
27th International Conference, FoSSaCS 2024 
Held as Part of the European Joint Conferences 
on Theory and Practice of Software, ETAPS 2024 
Luxembourg City, Luxembourg, April 6–11, 2024 
Proceedings, Part I

Foundations 
of Software Science and 
Computation StructuresLN

CS
 1

45
74

AR
Co

SS
Naoki Kobayashi
James Worrell (Eds.)



Lecture Notes in Computer Science 14574

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558


More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558


Naoki Kobayashi • James Worrell
Editors

Foundations
of Software Science and
Computation Structures
27th International Conference, FoSSaCS 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings, Part I

123



Editors
Naoki Kobayashi
The University of Tokyo
Tokyo, Japan

James Worrell
University of Oxford
Oxford, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-57227-2 ISBN 978-3-031-57228-9 (eBook)
https://doi.org/10.1007/978-3-031-57228-9

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-0537-0604
https://orcid.org/0000-0001-8151-2443
https://doi.org/10.1007/978-3-031-57228-9
http://creativecommons.org/licenses/by/4.0/


ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérôme Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wa  sowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also



organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wa  sowski (Copenhagen), Thomas Noll (Aachen), Jan Kofroň (Prague),
Barbara König (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Křetínský (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luı  s Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hähnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovács (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword



Preface

This volume contains the papers presented at the 27th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2024), which
was held during April 8–11, 2024 in Luxembourg City, Luxembourg. The conference
is dedicated to foundational research with a clear significance for software science and
brings together research on theories and methods to support the analysis, integration,
synthesis, transformation, and verification of programs and software systems.

In addition to an invited talk by Jérôme Leroux (Laboratoire Bordelais de Recherche
en Informatique, France) on “Ackermannian Completion of Separators”, the program
consisted of 24 talks on contributed papers, selected from 79 submissions. Each sub-
mission was assessed by three or more Program Committee members, with the help of
external reviewers. The conference management system EasyChair was used to handle
the submissions, to conduct the electronic Program Committee discussions, and to
assist with the assembly of the proceedings.

We wish to thank all the authors who submitted papers for consideration, the
members of the Program Committee for their conscientious work, and all additional
reviewers who assisted the Program Committee in the evaluation process. We would
also like to thank Andrzej Murawski, the FoSSaCS Steering Committee Chair for
various pieces of advice, and the members of the ESOP/FASE/FoSSaCS joint Artifact
Evaluation Committee for the artifact evaluation. Finally, we would like to thank the
ETAPS organization for providing an excellent environment for FoSSaCS, the other
conferences and the workshops.

February 2024 Naoki Kobayashi
James Worrell



Organization

Program Committee Chairs

Naoki Kobayashi The University of Tokyo, Japan
James Worrell University of Oxford, UK

Program Committee

Sandra Alves University of Porto, Portugal
Mauricio Ayala-Rincón Universidade de Brasília, Brazil
Stephanie Balzer CMU, USA
Udi Boker Reichman University, Israel
James Brotherston University College London, UK
Corina Cirstea University of Southampton, UK
Yuxin Deng East China Normal University, China
Claudia Faggian CNRS - Université Paris Cité, France
Pierre Ganty IMDEA Software Institute, Spain
Ichiro Hasuo National Institute of Informatics, Japan
Naoki Kobayashi The University of Tokyo, Japan
Robbert Krebbers Radboud University, the Netherlands
Antonin Kucera Masaryk University, the Czech Republic
Karoliina Lehtinen CNRS - Université Aix-Marseille, France
Bas Luttik Eindhoven University of Technology, the Netherlands
Rasmus Ejlers Møgelberg IT University of Copenhagen, Denmark
Luca Padovani Università di Camerino, Italy
Catuscia Palamidessi Inria, France
Paritosh Pandya IIT Bombay, India
Elaine Pimentel University College London, UK
Damien Pous CNRS - ENS Lyon, France
Ana Sokolova University of Salzburg, Austria
Lidia Tendera University of Opole, Poland
Nikos Tzevelekos Queen Mary University of London, UK
Tarmo Uustalu Reykjavik University, Iceland
Franck van Breugel York University, Canada
James Worrell University of Oxford, UK



ESOP/FASE/FoSSaCS Joint Artifact Evaluation Committee

AEC Co-chairs

Tobias Kappé Open Universiteit and ILLC, University of Amsterdam,
The Netherlands

Ryosuke Sato University of Tokyo, Japan
Stefan Winter LMU Munich, Germany

AEC Members

Arwa Hameed Alsubhi University of Glasgow, UK
Levente Bajczi Budapest University of Technology and Economics,

Hungary
James Baxter University of York, UK
Matthew Alan Le Brun University of Glasgow, UK
Laura Bussi University of Pisa, Italy
Gustavo Carvalho Universidade Federal de Pernambuco, Brazil
Chanhee Cho Carnegie Mellon University, USA
Ryan Doenges Northeastern University, USA
Zainab Fatmi University of Oxford, UK
Luke Geeson University College London, UK
Hans-Dieter Hiep Leiden University, Belgium
Philipp Joram Tallinn University of Technology, Estonia
Ulf Kargén Linköping University, Sweden
Hiroyuki Katsura University of Tokyo, Japan
Calvin Santiago Lee Reykjavík University, Iceland
Livia Lestingi Politecnico di Milano, Italy
Nuno Macedo University of Porto and INESC TEC, Portugal
Kristóf Marussy Budapest University of Technology and Economics,

Hungary
Ivan Nikitin University of Glasgow, UK
Hugo Pacheco University of Porto, Portugal
Lucas Sakizloglou Brandenburgische Technische Universität Cottbus-

Senftenberg, Germany
Michael Schröder TU Wien, Austria
Michael Schwarz TU Munich, Germany
Wenjia Ye University of Hong Kong, China

x Organization



Additional Reviewers

Abraham, Erika
Ajdarow, Michal
An, Jie
Asada, Kazuyuki
Avanzini, Martin
Balasubramanian, A. R.
Barbosa, João
Basold, Henning
Batz, Kevin
Beohar, Harsh
Bertrand, Nathalie
Beyersdorff, Olaf
Bohn, León
Bonelli, Eduardo
Bonsangue, Marcello
Breuvart, Flavien
Bruyère, Véronique
Carette, Titouan
Chadha, Rohit
Clemente, Lorenzo
Cockett, Robin
Czerwiński, Wojciech
D’Osualdo, Emanuele
Dagnino, Francesco
De Moura, Flavio L. C.
De, Abhishek
Di Stasio, Antonio
Espírito Santo, José
Fahrenberg, Uli
Feng, Yuan
Fijalkow, Nathanaël
Filiot, Emmanuel
Fokkink, Wan
Frumin, Daniil
Galal, Zeinab
Geatti, Luca
Geuvers, Herman
van Glabbeek, Rob
van Gool, Sam
Goy, Alexandre
Guha, Shibashis
Guttenberg, Roland
Hague, Matthew

Hainry, Emmanuel
Harper, Robert
Hausmann, Daniel
Hedges, Jules
Hinrichsen, Jonas Kastberg
Ho, Hsi-Ming
Jaber, Guilhem
Jafarrahmani, Farzad
Jakl, Tomas
Jancar, Petr
Kanazawa, Makoto
Kaposi, Ambrus
Katsumata, Shin-Ya
Kavvos, Alex
Keiren, Jeroen J. A.
Kelmendi, Edon
Klaška, David
Klock Ii, Felix S.
Knight, Sophia
Koutavas, Vasileios
Krivine, Jean
König, Barbara
Laurent, Olivier
Leroux, Jérôme
Lhote, Nathan
Li, Yong
Long, Huan
Lopez, Aliaume
Loreti, Michele
Maarand, Hendrik
Madnani, Khushraj
Mallik, Kaushik
Martens, Jan
Marti, Johannes
Mascle, Corto
Mazzocchi, Nicolas
McDermott, Dylan
Melliès, Paul-André
Mery, Daniel
Michaliszyn, Jakub
Michielini, Vincent
Miculan, Marino
Moot, Richard

Organization xi



Morawska, Barbara
Mulder, Ike
Nguyễn, Lê Thành Dũng
Novotný, Petr
Paquet, Hugo
Piedeleu, Robin
Pinto, Luís
Proença, José
Pérez, Jorge A.
Rehak, Vojtech
Riba, Colin
Rivas, Exequiel
Rogalewicz, Adam
Rot, Jurriaan
Rowe, Reuben
Sakayori, Ken
Sarkis, Ralph
Schmid, Todd
Schmitz, Sylvain
Schröder, Lutz
Sin’Ya, Ryoma

Skrzypczak, Michał
Sobociński, Paweł
Staton, Sam
Stein, Dario
Takagi, Tsubasa
Tini, Simone
Totzke, Patrick
Urbat, Henning
Valencia, Frank
Vandenhove, Pierre
Varacca, Daniele
Veltri, Niccolò
Ventura, Daniel
Waga, Masaki
Wagemaker, Jana
Wan, Cheng-Syuan
Weil-Kennedy, Chana
Winskel, Glynn
Witkowski, Piotr
Wißmann, Thorsten
Wolter, Frank

xii Organization



Contents – Part I

Invited Talk

Ackermannian Completion of Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Jérôme Leroux

Infinite Games

Fair x-Regular Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Daniel Hausmann, Nir Piterman, Irmak Sağlam,
and Anne-Kathrin Schmuck

Stochastic Window Mean-Payoff Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Laurent Doyen, Pranshu Gaba, and Shibashis Guha

Symbolic Solution of Emerson-Lei Games for Reactive Synthesis . . . . . . . . . . 55
Daniel Hausmann, Mathieu Lehaut, and Nir Piterman

Parity Games on Temporal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Pete Austin, Sougata Bose, and Patrick Totzke

Categorical Semantics

Drawing from an Urn is Isometric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Bart Jacobs

Enriching Diagrams with Algebraic Operations . . . . . . . . . . . . . . . . . . . . . . . 121
Alejandro Villoria, Henning Basold, and Alfons Laarman

Monoidal Extended Stone Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Fabian Birkmann, Henning Urbat, and Stefan Milius

Towards a Compositional Framework for Convex Analysis
(with Applications to Probability Theory). . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Dario Stein and Richard Samuelson

Automata and Synthesis

Determinization of Integral Discounted-Sum Automata is Decidable . . . . . . . . 191
Shaull Almagor and Neta Dafni



Checking History-Determinism is NP-hard for Parity Automata . . . . . . . . . . . 212
Aditya Prakash

Tighter Construction of Tight Büchi Automata . . . . . . . . . . . . . . . . . . . . . . . 234
Marek Jankola and Jan Strejček

Synthesis with Privacy Against an Observer . . . . . . . . . . . . . . . . . . . . . . . . . 256
Orna Kupferman, Ofer Leshkowitz, and Naama Shamash Halevy

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

xiv Contents – Part I

http://dx.doi.org/10.1007/978-3-031-55598-5_15


Contents – Part II

Types and Programming Languages

From Rewrite Rules to Axioms in the kP-Calculus Modulo Theory . . . . . . . . 3
Valentin Blot, Gilles Dowek, Thomas Traversié,
and Théo Winterhalter

Light Genericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Beniamino Accattoli and Adrienne Lancelot

Logical Predicates in Higher-Order Mathematical Operational Semantics . . . . . 47
Sergey Goncharov, Alessio Santamaria, Lutz Schröder, Stelios Tsampas,
and Henning Urbat

On Basic Feasible Functionals and the Interpretation Method . . . . . . . . . . . . . 70
Patrick Baillot, Ugo Dal Lago, Cynthia Kop, and Deivid Vale

Logic and Proofs

Succinctness of Cosafety Fragments of LTL via Combinatorial
Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Luca Geatti, Alessio Mansutti, and Angelo Montanari

A Resolution-Based Interactive Proof System for UNSAT . . . . . . . . . . . . . . . 116
Philipp Czerner, Javier Esparza, and Valentin Krasotin

Craig Interpolation for Decidable First-Order Fragments . . . . . . . . . . . . . . . . 137
Balder ten Cate and Jesse Comer

Clones, closed categories, and combinatory logic . . . . . . . . . . . . . . . . . . . . . 160
Philip Saville

Infinite-State Systems

Reachability in Fixed VASS: Expressiveness and Lower Bounds . . . . . . . . . . 185
Andrei Draghici, Christoph Haase, and Andrew Ryzhikov

From Innermost to Full Almost-Sure Termination of Probabilistic
Term Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Jan-Christoph Kassing, Florian Frohn, and Jürgen Giesl



Dimension-Minimality and Primality of Counter Nets . . . . . . . . . . . . . . . . . . 229
Shaull Almagor, Guy Avni, Henry Sinclair-Banks, and Asaf Yeshurun

Parameterized Broadcast Networks with Registers: from NP to the Frontiers
of Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Lucie Guillou, Corto Mascle, and Nicolas Waldburger

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

xvi Contents – Part II

http://dx.doi.org/10.1007/978-3-031-50524-9_12


Invited Talk



Ackermannian Completion of Separators

Jérôme Leroux

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
jerome.leroux@labri.fr

Abstract. Vector addition systems (VAS for short), or equivalently vec-
tor addition systems with states, or Petri nets are a long established
model of concurrency with extensive applications in modeling and anal-
ysis of hardware, software and database systems, as well as chemical,
biological and business processes. The central algorithmic problem is
reachability: whether from a given initial configuration there exists a se-
quence of valid execution steps that reaches a given final configuration.
The complexity of the problem has remained unsettled since the 1960s,
and was recently proved to be Ackermannian-complete.
In 2009, we proved that the reachability problem can be decided with
a simple algorithm by observing that negative instances of the reacha-
bility problem can be witnessed by partitioning the set configurations
into semilinear sets called complete separators. Since we can decide in el-
ementary time if a pair of semilinear sets denotes a complete separator,
the size of such a witness is Ackermannian in the worst case.
In this paper, we show how recent results about the reachability problem
can be combined to derive a matching upper-bound, i.e. for every nega-
tive instance of the reachability problem, we can effectively compute in
Ackermannian time a complete separator witnessing that property.

1 Introduction

Vector addition systems [8] (VAS for short), or equivalently vector addition sys-
tems with states [7], or Petri nets are one of the most popular formal methods
for the representation and the analysis of parallel processes [3]. The central algo-
rithmic problem is reachability: whether from a given initial configuration there
exists a sequence of valid execution steps that reaches a given final configuration.
Many important computational problems in logic and complexity reduce or are
even equivalent to this problem [22,6].

After an incomplete proof by Sacerdote and Tenney [20], decidability of
the problem was established by Mayr [17,19], whose proof was then simpli-
fied by Kosaraju [9]. Building on the further refinements made by Lambert
in the 1990s [10], in 2015, a first complexity upper-bound of the reachability
problem was provided [12] more than thirty years after the presentation of the
algorithm introduced by Mayr [9,10]. The upper-bound given in that paper is
“cubic Ackermannian”, i.e. in Fω3 (see [21]). This complexity bound was obtained
by analyzing the Mayr algorithm. With a refined algorithm and a new ranking

(B)

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 3–10, 2024.
https://doi.org/10.1007/978-3-031-57228-9_1

https://doi.org/10.1007/978-3-031-57228-9_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_1&domain=pdf
http://orcid.org/0000-0002-7214-9467


function for proving termination, an Ackermannian complexity upper-bound was
obtained in [15]. This means that the reachability problem can be solved in time
bounded by Fω(p(n)) where p is a primitive recursive function and where Fω is
an Ackermann function. Very recently, this complexity bound was proved to be
optimal [14,2].

While the complexity of the reachability problem is settled, its parameterized
version, in fixed dimension d, is still open with a large complexity gap between the
lower-bound and the upper-bound. Some recent results provided ways to decrease
that gap (see for instance [1,11]) but the problem remains open. Since there
exists d-dimensional VAS with finite but very large reachability sets [18], any
reachability algorithm directly based on the Mayr algorithm will necessarily fail
in providing a better complexity upper-bound. In fact that algorithm enumerates
in some way each possible reachable configurations when the reachability set is
finite.

There is another algorithm for deciding the reachability problem indepen-
dent of the Mayr algorithm. In fact, in [13], we introduced a simple enumerating
algorithm for deciding the reachability problem by observing that negative in-
stances of the reachability problem can be witnessed by partitioning the set of
configurations into semilinear sets called complete separators. Since we can de-
cide in elementary time if a pair of semilinear sets denotes a complete separator,
and the reachability problem is Ackermannian-hard, the size of such a witness
is necessarily Ackermannian in the worst case.

In this paper, we take the opportunity to show how to combine papers [15]
and [13] to prove that from any negative instance of the reachability problem, we
can effectively compute in Ackermannian time a complete separator witnessing
that property. This result prove the optimality of algorithms based on complete
separators for deciding the general reachability problem. Since this paper is an
invited paper at FOSSACS’24, so without any reviewing process, no new proof
are given in this paper. If a proof is given, it just to be self-content. But in any
case, those proofs are copy-past from [15] and [13].

Even if our result does not provide a better understanding of the complexity
of the parameterized reachability problem, it shows that algorithms based on
complete separators are optimal in general dimension.

2 Basic Notions

In this section, we introduce basic notions and notation.

Notation for Vectors of Integers. By Z we denote the set of integers, and
by N the set {0, 1, 2, . . . } of non-negative integers. Given d ∈ N, the elements
of Zd are called (d-dim) vectors ; they are denoted in bold face, and for x ∈ Zd

we put x = (x(1), . . . ,x(d)) so that we can refer to the vector components. In
this context, d is called the dimension of x. We use the component-wise sum

4 J. Leroux



x + y of vectors, and their component-wise order x ≤ y. For c ∈ N, we put
c · x = (c · x(1), . . . , c · x(d)).

Linear and Semilinear Sets. A set L ⊆ Nd is linear if there are d-dim vectors
b, the basis, and p1, . . . ,pk, the periods (for k ∈ N), such that L = {x ∈ Nd |
x = b+u(1) ·p1+ · · ·+u(k) ·pk for some u ∈ Nk}. In this case, by a presentation
of L we mean the tuple (b,p1, . . . ,pk).

A set S ⊆ Nd is semilinear if it is a finite union of linear sets, i.e. S =
L1 ∪ · · · ∪ Lk where Lj are linear sets for all j. In this case, by a presentation
of S we mean the sequence of presentations of L1, . . . ,Lk. When we say that a
semilinear set S is given, we mean that we are given a presentation of S; when
we say that S is effectively constructible in some context, we mean that there is
an algorithm computing its presentation (in the respective context).

We recall that a set S ⊆ Nd is semilinear if, and only if, it is expressible in
Presburger arithmetic [4]; the respective transformations between presentations
and formulas are effective and elementary. Hence if S ⊆ Nd is semilinear, then
also its complement, denoted as S, is semilinear, and S is effectively constructible
when (a presentation of) S is given.

Fast Growing Functions. The Grzegorczyk hierarchy [5,16] is defined thanks
to a family (Fd)d∈N of functions Fd : N → N such that every primitive recursive
function is asymptotically bounded by some function Fd. This family is defined
by F0(n)

def
= n + 1 and inductively by Fd+1(n)

def
= Fn+1

d (n) for every n, d ∈ N.
Observe that F1(n) = 2n + 1, F2(n) = 2n+1(n + 1) − 1, and F3(n) grows as a
tower of n exponentials. It follows that F3 is a non elementary function since
it eventually exceeds any fixed iteration of the exponential function. An Acker-
mannian function, denoted as Fω is defined thanks to the diagonal extraction
Fω(n)

def
= Fn+1(n) for every n ∈ N. This function is non primitive recursive.

Vector Addition Systems. A (d-dim) vector addition system (VAS for short)
is a finite set A of vectors in Zd called actions. Vectors x ∈ Nd are called
configurations, and with an action a we associate the binary relation a−→ on the
configurations in Nd by putting x

a−→ y for all x,y ∈ Nd such that y − x = a.
The relations a−→ are naturally extended to the relations σ−→ for finite sequences
σ = a1 . . . ak of actions by x

σ−→ y if x a1−→ · · · ak−→ y for all x,y ∈ Nd.
On the set Nd of configurations we define the reachability relation A∗

−−→: we
put x

A∗

−−→ y if there is σ ∈ A∗ such that x
σ−→ y. For x ∈ Nd and X ⊆ Nd

we put post∗
A(x)

def
= {y ∈ Nd | x A∗

−−→ y}, and post∗
A(X)

def
=

⋃
x∈X post∗

A(x).

Symmetrically, for y ∈ Nd and Y ⊆ Nd we put pre∗
A(y)

def
= {x ∈ Nd | x A∗

−−→ y}
and pre∗

A(Y)
def
=

⋃
y∈Y pre∗

A(y). By X
A∗

−−→ Y we denote that x A∗

−−→ y for some
x ∈ X and y ∈ Y.

The semilinear reachability problem takes as input a triple (X,A,Y) where
X,Y are (presentations of) semi-linear sets of configurations of a VAS A, and
checks if X A∗

−−→ Y hold. In the standard definition of the reachability problem the
sets X,Y are singletons; the problem is decidable [19], and it has been recently

Ackermannian Completion of Separators 5



shown to be Ackermann-complete [15,14,2]. It is well-known (and easy to show)
that the above more general version (the semilinear reachability problem) is
tightly related to the standard version, and has thus the same complexity.

3 Separators

A separator is a negative instance of the semilinear reachability problem, i.e. a
triple (X,A,Y) where X,Y are semilinear sets of configurations of a VAS A

such that ¬(X A∗

−−→ Y). The domain D of a separator (X,A,Y) is the semilinear
set X ∪Y. Notice that X, D, and Y forms a partition of Nd. When the domain
is empty, the separator is said to be complete. Notice that a triple (X,A,Y) is
a complete separator if, and only if, (X,Y) is a partition of Nd into semilinear
sets such that y − x ̸= a for every x ∈ X, y ∈ Y, and a ∈ A. In particular this
property is decidable in elementary time by encoding it as the satisfiabibility of
a Presburger formula. A separator (X′,Y′) is called a completion of a separator
(X,Y) if (X′,Y′) is complete, X ⊆ X′ and Y ⊆ Y′.

In [15] we proved that every separator can be effectively completed. In this
paper, we show how this result can be extended with optimal complexity bounds.
More formally, we prove that any separator can be completed in Ackermannian
time. The Ackermannian lower-bound is immediate since the reachability prob-
lem for VAS is Ackermannian-complete and as already mentioned, we can check
in elementary time if a pair of semilinear sets is a completion of a separator. The
most difficult part of the result is the Ackermannian upper-bound.

4 Semi-Pseudo-Linear Sets

Given two semilinear sets X,Y of configurations of a VAS A, the sets post∗
A(X)∩

Y and pre∗
A(Y) ∩X are not semilinear in general. However, we proved in [13]

that those sets are semi-pseudo-linear, a class of sets that can be tightly over-
approximated by semilinear sets called linearizations. Linearizations are obtained
by solving several instances of the semilinear reachability problem. Since in [14,2],
we provided an Ackermannian upper-bounds on that decision problem, we can
reasonably think that the completion of separators can be done in Ackermannian
time. To prove that result, in this section we provide complexity bounds on the
size of linearizations. Those linearizations will be used in the next section for
completing separators in Ackermannian time.

Let us recall some definitions. A monoid M is a set of configurations such
that 0 ∈ M, and such that M+M ⊆ M. The monoid spanned by a set P ⊆ Nd

is the set of finite sums of vectors in P. It is denoted as ΣP. A vector a ∈ Nd

is called an interior vector of a monoid M, if for every m ∈ M, there exists a
natural number n ≥ 1 such that na ∈ m+M.

A pseudo-linear set is a set X ⊆ Nd such that there exists a linear set
L = b + M where M is the monoid spanned by the periods of L, such that

6 J. Leroux



X ⊆ L and such that for every finite set R of interior vectors of M, there
exists x ∈ X such that x + ΣR ⊆ X. In that case, the linear set L is called a
linearization of X. A semi-pseudo-linear set X is a finite union of pseudo-linear
sets X = X1 ∪ . . . ∪Xk. In that case a semilinear set of the form L1 ∪ . . . ∪ Lk

where Lj is a linearization of Xj is a called a linearization of X.

By combining the proof of [13, Theorem 6.4] with [15], we deduce the fol-
lowing theorem where fd is a function of the form Fd+3(Cn) for some constant
C independent of d. In this theorem, the size in binary or in unary does not
change the result and there is a lot of freedom in the definition of the size of
presentations of semilinear sets and VAS.

Theorem 1. Given two semilinear sets X and Y of configurations of a d-dim
VAS A, the sets post∗

A(X)∩Y and pre∗
A(Y)∩X are semi-pseudo-linear. More-

over, we can effectively compute in time fd(n) where n is the size of the input,
presentations of linearizations of those sets.

The tightness of linearization approximations can be emphasis by introducing
the notion of rank1 given in [13]. Formally, the rank of a set X ⊆ Nd, denoted as
rankX is the minimal r ∈ {−∞, 0, . . . , d} such that there exists a semi-linear set
S that contains X of the form b1 +M1 ∪ . . . ∪ bk +Mk where M1, . . . ,Mk are
monoids spanned by at most r vectors. In [13], we prove that rank(X) = −∞ iff
X is empty, rank(X) ≤ rank(Y) if X ⊆ Y, and the following theorem.

Theorem 2 (Proposition 7.10 of [13]). Let S1,S2 be linearizations of two
non-empty semi-pseudo-linear sets X1,X2 with an empty intersection. We have:

rank(S1 ∩ S2) < rank(X1 ∪X2)

5 Ackermannian Completion

We show in this section who a separator (X,A,Y) can be completed in Acker-
mannian time. We follow the algorithm introduced in [13] by first proving that if
(X,A,Y) is not complete, i.e. if the domain D is non empty, we can effectively
compute a separator (X′,A,Y′) with a domain D′ such that X ⊆ X′, Y ⊆ Y′,
and such that rank(D′) < rank(D). It follows that by applying at most d times
this algorithm where d is the dimension of A, we get a complete separator.

Let n be the size of the separator (X,A,Y).
The set Y′ is obtained as follows. Since D is semilinear and effectively com-

putable in elementary time, it follows from Theorem 1 that we can compute in
time fd(E(n)) where E is some fixed elementary function a linearization U of
the semi-pseudo-linear set post∗

A(X) ∩D. We introduce Y′ def
= Y ∪ (D \U).

Let us prove that (X,A,Y′) is a separator. By contradiction, assume that
X

A∗

−−→ Y′. Since ¬(X A∗

−−→ Y), and Y′ = Y ∪ (D \U), we deduce that X
A∗

−−→
1 In [13] this notion is called dimension but in our context, the dimension word is

already used for the number of components of a vector.

Ackermannian Completion of Separators 7



(D \ U). However, since post∗
A(X) ∩ D ⊆ U we get a contradiction. Hence

(X,A,Y′) is a separator and its domain is equal to D ∩U.
The set X′ is obtained symmetrically. Since D ∩ U is semilinear and effec-

tively computable in elementary time, it follows from Theorem 1 that we can
compute in time fd(E

′(fd(E(n)))) where E′ is some fixed elementary function a
linearization V of the semi-pseudo-linear set pre∗

A(Y′) ∩D ∩U. We introduce
X′ def

= X ∪ ((D ∩U) \V).
Symmetrically, we deduce that (X′,A,Y′) is a separator and its domain D′

is equal to D ∩U ∩V.

Since (X,A,Y′) is a separator, it follows that post∗
A(X) and pre∗

A(Y′) have
an empty intersection. In particular the semi-pseudo-linear sets post∗

A(X) ∩D
and pre∗

A(Y′)∩D∩U have an empty intersection. If one of those semi-pseudo-
linear sets is empty then D′ is empty and in particular rank(D′) < rank(D).
Otherwise, from Theorem 2 we deduce that the rank of U∩V is strictly bounded
by the rank of the union of post∗

A(X)∩D and pre∗
A(Y′)∩D∩U. Since this set is

included in D, and D′ is included in U∩V, we deduce that rank(D′) < rank(D).

By replacing E and E′ by E + E′, we can assume without loss of generality
that E = E′. By iterating the previous construction at most d times, we deduce
that from any separator (X,A,Y) of size n, we can compute in time (fd◦E)2d(n)
a completion of it. We deduce the main theorem of that paper.

Theorem 3. Separators can be completed in Ackermannian time.

6 Conclusion

In this paper, we have shown that separators can be completed in Ackermannian
time. Our computation is based on a generic algorithm given in Section 5. This
algorithm can be implemented as soon as we have an oracle computing semilin-
ear sets over-approximating the sets post∗

A(X)∩D and pre∗
A(Y)∩D. If those

approximations are not linearizations, the termination of the algorithm is no
longer true in general. However, since its correctness is maintained, it should be
interesting to benchmark such an algorithm when using heuristics for implement-
ing oracles computing reachability set over-approximations (based on abstract
interpretation, acceleration techniques, parameterized invariant, and so on).

References

1. Czerwinski, W., Jecker, I., Lasota, S., Leroux, J., Orlikowski, L.: New lower bounds
for reachability in vector addition systems. In: Bouyer, P., Srinivasan, S. (eds.) 43rd
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2023, December 18-20, 2023, IIIT Hyderabad, Telan-
gana, India. LIPIcs, vol. 284, pp. 35:1–35:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2023). https://doi.org/10.4230/LIPICS.FSTTCS.2023.35

8 J. Leroux

https://doi.org/10.4230/LIPICS.FSTTCS.2023.35


2. Czerwinski, W., Orlikowski, L.: Reachability in vector addition systems is
Ackermann-complete. In: 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. pp. 1229–1240.
IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00120

3. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of
the European Association for Theoretical Computer Science 52, 245–262 (1994)

4. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and
languages. Pacific Journal of Mathematics 16(2), 285–296 (1966).
https://doi.org/10.2140/pjm.1966.16.285

5. Grzegorczyk, A.: Some classes of recursive functions. Instytut Matematyczny Pol-
skiej Akademi Nauk (1953), http://eudml.org/doc/219317

6. Hack, M.: Decidability questions for Petri nets. Ph.D. thesis, MIT (1975), http:
//publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf

7. Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector
addition systems. Theoritical Computer Science 8, 135–159 (1979)

8. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

9. Kosaraju, S.R.: Decidability of reachability in vector addition sys-
tems (preliminary version). In: STOC. pp. 267–281. ACM (1982).
https://doi.org/10.1145/800070.802201

10. Lambert, J.: A structure to decide reachability in Petri nets. Theor. Comput. Sci.
99(1), 79–104 (1992). https://doi.org/10.1016/0304-3975(92)90173-D

11. Lasota, S.: Improved Ackermannian lower bound for the Petri nets reach-
ability problem. In: Berenbrink, P., Monmege, B. (eds.) 39th International
Symposium on Theoretical Aspects of Computer Science, STACS 2022,
March 15-18, 2022, Marseille, France (Virtual Conference). LIPIcs, vol. 219,
pp. 46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.STACS.2022.46

12. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems.
In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2015, Kyoto, Japan, July 6-10, 2015. pp. 56–67. IEEE Computer Society (2015).
https://doi.org/10.1109/LICS.2015.16

13. Leroux, J.: The general vector addition system reachability problem by presburger
inductive invariants. In: Proceedings of the 24th Annual IEEE Symposium on Logic
in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA. pp.
4–13. IEEE Computer Society (2009). https://doi.org/10.1109/LICS.2009.10

14. Leroux, J.: The reachability problem for Petri nets is not primitive recursive.
In: 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2021, Denver, CO, USA, February 7-10, 2022. pp. 1241–1252. IEEE (2021).
https://doi.org/10.1109/FOCS52979.2021.00121

15. Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785796

16. Löb, M.H., Wainer, S.S.: Hierarchies of number-theoretic functions. i. Archiv
für mathematische Logik und Grundlagenforschung 13(1), 39–51 (1970).
https://doi.org/10.1007/BF01967649

17. Mayr, E.W.: An algorithm for the general petri net reachability problem. In:
Proceedings of the 13th Annual ACM Symposium on Theory of Comput-
ing, May 11-13, 1981, Milwaukee, Wisconsin, USA. pp. 238–246. ACM (1981).
https://doi.org/10.1145/800076.802477

Ackermannian Completion of Separators 9

https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.2140/pjm.1966.16.285
http://eudml.org/doc/219317
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.4230/LIPIcs.STACS.2022.46
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2009.10
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/BF01967649
https://doi.org/10.1145/800076.802477


18. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for
petri nets. J. ACM 28(3), 561–576 (1981). https://doi.org/10.1145/322261.322271

19. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984). https://doi.org/10.1137/0213029

20. Sacerdote, G.S., Tenney, R.L.: The decidability of the reachability problem for
vector addition systems (preliminary version). In: Proceedings of the 9th Annual
ACM Symposium on Theory of Computing, May 4-6, 1977, Boulder, Colorado,
USA. pp. 61–76. ACM (1977). https://doi.org/10.1145/800105.803396

21. Schmitz, S.: Complexity hierarchies beyond elementary. TOCT 8(1), 3:1–3:36
(2016). https://doi.org/10.1145/2858784

22. Schmitz, S.: The complexity of reachability in vector addition systems. ACM
SIGLOG News 3(1), 4–21 (2016). https://doi.org/10.1145/2893582.2893585

10 J. Leroux

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/322261.322271
https://doi.org/10.1137/0213029
https://doi.org/10.1145/800105.803396
https://doi.org/10.1145/2858784
https://doi.org/10.1145/2893582.2893585
http://creativecommons.org/licenses/by/4.0/


Infinite Games



Fair ω-Regular Games

Abstract. We consider two-player games over finite graphs in which
both players are restricted by fairness constraints on their moves. Given
a two player game graph G = (V,E) and a set of fair moves Ef ⊆ E a
player is said to play fair in G if they choose an edge e ∈ Ef infinitely
often whenever the source node of e is visited infinitely often. Otherwise,
they play unfair. We equip such games with two ω-regular winning con-
ditions α and β deciding the winner of mutually fair and mutually unfair
plays, respectively. Whenever one player plays fair and the other plays
unfair, the fairly playing player wins the game. The resulting games are
called fair α/β games.

We formalize fair α/β games and show that they are determined. For
fair parity/parity games, i.e., fair α/β games where α and β are given
each by a parity condition over G, we provide a polynomial reduction
to (normal) parity games via a gadget construction inspired by the re-
duction of stochastic parity games to parity games. We further give a
direct symbolic fixpoint algorithm to solve fair parity/parity games. On a
conceptual level, we illustrate the translation between the gadget-based
reduction and the direct symbolic algorithm which uncovers the underly-
ing similarities of solution algorithms for fair and stochastic parity games,
as well as for the recently considered class of fair games in which only
one player is restricted by fair moves.

Keywords: games on graphs, fairness, two-player games, parity games

1 Introduction

Omega-regular games are a popular abstract modelling formalism for many core
computational problems in the context of correct-by-construction synthesis of
reactive software or hardware. This abstract view was initiated by the seminal
work of Church [8] and its independent solutions by Büchi and Landweber and
Rabin [18,5]. Since then these ideas have been refined and extended for solving
the reactive synthesis problems [17,20,14].

⋆ Supported by the ERC Consolidator grant D-SynMA (No. 772459).
⋆⋆ Supported by the DFG project SCHM 3541/1-1.

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 13–33, 2024.
https://doi.org/10.1007/978-3-031-57228-9_2

1 University of Gothenburg, Gothenburg, Sweden
{hausmann,piterman}@chalmers.se

2 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
{isaglam,akschmuck}@mpi-sws.org

Daniel Hausmann1, , Nir Piterman1 , Irmak Sağlam2(B) ,
and Anne-Kathrin Schmuck2

⋆ ∗
∗∗

⋆⋆

https://orcid.org/0000-0002-0935-8602
https://orcid.org/0000-0002-8242-5357
https://orcid.org/0000-0002-4757-1631
https://orcid.org/0000-0003-2801-639X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_2&domain=pdf


However, before using any such synthesis technique, the reactive software de-
sign problem at hand needs to be abstractly modelled as a two-player game. In
order for the subsequently synthesized software to be ‘correct-by-construction’
this game graph needs to reflect all possible interactions between involved com-
ponents in an abstract manner. Building such a game graph with the ‘right’
level of abstraction is a known severe challenge, in particular, if the synthesized
software is interacting with existing components that already possess certain be-
havior. Here, part of the modelling challenge amounts to finding the ‘right’ power
of both players in the resulting abstract game to ensure that winning strategies
do not fail to exist due to an unnecessarily conservative overapproximation of
modeling uncertainty (or the dual problem due to underapproximation).

In this context, fairness has been adopted as a notion to abstractly model
known characteristics of the involved components in a very concise manner. Fair-
ness assumptions have been used in model checking [1] and scheduler synthesis
for the classical AMBA arbiter [16] or shared resource management [6]. Notably,
fairness assumptions have also gained attention in cyber-physical system design
[21,15,11] and robot motion planning [9,2]. In all these applications, fairness is
used as an assumption that the synthesized (or verified) component can rely
on. In particular, if these assumptions are modelled by transition fairness over
a two-player game arena3 (V∀, V∃, E) – i.e., by a set of fair environment moves
Ef ⊆ E (i.e., with V∀ as their domain) that need to be taken infinitely often
if the source node is seen infinitely often along a play – the resulting synthesis
games can be solved efficiently [4,19].

While most existing work has only looked at fairness as an assumption to
weaken the opponent in the synthesis game, all mentioned applications also
naturally allow for scenarios where multiple components with intrinsically fair
behavior are interacting with each other in a non-trivial manner. For example,
the ability of a concurrent process to eventually free a shared resource might
depend on how fair re-allocation is implemented in other threads. On an abstract
level, the formal reasoning about such scenarios requires to understand how the
interactive decision making of two dependent processes is influenced by intrinsic
fairness constraints imposed on their decisions. Algorithmically, these synthesis
questions require fairness restrictions on both players in a game, i.e., do not
restrict the domain of fair moves Ef to one player only. We refer to such games
simply as fair games.

Motivating Example. In order to better illustrate the challenges arising from
solving such fair games, consider two robots in a shared workspace with narrow
passages between adjacent regions that only one robot can pass at a time. One
robot (say the green one) has an ω-regular objective α that specifies desired
sequences of visited regions in the workspace. The other (red) robot tries to
prevent the green robot from achieving this sequence. In order to rule out trivial
spoiling strategies of the red robot, both robots need to implement a tie-breaking

3 Whenever we interpret players in a one-sided manner as environment and system,
we choose the environment player as the ∀-player, as we need to take all possible
environment moves into account. Similarly, the system is the ∃-player in this scenario.

14 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



mechanism for obstacle avoidance, i.e., they must eventually move left or right
if an obstacle blocks their way.

Now consider the scenario where both robots are facing each other at a gate,
as depicted in Fig. 1. While both robots block the gate from one side, neither
of them can move forward, but if the green robots moves left or the red robot
moves right, the other robot can take the gate to reach region A. With the
mentioned requirement for tie-breaking, none of the robots is allowed to block
the gate forever and both eventually have to move to the side.

Fig. 1: Deadlock caused by fairness constraints of two robots facing a door.

Now let us assume that region A is important for both robots, hence, both
robots have an incentive to enter region A first, to then move the game to an
area preferable to them. However, the robot who breaks the tie first, (i.e., fulfills
its fairness condition first) allows the other robot to enter region A first, which
gives both robots the incentive to behave unfair. While it is very intuitive to
make a player lose when she plays unfair and the other player plays fair, it is
unclear who wins the game if both players play unfair.

To resolve this issue, we can make the objectives of the robots completely
adversarial by assigning one of the players (say, green) the winner in a play where
both players play unfair. In the above example, this would give the red robot the
incentive to break the tie first. While this makes it harder for the red robot to
spoil the objective of the green one, we might be interested in a more symmetric
game which does not favor the green robot in all non-determined states of the
graph. We therefore consider a second ω-regular objective β that determines the
winner of (mutually) unfair plays. This results in fair games G = (A,α, β) which
are determined (as shown in Sec. 3).

Contribution. Motivated by the above mentioned examples where interactive
decision making of two dependent processes is influenced by intrinsic fairness con-
straints imposed on their decisions, this paper studies fair games G = (A,α, β)
as their abstraction. In particular, we give solution algorithms for these games
when both α and β are parity conditions induced by two different priority func-
tions over the node set. We call such games fair parity/parity games.

Obviously, the previously discussed one-sided version of fair games, which
we call ∀-fair games (as only the ∀-player (i.e., the environment) is restricted
by strong transition fairness), is a special case of fair games. Both enumerative
[19] and symbolic solution algorithms [4] have recently been proposed for ∀-

Fair ω-Regular Games 15



fair games, showing that strong transition fairness can be handled efficiently
in both types of algorithms. This observation is closely related to a result for
stochastic games, i.e., two-player games with an additional ‘half’ player that
takes all its moves uniformly at random. For the purpose of qualitative analysis,
such stochastic parity games have been shown in [7] to be reducible to (standard)
parity games by the use of “gadgets” that turn stochastic nodes into a small
sequence of ∀- and ∃-player nodes. While it is known that stochastic games can
be reduced to ∀-fair games (and hence, fair games), it was not investigated how
the different solution approaches compare. The main conceptual contribution of
this paper is a unified understanding of all these solution approaches for the
general class of fair games.

Concretely, our contribution is three-fold:
(1) We formalize fair games as a generalization of ∀-fair games and stochastic
games such that they are determined.
(2) We show a reduction of fair parity/parity games to (standard) parity games,
inspired by the gadget-based reduction of stochastic parity games to parity games
in [7]. This reduction enables the use of parity game solvers over the reduced
game (in particular enumerative ones such as Zielonka’s algorithm [24]) and gives
a gadget-based reduction of ∀-fair parity games to parity games as a corollary.
(3) We then show how our gadget construction can be used to define a symbolic
fixpoint algorithm to solve fair parity/parity games directly (without the need
for a reduction). We show the direct symbolic algorithm for ∀-fair parity games
in [4] coinciding with our algorithm for this particular subclass of fair games.

With this, we believe that this paper uncovers the underlying similarities
of solution algorithms for fair, ∀-fair and stochastic parity games. Further, we
show how these conceptual similarities can be used to build both enumerative
and direct symbolic algorithms. This is of interest as both are known to have
complementary strengths, depending on how the synthesis instance is provided,
and this connection was, to the best of our knowledge, not known before.

All omitted proofs are available in the extended version of this paper [10].

2 Preliminaries

We introduce infinite-duration ω-regular two-player games over finite graphs
with additional strong transition fairness conditions on both players. For read-
ability, we call the considered games (and their respective notions) simply fair.

Infinite Sequences. We denote the set of infinite sequences over a set U by
Uω. We often view sequences τ = u1u2 . . . ∈ Uω as functions τ : N → U , writing
τ(i) = ui. Furthermore, we let Inf(τ) := {u ∈ U | ∀i. ∃j > i. τ (j) = u} denote the
set of elements of U that occur infinitely often in τ . Given a function f : U → W ,
we denote by f(τ) ∈ Wω the pointwise application of f to τ . Given a natural
number n, we write [n] := {1, . . . , n}.

Fair Game Arenas. A fair game arena A = (V∃, V∀, E,Ef ) consists of a set
of nodes V = V∃∪V∀ that is partitioned into the sets of existential nodes V∃ and
universal nodes V∀, together with a set E ⊆ V × V of moves that is partitioned

16 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



into the set Ef ⊆ E of fair moves and the set E \Ef of normal moves. If Ef = ∅,
then we sometimes omit this component for brevity. Given a node v ∈ V and a
binary relation R ⊆ V ×V , we write R(v) to denote the set {w ∈ V | (v, w) ∈ R}.
We assume that E is right-total, that is, E(v) ̸= ∅ for all v ∈ V . We call a node
v fair, if it is the source node of a fair edge, i.e., Ef (v) ̸= ∅ and collect all fair
nodes in the set V fair = {v ∈ V | Ef (v) ̸= ∅} and define V n = V \ V fair to be the
set of nodes that are not fair (‘normal nodes’). We denote V fair

∃ = V fair ∩ V∃ and
V fair
∀ = V fair ∩ V∀.

Plays. A play τ = v0v1 . . . on A is an infinite sequence of nodes s.t. vi+1 ∈ E(vi)
for all i ≥ 0. Given a play τ = v0v1 . . ., we define the associated sequence of
moves τm = (v0, v1)(v1, v2) . . .. Additionally, if i is a player in {∃, ∀}, we denote
the other player by 1− i. We let plays(A) denote the set of all plays on A.

For a player i ∈ {∃, ∀}, a play τ is i-fair if for all nodes v ∈ Vi ∩ Inf(τ) holds
that Ef |v ⊆ Inf(τm), where Ef |v = {(v, v′) ∈ Ef | v′ ∈ V } denotes the set of
fair edges that start at v ∈ V . Given a play τ , we write fairi(τ) to indicate that
τ is i-fair. We call a play mutually fair if it is both ∃- and ∀-fair and mutually
unfair if it is neither ∃- nor ∀-fair.

Strategies. A strategy for player i ∈ {∃, ∀} (or, an i-strategy) is a function
p : V ∗ · Vi → V where for each u · v ∈ V ∗ · Vi it holds that p(u · v) ∈ E(v). A
strategy p is called positional if p(u · v) = p(w · v) for all u,w ∈ V ∗ and v ∈ Vi.

A strategy p for player i is said to admit a play τ = v0v1 . . . if for all k ∈ N,
vk ∈ Vi implies p(v0 . . . vk) = vk+1. Alternatively, τ is said to be compliant with
p. We write Σ for the set of ∃-strategies andΠ for the set of ∀-strategies. Starting
from a node v ∈ V , any two strategies s ∈ Σ and t ∈ Π induce a unique play
playv(s, t) in the game arena. If we do not care about the initial node of the play,
we simply write play(s, t).

A strategy for player i ∈ {∃, ∀} is an i-fair strategy if every play it admits is
i-fair. We write Σfair (resp. Π fair) for the set of ∃-fair (resp. ∀-fair) strategies.

Omega-regular Winning Conditions. We consider winning conditions given
by an ω-regular [22,13] language φ ⊆ V ω over the node set V . In particular, we
write φ = ⊥ and φ = ⊤ to denote the trivial winning conditions ∅ and V ω,
respectively. In particular, we focus our attention to parity winning conditions.
For a priority function λ : V → [k] that maps nodes of a game arena to the
natural numbers bounded by k for some k ∈ N, the Parity(λ) condition is given
via φ = {τ ∈ V ω | max(Inf(λ(τ))) is even}.

Omega-regular Games. An ω-regular game is traditionally defined via a
tuple G = (A,α) where A is a game arena without fair edges, i.e. Ef = ∅ and
α ⊆ V ω an ω-regular winning condition. An ∃-strategy s ∈ Σ is said to be
winning (for ∃) from a node v ∈ V , if for all t ∈ Π, playv(s, t) ∈ α. Dually,
a ∀-strategy t ∈ Π is said to be winning (for ∀) from a node v ∈ V , if for all
s ∈ Σ, playv(s, t) ̸∈ α. In ω-regular games, every node v ∈ V is won by one and
only one of the players [12,13]. This property of a game is called determinacy,
and ω-regular games are determined. We denote the nodes from which ∃ (resp.
∀) has a winning strategy in G by Win∃(G) (resp. Win∀(G)). When G is clear

Fair ω-Regular Games 17



from the context, we drop the parenthesis and write Win∃ and Win∀ instead.
Determinacy then amounts to Win∃ ∪Win∀ = V and Win∃ ∩Win∀ = ∅.
Node Conventions for Figures. Throughout this paper, in all figures, the
rectangular nodes represent ∀-player nodes and the nodes with round corners
represent ∃-player nodes.

3 Fair Games

As already outlined in the motivating example in Sec. 1, the interpretation of
winning conditions over fair games influences the characteristics of resulting
winning strategies. To formalize this intuition, we will first recall a particular
subclass of fair games, namely those where only one player is restricted by an
additional fairness condition, in Subsec. 3.1. We will then use these games to
motivate winning semantics for the general class of fair games.

3.1 Determinacy of ∀-Fair Games

A ∀-fair game is a tuple G = (A,α) where A is a game arena with V fair ⊆ V∀
(called a ∀-fair game arena), and α is an ω-regular winning condition.

In ∀-fair games, fairness constraints typically model known behavior of exist-
ing components that the ∃-player (i.e., the to be synthesized system) can rely on.
This is formalized by defining that the ∃-player wins a ∀-fair game with winning
condition α from node v if

∃s ∈ Σ. ∀t ∈ Π fair. playv(s, t) ∈ α. (1a)

That is, ∃-player (or shortly, ∃) wins if they have a strategy that can win against
all ∀-fair ∀-strategies.

Our intuition tells us that this can be converted to reasoning about general
strategies for ∀-player (or shortly, ∀) by allowing ∃ to win whenever ∀ plays
unfairly. In order to see this, we can look at the complement of Eq. (1a), i.e.,
the description of when ∀ wins; namely, ∀s ∈ Σ. ∃t ∈ Π fair. playv(s, t) /∈ α.
We can replace the quantification over fair strategies with a quantification over
all strategies but require that, in addition to refuting α, the resulting play be
fair: ∀s ∈ Σ. ∃t ∈ Π. fair∀(playv(s, t)) ∧ playv(s, t) /∈ α. Indeed, as we show in
the extended version of this paper [10, App. A - Lem. 2], if strategy t ∈ Π
satisfies fair∀(playv(s, t)) then we can find a fair strategy t′ ∈ Π fair with which
playv(s, t) is compliant. This ∀-fair strategy would also stop s from winning. Due
to determinacy of ω-regular games, we know that the last condition is equivalent
to ∃t ∈ Π. ∀s ∈ Σ. fair∀(playv(s, t)) ∧ playv(s, t) /∈ α. In particular, this implies
that t is fair. We conclude that the complement of Eq. (1) is the following
equation:

∃t ∈ Π fair. ∀s ∈ Σ. playv(s, t) ̸∈ α. (1b)

This statement is equivalent to the determinacy of ∀-fair games: either ∃-player
has a winning strategy or ∀-player has a winning ∀-fair strategy, and the two
cannot be true simultaneously.

18 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



3.2 From ∀-Fair Games to Defining Determined Fair Games

Given a fair game arena A and an ω-regular objective α, a natural attempt to
define winning regions in fair games would be to generalize Eq. (1) to

v ∈ Win∃ if ∃s ∈ Σfair. ∀t ∈ Π fair. playv(s, t) ∈ α, and (2a)

v ∈ Win∀ if ∃t ∈ Π fair. ∀s ∈ Σfair. playv(s, t) ̸∈ α. (2b)

However, in this case, Win∃ ∪ Win∀ ̸= V . Indeed, equations (2a) and (2b)
are not complements of each other, that is,

∃s ∈ Σfair. ∀t ∈ Π fair. play(s, t) ∈ α ̸⇔ ∀t ∈ Π fair. ∃s ∈ Σfair. play(s, t) ∈ α.

This observation makes a fair game in which winning regions are defined via Eq. (2)
undetermined. The undetermined nodes O ⊆ V – nodes from which none of the
players has a fair winning strategy – form a separate partition of nodes, i.e.,
V = Win∃ ∪· Win∀ ∪· O. To see this, consider the following example.

Example 1. Consider the fair game arena depicted in Fig. 2 where fair edges are
shown by dashed lines, α = Parity(λ) and each node is labeled by its priority
assigned by λ. We observe that the existential player cannot enforce reaching
the even node with a ∃-fair strategy from the two middle nodes. Every ∃-fair
∃-strategy s has a counter ∀-fair ∀-strategy: choose the fair edge outgoing from
the square node after s chooses the fair edge outgoing from the node with round
corners. On the other hand, the universal player cannot prevent the play from
reaching the even node with a ∀-fair strategy from these nodes for exactly the
same reason. Hence, the middle two nodes are neither in Win∃ nor in Win∀. That
is, these two nodes are undetermined; therefore they form O.

1 11 2

Win∀ Win∃O

Fig. 2: A simple fair game arena discussed in Ex. 1.

In order to better understand the distinction between Equations 2a and 2b,
we rely again on translation to ω-regular games. Consider the following refor-
mulation of Eq. (2a):

∃s ∈ Σ.∀t ∈ Π.fair∃(playv(s, t)) ∧ (fair∀(playv(s, t)) ⇒ playv(s, t) ∈ α). (3a)

Similarly, the following is a reformulation of Eq. (2b):

∃t ∈ Π.∀s ∈ Σ.fair∀(playv(s, t)) ∧ (fair∃(playv(s, t)) ⇒ playv(s, t) ̸∈ α). (3b*)

From determinacy of ω-regular games, the negation of the latter is:

∃s ∈ Σ.∀t ∈ Π.fair∀(playv(s, t)) ⇒ (fair∃(playv(s, t)) ∧ playv(s, t) ∈ α). (3b)

Fair ω-Regular Games 19



We formally prove the equivalences of Eqs. (2a) and (3a) and Eqs. (2b) and (3b)
in [10]. It is not hard to see that the difference between Eq. (3a) and Eq. (3b)
is in the way fairness is handled. Namely, in Eq. (3a) ∃ loses whenever she plays
unfairly regardless of how ∀ plays. Dually, in Eq. (3b) ∃ wins immediately when
∀ plays unfairly regardless of how ∃ plays. It follows that determinacy can be
regained by deciding the winner of the four different combinations of fairness
with an ω-regular winning condition each, as summarized in the following table.

fair∃(τ) ¬fair∃(τ)
fair∀(τ) τ ∈ α τ ∈ γ

¬fair∀(τ) τ ∈ δ τ ∈ β

With this generalization, we obtain (3a) if β = γ = ⊥ and δ = ⊤, and (3b) if
γ = ⊥ and β = δ = ⊤.

We note that the discussion of determinacy has crucial importance to the
analysis of games and the decision of how to model particular scenarios. For ex-
ample, if fairness of ∀-player arises from physical constraints (as, e.g., in [4]) then
it might make sense to consider Eq. (2b), which corresponds to β = ⊤. Dually, if
fairness of ∃-player must be adhered to, then it makes sense to consider Eq. (2a),
which corresponds to β = ⊥. Our formulation allows to further fine tune what
happens when both act unfairly by adjusting β.

Given the intuition that fairness constraints are actually additional obliga-
tions for both players, the choice of γ = ⊥ and δ = ⊤ assumed in Equations (2)-
(3) is very natural. However, allowing mutually unfair plays to be decided by a
different ω-regular winning condition β, allows games with more symmetric win-
ning semantics e.g., by setting β = α. We therefore restrict our attention in this
paper to fair games with two winning conditions α and β while if i-player plays
fairly but (1 − i)-player plays unfairly, i-player wins, i.e., γ := ⊥ and δ := ⊤.
This is formalized next.

Definition 1 (Fair Games). A fair game G = (A,α, β) consists of a fair
game arena A together with two (ω-regular) winning conditions α, β ⊆ plays(A)
where α and β determine the winner of mutually fair and mutually unfair plays,
respectively. In fair games, a play that is i-fair and (1−i)-unfair is won by player
i. Formally, in the fair game G = (A,α, β), v ∈ Win∃ if and only if,

∃s ∈ Σ.∀t ∈ Π. fair∃(playv(s, t)) ∧ (fair∀(playv(s, t)) ⇒ playv(s, t) ∈ α)

∨(¬fair∃(playv(s, t)) ∧ ¬fair∀(playv(s, t)) ∧ playv(s, t) ∈ β) (4)

The determinacy of fair games follows trivially from the formulation. It follows
that the complement of Eq. (4) is the ∀ winning region, defined symmetrically
by v ∈ Win∀ if and only if

∃t ∈ Π.∀s ∈ Σ. fair∀(playv(s, t)) ∧ (fair∃(playv(s, t)) ⇒ playv(s, t) ̸∈ α)

∨(¬fair∀(playv(s, t)) ∧ ¬fair∃(playv(s, t)) ∧ playv(s, t) ̸∈ β)

Notation. We call a fair game G = (A,α, β) a fair α/β game. Further, if α or
β are given by mentioned winning conditions(e.g. α = Parity(λ), β = ⊥), with

            20 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



slight abuse of notation, we refer to the game with the name of the objectives
(e.g. fair parity/⊥ game).

Remark 1. Stochastic games allow for an additional set Vs of stochastic game
nodes that belong to neither ∃ nor ∀, and for which the stochasticity is resolved
uniformly at random. It is known that for purposes of qualitive analysis (i.e., the
computation of almost-sure winning strategies), stochastic games can be seen as
the special case of ∀-fair games in which E(v) ⊆ Ef holds for all stochastic nodes
v ∈ Vs, and Ef ∩ E(v) = ∅ for all non-stochastic nodes v ∈ V∃ ∪ V∀, that is, all
stochastic edges are fair edges, but no non-stochastic edges are fair edges. This
encoding treats stochastic branching as adversarial for the system (∃-player).

3.3 Mutually Fair Strategies in Fair Parity Games

In Subsec. 3.2 and in particular in Ex. 1 we have discussed the mutually unfair
plays and strategies that take such plays into account in fair α/β games. In this
section, we start restricting our attention to fair parity/β games (as this will be
our focus for the rest of the paper) and discuss the particularities of mutually
fair strategies in such games. We will do this with the help of the games G1−G4

depicted in Fig. 3. No mutually unfair plays exist in any of these games. This is
because on all given arenas the unfair behaviour of one player makes the play
trivially fair for the other. Therefore, the winning regions are independent of β.

In game G1, both nodes are won by ∃. ∀-player loses node 3 since taking the
self loop on 3 makes the play visit 3 infinitely often, however, it forces ∀ to play
fairly, implying that they must take the edge to 4 infinitely often. Therefore, any
∀-fair play is won by ∃ since the priority 4 is seen infinitely often. Also note that
if ∀-player decides not to play fairly, they immediately lose since all plays are
trivially ∃-fair. The trivial winning ∃-strategy is depicted by red edges.

To get to game G2, we append node 1 to the left of G1. Here, all the nodes
are won by ∀. This is because ∀-player wins node 3 by eventually taking the
outgoing edge to 1 and then staying in 1 forever with the self-loop. By doing so
∀ evades his obligation to take the fair edges by forcing each play to see node 3
a finite number of times. One winning ∀-strategy is depicted by blue edges.

To get to game G3, we append node 5 to the right of game G1. Again, all
the nodes are won by ∀ even though this time he cannot evade taking his fair
edges. In this game ∀ wins due to the obligation of ∃ to play fairly. In a play
starting from 3, ∀ must eventually take the outgoing edge to 4. From there on,
the play will visit node 4 infinitely often, forcing ∃ to take his outgoing edge to 5
infinitely often. As a consequence, in every mutually fair play 5 is seen infinitely
often. Therefore, the game is won by ∀. A winning ∀-strategy is depicted by
blue edges on the figure, with the interpretation that blue edges from node 3 are
taken alternatingly (in every sequence).

Finally, to get to game G4, we append two nodes to game G3. This time, all
the nodes are won by ∃. ∃-player still needs to take their fair outgoing edges to 5
(and this time, also to the new node 1) infinitely often. But this time she can also
take the outgoing edge to 6 infinitely often and thereby win the game. A winning

Fair ω-Regular Games 21



∃-strategy is depicted by red edges on the figure, again with the interpretation
that red edges from node 4 are taken alternatingly (in every sequence).

3 4

G1: 31G2: 4

3G3: 4 5

43 5

6

1

G4:

Fig. 3: Four fair parity/β games: dashed lines represent fair edges. Games G1 and G4

are won by ∃-player and G2 and G3 are won by ∀-player. In each case, a respective
winning strategy is shown by colored edges. A set of colored edges represents a strategy
that takes only the colored edges in the game, and whenever a source node is visited
all its colored outgoing edges are taken alternatingly.

4 Reduction to Parity Games

In this section, we show how fair parity games can be reduced to parity games
without fairness constraints. We show that there is a linear reduction to parity
games in the case that α is a parity objective and β = ⊤ or β = ⊥; for the case
that β is a non-trivial parity objective, we show that there still is a quadratic
reduction. Our reductions work by replacing each fair node in the fair game with
a 3-step parity gadget. This construction is inspired by the work of Chatterjee
et al. [7] where the qualitative analysis of stochastic parity games is reduced to
solving parity games.

We give the formal reduction for fair parity/⊥ games in Subsec. 4.1 and ex-
tend it to fair parity/parity games in Subsec. 4.2. The extended version contains
a discussion of the reduction for a restricted case of fair parity/⊥ games (fair
Büchi/⊥ games), which can serve as a hand-holding introduction to the section.

4.1 Reduction of Fair Parity/⊥ Games

Let G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair game arena, V =
V∃ ∪· V∀ and λ : V → [2k] is the priority function.

The reduction to parity games replaces fair nodes v ∈ V fair in G with the
gadgets given in Fig. 4. Nodes v ∈ V fair

∃ in G are replaced with one of the
gadgets on the top (i.e. the incoming edges to v are redirected to v in the root,
and the outgoing edges on the third level lead to E(v) and Ef (v), which are the
outgoing edges and outgoing fair edges of v in G, resp.) and nodes v ∈ V fair

∀ in G
are replaced with one of the gadgets at the bottom. The gadgets on the left are
called existential gadgets and the ones on the right are called universal gadgets,
referring to the player picking the first move. Nodes in V n are not altered.

Even though the proof works for all combinations of the gadgets (i.e. one can
replace each v ∈ V fair

∃ (v ∈ V fair
∀ ) with any of the gadgets on the top (bottom)),

due to space constraints we give the intuition only for the existential gadgets.

22 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



Imagine all v ∈ V fair are replaced with their existential gadgets. Within a
subgame that starts at a fair node v ∈ V fair, the two players intuitively interact
as follows. The ∃-player gets to pick a number i, indicating the priorities (2i− 1
or 2i) they intend to visit infinitely often in any play that visits v infinitely often.
In turn, ∀-player gets to either pick an outgoing edge at v (for this, he pays the
price of seeing the even priority 2i), or allow ∃ to pick an outgoing edge (in
which case he is rewarded with a visit to the odd priority 2i − 1). Depending
on the owner of v, the edge picked by ∀ (if v ∈ V fair

∃ ), or the edge picked by ∃
(if v ∈ V fair

∀ ) is required to be contained in Ef . Thus ∀ can insist on exploring
fair edges at V fair

∃ nodes, but has to pay a price for it; dually, ∀ eventually has
to allow ∃ to explore the fair edges at V fair

∀ nodes to win.
In the full reduced game defined formally in the proof of Thm. 1 below, the

owner of a fair node v can fairly win from v by either avoiding v from some
point on forever, or eventually allowing the opponent player to explore all fair
edges leading out of that node. The owner wins by playing unfairly if and only
if the opponent also plays unfairly and the owner is the ∀-player.

v

. . . . . .v1

v∃1

1

v∀1

2

vi

v∃i

2i− 1

v∀i

2i

vk+1

v∃k+1

2k + 1

E(v) Ef (v) E(v) Ef (v) E(v)

v

. . . . . .v1

v∃1

1

vi

v∀i

2i− 2

v∃i

2i− 1

vk+1

v∀k+1

2k

v∃k+1

2k + 1

E(v) Ef (v) E(v) Ef (v) E(v)

v

. . . . . .v1

v∃1

1

v∀1

2

vi

v∃i

2i− 1

v∀i

2i

vk

v∃k

2k − 1

v∀k

2k

Ef (v) E(v) Ef (v) E(v) Ef (v) E(v)

v

. . . . . .v1

v∃1

1

vi

v∀i

2i− 2

v∃i

2i− 1

vk+1

v∀k+1

2k

Ef (v) E(v) Ef (v) E(v)

Fig. 4: Existential (left) and universal (right) gadgets for v ∈ V fair
∃ (top) and v ∈ V fair

∀
(bottom) in fair parity/⊥ games. For i ∈ [1, k + 1], priorities of nodes v∃i and v∀i are
given below them, priorities of nodes vi are ignored, and the priority of v is unaltered.

Theorem 1. Let G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair
game arena, V = V∃ ∪· V∀ and λ : V → [2k] is the priority function. Then there
exists a parity game G′ on the node set V ′ with V ⊆ V ′ and |V ′| ≤ n(3k + 3)
over 2k + 1 priorities such that for i ∈ {∃, ∀}, Wini(G) = Wini(G

′) ∩ V .

Proof (Sketch). Let G′ = (V ′
∃, V

′
∀, E

′, Ω : V ′ → [2k + 1]) be the parity game
obtained by replacing the fair nodes in G with an arbitrary combination of
their corresponding existential and universal gadgets in Fig. 4. Let V ′ = V ′

∃ ∪

Fair ω-Regular Games 23



V ′
∀ = V ∪ V gad where V represent the nodes coming from G and V gad represent

the nodes coming from the gadgets. Note that the maximum priority in G′ is
maxodd = 2k + 1 which comes only from the gadget nodes V gad. The maximum
even priority in G′ is maxeven = 2k which can come from both V gad and V . It is
easy to see that |V ′| ≤ n(3k + 3) and G′ uses priorities [2k + 1]. To prove the
correctness, we recall that the winning regions for fair parity/⊥ games are given
via Eq. (3a), i.e. v ∈ Win∃(G) if and only if

∃s ∈ Σ.∀t ∈ Π.fair∃(playv(s, t)) ∧ (fair∀(playv(s, t)) ⇒ playv(s, t) ∈ α). (3a)

(⇒) We will first show, v ∈ Win∃(G
′) ∩ V ⇒ v ∈ Win∃(G). To do so, we

will take a (positional) winning ∃-strategy s′ in G′ and construct an ∃-strategy
s in G such that s is ∃-winning in G i.e., s realizes Eq. (3a). That is, for a play
ρ in G that starts from v and compliant with s Eq. (3a-s) holds.

fair∃ (ρ) ∧ (fair∀(ρ) ⇒ ρ ∈ α) (3a-s)

For this we will show the two parts of the conjunction separately. We will
show (i) fair∃(ρ), i.e. s ∈ Σfair, (ii) fair∀(ρ) ⇒ ρ ∈ α, i.e. every ∀-fair play
compliant with s is ∃-winning w.r.t. the parity condition.

Construction of the s′-subgame G′
s′ : Let s′ be a positional ∃-strategy win-

ning every play from v in G′. We will denote the subgame of G′ where ∃ nodes
have only the outgoing edges u → s′(u) by G′

s′ , and call it the s′-subgame. Recall
that all plays that start from v in G′

s′ are ∃-winning.
Notation of nu and succ(u): For the existential gadgets for both V fair

∃ and V fair
∀ ,

we call the index of the unique successor of u in G′
s′ , nu. That is, s

′(u) = unu
.

For the same gadgets, we will denote s′(u∃
nu

) with succ(u). For the universal
gadgets for both V fair

∃ and V fair
∀ , we will let nu denote the index of the rightmost

child of u that is sent to its right child by s′. That is, nu is the largest index i
such that s′(ui) = u∃

i . For the same gadgets, we will denote s′(u∃
nu

) with succ(u).

Construction of s: We define s : V ∗ · V∃ → V as follows. For u ∈ V fair
∃ : 1. If

nu = k + 1, we set s(u) = succ(u). 2. Otherwise, s(u) cycles through the set
{succ(u), Ef (u)} starting from succ(u). For u ∈ V∃ \ V fair

∃ , we set s(u) = s′(u).

Constraining G′
s′ with nu: Here we will constrain G′

s′ to its subgame by
limiting the choices of ∀-player from a u replaced by the universal gadget. For
every universal gadget encountered in G′

s′ , we limit the choices of u ∈ V fair
∀ to

only u → unu and u → unu+1 (if it exists). So, we remove all the other branches
of u out of G′

s′ . We call the remaining game LG′
s′ , standing for limited G′

s′ . Note
that as LG′

s′ is a subgame of G′
s′ , it is still ∃-winning.

∃-extension: Let ρ be some play in G compliant with s. We define a play ρ′

that is called the ∃-extension of ρ = u1u2 . . . as follows: ρ′ is the play on LG′
s′

that follows ρ while ‘prioritising existential nodes on succ(u)’. What is meant
by this is, for a ui ∈ V fair, if ui+1 = succ(ui), then ρ′ takes the unique branch in

LG′
s′ that leads to ui+1 while passing through an existential node (ui)

∃
j . That

is, regardless of which gadget ui is replaced by, ρ′ takes the branch

ui → ui
nui

→ (ui)
∃
nui

→ succ(ui) = ui+1 (branch 1)

                  24 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



On the other hand if ui+1 ̸= succ(ui), then ρ′ takes the only other branch in
LG′

s′ , that is (branch 2) is taken as

1. If ui ∈ V fair is replaced by an ∃-gadget, then ui → ui
nui

→ (ui)
∀
nui

→ ui+1,

2. If ui ∈ V fair is replaced by a ∀-gadget, then ui → ui
nui+1 → (ui)

∀
nui+1 → ui+1,

Note that these branches do not leave out any possible transition in ρ. That’s
because 1. all the successors of a V fair

∀ node are covered by one of the branches

since (branch 2) leads the universal node (ui)
∀
nui

or (ui)
∀
nui+1, which can pick

any successor of ui. 2. all the successors of a V fair
∃ node are covered by one of

the branches, since by construction of s, all the successors of ui in ρ are in the
set {succ(ui)} ∪ Ef (u

i), where (branch 1) covers the succ(ui) successors, and
(branch 2) covers the Ef (u

i) successors since in this case the universal node

(ui)
∀
nui

or (ui)
∀
nui+1 can pick any fair successor of ui.

For ui ̸= V fair, ρ′ just takes ui → ui+1.

So ρ′ is well defined, and is a play in LG′
s′ that starts from v. Thus, ρ′ is

∃-winning. Observe that if we remove the gadget nodes from ρ′, we get ρ. That
is, the restriction of ρ′ to V , ρ′ |V = ρ.

(i) fair∃(ρ): Observe that for any ρ in G compliant with s, by construction of s,
the only nodes u ∈ V fair

∃ that ρ may not be fair on, are those for which nu = k+1.
So we only need to show that such nodes are seen only finitely often in ρ. Since
ρ|V = ρ′, that is equivalent to showing such a u cannot be seen infinitely often
in its ∃-extension, ρ′. If it is seen infinitely often in ρ′, then regardless of the
gadget u is replaced with, the branch u → uk+1 → u∃

k+1 is evoked infinitely
often, signalling the largest priority 2k + 1. Therefore, ρ′ is won by ∀-player,
giving a contradiction. Therefore, we conclude ρ is ∃-fair.
(ii) fair∀(ρ) ⇒ ρ ∈ α: Let ρ be ∀-fair. Look at the ∃-extension ρ′ of ρ. Let m be
the largest (even) priority in Inf(ρ′). Due to ρ′ |V = ρ, all we need to show is the
existence of a u ∈ Inf(ρ′ |V ) that has priority m. Then it automatically implies
that the maximum priority in Inf(ρ) is m, and thus ρ is ∃-winning.

We will proceed with proof by contradiction and assume that the priority m
appears only in V gad∩ Inf(ρ′). Now let F be the subgame of LG′

s′ that consists of
nodes and edges taken infinitely often in ρ′. Then, priority m appears in V gad∩F .
These gadget nodes must exist in F due to nodes

– u ∈ V fair replaced by existential gadgets, and with nu = m\2 (which corre-
sponds to (branch 2)-1), or

– u ∈ V fair replaced by universal gadgets, and with nu = m\2 − 1 (which
corresponds to (branch 2)-2)

Note that for all such nodes u, (branch 1) of u is also in F . This is because
u → succ(u) is taken infinitely often in ρ. For u ∈ V fair

∃ , this is due to the
construction of s, for u ∈ V fair

∀ , this is due to ρ being ∀-fair (remember, in this
case succ(u) ∈ Ef (u)).

Fair ω-Regular Games 25



Next, we will remove from F all priority m gadget nodes (and everything
reachable only from those nodes). That is, we will prune out (branch 2) of all
the nodes that bring in m priority gadget nodes to F . Due to the remaining
(branch 1)s, this pruning does not cause any dead-ends. Let’s call this pruned
subgame of F ,H. Observe once more that all plays in H are ∃-winning. However,
the maximum priority in H is m−1. This is due to the remaining (branch 1)s of
the pruned nodes having this priority. This implies that all infinite plays starting
in H get trapped in a subgame H ′ of H that doesn’t have nodes with priority
m− 1. Since non of the nodes in V fair ∩H ′ cause a gadget node with priority m,
non of their branches get pruned. That is, all nodes in H ′ have the same outgoing
edges in H ′ and in F . Then any play that start in H ′ in F , does not leave H ′,
making H ′ exactly the set of nodes seen infinitely often in ρ′, i.e. H ′ = F . This
contradicts our initial assumption that maximum priority seen infinitely often
in ρ′ being m; therefore proving ρ is ∃-winning.

The proof of direction (⇐) is similar to the proof of (⇒), and can be found
in detail in the extended version [10].

Remark 2 (Reduction of parity/⊤ games). In the gadgets from Fig. 4, in order
to play unfairly from a v ∈ V fair

∃ , ∃-player has to take its rightmost branch
and signal priority maxodd, whereas to play unfairly from v ∈ V fair

∀ , ∀-player
has to take the rightmost branch and signal maxeven. Since maxodd > maxeven,
this dynamic ensures mutually unfair plays are ∀-winning. The gadgets for a fair
parity/⊤ game with λ : V → [2k] can be constructed as follows with the addition
of priority 2k+2: Take the gadgets from Fig. 4. In the existential gadget for V fair

∃
add another branch → v∀k+1 → Ef (v) to vk+1 and in the universal gadget for

V fair
∃ add a rightmost branch → vk+2 → v∀k+2 → Ef (v). In the existential gadget

for V fair
∀ add a rightmost branch → vk+1 → v∃k+1 → Ef (v) and in the universal

gadget for V fair
∀ add another branch → v∃k+1 → Ef (v) to vk+1.

All the newly added gadget nodes have priority 2k+2 and therefore maxeven =
2k+2 > maxodd = 2k+1, which ensures that mutually unfair plays are ∃-winning.
The correctness of the construction follows as a corollary of the reduction of fair
parity/parity games given in the next section.

4.2 Reduction of Fair Parity/Parity Games

In this section, we present a quadratic reduction from fair parity/parity to parity
games. So let G = (A,Parity(λ),Parity(Γ )) where A = (V∃, V∀, E,Ef ) is a fair
game arena with V = V∃ ∪· V∀ and priority functions λ : V → [2k], Γ : V → [d].

The reduction is based on ideas from the previous section, in particular adapt-
ing the basic structure of the introduced gadgets. However, in order to correctly
treat mutually unfair plays according to the additional parity objective Γ , we
annotate game nodes v ∈ V with two memory values p ∈ [d] and b ∈ {∃, ∀}.
The former is used to store the maximal priority according to Γ that the play
has recently seen; this value is signalled (and reset after signalling) from time
to time in the reduced game. The value b is used to decide (at certain nodes)
whether the memory value is signalled, or not.

26 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



v, p, bλ(v)

. . . . . .u1

u∃
11 u∀

12

ui

u∃
i

2i− 1 u∀
i2i

uk+1

u∃
k+1

{
2k + 1 b = ∃
2k + 2 + p b = ∀

E(v, p, b) Ef (v, p, b) E(v, p, b) Ef (v, p, b) E(v, p/1, ∃)

Fig. 5: Gadget for v ∈ V fair
∃ in fair parity/parity games; u abbreviates (v, p, b).

It indicates the player that has last taken the rightmost branch in the gadget
for one of its fair nodes. If this bit keeps flipping between ∃ and ∀ forever, then
both players intuitively insist on keeping control in one of their respective fair
nodes, enabling a mutually unfair play; in the reduced game, the memory content
p is signalled (and then reset to 1) whenever the value flips from ∀ to ∃.

v, p, bλ(v)

. . .u1 uk+1

u∃
11

u2

u∀
22 u∃

23 u∀
k+12k u∃

k+1 2k + 1

uk+2

u∀
k+2 2k + 2

Ef (v, p, b) E(v, p, b) Ef (v, p, b) E(v, p, b) Ef (v, p, b) E(v, p, ∀)

Fig. 6: Gadget for v ∈ V fair
∀ in fair parity/parity games; u abbreviates (v, p, b).

Formally, the reduction is as follows. The game is based on the set V ×[d]×[1]
of base nodes, where we use [1] to denote {∃, ∀}; intuitively, a node (v, p, b) from
this set corresponds to v ∈ V , annotated with memory values p and b as described
above. In order to succinctly refer to the combination of taking a move in G and
updating the memory components, we overload notation and put

E(v, p, b) = {(w, p′, b) ∈ V × [d]× [1] | w ∈ E(v) and p′ = max(p, Γ (v))}
Ef (v, p, b) = {(w, p′, b) ∈ V × [d]× [1] | w ∈ Ef (v) and p′ = max(p, Γ (v))}

for (v, p, b) ∈ V × [d]× [1]. Thus a triple (w, p′, b) is contained in E(v, p, b) if there
is a move (v, w) ∈ E and p′ is the maximum of the previous memory value p
and the current priority Γ (v) at v; in Ef (v, p, b), we require (v, w) ∈ Ef instead.

Fair ω-Regular Games 27



In both functions, the argument b is used to explicitly set this component of the
memory to either ∃ or ∀. The reduced game consists of subgames that start at
annotated nodes u = (v, p, b) ∈ V × [d] × [1]. In case that v ∈ V n, the game
just proceeds according to E(v, p, b), with ownership of (v, p, b) determined by
whether v ∈ V∃ or v ∈ V∀; this corresponds to taking a move at a normal node
in G, but updating the memory component p, and keeping the component b
without modifying it. For fair nodes v ∈ V fair, the subgame consists of three
levels, and after these three steps leads back to a node from V × [d]× [1]. Fig. 5
and 6 show the subgames that start at (v, b, p) ∈ V × [d]× [1] such that v ∈ V fair

∃
and v ∈ V fair

∀ , respectively, adapting the existential gadget for v ∈ V fair
∃ and the

universal one for v ∈ V fair
∀ .

The rightmost branches in these gadgets overwrite the last component b with
∃ and ∀, respectively. The colored values in the right-most branch in the Fig. 5
gadget depend on the value of b. If b = ∀ (corresponding to ∀-player being the
one that last has taken the right-most branch), then the priority 2k + 2 + p
is signalled and the memory value p is reset to 1; if b = ∃ (corresponding to
∃-player having taken the right-most branch last), then the priority 2k + 1 is
signalled and the memory value p does not change.

Theorem 2. Let G = (A,Parity(λ),Parity(Γ )) where A = (V∃, V∀, E,Ef ) is a
fair game arena, V = V∃ ∪· V∀ and λ : V → [2k] and Γ : V → [d] are priority
functions. Then there exists a parity game G′ with 6nd(k+2) nodes and 2k+2+d
priorities with set V × [d] × [1] of base nodes such that for all v ∈ V , ∃-player
wins v in G if and only if ∃-player wins (v, 1, ∃) in G′.

Proof (Sketch). We construct the parity game G′ following the above descrip-
tion, using the gadgets from Fig. 5 and 6 to treat fair nodes. The detailed con-
struction and the correctness proof can be found in the extended version [10].

We obtain the following bound on strategy sizes for fair parity/parity games.

Lemma 1. Let G be a fair parity/parity game on n nodes. Then for both players
the memory requirement of winning strategies in G is at most n2·nn. Furthermore,
for each player a family of fair parity/⊥ games (Gn)n∈N exists such that for all
n, every winning strategy for the respective player requires memory at least 2n.

Proof (Sketch). For the upper bound, we note that in a winning i-strategy for
a fair parity/parity game, as constructed in the proof of Thm. 2, the nodes in
Vi \ V fair have strategies with quadratic memory, but the nodes in V fair

i may
have to traverse all their fair successors, and possibly one more successor. In the
worst case, this requires an additional local memory of |Ef (v)|+ 1 ≤ n for each
v ∈ V fair

i , and causes an exponential blowup in the overall memory required.
For the lower bound, we consider the case for ∃-player; the result for ∀-player

is obtained by switching the player’s roles. Define the family (Gn)n∈N of games
by letting Gn (for n ∈ N) have exactly n+1 nodes, one node x owned by ∀-player
and n nodes yi owned by ∃-player; let there be an edge from x to any node yi and
two fair edges from any node yi back to x. Let all nodes have priority 0. Then

28 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck



any winning ∃-strategy in Gn necessarily is ∃-fair. There is a fair ∃-strategy s
that uses one bit as local memory for each node yi ∈ V fair

∃ , and therefore uses
memory of overall size 2n. The claim follows since there is no ∃-fair strategy that
uses less memory than s, which is shown by induction on n. ⊓⊔

5 Fixpoint Characterization of Winning Regions

In this section, we will characterize the winning regions in fair games with
parity conditions by means of fixpoint expressions. Thereby we provide an al-
ternative, symbolic route to solve such games, rather than by reducing to parity
games. We start by briefly recalling details on Boolean fixpoint expressions.

Fixpoint expressions and fixpoint games. Let U be a finite set, let o be a
fixed number and let f : P(U)o → P(U) be a monotone function, that is, assume
that whenever we have sets Xj , Yj ⊆ U such that Xj ⊆ Yj for all 1 ≤ j ≤ o, then
f(X1, . . . , Xo) ⊆ f(Y1, . . . , Yo). Then f and o induce the fixpoint expression

e = ηoXo. ηo−1Xo−1. . . . .νX2. µX1. f(X1, . . . , Xo) (5)

where ηi = ν if i is even and ηi = µ if i is odd. We define the semantics
of fixpoint expressions using parity games. Given a fixpoint expression e, the
associated fixpoint game Ge = (W∃,W∀, E,Parity(κ)) for the priority function
κ : W∃ ∪W∀ → [o] is the following parity game. We put W∃ = U × {1, . . . , o},
W∀ = P(U)o. Moves and priorities are defined by

E(v, i) = {Z ∈ W∀ | v ∈ f(Z)} κ(v, i) = i

E(Z) = {(v, i) | v ∈ Zi} κ(Z) = 0

for (v, i) ∈ W∃ and Z = (Z1, . . . , Zo) ∈ W∀. Then we say that v ∈ U is contained
in e (denoted v ∈ e) if and only if ∃-player wins the node (v, 1) in Ge.

Remark 3. The above game semantics for fixpoint expressions has been shown to
be equivalent to the more traditional Knaster-Tarski semantics [3]; the cited work
takes place in a more general setting and therefore uses slightly more verbose
parity games.

Next we present a fixpoint characterization of the winning regions in fair
games of the form G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair
game arena, V = V∃ ∪· V∀ and λ : V → [2k] a priority function. To be able
to write fixpoint expressions over such games we define monotone operators on
subsets of V by putting

♢X = {v ∈ V | E(v) ∩X ̸= ∅} □X = {v ∈ V | E(v) ⊆ X}
♢fX = {v ∈ V | Ef (v) ∩X ̸= ∅} □fX = {v ∈ V | Ef (v) ⊆ X}

for X ⊆ V and also put Cpre(X) = (V∃∩♢X)∪ (V∀∩□X). Then Cpre(X) is the
set of nodes from which ∃-player can force the game to reach a node from X in
one step. Also, we define Ci = {v ∈ V | λ(v) = i} for 1 ≤ i ≤ 2k.

Fair ω-Regular Games 29



Using this notation, we define a function parity : P(V )2k → P(V ) by putting

parity(X1, . . . , X2k) := (C1 ∩ Cpre(X1)) ∪ . . . ∪ (Ck ∩ Cpre(X2k))

for (X1, . . . , X2k) ⊆ P(V )2k. This function is monotone and it is well-known
(see e.g [23]) that the fixpoint induced by parity characterizes the winning region
in parity games with priorities 1 through 2k. This formula will still apply to
‘normal’ nodes V n in the fixpoint characterization of fair parity games.

We follow the gadget constructions from Fig. 4 (using their existential ver-
sions) to define the following additional functions. For 1 ≤ i < k, put

Apre∃(Xi, Xi+1) = ♢Xi ∩□fXi+1 Apre∀(Xi, Xi+1) = ♢fXi ∩□Xi+1,

encoding nodes (v∀, 2i) for v ∈ V fair
∃ and v ∈ V fair

∀ , respectively (here, Apre
stands for alternative predecessor function, as it encodes the additional ∀-choice
of whether a fair edge is to be taken). Then, we let
denote the set of odd priorities that lie between p and 2k, and put

Using this notation, the winning region for the existential player in fair
parity/⊥ games with priorities 1 through 2k can be characterized by the fix-
point expression induced by 2k + 1 and the function χ that is defined to map
(X1, . . . , X2k+1) ∈ P(V )2k+1 → P(V ) to the set

χ(X1, . . . , X2k+1) =(V n ∩ parity)∪

(V fair
∃ ∩

⋃
i∈[2k+1]

Ci ∩ ϕfair
∃,i)∪

(V fair
∀ ∩

⋃
i∈[2k+1]

Ci ∩ ϕfair
∀,i)

The function χ therefore treats normal nodes from V n in the same way as nodes
in standard parity games are treated, but for fair nodes with priority i, the
functions ϕfair

∃,i and ϕfair
∀,i are used to encode the respective gadget construction.

The full fixpoint expression then is

The first result of this section is that the fixpoint expression (6) characterizes
the winning region of ∃-player in fair parity/⊥ games.

Theorem 3. Let G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair
game arena, V = V∃ ∪· V∀ and λ : V → [2k] is the priority function. Then the
fixpoint expression given in (6) characterizes Win∃(G).

          30 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck

Ip = {i | i odd, p ≤ i < 2k}

φfair
∃,p =

{

⋃

i∈Ip
Apre∃(Xi, Xi+1) ∪ ♦X2k+1 p is odd

⋃

i∈Ip
Apre∃(Xi, Xi+1) ∪ ♦X2k+1 ∪ �f Xp p is even,

φfair
∀,p =

{

⋃

i∈Ip
Apre∀(Xi, Xi+1) p is odd

⋃

i∈Ip
Apre∀(Xi, Xi+1) ∪ � Xp p is even

e = µX2k+1. νX2k. µX2k−1 . . . νX2. µX1. χ(X1, . . . , X2k+1) (6)



Proof (Sketch). The proof is by mutual transformation of winning strategies in
G and in the semantic game Ge for (6). The full proof can be found in [10].

We note that for ∀-fair parity games (V fair
∃ = ∅), Eq. (6) instantiates to the

fixpoint characterization given in [4]; it follows that the parity game reductions
from Sec. 4 apply to the one-sided fair parity games considered in [4] as well.

For fair parity/parity games, we obtain a similar fixpoint characterization,
encoding the reduction to parity games presented in Subsec. 4.2 along the lines
of Figures 5 and 6. Here, all involved functions work over (subsets of) the set V ×
[d]× [1] of base nodes, consisting of game nodes that are annotated with memory
values. The definition of the fixpoint expression for fair parity/parity games
is straight-forward but somewhat technical since the updating and resetting
mechanisms for the memory values have to be accommodated. For brevity, we
refrain from elaborating the required notation and the full fixpoint expression
here, and state just the main result that yields a symbolic fixpoint algorithm for
fair parity/parity games; full details can be found in the extended version [10].

Theorem 4. Let G = (A,Parity(λ),Parity(Γ )) where A = (V∃, V∀, E,Ef ) is
a fair game arena, V = V∃ ∪· V∀ and λ : V → [2k], Γ : V → [d] are priority
functions. Then there is a fixpoint expression over V × [d]× [1] with alternation
depth 2(k + 1) + d that characterizes Win∃(G).

Proof (Sketch). Again the proof is by mutual transformation of winning strate-
gies in G and in the semantic game Ge for the fixpoint expression. The full proof
can be found in the extended version [10].

6 Conclusion

We introduce two-player games with local transition-fairness constraints for both
players, allowing two objectives α and β to decide the winner of plays in which
both players play fair and both players play unfair, respectively. We show the de-
terminacy of this class of games in the case that α and β are ω-regular objectives.
In the special case that both α and β are parity conditions, there is a reduction
to standard parity games with blow-up quadratic in the number of priorities
used by α and β; if β = ⊤ or β = ⊥, the reduction becomes even linear. We
present both enumerative and symbolic methods to realize this reduction; in the
process, we also obtain an exponential tight bound on the memory required by
winning strategies in fair parity/parity games. We expect that the central idea
behind the reduction generalizes from parity objectives to more general settings
such as fair games in which α and β are Rabin, Streett, or even Emerson-Lei
conditions, but leave this issue for future work.

Acknowledgments

We are grateful to an anonymous referee for contributing the proof of the lower
bound in Lemma 1.

Fair ω-Regular Games 31



References

1. Aminof, B., Ball, T., Kupferman, O.: Reasoning about systems with transition fair-
ness. In: Baader, F., Voronkov, A. (eds.) Logic for Programming, Artificial Intel-
ligence, and Reasoning, 11th International Conference, LPAR 2004, Montevideo,
Uruguay, March 14-18, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3452, pp. 194–208. Springer (2004). https://doi.org/10.1007/978-3-540-32275-
7 14

2. Aminof, B., Giacomo, G.D., Rubin, S.: Stochastic fairness and language-theoretic
fairness in planning in nondeterministic domains. In: Beck, J.C., Buffet, O., Hoff-
mann, J., Karpas, E., Sohrabi, S. (eds.) Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling, Nancy, France, October 26-30,
2020. pp. 20–28. AAAI Press (2020), https://ojs.aaai.org/index.php/ICAPS/
article/view/6641

3. Baldan, P., König, B., Mika-Michalski, C., Padoan, T.: Fixpoint games on
continuous lattices. Proc. ACM Program. Lang. 3(POPL), 26:1–26:29 (2019).
https://doi.org/10.1145/3290339

4. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A., Soudjani, S.: Fast symbolic
algorithms for omega-regular games under strong transition fairness. TheoretiCS
2 (2023). https://doi.org/10.46298/theoretics.23.4

5. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies.
Trans. Amer. Math. Soc. 138, 295–311 (1969)

6. Chatterjee, K., de Alfaro, L., Faella, M., Majumdar, R., Raman, V.: Code
aware resource management. Formal Methods Syst. Des. 42(2), 146–174
(2013). https://doi.org/10.1007/s10703-012-0170-4

7. Chatterjee, K., Jurdzinski, M., Henzinger, T.: Simple stochastic parity games. In:
In Proceedings of the International Conference for Computer Science Logic (CSL).
pp. 100–113 (2003), http://chess.eecs.berkeley.edu/pubs/729.html

8. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Journal of Symbolic Logic 28(4) (1963)

9. D’Ippolito, N., Rodŕıguez, N., Sardiña, S.: Fully observable non-deterministic plan-
ning as assumption-based reactive synthesis. J. Artif. Intell. Res. 61, 593–621
(2018). https://doi.org/10.1613/jair.5562

10. Hausmann, D., Piterman, N., Sağlam, I., Schmuck, A.K.: Fair ω-regular games
(2024), extended version available at https://arxiv.org/abs/310.13612

11. Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Symbolic control for
stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems
51, 101430 (2024). https://doi.org/10.1016/j.nahs.2023.101430

12. Martin, D.: Borel determinacy. Annals of Mathematics 65, 363–371 (1975)
13. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata,

Logics, and Infinite Games: A Guide to Current Research. Lecture Notes in Com-
puter Science, vol. 2500, pp. 23–42. Springer (2001)

14. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: 30th International Conference on Computer Aided Verification. Lecture
Notes in Computer Science, vol. 10981, pp. 578–586. Springer (2018)

15. Nilsson, P., Ozay, N., Liu, J.: Augmented finite transition systems as ab-
stractions for control synthesis. Discret. Event Dyn. Syst. 27(2), 301–340
(2017). https://doi.org/10.1007/s10626-017-0243-z

32 D. Hausmann, N. Piterman, I. Sağlam, A.-K. Schmuck

https://doi.org/10.1007/978-3-540-32275-7_14
https://doi.org/10.1007/978-3-540-32275-7_14
https://ojs.aaai.org/index.php/ICAPS/article/view/6641
https://ojs.aaai.org/index.php/ICAPS/article/view/6641
https://doi.org/10.1145/3290339
https://doi.org/10.46298/theoretics.23.4
https://doi.org/10.1007/s10703-012-0170-4
http://chess.eecs.berkeley.edu/pubs/729.html
https://doi.org/10.1613/jair.5562
https://arxiv.org/abs/310.13612
https://doi.org/10.1016/j.nahs.2023.101430
https://doi.org/10.1007/s10626-017-0243-z


16. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Proceedings
of the 7th International Conference on Verification, Model Checking, and Abstract
Interpretation. p. 364–380. VMCAI’06, Springer-Verlag, Berlin, Heidelberg (2006)

17. Pnueli, A., Rosner, R.: A framework for the synthesis of reactive modules. In: Proc.
Intl. Conf. on Concurrency: Concurrency 88. Lecture Notes in Computer Science,
vol. 335, pp. 4–17. Springer-Verlag (1988)

18. Rabin, M.: Decidability of second order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

19. Sağlam, I., Schmuck, A.K.: Solving odd-fair parity games. In: 42th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (2023), (to appear)

20. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: 4th Int. Symp. on Automated
Technology for Verification and Analysis. Lecture Notes in Computer Science,
vol. 4218, pp. 245–259. Springer (2006)

21. Thistle, J.G., Malhamé, R.: Control of ω-automata under state fairness assump-
tions. Systems & control letters 33(4), 265–274 (1998)

22. Thomas, W.: Languages, automata, and logic. Handbook of Formal Language The-
ory III, 389–455 (1997)

23. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theor. Com-
put. Sci. 275(1-2), 311–346 (2002). https://doi.org/10.1016/S0304-3975(01)00185-
2

24. Zielonka, W.: Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–
183 (1998). https://doi.org/10.1016/S0304-3975(98)00009-7

Fair ω-Regular Games 33

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/S0304-3975(01)00185-2
https://doi.org/10.1016/S0304-3975(01)00185-2
https://doi.org/10.1016/S0304-3975(98)00009-7
http://creativecommons.org/licenses/by/4.0/


Stochastic Window Mean-Payoff Games

Abstract. Stochastic two-player games model systems with an environ-
ment that is both adversarial and stochastic. The environment is modeled
by a player (Player 2) who tries to prevent the system (Player 1) from
achieving its objective. We consider finitary versions of the traditional
mean-payoff objective, replacing the long-run average of the payoffs by
payoff average computed over a finite sliding window. Two variants have
been considered: in one variant, the maximum window length is fixed and
given, while in the other, it is not fixed but is required to be bounded. For
both variants, we present complexity bounds and algorithmic solutions for
computing strategies for Player 1 to ensure that the objective is satisfied
with positive probability, with probability 1, or with probability at least p,
regardless of the strategy of Player 2. The solution crucially relies on a
reduction to the special case of non-stochastic two-player games. We give
a general characterization of prefix-independent objectives for which this
reduction holds. The memory requirement for both players in stochastic
games is also the same as in non-stochastic games by our reduction.
Moreover, for non-stochastic games, we improve upon the upper bound
for the memory requirement of Player 1 and upon the lower bound for
the memory requirement of Player 2.

Keywords: Stochastic games · Finitary objectives · Mean-payoff · Reac-
tive synthesis

1 Introduction

We consider two-player turn-based stochastic games played on graphs. Games are
a central model in computer science, in particular for the verification and synthesis
of reactive systems [18, 11, 17]. A stochastic game is played by two players on
a graph with stochastic transitions, where the players represent the system
and the adversarial environment, while the objective represents the functional
requirement that the synthesized system aims to satisfy with a probability p
as large as possible. The vertices of the graph are partitioned into system,
environment, and probabilistic vertices. A stochastic game is played in infinitely
many rounds, starting by initially placing a token on some vertex. In every round,
if the token is on a system or an environment vertex, then the owner of the vertex
chooses a successor vertex; if the token is on a probabilistic vertex, then the

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 34–54, 2024.
https://doi.org/10.1007/978-3-031-57228-9_3

Laurent Doyen1 , Pranshu Gaba2(B) , and Shibashis Guha2

1 CNRS & LMF, ENS Paris-Saclay, Gif-sur-Yvette, France
ldoyen@lmf.cnrs.fr

2 Tata Institute of Fundamental Research, Mumbai, India

pranshu.gaba,shibashis @tifr.res.in}{

https://doi.org/10.1007/978-3-031-57228-9_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_3&domain=pdf
http://orcid.org/0000-0003-3714-6145
http://orcid.org/0000-0002-9814-6651
http://orcid.org/0009-0000-8012-780X
http://orcid.org/0000-0002-9814-6651


successor vertex is chosen according to a given probability distribution. The token
moves to the successor vertex, from where the next round starts. The outcome
is an infinite sequence of vertices, which is winning for the system if it satisfies
the given objective. The associated quantitative satisfaction problem is to decide,
given a threshold p, whether the system can win with probability at least p. The
almost-sure problem is the special case where p = 1, and the positive problem is
to decide whether the system can win with positive probability. The almost-sure
and the positive problems are referred to as the qualitative satisfaction problems.
When the answer to these decision problems is Yes, it is useful to construct a
winning strategy for the system that can be used as a model for an implementation
that ensures the objective be satisfied with the given probability.

Traditional objectives in stochastic games are ω-regular such as reachability,
safety, and parity objectives [11], or quantitative such as mean-payoff objec-
tives [16, 27]. For example, a parity objective may specify that every request of
the environment is eventually granted by the system, and a mean-payoff objective
may specify the long-run average power consumption of the system. A well-
known drawback of parity and mean-payoff objectives is that only the long-run
behaviour of the system may be specified [1, 9, 21], allowing weird transient be-
haviour: for example, a system may grant all its requests but with an unbounded
response time; or a system with long-run average power consumption below
some threshold may exhibit arbitrarily long (but finite) sequences with average
power consumption above the threshold. This limitation has led to considering
finitary versions of those objectives [9, 23, 8], where the sequences of undesired
transient behaviours must be of fixed or bounded length. Window mean-payoff
objectives [8] are quantitative finitary objectives that strengthen the traditional
mean-payoff objective: the satisfaction of a window mean-payoff objective implies
the satisfaction of the standard mean-payoff objective. Given a length ℓ ≥ 1, the
fixed window mean-payoff objective (FWMP(ℓ)) is satisfied if except for a finite
prefix, from every point in the play, there exists a window of length at most ℓ
starting from that point such that the mean payoff of the window is at least a
given threshold. In the bounded window mean-payoff objective (BWMP), it is
sufficient that there exists some length ℓ for which the FWMP(ℓ) objective is
satisfied.

Contributions. We present algorithmic solutions for stochastic games with
window mean-payoff objectives, and show that the positive and almost-sure
problems are solvable in polynomial time for FWMP(ℓ) (Theorem 5), and are in
NP ∩ coNP for BWMP (Theorem 6). The complexity result for the almost-sure
problem entails that the quantitative satisfaction problem is in NP∩coNP (for both
the fixed and bounded version), using standard techniques for solving stochastic
games with prefix-independent objectives [13]. Note that the NP ∩ coNP bound
for the quantitative satisfaction problem matches the special case of reachability
objectives in simple stochastic games [14], and thus would require a major
breakthrough to be improved.

As a consequence, using the FWMP(ℓ) objective instead of the standard mean-
payoff objective provides a stronger guarantee on the system, and even with a

Stochastic Window Mean-Payoff Games 35



polynomial complexity for the positive and the almost-sure problems (which is
not known for mean-payoff objectives), and at no additional computational cost
for the quantitative satisfaction problem. The solution relies on a reduction to
non-stochastic two-player games (stochastic games without probabilistic vertices).
The key result is to show that in order to win positively from some vertex of the
game graph, it is necessary to win from some vertex of the non-stochastic game
obtained by transforming all probabilistic vertices into adversarial vertices. While
this condition, that we call the sure-almost-sure (SAS) property (Definition 1),
was used to solve finitary Streett objectives [13], we follow a similar approach and
generalize it to arbitrary prefix-independent objectives (Theorem 4). The bounds
on the memory requirement of optimal strategies of Player 1 can also be derived
from the key result, and are the same as optimal bounds for non-stochastic games.
For the FWMP(ℓ) and BWMP objectives in particular, we show that the memory
requirement of Player 2 is also no more than the optimal memory required by
winning strategies in non-stochastic games.

As solving a stochastic game with a prefix-independent objective φ reduces
to solving non-stochastic games with objective φ and showing that φ satisfies
the SAS property, we show that the FWMP(ℓ) and BWMP objectives satisfy the
SAS property (Lemma 4, Lemma 5) and rely on the solution of non-stochastic
games with these objectives [8] to complete the reduction.

We improve the memory bounds for optimal strategies of both players in
non-stochastic games. It is stated in [8] that |V | · ℓ memory suffices for both
players, where |V | and ℓ are the number of vertices and the window length
respectively. In [6, Theorem 2] and [19, Theorem 6.4], the bound is loosened
to O(wmax · ℓ2) and O(wmax · ℓ2 · |V |) for Player 1 and Player 2 respectively,
where wmax is the maximum absolute payoff in the graph, as the original tighter
bounds [8] were stated without proof. Since the payoffs are given in binary, this
is exponential in the size of the input. In contrast, we tighten the bounds stated
in [8]. We show that for Player 1, memory ℓ suffices (Theorem 1), and improve
the bound on memory of Player 2 strategies as follows. We compute the set W of
vertices from which Player 2 can ensure that the mean payoff remains negative
for ℓ steps, as well as the vertices from which Player 2 can ensure that the game
reaches W . These vertices are identified recursively on successive subgames of the
original input game. If k is the number of recursive calls, then we show that k · ℓ
memory suffices for Player 2 to play optimally (Theorem 2). Note that k ≤ |V |.
We also provide a lower bound on the memory size for Player 2. Given ℓ ≥ 2, for
every k ≥ 1, we construct a graph with a set V of vertices such that Player 2
requires at least k + 1 = 1

2 (|V | − ℓ+ 3) memory to play optimally (Theorem 3).
This is an improvement over the result in [8] which showed that memoryless
strategies do not suffice for Player 2. Our result is quite counterintuitive since
given an open window (a window in which every prefix has a total payoff less
than 0) that needs to be kept open for another j ≤ ℓ steps from a vertex v, one
would conjecture that it is sufficient for a Player 2 winning strategy to choose an
edge from v that leads to the minimum payoff over paths of length j. Thus for

36 L. Doyen et al.



every j, Player 2 should choose a fixed edge and hence memory of size ℓ should
suffice. However, we show that this is not the case.

To the best of our knowledge, this work leads to the first study of stochastic
games with finitary quantitative objectives.

Related work. Window mean-payoff objectives were first introduced in [8] for
non-stochastic games, where solving FWMP(ℓ) was shown to be in PTIME and
BWMP in NP∩coNP. These have also been studied for Markov decision processes
(MDPs) in [4, 3]. In [4], a threshold probability problem has been studied, while
in [3], the authors studied the problem of maximising the expected value of
the window mean-payoff. Positive, almost-sure, and quantitative satisfaction of
BWMP in MDPs are in NP ∩ coNP [4], the same as in non-stochastic games.

Parity objectives can be viewed as a special case of mean-payoff objectives [22].
A bounded window parity objective has been studied in [9, 20, 12] where a play
satisfies the objective if from some point on, there exists a bound ℓ such that from
every state with an odd priority, a smaller even priority occurs within at most ℓ
steps. Non-stochastic games with bounded window parity objectives can be solved
in PTIME [20, 12]. Stochastic games with bounded window parity objectives have
been studied in [13] where the positive and almost-sure problems are in PTIME
while the quantitative satisfaction problem is in NP ∩ coNP. A fixed version of
the window parity objective has been studied for two-player games and shown
to be PSPACE-complete [26]. Another window parity objective has been studied
in [5] for which both the fixed and the bounded variants have been shown to be
in PTIME for non-stochastic games. The threshold problem for this objective has
also been studied in the context of MDPs, and both fixed and bounded variants
are in PTIME [4]. Finally, synthesis for bounded eventuality properties in LTL is
2-EXPTIME-complete [23].

Due to lack of space, some of the proofs have been omitted. A full version of
the paper can be found in [15].

2 Preliminaries

Stochastic games. We consider two-player turn-based zero-sum stochastic
games (or simply, stochastic games in the sequel). The two players are referred
to as Player 1 and Player 2. A stochastic game is a weighted directed graph
G = ((V,E), (V1, V2, V♢),P, w), where:

– (V,E) is a directed graph with a finite set V of vertices and a set E ⊆ V ×V
of directed edges such that for all vertices v ∈ V , the set E(v) = {v′ ∈ V |
(v, v′) ∈ E} of out-neighbours of v is nonempty, i.e., E(v) ̸= ∅ (no deadlocks);

– (V1, V2, V♢) is a partition of V . The vertices in V1 belong to Player 1, the
vertices in V2 belong to Player 2, and the vertices in V♢ are called probabilistic
vertices (in figures, Player 1 vertices are shown as circles, Player 2 vertices as
boxes, and probabilistic vertices as diamonds, and we use pronouns “she/her”
for Player 1 and “he/him” for Player 2);

Stochastic Window Mean-Payoff Games 37



– P : V♢ → D(V ), where D(V ) is the set of probability distributions over
V , is a transition function that maps probabilistic vertices v ∈ V♢ to a
probability distribution P(v) over the set E(v) of out-neighbours of v such
that P(v)(v′) > 0 for all v′ ∈ E(v) (i.e., all out-neighbours have nonzero
probability); for the algorithmic and complexity results, we assume that
probabilities are given as rational numbers.

– w : E → Q is a payoff function assigning a rational payoff to every edge in
the game.

Stochastic games are played in rounds. The game starts by initially placing
a token on some vertex. At the beginning of a round, if the token is on a
vertex v, and v ∈ Vi for i ∈ {1, 2}, then Player i chooses an out-neighbour
v′ ∈ E(v); otherwise v ∈ V♢, and an out-neighbour v′ ∈ E(v) is chosen with
probability P(v)(v′). Player 1 receives from Player 2 the amount w(v, v′) given by
the payoff function, and the token moves to v′ for the next round. This continues
ad infinitum, resulting in an infinite sequence π = v0v1v2 · · · ∈ V ω such that
(vi, vi+1) ∈ E for all i ≥ 0, called a play. For i < j, we denote by π(i, j) the
infix vivi+1 · · · vj of π. Its length is |π(i, j)| = j − i, the number of edges. We
denote by π(0, j) the finite prefix v0v1 · · · vj of π, and by π(i,∞) the infinite
suffix vivi+1 . . . of π. We denote by PlaysG and PrefsG the set of all plays and
the set of all prefixes in G respectively; the symbol G is omitted when it can
easily be derived from the context. We denote by First(ρ) and Last(ρ) the first
vertex and the last vertex of a prefix ρ ∈ PrefsG respectively. We denote by PrefsiG
(i ∈ {1, 2}) the set of all prefixes ρ such that Last(ρ) ∈ Vi.

Objectives. An objective φ is a Borel-measurable subset of PlaysG [2]. A play
π ∈ PlaysG satisfies an objective φ if π ∈ φ. In a (zero-sum) stochastic game G
with objective φ, the objective of Player 1 is φ, and the objective of Player 2
is the complement set φ = PlaysG \ φ. Common examples of objectives are
qualitative objectives such as reachability, safety, Büchi, and coBüchi.

An objective φ is closed under suffixes if for all plays π satisfying φ, all
suffixes of π also satisfy φ, that is, π(j,∞) ∈ φ for all j ≥ 0. An objective φ is
closed under prefixes if for all plays π satisfying φ, for all prefixes ρ such that the
concatenation ρ · π is a play in G, i.e., ρ · π ∈ PlaysG , we have that ρ · π ∈ φ. An
objective φ is prefix-independent if it is closed under both prefixes and suffixes.
An objective φ is closed under suffixes if and only if the complement objective φ
is closed under prefixes. Thus, an objective φ is prefix-independent if and only if
its complement φ is prefix-independent.

Strategies. A (deterministic) strategy for Player i ∈ {1, 2} in a game G is a
function σi : PrefsiG → V that maps prefixes ending in a vertex v ∈ Vi to a
successor of v. The set of all strategies of Player i ∈ {1, 2} in the game G is
denoted by Λi. Strategies can be realised as the output of a (possibly infinite-
state) Mealy machine. A Mealy machine is a deterministic transition system with
transitions labelled by an input/output pair. Formally, a Mealy machine M is
a tuple (Q, q0, Σi, Σo, ∆, δ) where Q is the set of states of M (the memory of

38 L. Doyen et al.



the induced strategy), q0 ∈ Q is the initial state, Σi is the input alphabet, Σo

is the output alphabet, ∆ : Q×Σi → Q is a transition function that reads the
current state of M and an input letter and returns the next state of M , and
δ : Q × Σi → Σo is an output function that reads the current state of M and
an input letter and returns an output letter. We point the reader to [15] for a
description of how a strategy is defined by a Mealy machine.

The memory size of a strategy σi is the smallest number of states a Mealy
machine defining σi can have. A strategy σi is memoryless if σi(ρ) only depends
on the last element of the prefix ρ, that is for all prefixes ρ, ρ′ ∈ PrefsiG if
Last(ρ) = Last(ρ′), then σi(ρ) = σi(ρ

′). Memoryless strategies can be defined by
Mealy machines with only one state.

A play π = v0v1 · · · is consistent with a strategy σi ∈ Λi (i ∈ {1, 2}) if
vj+1 = σi(π(0, j)) for all j ≥ 0 such that vj ∈ Vi. A play π is an outcome of
σ1 and σ2 if it is consistent with both σ1 and σ2. We denote by Prσ1,σ2

G,v (φ) the
probability that an outcome of σ1 and σ2 in G with initial vertex v satisfies φ.

Non-stochastic two-player games. A stochastic game without probabilistic
vertices (that is, with V♢ = ∅) is called a non-stochastic two-player game (or
simply, non-stochastic game in the sequel). In a non-stochastic game G with
objective φ, a strategy σi is winning from a vertex v ∈ V for Player i (i ∈ {1, 2})
if every play in G with initial vertex v that is consistent with σi satisfies the
objective φ. A vertex v ∈ V is winning for Player i in G if Player i has a winning
strategy in G from v. The set of vertices in V that are winning for Player i in G
is the winning region of Player i in G, denoted ⟨⟨i⟩⟩G(φ). If a vertex v belongs to
the winning region of Player i (i ∈ {1, 2}), then Player i is said to play optimally
from v if she follows a winning strategy.

Subgames. Given a stochastic game G = ((V,E), (V1, V2, V♢),P, w), a subset
V ′ ⊆ V of vertices induces a subgame if (i) every vertex v′ ∈ V ′ has an out-
neighbour in V ′, that is E(v′) ∩ V ′ ̸= ∅, and (ii) every probabilistic vertex
v′ ∈ V♢ ∩ V ′ has all out-neighbours in V ′, that is E(v′) ⊆ V ′. The induced
subgame is ((V ′, E′), (V1∩V ′, V2∩V ′, V♢∩V ′),P′, w′), where E′ = E∩ (V ′×V ′),
and P′ and w′ are restrictions of P and w respectively to (V ′, E′). We denote
this subgame by G ↾ V ′. Let φ be an objective in the stochastic game G. We
define the restriction of φ to a subgame G′ of G to be the set of all plays in G′

satisfying φ, that is, the set PlaysG′ ∩ φ.

Satisfaction probability. A strategy σ1 of Player 1 is winning with probability p
from an initial vertex v in G for objective φ if Prσ1,σ2

G,v (φ) ≥ p for all strategies
σ2 of Player 2. A strategy σ1 of Player 1 is positive winning (resp., almost-sure
winning) from v for Player 1 in G with objective φ if Prσ1,σ2

G,v (φ) > 0 (resp.,

Prσ1,σ2

G,v (φ) = 1) for all strategies σ2 of Player 2. We refer to positive and almost-
sure winning as qualitative satisfaction of φ, while for arbitrary p ∈ [0, 1], we call
it quantitative satisfaction. We denote by ⟨⟨1⟩⟩PosG (φ) (resp., by ⟨⟨1⟩⟩ASG (φ)) the
positive (resp., almost-sure) winning region of Player 1, i.e., the set of all vertices
in G from which Player 1 has a positive (resp., almost-sure) winning strategy

Stochastic Window Mean-Payoff Games 39



for G with objective φ. If a vertex v belongs to the positive (resp., almost-sure)
winning region of Player 1, then Player 1 is said to play optimally from v if
she follows a positive (resp., almost-sure) winning strategy from v. We omit
analogous definitions for Player 2.

Positive attractors and traps. The Player i positive attractor (i ∈ {1, 2}) to
T ⊆ V , denoted PosAttri(T ), is the set of vertices in V from which Player i can
ensure that the token reaches a vertex in T with positive probability. It is possible
to compute the positive attractor in O(|E|) time [10]. In non-stochastic games, a
positive attractor to a set T is the same as an attractor to the set T , which we
denote by Attri(T ). Computation of PosAttri(T ) gives a memoryless strategy for
Player i that ensures that the token reaches T with positive probability. We call
such a strategy a positive-attractor strategy of Player i.

A trap for Player 1 is a set T ⊆ V such that for every vertex v ∈ T , if
v ∈ V1 ∪ V♢, then E(v) ⊆ T , and if v ∈ V2, then E(v) ∩ T ̸= ∅. In other words,
from every vertex v ∈ T , Player 2 can ensure (with probability 1) that the token
never leaves T , moreover using a memoryless strategy. A trap for Player 2 can
be defined analogously.

Remark 1. Let G be a non-stochastic game with objective φ for Player 1. If φ is
closed under suffixes, then the winning region of Player 1 is a trap for Player 2.
As a corollary, if φ is prefix-independent, then the winning region of Player 1 is
a trap for Player 2 and the winning region of Player 2 is a trap for Player 1.

3 Window mean payoff

We consider two types of window mean-payoff objectives, introduced in [8]: (i)
fixed window mean-payoff objective (FWMP(ℓ)) in which a window length ℓ ≥ 1
is given, and (ii) bounded window mean-payoff objective (BWMP) in which for
every play, we need a bound on window lengths. We define these objectives below.

For a play π in a stochastic game G, the total payoff of an infix π(i, i+ n) =

vivi+1 · · · vi+n is defined as TP(π(i, i + n)) =
∑i+n−1

k=i w(vk, vk+1). The mean
payoff of an infix π(i, i + n) is defined as MP(π(i, i + n)) = 1

nTP(π(i, i + n)).
Observe that the mean payoff of an infix is nonnegative if and only if the total
payoff of the infix is nonnegative. The mean payoff of a play π is defined as
MP(π) = lim inf

n→∞
MP(π(0, n)). Given a window length ℓ ≥ 1, a play π = v0v1 · · ·

in G satisfies the fixed window mean-payoff objective FWMPG(ℓ) if from every
position after some point, it is possible to start an infix of length at most ℓ with
a nonnegative mean payoff. Formally,

FWMPG(ℓ) = {π ∈ PlaysG | ∃k ≥ 0 ·∀i ≥ k ·∃j ∈ {1, . . . , ℓ} : MP(π(i, i+j)) ≥ 0}.

We omit the subscript G when it is clear from the context. Note that when ℓ = 1,
the FWMP(1) and FWMP(1) (i.e., the complement of FWMP(1)) objectives
reduce to coBüchi and Büchi objectives respectively. The following properties
of FWMP(ℓ) have been observed in [8]. For all window lengths ℓ ≥ 1, if a play

40 L. Doyen et al.



π satisfies FWMP(ℓ), then MP(π) ≥ 0. In all plays satisfying FWMP(ℓ), there
exists a suffix that can be decomposed into infixes of length at most ℓ, each with
a nonnegative mean payoff. Such a desirable robust property is not guaranteed
by the classical mean-payoff objective, where infixes of unbounded lengths may
have negative mean payoff.

As defined in [8], given a play π = v0v1 · · · and 0 ≤ i < j, we say that the
window π(i, j) is open if the total-payoff of π(i, k) is negative for all i < k ≤ j.
Otherwise, the window is closed. Given j > 0, we say a window is open at j
if there exists an open window π(i, j) for some i < j. The window starting
at position i closes at position j if j is the first position after i such that the
total-payoff of π(i, j) is nonnegative. If the window starting at i closes at j, then
for all i ≤ k < j, the windows π(k, j) are closed. This property is called the
inductive property of windows.

We also have the bounded window mean-payoff objective BWMP. A play π
satisfies the BWMP objective if there exists a window length ℓ ≥ 1 for which π
satisfies FWMP(ℓ), i.e.,

BWMPG = {π ∈ PlaysG | ∃ℓ ≥ 1 : π ∈ FWMP(ℓ)}

Equivalently, a play π does not satisfy BWMP if for every suffix of π, for all ℓ ≥ 1,
the suffix contains an open window of length ℓ. Note that both FWMP(ℓ) for all
ℓ ≥ 1 and BWMP are prefix-independent objectives.

Decision problems. Given a game G, an initial vertex v ∈ V , a rational
threshold p ∈ [0, 1], and an objective φ (that is either FWMP(ℓ) for a given
window length ℓ ≥ 1, or BWMP), consider the problem of deciding:

– Positive satisfaction of φ: whether Player 1 positively wins φ from v, i.e.,
whether v ∈ ⟨⟨1⟩⟩PosG (φ).

– Almost-sure satisfaction of φ: whether Player 1 almost-surely wins φ from v,
i.e., whether v ∈ ⟨⟨1⟩⟩ASG (φ).

– Quantitative satisfaction of φ (also known as quantitative value problem [13]):
whether Player 1 wins φ from v with probability at least p, i.e., whether
supσ1∈Λ1

infσ2∈Λ2
Prσ1,σ2

G,v (φ) ≥ p.

Note that these three problems coincide for non-stochastic games. As considered
in previous works [8, 3, 4], the window length ℓ is usually small (typically ℓ ≤ |V |),
and therefore we assume that ℓ is given in unary (while the payoff on the edges
is given in binary). From determinacy of Blackwell games [24], stochastic games
with window mean-payoff objectives as defined above are determined, i.e., the
largest probability with which Player 1 is winning and the largest probability
with which Player 2 is winning add up to 1.

Algorithms for non-stochastic window mean-payoff games. To compute
the positive and almost-sure winning regions for Player 1 for FWMP(ℓ), we recall
intermediate objectives defined in [8]. The good window objective GWG(ℓ) consists

Stochastic Window Mean-Payoff Games 41



Algorithm 1 NonStocFWMP(G, ℓ)
In: G = ((V,E), (V1, V2,∅), w) and ℓ ≥ 1
Out: ⟨⟨1⟩⟩G(FWMP(ℓ))
1: Wd ← NonStocDirFWMP(G, ℓ)
2: if Wd = ∅ then
3: return ∅
4: else
5: A← Attr1(Wd)
6: return A∪NonStocFWMP(G ↾ (V \

A), ℓ)

Algorithm 2 NonStocDirFWMP(G, ℓ)
In: G = ((V,E), (V1, V2,∅), w) and ℓ ≥ 1
Out: ⟨⟨1⟩⟩G(DirFWMP(ℓ))
1: Wgw ← GoodWin(G, ℓ)
2: if Wgw = V or Wgw = ∅ then
3: return Wgw

4: else
5: A← Attr2(V \Wgw)
6: return NonStocDirFWMP(G ↾

(Wgw \A), ℓ).

of all plays π in G such that the window opened at the first position in the play
closes in at most ℓ steps:

GWG(ℓ) = {π ∈ PlaysG | ∃j ∈ {1, . . . , ℓ} : MP(π(0, j)) ≥ 0}

The direct fixed window mean-payoff objective DirFWMPG(ℓ) consists of all
plays π in G such that from every position in π, the window closes in at most ℓ
steps:

DirFWMPG(ℓ) = {π ∈ PlaysG | ∀i ≥ 0 : π(i,∞) ∈ GWG(ℓ)}

The FWMPG(ℓ) objective can be expressed in terms of DirFWMPG(ℓ):

FWMPG(ℓ) = {π ∈ PlaysG | ∃k ≥ 0 : π(k,∞) ∈ DirFWMPG(ℓ)}

We refer to Algorithms 1, 2, and 3 from [8] shown here with the same numbering.
They compute the winning regions for Player 1 for the FWMP(ℓ), DirFWMP(ℓ),
and GW(ℓ) objectives in non-stochastic games respectively. The original algo-
rithms in [8] contain subtle errors for which the fixes are known [6, 19]. For
completeness, we refer the reader to [15] for counterexamples for the algorithms
in [8] along with brief explanations of correctness for the modified versions.

Algorithm 3 uses dynamic programming to compute, for all v ∈ V and all
lengths i ∈ {1, . . . , ℓ}, the largest payoff Ci(v) that Player 1 can ensure from v
within at most i steps. The winning region for GW(ℓ) for Player 1 consists of all
vertices v such that Cℓ(v) ≥ 0.

4 Memory requirement for non-stochastic window
mean-payoff games

The memory requirement for winning strategies of Player 1 in non-stochastic
games with objective FWMP(ℓ) is claimed to be O(|V | · ℓ) without proof [8,
Lemma 7], and further “correctly stated” as O(wmax · ℓ2), where wmax is the
maximum absolute payoff in the graph [6, Theorem 2]. We improve upon these
bounds and show that memory of size ℓ suffices for a winning strategy of Player 1.

42 L. Doyen et al.



Algorithm 3 GoodWin(G, ℓ)
In: G = ((V,E), (V1, V2,∅), w) the non-stochastic game, and ℓ ≥ 1, the window length
Out: The set of vertices from which Player 1 wins GW(ℓ) in G
1: for all v ∈ V do
2: C0(v)← 0
3: for all i ∈ {1, . . . , ℓ} do
4: Ci(v)← −∞
5: for all i ∈ {1, . . . , ℓ} do
6: for all v ∈ V1 do
7: Ci(v)← max(v,v′)∈E{max{w(v, v′), w(v, v′) + Ci−1(v

′)}}
8: for all v ∈ V2 do
9: Ci(v)← min(v,v′)∈E{max{w(v, v′), w(v, v′) + Ci−1(v

′)}}
10: Wgw ← {v ∈ V | Cℓ(v) ≥ 0}
11: return Wgw

We also present a family of games with arbitrarily many vertices where Player 2 is
winning and all his winning strategies require at least 1

2 (|V |−ℓ)+3 memory, while
it was only known that memoryless strategies are not sufficient for Player 2 [8].

4.1 Memory requirement for Player 1 for FWMP objective

Upper bound on memory requirement for Player 1. We show that memory
of size ℓ suffices for winning strategies of Player 1 for the DirFWMP(ℓ) objective
(Lemma 1), which in turn shows that the same memory also works for the
FWMP(ℓ) objective (Theorem 1).

Lemma 1. If Player 1 wins in a non-stochastic game with objective DirFWMP(ℓ),
then Player 1 has a winning strategy with memory of size ℓ.

Proof (Sketch). Given a non-stochastic game G, let Wd be the winning region
of Player 1 in G for objective DirFWMP(ℓ). By definition, every vertex in Wd is
also winning for Player 1 for the GW(ℓ) objective.

A winning strategy σd of Player 1 in Wd satisfies the objective GW(ℓ) by
closing a window within at most ℓ steps and then restarts with the same strategy,
playing for GW(ℓ) and so on. Using memory space Q = {1, . . . , ℓ}, we may store
the number of steps remaining before the window must close. However, the
window may close any time within ℓ steps, and the difficulty lies in detecting this
independently of the history. For memory state q = i and the next visited vertex
being v, intuitively, the memory should be updated to q = i− 1 if the window
did not close yet upon reaching v, and to q = ℓ if it did, but that depends on
which path was followed to reach v (not just on v), which is not stored in the
memory space.

The crux is to show that it is not always necessary for Player 1 to be able
to infer when the window closes. Given the current memory state q = i, and
the next visited vertex v, the memory update is as follows: if Ci(v) ≥ 0 (that
is, Player 1 can ensure the window from v will close within i steps), then we

Stochastic Window Mean-Payoff Games 43



update to q = i − 1 (decrement) although the window may or may not have
closed upon reaching v; otherwise Ci(v) < 0 and we update to q = ℓ− 1 (reset to
ℓ and decrement) and we show that in this case the window did close. Intuitively,
updating to q = i− 1 is safe even if the window did close, because the strategy
of Player 1 will anyway ensure the (upcoming) window is closed within i− 1 < ℓ
steps. A formal description of a Mealy machine with ℓ states defining a winning
strategy of Player 1 for the DirFWMP(ℓ) objective is given in [15]. ⊓⊔

Theorem 1. If Player 1 wins in a non-stochastic game G with objective FWMP(ℓ),
then Player 1 has a winning strategy with memory of size ℓ.

Proof (Sketch). Since FWMP(ℓ) is a prefix-independent objective, we have that
the winning region ⟨⟨1⟩⟩G(FWMP(ℓ)) of Player 1 is a trap for Player 2 (Re-
mark 1), and induces a subgame, say G0. Let there be k + 1 calls to the
subroutine NonStocDirFWMP from Algorithm 1 where k < |V |. We denote
by (Wi)i∈{1,...,k} the nonempty Wd returned by the ith call to the subroutine,
and let Ai = Attr1(Wi). The Ai’s are pairwise disjoint, and their union is⋃k

i=1 Ai = ⟨⟨1⟩⟩G(FWMP(ℓ)). For i ∈ {1, . . . , k}, inductively define Gi to be the
subgame induced by the complement of Ai in Gi−1. Since DirFWMP(ℓ) is closed
under suffixes, for all i ∈ {1, . . . , k}, we have that Wi is a trap for Player 2 in Gi

(Remark 1).
We construct a strategy σNS

1 that follows the (memoryless) attractor strategy
in

⋃
i(Ai \Wi), and follows the winning strategy σd for DirFWMP(ℓ) objective

(defined in the proof of Lemma 1) in
⋃

i Wi. The reader is pointed to [15] for
a formal description of a Mealy machine defining the strategy σNS

1 . For the
correctness of the construction, the crux is to show that one of the sets Wi

(i ∈ {1, . . . , k}) is never left from some point on. Intuitively, given the token is
in Ai for some i ∈ {1, . . . , k} (thus in Gi), following σNS

1 , the token will either
remain in Ai, or leave the subgame Gi and enter Aj for a smaller index j < i.
The result follows since this can be done at most k times. ⊓⊔

Lower bound on memory requirement for Player 1. In [8], the authors
show a game with ℓ = 4 where Player 1 requires memory at least 3. This can be
generalized to arbitrary ℓ to show that memory of size ℓ− 1 may be necessary
(See [15] for details).

4.2 Memory requirement for Player 2 for FWMP objective

Upper bound on memory requirement for Player 2. Now we show that
for the FWMP(ℓ) objective, Player 2 has a winning strategy that uses memory
of size at most |V | · ℓ. This has been loosely stated in [8] without a formal proof.

Theorem 2. Let G be a non-stochastic game with objective FWMP(ℓ) for Player 2.
Then, Player 2 has a winning strategy with memory size at most |V | · ℓ.

Proof (Sketch). Since FWMP(ℓ) is a prefix-independent objective, so is FWMP(ℓ).
We have that ⟨⟨2⟩⟩G(FWMP(ℓ)) is a trap for Player 1 (Remark 1) and induces a

44 L. Doyen et al.



subgame, say H0, of G. Let there be k + 1 calls to the subroutine GoodWin from
Algorithm 2 (where k < |V |), and let Hi be the subgame corresponding to the ith

call of the subroutine. We denote by (Wi)i∈{1,...,k} the complement of Wgw in Hi,

where Wgw is returned by the ith call to the subroutine, and let Ai = Attr2(Wi).

The Ai’s are pairwise disjoint, and their union is
⋃k

i=1 Ai = ⟨⟨2⟩⟩G(FWMP(ℓ)).

We describe a winning strategy for the FWMP(ℓ) objective with memory
k · ℓ, which is at most |V | · ℓ. The strategy is always in either attractor mode
or window-open mode. When the game begins, it is in attractor mode. If the
strategy is in attractor mode and the token is on a vertex v ∈ Ai \Wi for some
i ∈ {1, . . . , k}, then the attractor strategy is to eventually reach Wi. If the token
reaches Wi, then the strategy switches to window-open mode. Since all vertices
in Wi are winning for Player 2 for the GW(ℓ) objective, he can keep the window
open for ℓ more steps, provided that Player 1 does not move the token out of
the subgame Hi. If, at some point, Player 1 moves the token out of the subgame
Hi to Aj for a smaller index j < i, then the strategy switches back to attractor
mode, this time trying to reach Wj in the bigger subgame Hj . Otherwise, if
Player 2 keeps the window open for ℓ steps, then the strategy switches back to
attractor mode until the token reaches a vertex in

⋃k
i=1 Wi. This strategy can

be defined by a Mealy machine MNS
2 with states {1, . . . , k} × {1, . . . , ℓ}, where

the first component tracks the smallest subgame Hi in which the window started
to remain open, and the second component indicates how many more steps the
window needs to be kept open for. A formal description of MNS

2 can be found
in [15]. ⊓⊔

Lower bound on memory requirement for Player 2. In [8], it was shown
that memoryless strategies do not suffice for Player 2. We improve upon this
lower bound. Given a window length ℓ ≥ 2, for every k ≥ 1, we construct a game
Gk,ℓ with 2k + ℓ− 1 vertices such that every winning strategy of Player 2 in Gk,ℓ

requires at least k + 1 memory.

Theorem 3. There exists a family of non-stochastic games {Gk,ℓ}k≥1,ℓ≥2 with
objective FWMP(ℓ) for Player 1 and edge weights in {−1, 0,+1} such that every
winning strategy of Player 2 requires at least 1

2 (|V | − ℓ+ 1) + 1 memory, where
|V | = 2k + ℓ− 1.

Proof (Sketch). Let A = {a1, . . . , ak}, B = {b1, . . . , bk}, and C = {c1, . . . , cℓ−1}
be pairwise disjoint sets. The vertices of Gk,ℓ are A∪B ∪C with V1 = A∪C and
V2 = B. Figure 1 shows the game G4,3. A more formal description of Gk,ℓ can be
found in [15].

Observe that the only open windows of length ℓ in the game Gk,ℓ are sequences
of the form apbrcℓ−1 · · · c1 for all p ≤ r. Also note that Player 2 has a winning
strategy that wins starting from every vertex in the game, as Player 2 can force
the token to eventually take a red edge followed by two black edges.

When the token reaches a vertex br ∈ B, Player 2 can either move the token
to ar ∈ A or to cℓ−1 ∈ C. Depending on which vertex the token was on before
reaching br, one of the two choices is good for Player 2. If the token reaches br

Stochastic Window Mean-Payoff Games 45



a1

b1

a2

b2

a3

b3

a4

b4

c1 c2

Figure 1: Game G4,3 with parameter k = 4 and window length ℓ = 3. Red edges (from
ap to br for p ≤ r) have payoff −1, black edges (from br to c2) have payoff 0, and blue
edges (the remaining edges) have payoff +1.

Table 1: Good choices χ(u, br) for all u ∈ A ∪ {c1} and br ∈ B in the game G4,3
a1b1 → c2 a2b1 → a1

a1b2 → c2 a2b2 → c2 a3b2 → a2

a1b3 → c2 a2b3 → c2 a3b3 → c2 a4b3 → a3

a1b4 → c2 a2b4 → c2 a3b4 → c2 a4b4 → c2 c1b4 → a4

from ap for p ≤ r, then it is good for Player 2 to move the token to cℓ−1 ∈ C so
that the window starting at ap remains open for ℓ steps. Otherwise, if the token
reaches br from ar+1, then it is good for Player 2 to move the token to ar so that
an edge with negative payoff may eventually be taken. For all u ∈ A ∪ {c1}, for
all br ∈ B such that (u, br) is an edge in Gk,ℓ, we denote by χ(u, br) the vertex
ar or cℓ−1 that is good for Player 2. We list the good choices in the game G4,3 in
Table 1. The columns are indexed by u ∈ A ∪ {c1} and the rows are indexed by
br ∈ B.

We show that for each column in the table, there exists a distinct memory
state in every Mealy machine defining a winning strategy of Player 2. This gives
a lower bound of k + 1 on the number of states of such a Mealy machine. Since
Gk,ℓ has 2k + ℓ− 1 vertices, the memory requirement of a winning strategy of
Player 2 is at least 1

2 (|V | − ℓ+ 1) + 1. ⊓⊔

Given a winning strategy σNS
2 of Player 2 for the FWMP(ℓ) objective, the

following lemma gives an upper bound on the number of steps between consecutive
open windows of length ℓ in any play consistent with σNS

2 . This lemma is used in
Section 6, where we construct an almost-sure winning strategy of Player 2 for
the FWMP(ℓ) objective.

Lemma 2. Let G be a non-stochastic game such that ⟨⟨2⟩⟩G(FWMP(ℓ)) = V . Let
σNS
2 be a finite-memory strategy of Player 2 of memory size M that is winning

for FWMP(ℓ) from all vertices in G. Then, for every play π of G consistent with
σNS
2 , every infix of π of length M · |V | · ℓ contains an open window of length ℓ.

The proof is based on the pigeonhole principle and appears in [15].

46 L. Doyen et al.



v1 v2 v3

.5 .5

Figure 2: Büchi objective does not satisfy the SAS property in this game.

5 Reducing stochastic games to non-stochastic games

For a stochastic game G, let GNS = ((V,E), (V1, V2∪V♢,∅), w) be the (adversarial)
non-stochastic game corresponding to G, obtained by changing all probabilistic
vertices in G to Player 2 vertices. In [13], a property of finitary Streett objective
was used to solve stochastic games by reducing them to non-stochastic games
with the same objective. In this section, we generalize this property for arbitrary
prefix-independent objectives.

Definition 1 (Sure-almost-sure (SAS) property). A prefix-independent ob-
jective φ in a game G satisfies the SAS property if ⟨⟨2⟩⟩GNS

(φ) = V implies

⟨⟨2⟩⟩ASG (φ) = V , that is, if Player 2 wins the objective φ from every vertex in GNS,
then Player 2 almost-surely wins the same objective φ from every vertex in G.

Every prefix-independent objective satisfies the converse of the SAS property
since if Player 2 even wins positively from all vertices in G, then since he controls
all probabilistic vertices in GNS, he wins from all vertices in GNS by choosing
optimal successors of probabilistic vertices. We show in Section 6 that for all
stochastic games G, the objectives FWMP(ℓ) and BWMP satisfy the SAS property,
while in Example 1, we show that there exists a stochastic game in which Büchi
objective does not satisfy the SAS property.

Example 1. Consider the game G in Figure 2. The objective φ in this game is
a Büchi objective: a play π satisfies the Büchi objective if π visits vertex v1
infinitely often. Although from every vertex, with positive probability (in fact,
with probability 1), a play visits v1 infinitely often, from none of the vertices,
Player 1 can ensure the Büchi objective in the non-stochastic game GNS.

Theorem 4 gives complexity bounds for solving stochastic games with ob-
jectives satisfying the SAS property in terms of the complexity of solving non-
stochastic games with the same objective.

Theorem 4. Given G and φ, suppose in every subgame G′ of G, the objective φ
restricted to G′ satisfies the SAS property. Let NonStocWinφ(GNS) be an algorithm
computing ⟨⟨1⟩⟩GNS

(φ) in GNS in time C. Then, the positive and almost-sure
satisfaction of φ can be decided in time O(|V | · (C+ |E|)) and O(|V |2 · (C+ |E|))
respectively.

Moreover, for positive and almost-sure satisfaction of φ, the memory require-
ment for Player 1 to play optimally in stochastic games is no more than that for
non-stochastic games.

Stochastic Window Mean-Payoff Games 47



Algorithm 4 PosWinφ(G)
In: G = ((V,E), (V1, V2, V♢),P, w) and φ
Out: ⟨⟨1⟩⟩PosG (φ)
1: W1 ← NonStocWinφ(GNS)
2: if W1 = ∅ then
3: return ∅
4: else
5: A1 ← PosAttr1(W1)
6: return A1∪PosWinφ(G ↾ (V \A1))

Algorithm 5 ASWinφ(G)
In: G = ((V,E), (V1, V2, V♢),P, w) and φ
Out: ⟨⟨1⟩⟩ASG (φ)
1: W2 ← V \ PosWinφ(G)
2: if W2 = ∅ then
3: return V
4: else
5: A2 ← PosAttr2(W2)
6: return ASWinφ(G ↾ (V \A2))

Theorem 4 does not give bounds on the memory requirement for winning strategies
of Player 2 for objective φ in the stochastic game, but we provide such bounds
specifically for FWMP(ℓ) and BWMP in Section 6. We give a sketch of the proof
of Theorem 4 below. The complete proof appears in [15].

The algorithms to compute the positive and almost-sure winning regions
in G, and their proofs of correctness are the same as in the case of finitary
Streett objectives described in [13]. The PosWinφ algorithm (Algorithm 4) uses
NonStocWinφ as a subroutine to compute ⟨⟨1⟩⟩PosG (φ). The fact that φ satisfies
the SAS property is used to show the correctness of this algorithm. The depth
of recursive calls of this algorithm is bounded above by |V |, which gives the
complexity bound. The ASWinφ algorithm (Algorithm 5) in turn uses PosWinφ
as a subroutine to compute the ⟨⟨1⟩⟩ASG (φ). The depth of recursive calls of this
algorithm is also bounded above by |V |, which gives the complexity bound. The
following lemma, which is a special case of Theorem 1 in [7], is used to show the
correctness of this algorithm.

Lemma 3. [7, Theorem 1] For a stochastic game G with prefix-independent
objective φ, if ⟨⟨2⟩⟩PosG (φ) = V , then ⟨⟨2⟩⟩ASG (φ) = V .

For both positive and almost-sure winning, Player 1 does not require any
additional memory in the stochastic game compared to the non-stochastic game.
We describe a strategy σPos

1 of Player 1 that is positive winning from all vertices
in ⟨⟨1⟩⟩PosG (φ). In each recursive call to PosWinφ algorithm, from every vertex in
W1, the strategy σPos

1 mimics a winning strategy of Player 1 in GNS, while for
vertices in A1 \W1, it follows a memoryless attractor strategy to reach W1. The
same strategy is almost-sure winning for Player 1 from all vertices in ⟨⟨1⟩⟩ASG (φ).

Finally, we look at the quantitative decision problem. The quantitative sat-
isfaction for φ can be decided in NPB ([13, Theorem 6]), where B is an oracle
deciding positive and almost-sure satisfaction problems for φ. It is not difficult
to see that the quantitative satisfaction for φ can be decided in NPB ∩ coNPB.
Moreover, from the proof of [13, Theorem 6], it follows that the memory require-
ment of winning strategies for both players for the quantitative decision problem
is no greater than that for the qualitative decision problem.

48 L. Doyen et al.



Corollary 1. Given G and φ as described in Theorem 4, let B be an oracle
deciding the qualitative satisfaction of φ. Then, the quantitative satisfaction of φ
is in NPB ∩ coNPB. Moreover, the memory requirement of optimal strategies for
both players is no greater than that for the positive and almost-sure satisfaction
of φ.

6 Reducing stochastic window mean-payoff games: A
special case

In this section, we show that for all stochastic games G and for all ℓ ≥ 1, the
objectives FWMPG(ℓ) and BWMPG , which are prefix-independent, satisfy the
SAS property of Definition 1. Thus, by Theorem 4, we obtain bounds on the
complexity and memory requirements of Player 1 for the positive and almost-sure
satisfaction of these objectives. We also show that for both these objectives, the
memory requirements of Player 2 to play optimally for positive and almost-sure
winning in stochastic games is no more than that of the non-stochastic games. The
algorithms to compute the positive and almost-sure winning regions of Player 1
for both FWMP(ℓ) and BWMP objectives are obtained by instantiating φ equal
to FWMP(ℓ) and BWMP in Algorithms 4 and 5. Thus, we obtain the algorithms
PosWinFWMP(ℓ), ASWinFWMP(ℓ), PosWinBWMP, and ASWinBWMP.

6.1 Fixed window mean-payoff objective

We first discuss the SAS property for the FWMP(ℓ) objective.

Lemma 4. In stochastic games, for all ℓ ≥ 1, the FWMP(ℓ) objective satisfies
the SAS property.

Proof (Sketch). We show that for all stochastic games G, if ⟨⟨2⟩⟩GNS
(FWMP(ℓ)) =

V , then ⟨⟨2⟩⟩ASG (FWMP(ℓ)) = V . If ⟨⟨2⟩⟩GNS
(FWMP(ℓ)) = V , then from Theorem 2,

there exists a finite-memory strategy σNS
2 (say, with memory M) of Player 2

that is winning for objective FWMP(ℓ) from every vertex in GNS. Given such a
strategy, we construct below a strategy σAS

2 of Player 2 in the stochastic game G
that is almost-sure winning for FWMP(ℓ) from every vertex in G.

In GNS, Player 2 controls vertices in V2∪V♢, while in G, Player 2 only controls
vertices in V2 and the probability function P determines the successors of vertices
in V♢. While the strategy σNS

2 is winning for FWMP(ℓ) from all vertices in GNS,
it may not be almost-sure winning for FWMP(ℓ) in G. This is because each time
the token is on a probabilistic vertex, a deviation occurs with positive probability,
i.e., the successor chosen by the distribution is not consistent with σNS

2 , resulting
in a potentially worse outcome for Player 2. For example, in Figure 3, we see
a stochastic game G and a Mealy machine MNS

2 defining a strategy σNS
2 that

is winning for Player 2 from all vertices in the non-stochastic game GNS. In all
outcomes in GNS that are consistent with σNS

2 , the token never moves from v6
to v7. However, in G, a deviation may lead the token to move along (v6, v7). This

Stochastic Window Mean-Payoff Games 49



v1

v2

v3

v4

v5

v6 v7

v8

−1

−1

q0 q1 q2 q3 q4 q5
v1/ϵ

v8/v1

v2/v4, v3/v5

v4/v6, v5/v6

v6/v8, v7/v8

v2/v4, v3/v5 v4/v6, v5/v6 v6/v8
v7/v8

v8/v1

v8/v8

v6/v7

q0 q1 q2 q3 q4
v1/ϵ

v8/v1

v2/ϵ, v3/ϵ

v4/v6, v5/v6

v6/ϵ, v7/v8

v2/ϵ, v3/ϵ v4/v6, v5/v6

v6/ϵ

v8/v1 v1/ϵ
v2/ϵ, v3/ϵ

v5/v6

v6/ϵ, v7/v8

Figure 3: (top) Stochastic game G with objective FWMP(3) for Player 2. All unlabelled
edges have payoff 0. (middle) Mealy machine MNS

2 defining a strategy σNS
2 that is

winning from all vertices in GNS for FWMP(3). (bottom) Part of the Mealy machine
MAS

2 defining a reset strategy that is almost-sure winning from all vertices in G.

results in a losing outcome for Player 2 as the token gets trapped in v8, and
subsequently no window remains open for ℓ steps. Such harmful deviations can
be detected, and starting with the strategy σNS

2 , we construct a strategy σAS
2 that

mimics σNS
2 as long as harmful deviations do not occur, and resets otherwise, i.e.,

the strategy forgets the prefix of the play before the deviation. For instance, when
the token moves from v6 to v7 in G, the strategy resets and the play continues as
if the game began from v7. We call σAS

2 a reset strategy. Figure 3 shows a part
of a Mealy machine MAS

2 defining a reset strategy for the game G. The figure
contains all the reset transitions out of q4, but the reset transitions out of q1,
q2, and q3 have been omitted for space. More details on how to obtain a Mealy
machine that defines σAS

2 from a Mealy machine that defines σNS
2 without adding

any new states can be found in [15].

50 L. Doyen et al.



Now, we argue that the reset strategy is almost-sure winning for Player 2 from
all vertices in G. If a play in G continues for M · |V | · ℓ steps without deviating,
then by Lemma 2, it contains an open window of length ℓ. From any point in
the play, the probability that σAS

2 successfully copies σNS
2 for i steps (that is, no

deviations occur) is at least pi, where p is the minimum probability over all the
edges in G. It follows that from every point in the play, the probability that an
open window of length ℓ occurs in the next M · |V | · ℓ steps is at least pM·|V |·ℓ.
Therefore, from every position in the play, the probability that an open window of
length ℓ occurs eventually is at least

∑
i≥0(1− pM·|V |·ℓ)i · pM·|V |·ℓ = 1. Thus, with

probability 1, infinitely many open windows of length ℓ occur in the outcome, and
the outcome satisfies FWMP(ℓ). Thus, all vertices in G are almost-sure winning
for Player 2 for FWMP(ℓ). For all stochastic games G, the objective FWMP(ℓ)
satisfies the SAS property. ⊓⊔

We now construct a strategy σPos
2 of Player 2 that is positive winning from

all vertices in ⟨⟨2⟩⟩PosG (FWMP(ℓ)). Let W i
2 and Ai

2 denote the sets W2 and A2

computed in the ith recursive call of the ASWinFWMP(ℓ) algorithm respectively. If

the token is in
⋃

i W
i
2, then σPos

2 mimics σAS
2 ; if the token is in

⋃
i A

i
2 \W i

2, then
σPos
2 is a positive-attractor strategy to W i

2 which is memoryless. Then, σPos
2 is

a positive winning strategy for Player 2 from all vertices in ⟨⟨2⟩⟩PosG (FWMP(ℓ)).
Using Theorem 4, Corollary 1, and Lemma 4, we have the following.

Theorem 5. Given a stochastic game G, a window length ℓ ≥ 1, and a threshold
p ∈ [0, 1], for FWMPG(ℓ), the positive and almost-sure satisfaction for Player 1
are in PTIME, and the quantitative satisfaction is in NP ∩ coNP. Moreover for
optimal strategies, memory of size ℓ is sufficient for Player 1 and memory of size
|V | · ℓ is sufficient for Player 2.

6.2 Bounded window mean-payoff objective

We show that the SAS property holds for the BWMP objective for all stochastic
games G.

Lemma 5. In stochastic games, the BWMP objective satisfies the SAS property.

Proof (Sketch). We show that for all stochastic games G, if ⟨⟨2⟩⟩GNS
(BWMP) = V ,

then ⟨⟨2⟩⟩ASG (BWMP) = V . Since every play that satisfies BWMP also satisfies

FWMP(ℓ) for all ℓ ≥ 1, if ⟨⟨2⟩⟩GNS
(BWMP) = V , then ⟨⟨2⟩⟩GNS

(FWMP(ℓ)) = V . It
follows that for each ℓ ≥ 1, Player 2 has a finite-memory strategy (say, with
memory Mℓ), that is winning for the FWMP(ℓ) objective from all vertices in GNS.
For every such strategy, we construct a reset strategy σℓ

2 of memory size at most
Mℓ as described in the proof of Lemma 4 that is almost-sure winning for the
FWMP(ℓ) objective from all vertices. We use these strategies to construct an
infinite-memory strategy σAS

2 of Player 2 that is almost-sure winning for BWMP
from all vertices in the stochastic game G.

Let p be the minimum probability over all edges in the game, and for all ℓ ≥ 1,
let q(ℓ) denote pMℓ·|V |·ℓ. We partition a play of the game into phases 1, 2, . . . such

Stochastic Window Mean-Payoff Games 51



that for all ℓ ≥ 1, the length of phase ℓ is equal to Mℓ · |V | · ℓ · ⌈1/q(ℓ)⌉. We define
the strategy σAS

2 as follows: if the game is in phase ℓ, then σAS
2 is σℓ

2, the reset
strategy that is almost-sure winning for FWMP(ℓ) in G.

We show that σAS
2 is almost-sure winning for Player 2 for BWMP in G. Let Eℓ

denote the event that phase ℓ contains an open window of length ℓ. Given a play π,
if Eℓ occurs in π for infinitely many ℓ ≥ 1, then for every suffix of π and for all
ℓ ≥ 1, the suffix contains an open window of length ℓ, and π satisfies BWMP. For
all ℓ ≥ 1, we compute the probability that Eℓ occurs in the outcome. For all ℓ ≥ 1,
we can divide phase ℓ into ⌈1/q(ℓ)⌉ blocks of length Mℓ · |V | ·ℓ each. If at least one
of these blocks contains an open window of length ℓ, then the event Eℓ occurs. It
follows from the proof of Lemma 4 that if Player 2 follows σℓ

2, then the probability
that there exists an open window of length ℓ in the next Mℓ · |V | · ℓ steps is at
least q(ℓ). Hence, the probability that none of the blocks in the phase contains
an open window of length ℓ is at most (1 − q(ℓ))⌈1/q(ℓ)⌉. Thus, the probability
that Eℓ occurs in phase ℓ is at least 1− (1− q(ℓ))⌈1/q(ℓ)⌉ > 1− 1

e ≈ 0.63 > 0. It
follows that with probability 1, for infinitely many values of ℓ ≥ 1, the event Eℓ

occurs in π. ⊓⊔

Note that solving a non-stochastic game with the BWMP objective is in
NP ∩ coNP [8]. Thus by Corollary 1, quantitative satisfaction for BWMP is in
NPNP∩coNP ∩ coNPNP∩coNP, which is the same as NP ∩ coNP [25].

Moreover, from [8], Player 1 has a memoryless strategy and Player 2 needs
infinite memory to play optimally in non-stochastic games with the BWMP
objective. From the proof of Lemma 5, by using the strategy σAS

2 , Player 2
almost-surely wins BWMP from all vertices in ⟨⟨2⟩⟩ASG (BWMP). We can construct

a positive winning strategy σPos
2 for Player 2 from all vertices in ⟨⟨2⟩⟩PosG (BWMP)

in a similar manner as done for the positive winning strategy for FWMP(ℓ) in
Section 6.1. We summarize the results in the following theorem:

Theorem 6. Given a stochastic game G and a threshold p ∈ [0, 1], for BWMPG,
the positive, almost-sure, and quantitative satisfaction for Player 1 are in NP ∩
coNP. Moreover, a memoryless strategy suffices for Player 1, while Player 2
requires an infinite memory strategy to play optimally.

Acknowledgement. We thank Mickael Randour for pointing out reference [6],

making us aware of the bugs in the algorithms of [8] and the correct version of these

algorithms as presented here. This work is partially supported by the Indian Science and

Engineering Research Board (SERB) grant SRG/2021/000466 and by the Indo-French

Centre for the Promotion of Advanced Research (IFCPAR).

References

1. Alur, R., Henzinger, T.A.: Finitary fairness. In: LICS. pp. 52–61. IEEE Computer
Society (1994)

2. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)

52 L. Doyen et al.



3. Bordais, B., Guha, S., Raskin, J.F.: Expected window mean-payoff. In: FSTTCS.
LIPIcs, vol. 150, pp. 32:1–32:15 (2019)

4. Brihaye, T., Delgrange, F., Oualhadj, Y., Randour, M.: Life is Random, Time
is Not: Markov Decision Processes with Window Objectives. Logical Methods in
Computer Science Volume 16, Issue 4 (Dec 2020)

5. Bruyère, V., Hautem, Q., Randour, M.: Window parity games: an alternative
approach toward parity games with time bounds. In: GandALF. EPTCS, vol. 226,
pp. 135–148 (2016)

6. Bruyère, V., Hautem, Q., Raskin, J.F.: On the complexity of heterogeneous multidi-
mensional games. In: CONCUR. LIPIcs, vol. 59, pp. 11:1–11:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2016)

7. Chatterjee, K.: Concurrent games with tail objectives. Theoretical Computer Science
388(1), 181–198 (2007)

8. Chatterjee, K., Doyen, L., Randour, M., Raskin, J.F.: Looking at mean-payoff and
total-payoff through windows. Information and Computation 242, 25–52 (2015)

9. Chatterjee, K., Henzinger, T.A.: Finitary winning in ω-regular games. In: TACAS.
pp. 257–271. LNCS 3920, Springer (2006)

10. Chatterjee, K., Henzinger, T.A.: Value iteration. In: 25 Years of Model Checking -
History, Achievements, Perspectives. pp. 107–138. LNCS 5000, Springer (2008)

11. Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. Journal
of Computer and System Sciences 78(2), 394–413 (2012)

12. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in omega-regular games.
ACM Trans. Comput. Log. 11(1), 1:1–1:27 (2009)

13. Chatterjee, K., Henzinger, T.A., Horn, F.: Stochastic games with finitary objectives.
In: MFCS. pp. 34–54. Springer Berlin Heidelberg (2009)

14. Condon, A.: The complexity of stochastic games. Information and Computation
96(2), 203–224 (1992)

15. Doyen, L., Gaba, P., Guha, S.: Stochastic window mean-payoff games. CoRR
abs/2304.11563 (2023), https://arxiv.org/abs/2304.11563

16. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int.
Journal of Game Theory 8(2), 109–113 (1979)

17. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)
18. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:

A Guide to Current Research. LNCS 2500, Springer (2002)
19. Hautem, Q.: The Complexity of Combining Objectives in Two-Player Games. Ph.D.

thesis, Université de Mons (2018)
20. Horn, F.: Faster algorithms for finitary games. In: TACAS. Lecture Notes in

Computer Science, vol. 4424, pp. 472–484. Springer (2007)
21. Horn, F., Thomas, W., Wallmeier, N., Zimmermann, M.: Optimal strategy synthesis

for request-response games. RAIRO Theor. Informatics Appl. 49(3), 179–203 (2015)
22. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.

Lett. 68(3), 119–124 (1998)
23. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal

Methods Syst. Des. 34(2), 83–103 (2009)
24. Martin, D.A.: The determinacy of blackwell games. The Journal of Symbolic Logic

63(4), 1565–1581 (1998), http://www.jstor.org/stable/2586667
25. Schöning, U.: A low and a high hierarchy within NP. Journal of Computer and

System Sciences 27(1), 14–28 (1983)
26. Weinert, A., Zimmermann, M.: Easy to win, hard to master: Optimal strategies in

parity games with costs. In: CSL. LIPIcs, vol. 62, pp. 31:1–31:17 (2016)

Stochastic Window Mean-Payoff Games 53



27. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158(1&2), 343–359 (1996)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

54 L. Doyen et al.

http://creativecommons.org/licenses/by/4.0/


Symbolic Solution of Emerson-Lei Games for
Reactive Synthesis⋆

Abstract. Emerson-Lei conditions have recently attracted attention due
to both their succinctness and their favorable closure properties. In the
current work, we show how infinite-duration games with Emerson-Lei
objectives can be analyzed in two different ways. First, we show that the
Zielonka tree of the Emerson-Lei condition naturally gives rise to a new
reduction to parity games. This reduction, however, does not result in
optimal analysis. Second, we show based on the first reduction (and the
Zielonka tree) how to provide a direct fixpoint-based characterization of
the winning region. The fixpoint-based characterization allows for sym-
bolic analysis. It generalizes the solutions of games with known winning
conditions such as Büchi, GR[1], parity, Streett, Rabin and Muller ob-
jectives, and in the case of these conditions reproduces previously known
symbolic algorithms and complexity results.

We also show how the capabilities of the proposed algorithm can be
exploited in reactive synthesis, suggesting a new expressive fragment of
LTL that can be handled symbolically. Our fragment combines a safety
specification and a liveness part. The safety part is unrestricted and
the liveness part allows to define Emerson-Lei conditions on occurrences
of letters. The symbolic treatment is enabled due to the simplicity of
determinization in the case of safety languages and by using our new
algorithm for game solving. This approach maximizes the number of
steps solved symbolically in order to maximize the potential for efficient
symbolic implementations.

1 Introduction

Infinite-duration two-player games are a strong tool that has been used, notably,
for reactive synthesis from temporal specifications [38]. Many different winning
conditions are considered in the literature.

Emerson-Lei (EL) conditions [21] were initially suggested in the context of au-
tomata but are among the most general (regular) winning conditions considered
for such games. They succinctly express general liveness properties by encod-
ing Boolean combinations of events that should occur infinitely or finitely often.
Automata and games in which acceptance or winning is defined by Emerson-Lei
conditions have garnered attention in recent years [35,40,27,25], in particular

⋆ This work is supported by the ERC Consolidator grant D-SynMA (No. 772459).

University of Gothenburg, Gothenburg, Sweden

hausmann@chalmers.se

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 55–78, 2024.
https://doi.org/10.1007/978-3-031-57228-9_4

Daniel Hausmann(B), Mathieu Lehaut, and Nir Piterman

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_4&domain=pdf


because of their succinctness and good compositionality properties (Emerson-
Lei objectives are closed under conjunction, disjunction, and negation). In this
work, we show how infinite-duration two-player games with Emerson-Lei winning
conditions can be solved symbolically.

It has been established that solving Emerson-Lei games is PSpace-complete
and that an exponential amount of memory may be required by winning strate-
gies [25]. Zielonka trees are succinct tree-representations of Muller objectives [47].
They have been used to obtain tight bounds on the amount of memory needed
for winning in Muller games [18], and can also be applied to analyze Emerson-
Lei objectives and games. One indirect way to solve Emerson-Lei games is by
transformation to equivalent parity games using later-appearance-records [25],
and then solving the resulting parity games. Another, more recent, indirect ap-
proach goes through Rabin games by first extracting history-deterministic Rabin
automata from Zielonka trees and then solving the resulting Rabin games [12].
Both these indirect solution methods are enumerative by nature. Here, we give
a direct symbolic algorithmic solution for Emerson-Lei games. We show how the
Zielonka tree allows to directly encode the game as a parity game. Furthermore,
building on this reduction, we show how to construct a fixpoint equation sys-
tem that captures winning in the game. As usual, fixpoint equation systems are
recipes for game solving algorithms that manipulate sets of states symbolically.
To the best of our knowledge, we thereby give the first description of a fully
symbolic algorithm for the solution of Emerson-Lei games.

The algorithm that we obtain in this way is adaptive in the sense that the
nesting structure of recursive calls is obtained directly from the Zielonka tree
of the given winning objective. As the Zielonka tree is specific to the objective,
this means that the algorithm performs just the fixpoint computations that are
required for that specific objective. In particular, our algorithm instantiates to
previously known fixpoint iteration algorithms in the case that the objective is
a (generalized) Büchi, GR[1], parity, Streett, Rabin or Muller condition, repro-
ducing previously known algorithms and complexity results. As we use fixpoint
iteration, the instantiation of our algorithm to parity game solving is not di-
rectly a quasipolynomial algorithm. In the general setting, the algorithm solves
unrestricted Emerson-Lei games with k colors, m edges and n nodes in time
O(k! ·m · nk) and yields winning strategies with memory O(k!).

We apply our symbolic solution of Emerson-Lei games to the automated
construction of safe systems. The ideas of synthesis of reactive systems from
temporal specifications go back to the early days of computer science [14]. These
concepts were modernized and connected to linear temporal logic (LTL) and
finite-state automata by Pnueli and Rosner [38]. In recent years, practical ap-
plications in robotics are using this form of synthesis as part of a framework
producing correct-by-design controllers [28,6,44,32,34].

A prominent way to extend the capacity of reasoning about state spaces is by
reasoning symbolically about sets of states/paths. In order to apply this approach
to reactive synthesis, different fragments of LTL that allow symbolic game anal-
ysis have been considered. Notably, the GR[1] fragment has been widely used for

56 D. Hausmann et al.



the applications in robotics mentioned above [37,7]. But also larger fragments
are being considered and experimented with [20,19,41]. Recently, De Giacomo
and Vardi suggested that similar advantages can be had by changing the usual
semantics of LTL from considering infinite models to finite models (LTLf ) [22].
The complexity of the problem remains doubly-exponential, however, symbolic
techniques can be applied. As models are finite, it is possible to use the classical
subset construction (in contrast to Büchi determinization), which can be rea-
soned about symbolically. Furthermore, the resulting games have simple reach-
ability objectives. This approach with finite models is used for applications in
planning [11,10] and robotics [6].

Here, we harness our symbolic solution to Emerson-Lei games to suggest a
large fragment of LTL that can be reasoned about symbolically. We introduce the
Safety and Emerson-Lei fragment whose formulas are conjunctions φsafety∧φEL

between an (unrestricted) safety condition and an (unrestricted) Emerson-Lei
condition defined in terms of game states. This fragment generalizes GR[1] and
the previously mentioned works in [20,19,41]. We approach safety and Emerson-
Lei LTL synthesis in two steps: first, consider only the safety part and convert it
to a symbolic safety automaton; second, reason symbolically on this automaton
by solving Emerson-Lei games using our novel symbolic algorithm.

φsafety ∧ φEL Dφsafety

(Symbolic Safety)

synthesis game Gφsafety∧φEL

φEL

(Emerson-Lei objective)

We show that realizability of a safety and Emerson-Lei formula φsafety∧φEL can
be checked in time 2O(m·logm·2n), where n = |φsafety| and m = |φEL|. The overall
procedure therefore is doubly-exponential in the size of the safety part but only
single-exponential in the size of the liveness part; notably, both the automaton
determinization and game solving parts can be implemented symbolically.

We begin by recalling Emerson-Lei games and Zielonka trees in Section 2,
and also prove an upper bound on the size of Zielonka trees. Next we show how
to solve Emerson-Lei games by fixpoint computation in Section 3. In Section 4
we formally introduce the safety and Emerson-Lei fragment of LTL and show
how to construct symbolic games with Emerson-Lei objectives that characterize
realizability and that can be solved using the algorithm proposed in Section 3.
Omitted proofs and further details can be found in the full version of this pa-
per [23].

2 Emerson-Lei Games and Zielonka Trees

We recall the basics of Emerson-Lei games [25] and Zielonka trees [47], and also
show an apparently novel bound on the size of Zielonka trees; previously, the
main interest was on the size of winning strategies induced by Zielonka trees,
which is smaller [18].

Symbolic Solution of Emerson-Lei Games 57



Emerson-Lei games. We consider two-player games played between the exis-
tential player ∃ and its opponent, the universal player ∀. A game arena A =
(V, V∃, V∀, E) consists of a set V = V∃ ⊎ V∀ of nodes, partitioned into sets of
existential nodes V∃ and universal nodes V∀, and a set E ⊆ V × V of moves ;
we put E(v) = {v′ ∈ V | (v, v′) ∈ E} for v ∈ V . A play π = v0v1 . . . then is a
sequence of nodes such that for all i ≥ 0, (vi, vi+1) ∈ E; we denote the set of
plays in A by plays(A). A game G = (A,α) consists of a game arena A together
with an objective α ⊆ plays(A).

A strategy for the existential player is a function σ : V ∗ · V∃ → V such
that for all π ∈ V ∗ and v ∈ V∃ we have (v, σ(πv)) ∈ E. A play v0v1 . . . is said
to be compliant with strategy f if for all i ≥ 0 such that vi ∈ V∃ we have
vi+1 = σ(v0 . . . vi). Strategy σ is winning for the existential player from node
v ∈ V if all plays starting in v that are compliant with σ are contained in α;
then we say that the existential player wins v. We denote by W∃ the winning
region for the existential player (that is, the set of nodes that the existential
player wins).

In Emerson-Lei games, each node is colored by a set of colors, and the ob-
jective α is induced by a formula that specifies combinations of colors that have
to be visited infinitely often, or are allowed to be visited only finitely often.
Formally, we fix a set C of colors and use Emerson-Lei formulas, that is, finite
positive Boolean formulas φ ∈ B+({Inf c,Fin c}c∈C) over atoms of the shape Inf c
or Fin c, to define sets of plays. The satisfaction relation |= for a set D ⊆ C of
colors and an Emerson-Lei formula φ (written D |= φ) is defined in the usual
inductive way; D will represent the set of colors that are visited infinitely often
by plays. E.g. the clauses for atoms Inf c and Fin c are

D |= Inf c⇔ c ∈ D D |= Fin c⇔ c /∈ D

Consider a game arena A = (V, V∃, V∀, E). An Emerson-Lei condition is given
by an Emerson-Lei formula φ together with a coloring function γ : V → 2C that
assigns a (possibly empty) set γ(v) of colors to each node v ∈ V . The formula φ
and the coloring function γ together specify the objective

αγ,φ =
{
v0v1 . . . ∈ plays(A)

∣∣∣{c ∈ C | ∀i. ∃j ≥ i. c ∈ γ(vj)} |= φ
}

Thus a play π = v0v1 . . . is winning for the existential player (formally: π ∈ αγ,φ)
if and only if the set of colors that are visited infinitely often by π satisfies φ.
Below, we will also make use of parity games, denoted by (V, V∃, V∀, E,Ω) where
Ω : V → {1, . . . , 2k} (for k ∈ N) is a priority function, assigning priorities to
game nodes. The objective of the existential player then is that the maximal
priority that is visited infinitely often is an even number. Parity games are an
instance of Emerson-Lei games, obtained with set C = {p1, . . . , p2k} of colors, a
coloring function that assigns exactly one color to each node and with objective

Parity(p1, . . . , p2k) =
∨
i even

(
Inf pi ∧

∧
i<j≤2k Fin pj

)
.

Similarly, Emerson-Lei objectives directly encode (combinations of) other stan-
dard objectives, such as Büchi, Rabin, Streett or Muller conditions:

58 D. Hausmann et al.



— Inf f Büchi(f)
—

∨
1≤i≤k(Inf ei ∧ Fin fi) Rabin(e1, f1, . . . , ek, fk)

—
∧

1≤i≤k(Fin ri ∨ Inf gi) Streett(r1, g1, . . . , rk, gk)

—
∨
D∈U (

∧
c∈D Inf c ∧

∧
d∈C\D Fin d) Muller(U ⊆ 2C)

Zielonka Trees. We introduce a succinct encoding of the algorithmic essence of
Emerson-Lei objectives in the form of so-called Zielonka trees [47,18].

Definition 1. The Zielonka tree for an Emerson-Lei formula φ over set C of
colors is a tuple Zφ = (T,R, l) where (T,R ⊆ T × T ) is a tree and l : T → 2C is
a labeling function that assigns sets l(t) of colors to vertices t ∈ T . We denote
the root of (T,R) by r. Then Zφ is defined to be the unique tree (up to reordering
of child vertices) that satisfies the following constraints.

– The root vertex is labeled with C, that is, l(r) = C.
– Each vertex t has exactly one child vertex tD (labeled with l(tD) = D) for

each set D of colors that is maximal in {D′ ⊊ l(t) | D′ |= φ⇔ l(t) ̸|= φ}.

For s, t ∈ T such that s is an ancestor of t, we write s ≤ t. Given a vertex s ∈ T ,
we denote its set of direct successors by R(s) = {t ∈ T | (s, t) ∈ R} and the set
of leafs below it by L(s) = {t ∈ T | s ≤ t and R(t) = ∅}; we write L for the set
of all leafs. We assume some fixed total order ⪯ on T that respects ≤; this order
induces a numbering of T . A vertex t in the Zielonka tree is said to be winning
if l(t) |= φ, and losing otherwise. We let T□ and T⃝ denote the sets of winning
and losing vertices in Zφ, respectively. Finally, we assign a level lev(t) to each
vertex t ∈ T so that lev(r) = |C|, and lev(s′) = lev(s)− 1 for all (s, s′) ∈ R.

Example 2. As mentioned above, Emerson-Lei games and Zielonka trees instanti-
ate naturally to games with, e.g., Büchi, generalized Büchi, GR[1], parity, Rabin,
Streett and Muller objectives; for brevity, we illustrate this for selected examples
here (more instances can be found in [23]).

1. Generalized Büchi condition : Given k colors f1, . . . , fk, the winning objective
φ =

∧
1≤i≤k Inf fi expresses that all colors are visited infinitely often (not

necessarily simultaneously); the induced Zielonka tree is depicted below with
boxes and circles representing winning and losing vertices, respectively.

s0 f1, . . . , fk

. . .s1f2, . . . , fk sk f1, . . . , fk−1

2. Streett condition: The vertices in the Zielonka tree for Streett condition given
by φ =

∧
1≤i≤k (Fin ri ∨ Inf gi) are identified by duplicate-free lists L of

colors (each entry being ri or gi for some 1 ≤ i ≤ k) that encode the vertex
position in the tree. Vertex L has label l(L) = C \ L and is winning if and
only if |L| is even. Winning vertices L have one child vertex L : gj for each
gj ∈ C \ L resulting in |C \ L|/2 many child vertices. Losing vertices L have
the single child vertex L : rj where the last entry last(L) in L is gj . All leafs
are winning and are labeled with ∅. The tree has height 2k and 2(k!) vertices.

Symbolic Solution of Emerson-Lei Games 59



3. To obtain a Zielonka tree that has branching at both winning and losing
vertices, we consider the objective φEL = (Fin a ∨ Inf b) ∧ ((Fin a ∨ Fin d) ∧
Inf c). This property can be seen as the conjunction of a Streett pair (a, b)
with two disjunctive Rabin pairs (c, a) and (c, d), altogether stating that c
occurs infinitely often and a occurs finitely often or b occurs infinitely often
and d occurs finitely often. Below we depict the induced Zielonka tree.

1 a, b, c, d

2a, b, c 3b, c, d

5 a, c4 a, b 6

b, d

7 c

8 ∅

Lemma 3. The height and the branching width of Zφ are bounded by |C| and
2|C| respectively; the number of vertices in Zφ is bounded by e|C|! (where e is
Euler’s number).

3 Solving Emerson-Lei Games

We now show how to extract from the Zielonka tree of an Emerson-Lei objective
a fixpoint characterization of the winning regions of an Emerson-Lei game. Solv-
ing the game then reduces to computing the fixpoint, yielding a game solving
algorithm that works by fixpoint iteration and hence is directly open to sym-
bolic implementation. The algorithm is adaptive in the sense that the structure
of its recursive calls is extracted from the Zielonka tree and hence tailored to the
objective. As a stepping stone towards obtaining our fixpoint characterization,
we first show how Zielonka trees can be used to reduce Emerson-Lei games to
parity games that are structured into tree-like subgames.

Recall that G = (V, V∃, V∀, E, αγ,φ) is an Emerson-Lei game and that the
associated Zielonka tree is Zφ = (T,R, l) with set L of leaves, sets T⃝ and T□
of winning and losing vertices, respectively, and with root r. Following [18], we
define the anchor vertex of v ∈ V and t ∈ T by

anchor(v, t) = max≤{s ∈ T | s ≤ t ∧ γ(v) ⊆ l(s)};

it is the lower-most ancestor of t that contains γ(v) in its label.

A novel reduction to parity games. Intuitively, our reduction annotates nodes in
G with leaves of Zφ that act as a memory, holding information about the order
in which colors have been visited. In the reduced game, the memory value t ∈ L
is updated according to a move from v to w in G by playing a subgame along
the Zielonka tree. This subgame starts at the anchor vertex of v and t and the

60 D. Hausmann et al.



players in turn pick child vertices, with the existential player choosing the branch
that is taken at vertices from T⃝ and the universal player choosing at vertices
from T□.

1 Once this subgame reaches a leaf t′ ∈ L, the memory value is updated
to t′ and another step of G is played. Due to the tree structure of Zφ every play
in the reduced game (walking through the Zielonka tree in the described way,
repeatedly jumping from a leaf to an anchor vertex and then descending to a
leaf again) has a unique topmost vertex from T that it visits infinitely often;
by the definition of anchor vertices, the label of this vertex corresponds to the
set of colors that is visited infinitely often by the according play of G. A parity
condition can be used to decide whether this vertex is winning or losing.

Formally, we define the parity game PG = (V ′, V ′
∃, V

′
∀, E

′, Ω), played over
V ′ = V × T , as follows. Nodes (v, t) ∈ V ′ are owned by the existential player if
either t is not a leaf, and it is not a winning vertex (t /∈ L and t ∈ T⃝), or if t
is a leaf and, in G, v is owned by the existential player (t ∈ L and v ∈ V∃); all
other nodes are owned by the universal player. Moves and priorities are defined
by

E′(v, t) =

{
{v} ×R(t) t /∈ L

E(v)× {anchor(v, t)} t ∈ L
Ω(v, t) =

{
2 · lev(t) t ∈ T□

2 · lev(t) + 1 t ∈ T⃝

for (v, t) ∈ V ′. Thus from (v, t) such that t is a leaf (t ∈ L), the owner of v
picks a move (v, w) ∈ E and the game continues with (w, anchor(v, t)). From
(v, t) such that t is not a leaf (t /∈ L), the owner of t picks a child t′ ∈ R(t) of t
in the Zielonka tree and the game continues with (v, t′), leaving the game node
component v unchanged. Therefore, plays in PG correspond to plays from G
that are annotated with memory values t ∈ T that are updated according to the
colors that are visited (by moving to the anchor vertex); in addition to that, the
owners of vertices in the Zielonka Tree are allowed to decide (by selecting one of
the child vertices) with which colors they intend to satisfy the sub-objectives that
are encoded by vertex labels. The priority function Ω then is used to identify the
top-most anchor vertex s that is visited infinitely often in a play of PG, deciding
a play to be winning if and only if s is a winning vertex (t ∈ T□). We note that
|V ′| = |V | · |T | ≤ |V | · e|C|! by Lemma 3.

Theorem 4. For all v ∈ V , the existential player wins v in the Emerson-Lei
game G if and only if the existential player wins (v, r) in the parity game PG.

This reduction yields a novel indirect method to solve Emerson-Lei games
with n nodes and k colors by solving parity games with n · ek! nodes and 2k
priorities; by itself, this reduction does not improve upon using later appearance
records [25]. However, the game PG consists of subgames of particular tree-like
shapes. The remainder of this section is dedicated to showing how the special
structure of PG allows for direct symbolic solution by solving equivalent systems
of fixpoint equations over V (rather than over the exponential-sized set V ′).

1 Players choose from vertices where they lose, which explains the notation T□ and
T⃝.

Symbolic Solution of Emerson-Lei Games 61



Fixpoint equation systems. Recall (from e.g. [4]) that a hierarchical system of
fixpoint equations is given by equations

Xi =ηi fi(X1, . . . , Xk)

for 1 ≤ i ≤ k, where ηi ∈ {GFP, LFP} and the fi : P(V )k → P(V ) are monotone
functions, that is, fi(A1, . . . , Ak) ⊆ fi(B1, . . . , Bk) whenever Aj ⊆ Bj for all
1 ≤ j ≤ k. As we aim to use fixpoint equation systems to characterize winning
regions of games, it is convenient to define the semantics of equation systems also
in terms of games, as proposed in [4]. For a system S of k fixpoint equations,
the fixpoint game GS = (V, V∃, V∀, E,Ω) is a parity game with sets of nodes
V∃ = V×{1, . . . , k} and V∀ = P(V )k. The set of edges E and the priority function
Ω : V → {0, . . . , 2k − 1} are defined, for (v, i) ∈ V∃ and Ā = (A1, . . . , Ak) ∈ V∀,
by

E(v, i) = {Ā ∈ V∀ | v ∈ fi(Ā)} E(Ā) = {(v, i) ∈ V∃ | v ∈ Ai}

and by Ω(v, i) = 2(k− i)+ ιi and Ω(Ā) = 0, where ιi = 1 if ηi = LFP and ιi = 0
if ηi = GFP. We say that v is contained in the solution of variable Xi (denoted
by v ∈ JXiK) if and only if the existential player wins the node (v, i) in GS .
In order to show containment of a node v in the solution of Xi, the existential
player thus has to provide a solution (A1, . . . , Ak) ∈ V∀ for all variables such that
v ∈ fi(A1, . . . , Ak); the universal player in turn can challenge a claimed solution
(A1, . . . , Ak) by picking some 1 ≤ i ≤ k and v ∈ Ai and moving to (v, i). The
game objective checks whether the dominating equation in a play (that is, the
equation with minimal index among the equations that are evaluated infinitely
often in the play) is a least or a greatest fixpoint equation.

Baldan et al. have shown in [4] that this game characterization is equivalent to
the more traditional Knaster-Tarski-style definition of the semantics of fixpoint
equation systems in terms of nested fixpoints of the involved functions fi.

To give a flavor of the close connection between fixpoint equation systems
and winning regions in games, we recall that for a given set V of nodes, the
controllable predecessor function CPre : 2V → 2V is defined, for X ⊆ V , by

CPre(X) = {v ∈ V∃ | E(v) ∩X ̸= ∅} ∪ {v ∈ V∀ | E(v) ⊆ X}.

Example 5. Given a Büchi game (V, V∃, V∀, E, Inf f) with coloring function γ :
V → 2{f}, the winning region of the existential player is the solution of the
equation system

X1 =GFP X2 X2 =LFP (f ∩ CPre(X1)) ∪ (f ∩ CPre(X2))

where f = {v ∈ V | γ(v) = {f}} and f = V \ f .

Our upcoming fixpoint characterization of winning regions in Emerson-Lei
games uses the following notation that relates game nodes with anchor vertices
in the Zielonka tree.

62 D. Hausmann et al.



Definition 6. For a set D ⊆ C of colors, and ▷◁ ∈ {⊆, ̸⊆} we put γ−1
▷◁D = {v ∈

V | γ(v) ▷◁ D}. For s, t ∈ T such that s < t (that is, s is an ancestor of t in
Zφ), we define

ancst = γ−1
⊆l(s) ∩ γ

−1
̸⊆l(st)

where st is the child vertex of s that leads to t; we also put anctt = γ−1
⊆l(t).

Note that for fixed t ∈ T and v ∈ V , there is a unique s ∈ T such that s ≤ t
and v ∈ ancst (possibly, s = t); this s is the anchor vertex of t at v.

Next, we present our fixpoint characterization of winning in Emerson-Lei
games, noting that it closely follows the definition of PG.

Definition 7 (Emerson-Lei equation system). We define the system Sφ of
fixpoint equations for the objective φ by putting

Xs =ηs


⋃
t∈R(s)Xt R(s) ̸= ∅, s ∈ T⃝⋂
t∈R(s)Xt R(s) ̸= ∅, s ∈ T□⋃
s′≤s

(
ancs

′

s ∩ CPre(Xs′)
)

R(s) = ∅

for s ∈ T . For every t ∈ T , we use Xt to refer to the variable Xi where i is the
index of t according to ⪯ and similarly for ηt. Furthermore, ηs = GFP if s ∈ T□
and ηs = LFP if s ∈ T⃝.

Example 8. Instantiating Definition 7 to the Büchi objective φ = Inf f yields
exactly the equation system given in Example 5. Revisiting the objectives from
Example 2, we obtain the following fixpoint characterizations (further examples
can be found in [23]).

1. Generalized Büchi condition:

Xs0 =GFP

⋂
1≤i≤kXsi Xsi =LFP (ancs0si ∩ CPre(Xs0)) ∪ (ancsisi ∩ CPre(Xsi))

where ancs0si = γ−1
⊆C ∩ γ−1

̸⊆C\{fi} = {v ∈ V | fi ∈ γ(v)} and ancsisi = γ−1
⊆C\{fi}.

2. Streett condition:

XL =ηL


⋂
gj /∈LXL:gj |L| even, |L| < 2k

XL:rj |L| odd, last(L) = gj

(anc
[]
L ∩ CPre(X[])) ∪ . . . ∪ (ancLL ∩ CPre(XL)) |L| = 2k

where ηL = GFP if |L| is even and ηL = LFP if |L| is odd. Here, ancKL =
γ−1
⊆C\K ∩ γ−1

̸⊆C\I for K ̸= L and I = KL, and ancLL = γ−1
⊆∅ , both for L such that

|L| = 2k.

3. The equation system associated to the Zielonka tree for the complex objective
φEL from Example 2.3 is as follows, where we use a formula over the colors
to denote the set of vertices whose label satisfies the formula. For example,

Symbolic Solution of Emerson-Lei Games 63



b ∧ ¬d corresponds to vertices whose set of colors contains b but does not
contain d.

X1 =LFP X2 ∪X3 X2 =GFP X4 ∩X5 X3 =GFP X6 X5 =LFP X7 X7 =GFP X8

X4 =LFP (¬c ∧ ¬d ∩ Cpre(X4)) ∪ (c ∧ ¬d ∩ Cpre(X2)) ∪ (d ∩ Cpre(X1))

X6 =LFP (¬a ∧ ¬c ∩ Cpre(X6)) ∪ (¬a ∧ c ∩ Cpre(X3)) ∪ (a ∩ Cpre(X1))

X8 =LFP (¬a ∧ ¬b ∧ ¬c ∧ ¬d ∩ Cpre(X8)) ∪ (¬a ∧ ¬b ∧ c ∧ ¬d ∩ Cpre(X7))∪
(a ∧ ¬b ∧ ¬d ∩ Cpre(X5)) ∪ (b ∧ ¬d ∩ Cpre(X2)) ∪ (d ∩ Cpre(X1)),

Theorem 9. Referring to the equation system from Definition 7 and recalling
that r is the root of the Zielonka tree Zφ, the solution of the variable Xr is the
winning region of the existential player in the Emerson-Lei game G.

By Theorem 4, it suffices to mutually transform winning strategies in PG and
the fixpoint game GSφ

for the equation system Sφ from Definition 7.
Given the fixpoint characterization of winning regions in Emerson-Lei games

with objective φ in Definition 7, we obtain a fixpoint iteration algorithm that
computes the solution of Emerson-Lei games. The algorithm is by nature open
to symbolic implementation. The main function is recursive, taking as input one
vertex s ∈ T of the Zielonka tree Zφ and a list l of subsets of the set V of nodes,
and returns a subset of V as result. For calls Solve(s, ls), we require that the
argument list ls contains exactly one subset Xs′ of V for each ancestor s′ of s
in the Zielonka tree (with s′ < s).

Algorithm 1 Solve(s, ls)

if s ∈ T⃝ then Xs ← ∅ else Xs ← V ▷ Initialize variable Xs for lfp/gfp
W ← V \Xs

while Xs ̸= W do ▷ Compute fixpoint
W ← Xs

if R(s) ̸= ∅ then ▷ Case: s is not a leaf in Zφ

for t ∈ R(s) do
U ← Solve(t, ls : W ) ▷ Recursively solve for t
if s ∈ T⃝ then Xs ← Xs ∪ U

else Xs ← Xs ∩ U
end for

else ▷ Case: s is a leaf in Zφ

Y ← ∅
for t ≤ s do

U ← ancts ∩ CPre((ls : W )(t)) ▷ Compute one-step attraction w.r.t. s
Y ← Y ∪ U

end for
Xs ← Y

end if
end while
return Xs ▷ Return stabilized set Xs as result

64 D. Hausmann et al.



Lemma 10. For all v ∈ V , we have v ∈ JXrK if and only if v ∈ Solve(r, []).

Proof (Sketch). The algorithm computes the solution of the equation system by
standard Kleene-approximation for nested least and greatest fixpoints.

Lemma 11. Given an Emerson-Lei game (V, V∃, V∀, E, αγ,φ) with set of colors
C and induced Zielonka tree Zφ, the solution JXrK of the equation system Sφ
from Definition 7 can be computed in time O(|Zφ| · |E| · |V |k), where k ≤ |C|
denotes the height of Zφ.

Combining Theorem 9 with Lemmas 3, 10 and 11 we obtain

Corollary 12. Solving Emerson-Lei games with n nodes, m edges and k colors
can be implemented symbolically to run in time O(k! · m · nk); the resulting
strategies require memory at most e · k!.

Remark 13. Strategy extraction works as follows. The algorithm computes a set
JXtK for each Zielonka tree vertex t ∈ Zφ. Furthermore it yields, for each non-
leaf vertex s ∈ T⃝ and each v ∈ JXsK, a single child vertex choice(v, s) ∈ R(s)
of s such that v ∈ JXchoice(v,s)K. The algorithm also yields, for each leaf vertex t
and each v ∈ V∃∩JXtK, a single game move move(v, t). All these choices together
constitute a winning strategy for existential player in the parity game PG. We
define a strategy for the Emerson-Lei game that uses leaves of the Zielonka
tree as memory values, following the ideas used in the construction of PG; the
strategy moves, from a node v ∈ V∃ and having memory content m, to the
node move(v,m). As initial memory value we pick some leaf of Zφ that choice
associates with the initial node in G. To update memory value m according to
visiting game node v, we first take the anchor vertex s of m and v. Then we pick
the next memory value m to be some leaf below s that can be reached by talking
the choices choice(v, s′) for every vertex s′ ∈ T⃝ passed along the way from s
to the leaf; if s ∈ T□, then we additionally require the following: let q = |R(s)|,
let o be the number such that m is a leaf below the o-th child of s, and put
j = o+ 1 mod q; then we require that m′ is a leaf below the j-th child of s. By
the correctness of the algorithm, the constructed strategy is a winning strategy.

Dziembowski et al. have shown that winning strategies can be extracted by
using a walk through the Zielonka tree that requires memory only for the branch-
ing at winning vertices [18]. This yields, for instance, memoryless strategies for
games with Rabin objectives, for which branching in the associated Zielonka
trees takes place at losing vertices. Adapting the strategy extraction in our set-
ting to this more economic method is straight-forward but notation-heavy, so we
omit a more precise analysis of strategy size here.

Our algorithm hence can be implemented to run in time 2O(k log n) for games
with n nodes and k ≤ n colors, improving upon the bound 2O(n2) stated in [25],
where the authors only consider the case that every game node has a distinct
color, implying n = k. We note that the later appearance record construction
used in [25] is known to be hard to represent symbolically. Our fixpoint charac-
terization generalizes previously known algorithms for e.g. parity games [8], and

Symbolic Solution of Emerson-Lei Games 65



Streett and Rabin games [36], recovering previously known bounds on worst-case
running time of fixpoint iteration algorithms for these types of games.

While it has recently been shown that parity games can be solved in quasipoly-
nomial time [9], we note that in the case of parity objectives, our algorithm is not
immediately quasipolynomial. However, there are quasipolynomial methods for
solving nested fixpoints [24,2] (with the latter being open to symbolic implemen-
tation); in the case of parity objectives, these more involved algorithms can be
used in place of fixpoint iteration to solve our equation system and recover the
quasipolynomial bound. The precise complexity of using quasipolynomial meth-
ods for solving fixpoint equation systems beyond parity conditions is subject to
ongoing research.

4 Synthesis for Safety and Emerson-Lei LTL

In this section we present an application of the results from Section 3. We in-
troduce the safety and Emerson-Lei fragment of LTL and show that synthesis
for this fragment can be reasoned about symbolically. The idea for safety and
Emerson-Lei LTL synthesis is twofold: first, consider only the safety part and
create a symbolic arena capturing its satisfaction. Second, play a game on this
arena by adding the Emerson-Lei part as a winning condition. Finally we use
the results from the previous sections to solve the game symbolically.

4.1 Safety LTL and Symbolic Safety Automata

We start by defining safety LTL, symbolic safety automata, and recalling known
results about those.

Definition 14 (LTL and Safety LTL [45]). Given a non-empty set AP of
atomic propositions, the general syntax for LTL formulas is as follows:

φ := ⊤ | ⊥ | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | φ1Uφ2 p ∈ AP.

Standard abbreviations are defined as follows: φ1Rφ2 := ¬(¬φ1U¬φ2), Fφ :=
⊤Uφ, and Gφ := ¬F¬φ. We define the satisfaction relation |= for a formula φ
and its language L(φ) as usual.

An LTL formula is said to be a safety formula if it is in negative normal form
(i.e. all negations are pushed to atomic propositions) and only uses X,R,G as
temporal operators (i.e. no U or F are allowed).

It is a safety formula in the sense that every word that does not satisfy the
formula has a finite prefix that already falsifies the formula. In other words, such
a formula is satisfied as long as “bad states” are avoided forever.

Definition 15 (Symbolic Safety Automata). A symbolic safety automaton
is a tuple A = (2AP, V, T, θ0) where V is a set of variables, T (V, V ′,AP) is the
transition assertion, and θ0(V ) is the initialization assertion. A run of A on

66 D. Hausmann et al.



the word w ∈ (2AP)ω is a sequence ρ = s0s1 . . . where the si ∈ 2V are variable
assignments such that 1. s0 |= θ0, and 2. for all i ≥ 0, (si, si+1, w(i)) |= T .
A word w is in L(A) if and only if there is an infinite run of A on w. A is
deterministic if for all words w ∈ (2AP)ω there is at most one run of A on w.

Kupferman and Vardi show how to convert a safety LTL formula into an
equivalent deterministic symbolic safety automaton [30].

Lemma 16. A safety LTL formula φ can be translated to a deterministic sym-
bolic safety automaton Dsymb accepting the same language, with |Dsymb| = 2|φ|.

The idea is to first convert φ to a (non-symbolic) non-deterministic safety
automaton Nφ, which is of size exponential of the size of the formula, and then
symbolically determinize Nφ by a standard subset construction to obtain Dsymb.
Note that while the size of Dsymb is only exponential in the size of the formula,
its state space would be double exponential when fully expanded.

Example 17. Let φ = G(b ∨ c) ∧G(a→ b ∨XXb) be a safety LTL formula over
AP = {a, b, c}. An execution satisfying φ must have at least one of b or c at every
step, moreover every a sees a b present at the same step or two steps afterwards.

As an intermediate step towards building the equivalent Dsymb, we first
present below a corresponding non-deterministic safety automaton Nφ.

1start 2 3 4

¬a ∨ b

a

¬a ∨ b

a

a ∧ b
b

b

a ∧ b

For the sake of presentation, we use Boolean combinations of AP in transitions
instead of labeling them with elements of 2AP, with the intended meaning that

s
ψ−→ s′ = {s C−→ s′ | C ∈ 2AP, C |= ψ}. We also omit the G(b ∨ c) part of

the formula in the construction. One can simply append · · · ∧ (b ∨ c) to every
transition of Nφ to get back the original formula. Intuitively state 1 correspond
to not seeing an a, state 2 means that a b must be seen at the next step, state
3 means that there must be a b now, and state 4 that b is needed now and next
as well.

Then the symbolic safety automaton is Dsymb = (2AP, V, T, θ0) with:

– V = {v1, v2, v3, v4} are the variables corresponding to the four states of Nφ,
– θ0 = v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 asserts that only the state v1 is initial,
– The transition assertion is T = (v′1 ↔ (v1 ∧ (¬a ∨ b)) ∨ (v3 ∧ b)) ∧

(v′2 ↔ (v1 ∧ a) ∨ (v3 ∧ (a ∧ b))) ∧ (v′3 ↔ (v2 ∧ (¬a ∨ b)) ∨ (v4 ∧ b)) ∧
(v′4 ↔ (v2 ∧ a) ∨ (v4 ∧ (a ∧ b))) ∧ (v1 ∨ v2 ∨ v3 ∨ v4).

Determinizing Nφ enumeratively would give an automaton with 9 states (see
Example 23).

Symbolic Solution of Emerson-Lei Games 67



Remark 18. Restricting attention to safety LTL enables the two advantages men-
tioned above with respect to determinization. First, subset construction suffices
(as observed also in [46]), avoiding the more complex Büchi determinization.
Second, this construction, due to its simplicity, can be implemented symboli-
cally. Interestingly, recent implementations of the synthesis from LTLf [46] or
from safety LTL [45] have used indirect approaches for obtaining deterministic
automata. For example, by translating LTL to first order logic and applying the
tool MONA to the results [45,46], or by concentrating on minimization of de-
terministic automata [42]. The direct construction is similar to approaches used
for checking universality of nondeterministic finite automata [42] or SAT-based
bounded model checking [1]. We are not aware of uses of this direct implementa-
tion of the subset construction in reactive synthesis. The worst case complexity
of this part is doubly-exponential, which, just like for LTL and LTLf , cannot be
avoided [43,3].

4.2 Symbolic Games

We use symbolic game structures to represent a certain class of games. Formally,
a symbolic game structure G = ⟨V ,X ,Y, θ∃, ρ∃, φ⟩ consists of:

• V = {v1, . . . , vn} : A finite set of typed variables over finite domains. Without
loss of generality, we assume they are all Boolean. A node s is an valuation
of V, assigning to each variable vi ∈ V a value s[vi] ∈ {0, 1}. Let Σ be the
set of nodes.
We extend the evaluation function s[·] to Boolean expressions over V in the
usual way. An assertion is a Boolean formula over V . A node s satisfies an
assertion φ denoted s |= φ, if s[φ] = true. We say that s is a φ-node if
s |= φ.

• X ⊆ V is a set of input variables. These are variables controlled by the
universal player. Let ΣX denote the possible valuations to variables in X .

• Y = V \ X is a set of output variables. These are variables controlled by the
existential player. Let ΣY denote the possible valuations to variables in Y.

• θ∃(X ,Y) is an assertion characterizing the initial condition.
• ρ∃(V,X ′,Y ′) is the transition relation. This is an assertion relating a node
s ∈ Σ and an input value sX ∈ ΣX to an output value sY ∈ ΣY by referring
to primed and unprimed copies of V. The transition relation ρ∃ identifies
a valuation sY ∈ ΣY as a possible output in node s reading input sX if
(s, (sX , sY)) |= ρ∃, where s is the assignment to variables in V and sX and
sY are the assignment to variables in V ′ induced by (sX , sY) ∈ Σ.

• φ is the winning condition, given by an LTL formula.

For two nodes s and s′ of G, s′ is a successor of s if (s, s′) |= ρ∃.
A symbolic game structure G defines an arena AG , where V∀ = Σ, V∃ =

Σ ×ΣX , and E is defined as follows:

E = {(s, (s, sX )) | s ∈ Σ and sX ∈ ΣX }∪{((s, sX ), (sX , sY)) | (s, (sX , sY)) |= ρ∃}.

68 D. Hausmann et al.



When reasoning about symbolic game structures we ignore the intermediate
visits to V∃. Indeed, they add no information as they can be deduced from the
nodes in V∀ preceding and following them. Thus, a play π = s0s1 . . . is winning
for the existential player if σ is infinite and satisfies φ. Otherwise, σ is winning
for the universal player.

The notion of strategy and winning region is trivially generalized from games
to symbolic game structures. When needed, we treat W∃ (the set of nodes win-
ning for the existential player) as an assertion. We define winning in the entire
game structure by incorporating the initial assertion: a game structure G is said
to be won by the existential player, if for all sX ∈ ΣX there exists sY ∈ ΣY such
that (sX , sY) |= θ∃ ∧W∃.

4.3 Realizability and Synthesis

Let φ be an LTL formula over input and output variables I and O, controlled by
the environment and the system, respectively (the universal and the existential
player, respectively).

The reactive synthesis problem asks whether there is a strategy for the system
of the form σ : (2I)+ → 2O such that for all sequences x0x1 · · · ∈ (2I)ω we have:

(x0 ∪ σ(x0))(x1 ∪ σ(x0x1)) . . . |= φ

If there is such a strategy we say that φ is realizable [38].
Equivalently, φ is realizable if the system is winning in the symbolic game

Gφ = ⟨I ∪O, I,O,⊤,⊤, φ⟩ with I for input variables X and O for output Y.

Theorem 19. [38] Given an LTL formula φ, the realizability of φ can be de-
termined in doubly exponential time. The problem is 2EXPTIME-complete.

The game Gφ above uses neither the initial condition nor the system transi-
tion. Conversely, consider a symbolic game G = ⟨V ,X ,Y, θ∃, ρ∃, φ⟩:

Theorem 20. [7] The system wins in G iff φG = θ∃ ∧Gρ∃ ∧ φ is realizable.23

4.4 Safety and Emerson-Lei Synthesis

We now define the class of LTL formulas that are supported by our technique and
show how to construct appropriate games capturing their realizability problem.

For ψ ∈ B(AP), let Inf ψ := GFψ and Finψ := FG¬ψ = ¬Inf ψ. The
Emerson-Lei fragment of LTL consists of all formulas that are positive Boolean
combinations of Inf ψ and Finψ for all Boolean formulas ψ over atomic proposi-
tions. The satisfaction of such formulas depends only on the set of letters (truth
assignments to propositions) appearing infinitely often in a word.

2 Technically, ρ∃ contains primed variables and is not an LTL formula. This can be
easily handled by using the next operator X. We thus ignore this issue.

3 We note that Bloem et al. consider more general games, where the environment also
has an initial assertion and a transition relation. Our games are obtained from theirs
by setting the initial assertion and the transition relation of the environment to true.

Symbolic Solution of Emerson-Lei Games 69



Remark 21. The Emerson-Lei fragment easily accommodates various liveness
properties that cannot be encoded in smaller fragments such as GR[1]. One
prominent example for this is the property of stability (as encoded by LTL
formulas of the shape FG p), which appears frequently as a guarantee in us-
age of synthesis for robotics and control (see, e.g., the work of Ehlers [19] and
Ozay [32]), and commonly is approximated in GR[1] but, as a guarantee or as
part of a specification, cannot be captured exactly in the game context. Another
important example is strong fairness (as encoded by LTL formulas of the shape∧
i(GF ri → GF gi)) which allows to capture the exact relation between cause

and effect. Particularly, in GR[1] only if all “resources” are available infinitely
often there is an obligation on the system to supply all its “guarantees”. In
contrast, strong fairness allows to connect particular resources to particular sup-
plied guarantees. Ongoing studies on fairness assumptions that arise from the
abstraction of continuous state spaces to discrete state spaces [32,33] provide
further examples of fairness assumptions that can be expressed in EL but not in
GR[1]. Emerson-Lei liveness allows free combination of all properties mentioned
above and more.

Definition 22. The Safety and Emerson-Lei fragment is the set of formulas of
the form φ = φsafety ∧ φEL, where φsafety is a safety formula and φEL is in the
Emerson-Lei fragment.

We assume a partition AP = I ⊎ O where I is a set of input propositions
and O a set of output propositions, both non-empty. Let φ = φsafety ∧ φEL be
a safety and Emerson-Lei formula over AP, and let Dsymb = (2AP, V, T, θ0) be
the symbolic deterministic safety automaton associated to φsafety. We construct
Gφ = ⟨V ⊎ AP, I, O ⊎ V, θ0, T, φEL⟩, thus X = I and Y = O ⊎ V .

Example 23. Let φsafety = G(b ∨ c) ∧ G(a → b ∨ XXb), our running safety
example from Example 17 with its associated symbolic deterministic automaton.
Partition AP into I = {a} and O = {b, c}. We depict the arena of the game Gφ
(independent of the formula φEL that is yet to be defined) in Figure 1.

To keep the illustration readable and keep it from getting too large, a few
modifications to the formal arena definition have been made. First, c labels on
edges have been omitted: every transition labeled with b represent two transitions
with sets {b} and {b, c}, while transitions labeled with ¬b stand for a single
transition with set {c} (due to the G(b∨ c) requirement forbidding ∅). Similarly,
existential nodes have been omitted when all choices for the existential player
lead to the same destination. Instead, the universal and existential moves have
been combined in one transition: a; ∗ for an a followed by some existential move,
and a; b for when an a requires the existential player to play b (with or without
c, as above). Finally, states are only labeled with variables from V and not AP,
the latter is used to label edges instead. For a fully state-based labeling arena,
states would have to store the last move, leading to various duplicate states.

Note that this game arena is given only for illustration purposes, as we want
to solve the symbolic game without explicitly enumerating all its states and
transitions like here.

70 D. Hausmann et al.



v1start

v1, v2

v2

v1, v3

v1, v2, v3, v4

v2, v4

v3 v4

v3, v4

¬a; ∗

a
b

¬b

¬a; ∗

a

b

¬b

¬a; ∗

a

¬b

b

¬a; ∗
a

b

¬b

¬a; ∗

a
b

¬b

¬a; ∗
a
¬b

b

a; b

¬a; b

a; b

¬a; b

a; b

¬a; b

Fig. 1. Game arena for Gφ

Lemma 24. The system wins Gφ if and only if φ is realizable.

Next we detail how to solve the symbolic game Gφ by using the results from
Section 3.

Lemma 25. Given a symbolic game G = ⟨V ,X ,Y, θ∃, ρ∃, φ⟩ such that φ is an
Emerson-Lei formula with set of colors

C = {ψ ∈ B(AP) | ψ is a subformula of φ},

the winning region W∃ of G is characterized by the equation system from Defi-
nition 7, using the assertion

CPre(S) = ∀sX ∈ ΣX . ∃sY ∈ ΣY . S
′ ∧ (v, sX , sY) |= ρ∃.

The proof of this lemma is by straightforward adaptation of the proof of
Theorem 9 to the symbolic setting, following the relation between symbolic game
structures and game arenas described above.

Finally, this gives us a procedure to solve the synthesis problem for safety
and Emerson-Lei LTL.

Theorem 26. The realizability of a formula φ = φsafety ∧ φEL of the Safety
and Emerson-Lei fragment of LTL can be checked in time 2O(m·logm·2n), where
n = |φsafety| and m = |φEL|. Realizable formulas can be realized by systems of
size at most 22

n · e ·m!.

Proof. Using the construction described in this section,we obtain the symbolic
game Gφ of size q = 22

n

with winning condition φEL, using at most m colors; by
Theorem 24, this game characterizes realizibility of the formula. Using the results
from the previous section, Gφ can be solved in time O(m! ·q2 ·qm) ∈ O(2m logm ·
2(m+2)2n) ∈ 2O(m·logm·2n), resulting in winning strategies with memory at most
e ·m!.

Symbolic Solution of Emerson-Lei Games 71



Both the automata determinization and the game solving can be implemented
symbolically.

