+ in cultured human caporal smooth muscle cells. Am J Physiol 1992; 263: C373 - C383.

    PubMed  CAS  Google Scholar 

  182. Peracchia C. Effects of the anesthetics heptanol, halothane and isoflurane on gap junction conductance in crayfish septate axons: A calcium-and hydrogen-independent phenomenon potentiated by caffeine and theophylline and inhibited by 4-aminopyridine. J Membr Biol 1991; 121: 67 - 78.

    Google Scholar 

  183. Agrawal R, Daniel EE. Control of gap junction formation in canine trachea by archidonic acid metabolites. Am J Physiol 1986; 250: C495 - 0505.

    PubMed  CAS  Google Scholar 

  184. Jongsma HJ, Gross D. The cardiac connection NIPS 1991; 6: 34 - 40.

    Google Scholar 

  185. Jongsma HJ, Gross D. The cardiac connection NIPS 1991; 6: 34 - 40.

    Google Scholar 

  186. Abela A, Daniel EE. The neural and myogenic effects of leukotrienes C4, D4 and E, on canine bronchial smooth muscle. Am J Physiol (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Janssen, L., Daniel, E.E. (1994). Myogenic Control of Airways Smooth Muscle and Cell-to-Cell Coupling. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Development, and Regulation of Contractility. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7408-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7408-3_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7410-6

  • Online ISBN: 978-3-0348-7408-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics