## Chapter 1

## Notation

Throughout this text, we will be regularly referring to the space-time norms

$$
\begin{equation*}
\|u\|_{L_{t}^{q} L_{x}^{r}\left(\mathbb{R} \times \mathbb{R}^{d}\right)}:=\left(\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{d}}|u(t, x)|^{r} d x\right]^{\frac{q}{r}} d t\right)^{\frac{1}{q}} \tag{1.1}
\end{equation*}
$$

with obvious changes if $q$ or $r$ are infinity. We will often use the abbreviation

$$
\|f\|_{r}:=\|f\|_{L_{x}^{r}} \quad \text { and } \quad\|u\|_{q, r}:=\|u\|_{L_{t}^{q} L_{x}^{r}} .
$$

We write $X \lesssim Y$ to indicate that $X \leq C Y$ for some constant $C$, which is permitted to depend on the ambient spatial dimension, $d$, without further comment. Other dependencies of $C$ will be indicated with subscripts, for example, $X \lesssim_{u} Y$. We will write $X \sim Y$ to indicate that $X \lesssim Y \lesssim X$.

We use the 'Japanese bracket' convention: $\langle x\rangle:=\left(1+|x|^{2}\right)^{1 / 2}$ as well as $\langle\nabla\rangle:=(1-\Delta)^{1 / 2}$. Similarly, $|\nabla|^{s}$ denotes the Fourier multiplier with symbol $|\xi|^{s}$. These are used to define the Sobolev norms

$$
\|f\|_{H^{s, r}}:=\left\|\langle\nabla\rangle^{s} f\right\|_{L_{x}^{r}} \quad \text { and } \quad\|f\|_{\dot{H}^{s, r}}:=\left\||\nabla|^{s} f\right\|_{L_{x}^{r}} .
$$

When $r=2$ we abbreviate $H^{s}=H^{s, 2}$ and $\dot{H}^{s}=\dot{H}^{s, 2}$.
Our convention for the Fourier transform is

$$
\hat{f}(\xi)=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} f(x) d x
$$

so that

$$
f(x)=(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \hat{f}(\xi) d \xi \quad \text { and } \quad \int_{\mathbb{R}^{d}}|\hat{f}(\xi)|^{2} d \xi=\int_{\mathbb{R}^{d}}|f(x)|^{2} d x
$$

Notations associated to Littlewood-Paley projections are discussed in the Appendix (Chapter 11).