Example 27. To illustrate the overall synthesis method, we consider the game
that is obtained by combining the game arena Gφsafety

from Example 23 with the
winning objective φEL = (Fin a∨ Inf b)∧ (Fin a∨Find)∧ Inf c from Example 2.3,
where we instantiate the label d to nodes satisfying b ∧ c thus creating a game-
specific dependency between the colors. Solving this game amounts to solving
the equation system shown in Example 8.3. However, with the interpretation
of d = b ∧ c, some of the conditions become simpler. For example, ¬a ∧ ¬b ∧
¬c ∧ ¬d becomes ¬a ∧ ¬b ∧ ¬c and b ∧ ¬d becomes b ∧ ¬c. It turns out that the
system player wins the node v1. Intuitively, the system can play {c} whenever
possible and thereby guarantee satisfaction of φEL. We extract this strategy
from the computed solution of the equation system in Example 2.3 as described
in Remark 13. E.g. for partial runs π that end in v1 and for which the last
leaf vertex in the induced walk ρπ through Zφ is the vertex 8, the system can
react by playing {b}, {c}, or even {b, c} whenever the environment plays ∅. The
move {b} continues the induced walk ρπ through vertex 2 to the leaf vertex 5;
similarly, the move {b, c} continues ρπ through the vertex 1 to the leaf vertex 6.
The strategy construction gives precedence to the choice that leads through the
lowest vertex in the Zielonka tree, which in this case means picking the move
{c} that continues ρπ through the vertex 7 to the leaf 8. Proceeding similarly
for all other combinations of game nodes and vertices in the Zielonka tree, one
obtains a strategy σ for the system that always outputs singleton letters, giving
precedence to {c} whenever possible. To see that σ is a winning strategy, let π
be a play that is compatible with σ. If π eventually loops at v1 forever, then sπ is
the existential vertex 7 and the existential player wins the play since it satisfies
both Fin a and Inf c. Any other play π satisfies Inf a, Inf b and Inf c since all
cycles that are compatible with σ (excluding the loop at v1) contain at least one
a-edge, at least one b-edge and also at least one c-edge that is prescribed by the
strategy σ. For these plays, ρπ eventually reaches the vertex 2. Since the system
always plays singleton letters (so that π in particular satisfies Fin(b ∧ c)), the
vertex 1 is not visited again by ρπ, once vertex 2 has been reached. Hence the
dominating vertex for such plays is sπ = 2, an existential vertex.

4.5 Synthesis Extensions and Optimizations

We have chosen to use safety-LTL as the safety part of the Safety-EL fragment
to showcase the options opened by having symbolic algorithms for the analysis
of very expressive liveness conditions. The crucial feature of the safety fragment
is the ability to convert that part of the specification to a symbolic deterministic
automaton. It is important to note that every fragment of LTL (or ω-regular
in general) that can be easily converted to a symbolic deterministic automaton
can be incorporated and handled with the same machinery. For example, it was
suggested to extend the expressiveness of GR[1] by including deterministic au-
tomata in the safety part of the game and referring to their states in the liveness

72 D. Hausmann et al.



part [7]. Past LTL [31] can be handled in the same way in that it is incorporated
for GR[1] [7]. An extreme example is GR-EBR, where safety parts are allowed to
use bounded future and pure past, which still allows the symbolic treatment [15].
All of these alternatives can be incorporated in the safety part with no changes
to our overall methodology. Unlike previous cases, if there is an easy translation
to deterministic symbolic automata with a non-trivial winning condition, these
can be incorporated as well with the EL part extended to handle their winning
condition as well. We could consider also extensions to the liveness parts. For
example, by using past LTL or reference to states of additional symbolic de-
terministic automata. The Boolean state formulas appearing as part of the EL
condition can be replaced by formulas allowing one usage of the next operator, as
in [39,19]. The generalization to handle transition-based EL games, which would
be required in that case, rather than state-based EL games is straight-forward.

As the formulas we consider are conjunctions, optimizations can be applied
to both conjuncts independently. This subsumes, for example, analyzing the win-
ning region in a safety game prior to the full analysis [29,7,5], reductions in the
size of nondeterministic automata [17], or symbolic minimization of deterministic
automata [16].4

5 Conclusions and Future Work

We provide a symbolic algorithm to solve games with Emerson-Lei winning con-
ditions. Our solution is based on an encoding of the Zielonka tree of the winning
condition in a system of fixpoint equations. In case of known winning conditions,
our algorithm recovers known algorithms and complexity results. As an appli-
cation of this algorithm, we suggest an expressive fragment of LTL for which
realizability can be reasoned about symbolically. Formulas in our fragment are
conjunctions between an LTL safety formula and an Emerson-Lei liveness con-
dition. This fragment is more general than, e.g., GR[1].

In the future, we believe that analysis of the Emerson-Lei part can reduce the
size of Zielonka trees (and thus the symbolic algorithm). This can be done either
through analysis and simplification of the LTL formula, e.g., [26], by means of
alternating-cycle decomposition [12,13], or by analyzing the semantic meaning of
colors. We would also like to implement the proposed overall synthesis method.

References

1. Armoni, R., Egorov, S., Fraer, R., Korchemny, D., Vardi, M.Y.: Effi-
cient LTL compilation for sat-based model checking. In: International Con-
ference on Computer-Aided Design. pp. 877–884. IEEE Computer Soci-
ety (2005). https://doi.org/10.1109/ICCAD.2005.1560185

4 Notice that explicit minimization as done, e.g., in [30] would require to explicitly
construct the potentially doubly exponential deterministic automaton, nullifying the
entire effort to keep all analysis symbolic.

Symbolic Solution of Emerson-Lei Games 73

https://doi.org/10.1109/ICCAD.2005.1560185


2. Arnold, A., Niwinski, D., Parys, P.: A quasi-polynomial black-box algorithm
for fixed point evaluation. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th
EACSL Annual Conference on Computer Science Logic, CSL 2021, Jan-
uary 25-28, 2021, Ljubljana, Slovenia (Virtual Conference). LIPIcs, vol. 183,
pp. 9:1–9:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.9

3. Artale, A., Geatti, L., Gigante, N., Mazzullo, A., Montanari, A.: Complexity of
safety and cosafety fragments of linear temporal logic. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 37, pp. 6236–6244 (2023)

4. Baldan, P., König, B., Mika-Michalski, C., Padoan, T.: Fixpoint games on
continuous lattices. Proc. ACM Program. Lang. 3(POPL), 26:1–26:29 (2019).
https://doi.org/10.1145/3290339

5. Bansal, S., Giacomo, G.D., Stasio, A.D., Li, Y., Vardi, M.Y., Zhu, S.: Composi-
tional safety LTL synthesis. In: 14th International Conference on Verified Soft-
ware, Theories, Tools and Experiments. Lecture Notes in Computer Science, vol.
13800, pp. 1–19. Springer (2022). https://doi.org/10.1007/978-3-031-25803-9 1

6. Bhatia, A., Maly, M.R., Kavraki, L.E., Vardi, M.Y.: Motion planning
with complex goals. IEEE Robotics Autom. Mag. 18(3), 55–64 (2011).
https://doi.org/10.1109/MRA.2011.942115

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthe-
sis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012).
https://doi.org/10.1016/j.jcss.2011.08.007

8. Bruse, F., Falk, M., Lange, M.: The fixpoint-iteration algorithm for par-
ity games. In: International Symposium on Games, Automata, Logics and
Formal Verification, GandALF 2014. EPTCS, vol. 161, pp. 116–130 (2014).
https://doi.org/10.4204/EPTCS.161.12

9. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Theory of Computing, STOC 2017. pp. 252–263. ACM
(2017)

10. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed
in linear temporal logic. In: Twenty-Ninth International Conference on
Automated Planning and Scheduling. pp. 621–630. AAAI Press (2019).
https://doi.org/10.1609/icaps.v29i1.3529

11. Camacho, A., Triantafillou, E., Muise, C.J., Baier, J.A., McIlraith, S.A.: Non-
deterministic planning with temporally extended goals: LTL over finite and infinite
traces. In: Thirty-First AAAI Conference on Artificial Intelligence. pp. 3716–3724.
AAAI Press (2017). https://doi.org/10.1609/aaai.v31i1.11058

12. Casares, A., Colcombet, T., Lehtinen, K.: On the size of good-for-games
rabin automata and its link with the memory in muller games. In: Bo-
janczyk, M., Merelli, E., Woodruff, D.P. (eds.) International Colloquium on
Automata, Languages, and Programming, ICALP 2022. LIPIcs, vol. 229,
pp. 117:1–117:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.ICALP.2022.117

13. Casares, A., Duret-Lutz, A., Meyer, K.J., Renkin, F., Sickert, S.: Practical ap-
plications of the alternating cycle decomposition. In: Fisman, D., Rosu, G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 28th In-
ternational Conference, TACAS 2022, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,

74 D. Hausmann et al.

https://doi.org/10.4230/LIPIcs.CSL.2021.9
https://doi.org/10.1145/3290339
https://doi.org/10.1007/978-3-031-25803-9_1
https://doi.org/10.1109/MRA.2011.942115
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.4204/EPTCS.161.12
https://doi.org/10.1609/icaps.v29i1.3529
https://doi.org/10.1609/aaai.v31i1.11058
https://doi.org/10.4230/LIPIcs.ICALP.2022.117


April 2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol.
13244, pp. 99–117. Springer (2022). https://doi.org/10.1007/978-3-030-99527-0 6

14. Church, A.: Logic, arithmetic, and automata. In: International Congress of Math-
ematicians. Institut Mittag-Leffler, Sweden (1963)

15. Cimatti, A., Geatti, L., Gigante, N., Montanari, A., Tonetta, S.: Fairness, assump-
tions, and guarantees for extended bounded response ltl+p synthesis. Software and
System Modeling (2023). https://doi.org/10.1007/s10270-023-01122-4

16. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: Sym-
posium on Principles of Programming Languages (POPL). pp. 541–554.
ACM (2014). https://doi.org/10.1145/2535838.2535849

17. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
spot 2.0 to spot 2.10: What’s new? In: 34th International Conference on Computer
Aided Verification. Lecture Notes in Computer Science, vol. 13372, pp. 174–187.
Springer (2022). https://doi.org/10.1007/978-3-031-13188-2 9

18. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is
needed to win infinite games? In: 12th Annual IEEE Symposium on
Logic in Computer Science. pp. 99–110. IEEE Computer Society (1997).
https://doi.org/10.1109/LICS.1997.614939

19. Ehlers, R.: Generalized rabin(1) synthesis with applications to robust sys-
tem synthesis. In: Third International Symposium on NASA Formal Methods.
Lecture Notes in Computer Science, vol. 6617, pp. 101–115. Springer (2011).
https://doi.org/10.1007/978-3-642-20398-5 9

20. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: 17th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, vol. 6605, pp. 272–275. Springer (2011).
https://doi.org/10.1007/978-3-642-19835-9 25

21. Emerson, E.A., Lei, C.: Modalities for model checking: Branching time logic strikes
back. Sci. Comput. Program. 8(3), 275–306 (1987). https://doi.org/10.1016/0167-
6423(87)90036-0

22. Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Yang, Q., Wooldridge, M.J. (eds.) Twenty-Fourth International Joint Conference
on Artificial Intelligence. pp. 1558–1564. AAAI Press (2015)

23. Hausmann, D., Lehaut, M., Piterman, N.: Symbolic solution of Emerson-Lei games
for reactive synthesis. CoRR abs/2305.02793 (2023), https://arxiv.org/abs/
2305.02793

24. Hausmann, D., Schröder, L.: Quasipolynomial computation of nested fixpoints.
In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems - 27th International Conference, TACAS 2021, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 12651, pp. 38–56. Springer
(2021). https://doi.org/10.1007/978-3-030-72016-2 3

25. Hunter, P., Dawar, A.: Complexity bounds for regular games. In: 30th Inter-
national Symposium on Mathematical Foundations of Computer Science. Lec-
ture Notes in Computer Science, vol. 3618, pp. 495–506. Springer (2005).
https://doi.org/10.1007/11549345 43

Symbolic Solution of Emerson-Lei Games 75

https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.1007/s10270-023-01122-4
https://doi.org/10.1145/2535838.2535849
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/978-3-642-20398-5_9
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0
https://arxiv.org/abs/2305.02793
https://arxiv.org/abs/2305.02793
https://doi.org/10.1007/978-3-030-72016-2_3
https://doi.org/10.1007/11549345_43


26. John, T., Jantsch, S., Baier, C., Klüppelholz, S.: Determinization and limit-
determinization of Emerson-Lei automata. In: 19th International Symposium on
Automated Technology for Verification and Analysis. Lecture Notes in Computer
Science, vol. 12971, pp. 15–31. Springer (2021). https://doi.org/10.1007/978-3-030-
88885-5 2

27. John, T., Jantsch, S., Baier, C., Klüppelholz, S.: From emerson-lei automata to
deterministic, limit-deterministic or good-for-mdp automata. Innov. Syst. Softw.
Eng. 18(3), 385–403 (2022). https://doi.org/10.1007/s11334-022-00445-7

28. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive
mission and motion planning. IEEE Trans. Robotics 25(6), 1370–1381 (2009).
https://doi.org/10.1109/TRO.2009.2030225

29. Kugler, H., Segall, I.: Compositional synthesis of reactive systems from live se-
quence chart specifications. In: 15th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science, vol. 5505, pp. 77–91. Springer (2009). https://doi.org/10.1007/978-3-642-
00768-2 9

30. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal methods
in system design 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

31. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Conference
on Logics of Programs. Lecture Notes in Computer Science, vol. 193, pp. 196–218.
Springer (1985). https://doi.org/10.1007/3-540-15648-8 16

32. Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Synthesis of reactive switching pro-
tocols from temporal logic specifications. IEEE Trans. Autom. Control. 58(7),
1771–1785 (2013). https://doi.org/10.1109/TAC.2013.2246095

33. Majumdar, R., Schmuck, A.: Supervisory controller synthesis for nonterminating
processes is an obliging game. IEEE Trans. Autom. Control. 68(1), 385–392 (2023).
https://doi.org/10.1109/TAC.2022.3143108

34. Moarref, S., Kress-Gazit, H.: Automated synthesis of decentralized controllers for
robot swarms from high-level temporal logic specifications. Auton. Robots 44(3-4),
585–600 (2020). https://doi.org/10.1007/s10514-019-09861-4

35. Müller, D., Sickert, S.: LTL to deterministic emerson-lei automata. In: Bouyer,
P., Orlandini, A., Pietro, P.S. (eds.) Proceedings Eighth International Sympo-
sium on Games, Automata, Logics and Formal Verification, GandALF 2017,
Roma, Italy, 20-22 September 2017. EPTCS, vol. 256, pp. 180–194 (2017).
https://doi.org/10.4204/EPTCS.256.13

36. Piterman, N., Pnueli, A.: Faster solutions of rabin and streett games. In: 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006,
Seattle, WA, USA, Proceedings. pp. 275–284. IEEE Computer Society (2006).
https://doi.org/10.1109/LICS.2006.23

37. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: 7th In-
ternational Conference on Verification, Model Checking, and Abstract Interpreta-
tion. Lecture Notes in Computer Science, vol. 3855, pp. 364–380. Springer (2006).
https://doi.org/10.1007/11609773 24

38. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Sixteenth ACM
Symposium on Principles of Programming Languages. pp. 179–190. ACM Press
(1989). https://doi.org/10.1145/75277.75293

76 D. Hausmann et al.

https://doi.org/10.1007/978-3-030-88885-5_2
https://doi.org/10.1007/978-3-030-88885-5_2
https://doi.org/10.1007/s11334-022-00445-7
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1007/978-3-642-00768-2_9
https://doi.org/10.1007/978-3-642-00768-2_9
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1109/TAC.2013.2246095
https://doi.org/10.1109/TAC.2022.3143108
https://doi.org/10.1007/s10514-019-09861-4
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1109/LICS.2006.23
https://doi.org/10.1007/11609773_24
https://doi.org/10.1145/75277.75293


39. Raman, V., Piterman, N., Finucane, C., Kress-Gazit, H.: Timing semantics for
abstraction and execution of synthesized high-level robot control. IEEE Trans.
Robotics 31(3), 591–604 (2015). https://doi.org/10.1109/TRO.2015.2414134

40. Renkin, F., Duret-Lutz, A., Pommellet, A.: Practical ”paritizing” of emerson-lei
automata. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for Verifi-
cation and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Viet-
nam, October 19-23, 2020, Proceedings. Lecture Notes in Computer Science, vol.
12302, pp. 127–143. Springer (2020). https://doi.org/10.1007/978-3-030-59152-6 7

41. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of
reactive systems. Int. J. Softw. Tools Technol. Transf. 15(5-6), 433–454 (2013).
https://doi.org/10.1007/s10009-012-0224-3

42. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: 12th International Conference on Logic for Programming, Artificial In-
telligence, and Reasoning. Lecture Notes in Computer Science, vol. 3835, pp. 396–
411. Springer (2005). https://doi.org/10.1007/11591191 28

43. Vardi, M.Y., Stockmeyer, L.J.: Improved upper and lower bounds for modal logics
of programs: Preliminary report. In: Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing. pp. 240–251. ACM (1985)

44. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon tempo-
ral logic planning. IEEE Trans. Autom. Control. 57(11), 2817–2830 (2012).
https://doi.org/10.1109/TAC.2012.2195811

45. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety LTL synthesis. In: 13th International Haifa Verification Conference: Hard-
ware and Software - Verification and Testing. Lecture Notes in Computer Science,
vol. 10629, pp. 147–162. Springer (2017). https://doi.org/10.1007/978-3-319-70389-
3 10

46. Zhu, S., Tabajara, L.M., Pu, G., Vardi, M.Y.: On the power of automata mini-
mization in temporal synthesis. In: Proceedings 12th International Symposium on
Games, Automata, Logics, and Formal Verification. EPTCS, vol. 346, pp. 117–
134 (2021). https://doi.org/10.4204/EPTCS.346.8

47. Zielonka, W.: Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–
183 (1998). https://doi.org/10.1016/S0304-3975(98)00009-7

Symbolic Solution of Emerson-Lei Games 77

https://doi.org/10.1109/TRO.2015.2414134
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/s10009-012-0224-3
https://doi.org/10.1007/11591191_28
https://doi.org/10.1109/TAC.2012.2195811
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.4204/EPTCS.346.8
https://doi.org/10.1016/S0304-3975(98)00009-7


Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

78 D. Hausmann et al.

http://creativecommons.org/licenses/by/4.0/


Abstract. Temporal graphs are a popular modelling mechanism for dy-
namic complex systems that extend ordinary graphs with discrete time.
Simply put, time progresses one unit per step and the availability of
edges can change with time.
We consider the complexity of solving ω-regular games played on tem-
poral graphs where the edge availability is ultimately periodic and fixed
a priori.
We show that solving parity games on temporal graphs is decidable in
PSPACE, only assuming the edge predicate itself is in PSPACE. A match-
ing lower bound already holds for what we call punctual reachability
games on static graphs, where one player wants to reach the target at a
given, binary encoded, point in time. We further study syntactic restric-
tions that imply more efficient procedures. In particular, if the edge pred-
icate is in P and is monotonically increasing for one player and decreasing
for the other, then the complexity of solving games is only polynomially
increased compared to static graphs.

Keywords: Temporal graphs · Reachability Games · Complexity · Timed
automata

1 Introduction

Temporal graphs are graphs where the edge relation changes over time. They
are often presented as a sequence G0, G1, . . . of graphs over the same set of
vertices. We find it convenient to define them as pairs G = (V,E) consisting
of a set V of vertices and associated edge availability predicate E : V 2 → 2N

that determines at which integral times a directed edge can be traversed. This
model has been used to analyse dynamic networks and distributed systems in dy-
namic topologies, such as gossiping and information dissemination [36,24]. There
is also a large body of work that considers temporal generalisations of various
graph-theoretic notions and properties [32,14,10]. Related algorithmic questions
include graph colouring [30], exploration [12], travelling salesman [33], maxi-
mum matching [29], and vertex-cover [2]. The edge relation is often deliberately
left unspecified and sometimes only assumed to satisfy some weak assumptions
about connectedness, frequency, or fairness to study the worst or average cases
in uncontrollable environments. Depending on the application, one distinguishes
between “online” questions, where the edge availability is revealed stepwise, as

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 79–98, 2024.
https://doi.org/10.1007/978-3-031-57228-9_5

University of Liverpool, Liverpool, UK

sgpausti@liverpool.ac.uk

Parity Games on Temporal Graphs

Pete Austin(B) , Sougata Bose , and Patrick Totzke

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_5&domain=pdf
http://orcid.org/0000-0003-0238-8662
http://orcid.org/0000-0003-3662-3915
http://orcid.org/0000-0001-5274-8190


opposed to the “offline” variant where all is given in advance. We refer to [17,31]
for overviews of temporal graph theory and its applications.

Two player zero-sum verification games on directed graphs play a central role
in formal verification, specifically the reactive synthesis approach [34]. Here, a
controllable system and an antagonistic environment are modeled as a game in
which two opposing players jointly move a token through a graph. States are
either owned by Player 1 (the system) or Player 2 (the environment), and the
owner of the current state picks a valid successor. Such a play is won by Player 1
if, and only if, the constructed path satisfies a predetermined winning condition
that models the desired correctness specification. The winning condition is of-
ten given either in a temporal logic such as Linear Temporal Logic (LTL) [35],
or directly as ω-automaton whose language is the set of infinite paths consid-
ered winning for Player 1. The core algorithmic problem is solving games: to
determine which player has a strategy to force a win, and if so, how.

Determining the complexity of solving games on static graphs has a long
history and continues to be an active area of research. We refer to [1,13] for
introductions on the topic and recall here only that solving reachability games,
where Player 1 aims to eventually reach a designated target state, is complete
for polynomial time. The precise complexity of solving parity games is a long-
standing open question. It is known to be in UP∩coUP [22], and so in particular in
NP and coNP, and recent advances have led to quasi-polynomial time algorithms
[6,23,26,9,25].

Related Work. Periodic temporal graphs were first studied by Floccchini, Mans,
and Santoro in [14], where they show polynomial bounds on the length of ex-
plorations (paths covering all vertices). Recently, De Carufel, Flocchini, Santoro,
and Simard [10] study Cops & Robber games on periodic temporal graphs. They
provide an algorithm for solving one-cop games that is only quadratic in the
number of vertices and linear in the period.

Games on temporal graphs with maximal age, or period of some absolute
value K given in binary are games on exponentially succinctly presented arenas.
Unfolding them up to time K yields an ordinary game on the exponential sized
graph which allows to transfer upper bounds, that are not necessarily optimal.
In a similar vein, Avni, Ghorpade, and Guha [4] have recently introduced types
of games on exponentially succinct arenas called pawn games. Similar to our
results, their findings provide improved PSPACE upper bounds for reachability
games.

Parity games on temporal graphs are closely related to timed-parity games,
which are played on the configuration graphs of timed automata [3]. However, the
time in temporal graphs is discrete as opposed to the continuous time semantics
in timed automata. Solving timed parity games is complete for EXP[28,8] and
the lower bound already holds for reachability games on timed automata with
only two clocks [21]. Unfortunately, a direct translation of (games on) temporal
graphs to equivalent timed automata games requires at least two clocks: one to
hold the global time used to check the edge predicate and one to ensure that
time progresses one unit per step.

80 P. Austin, S. Bose, and P. Totzke



Contributions. We study the complexity of solving parity games on temporal
graphs. As a central variant of independent interest are what we call punctual
reachability games, that are played on a static graph and player wants to reach a
target vertex at a given binary encoded time. We show that solving such games
is already hard for PSPACE, which provides a lower bound for all temporal graph
games we consider.

As our second, and main result, we show how to solve parity games on (ul-
timately) periodic temporal graphs. The difficulty to overcome here is that the
period may be exponential in the number of vertices and thus a naïvely solv-
ing the game on the unfolding only yields algorithms in exponential space. Our
approach relies on the existence of polynomially sized summaries that can be
verified in PSPACE using punctual reachability games.

We then provide a sufficient syntactic restriction that avoids an increased
complexity for game solving. In particular, if the edge predicate is in polynomial
time and is monotonically increasing for one player and decreasing for the other,
then the cost of solving reachability or parity games on temporal graphs increases
only polynomially in the number of vertices compared to the cost of solving these
games on static graphs.

None of our upper bounds rely on any particular representation of the edge
predicate. Instead, we only require that the representation ensures that checking
membership (if an edge is traversable at a given time) has suitably low com-
plexity. That is, our approach to solve parity games only requires that the edge
predicate is in PSPACE, and polynomial-time verifiable edge predicates suffice
to derive P-time upper bounds for monotone reachability games. These condi-
tions are met for example if the edge predicate is defined as semilinear set given
as an explicit union of linear sets (NP in general and in P for singleton sets of
periods), or by restricted Presburger formulae: the quantifier-free fragment is in
P, the existential fragment is in NP but remains in P if the number of variables
is bounded [37]. See for instance [15] and contained references.

The rest of the paper is structured as follows. We recall the necessary no-
tations in Section 2 and then discuss reachability games in Section 3. Section 4
presents the main construction for solving parity games and finally, in Section 5,
we discuss improved upper bounds for monotone temporal graphs.

2 Preliminaries

Definition 1 (Temporal Graphs). A temporal graph G = (V,E) is a directed
graph where V are vertices and E : V 2 → 2N is the edge availability relation that
maps each pair of vertices to the set of times at which the respective directed edge
can be traversed. If i ∈ E(s, t) we call t an i-successor of s and write s

i−→ t.
The horizon of a temporal graph is h(G) = sups,t∈V (E(s, t)), the largest

finite time at which any edge is available, or ∞ if no such finite time exists.
A temporal graph is finite if h(G) ∈ N i.e., every edge eventually disappears
forever. A temporal graph is periodic with period K ∈ N if for all nodes s, t ∈ V
it holds that E(s, t) = E(s, t) +K · N. We call G static if it has period 1.

Parity Games on Temporal Graphs 81



Naturally, one can unfold a temporal graph into its expansion up to some
time T ∈ N∪{∞}, which is the graph with nodes V ×{0, 1, . . . , T} and directed
edges (s, i) → (t, i+ 1) iff i ∈ E(s, t).

In order for algorithmic questions to be interesting, we assume that temporal
graphs are given in a format that is more succinct than the expansion up to their
horizon or period. We only require that the representation ensures that checking
if an edge is traversable at a given time can be done reasonably efficiently.

We will henceforth use formulae in the existential fragment of Presburger
arithmetic, the first-order theory over natural numbers with equality and addi-
tion. That is, the ∃PA formula Φs,t(x) with one free variable x represents the set
of times at which an edge from s to t is available as E(s, t) = {n | Φs,t(n) ≡ true}.
We use common syntactic sugar including inequality and multiplication with (bi-
nary encoded) constants. For instance, Φs,t(x)

def
= 5 ≤ x∧x ≤ 10 means the edge

is available at times {5, 6, 7, 8, 9, 10}; and Φs,t(x)
def
= ∃y.(x = y · 7) ∧ ¬(x ≤ 100)

means multiples of 7 greater than 100.

Definition 2 (Parity Games). A parity game is a zero-sum game played by
two opposing players on a directed graph. Formally, the game is given by a game
graph G = (V,E), a partitioning V = V1 ⊎ V2 of vertices into those owned by
Player 1 and Player 2 respectively, and a colouring col : V → C of vertices into
a finite set C ⊊ N of colours.

The game starts with a token on an initial vertex s0 ∈ V and proceeds in turns
where in round i, the owner of the vertex occupied by the token moves it to some
successor. This way both players jointly agree on an infinite path ρ = s0s1 . . .
called a play. A play is winning for Player 1 if max{c | ∀i∃j. col(sj) = c}, the
maximum colour seen infinitely often, is even.

A strategy for Player i is a recipe for how to move. Formally, it is a function
σi : V

∗Vi → V from finite paths ending in a vertex s in Vi to some successor. We
call σ positional if σ(πs) = σ(π′s) for any two prefixes π, π′ ∈ V ∗. A strategy
is winning from vertex s if Player i wins every play that starts in vertex s and
during which all decisions are made according to σ.

We call a vertex s winning for Player i if there exists a winning strategy from
s, and call the subset of all such vertices the winning region for that player.
Parity games enjoy the following property (See [13, Theorem 15] for details).

Proposition 1. Parity games are uniformly positionally determined: For every
game (V =V1⊎V2, E, col) there is a pair σ1, σ2 of positional strategies so that σi

is winning for Player i from every vertex in the winning region of Player i.

A temporal parity game is a parity game played on the infinite expansion of
a temporal graph G = (V,E), where the ownership and colouring of vertices are
given with respect to the underlying directed graph V =V1⊎V2 and col : V → C.
The ownership and colouring are lifted to the expansion so that vertices in Vi×N
are owned by Player i and vertex (s, n) has colour col(s).

82 P. Austin, S. Bose, and P. Totzke



s

1

v

3

u

2

w

2

t

2

r

4

x
≡

0
m
o
d
5

¬(x
≡ 0

m
od

3)

(x ≡ 0 mod 3)∨

(x ≡ 1 mod 3)

Fig. 1: An example of a temporal parity game. Player 1 controls the diamond
vertices V1 = {s, v} and Player 2 controls square vertices V2 = {r, t, u, w}. Edge
labels are Presburger formulae constraints denoting when an edge is available;
edges without constraints are always available. The grey label next to each node
denotes its colour. E.g., col(s) = 1 ∈ C = {1, 2, 3, 4}.

Example 1. Consider the temporal parity game shown in Fig. 1. We will draw
Player 1 states as diamond and those controlled by Player 2 as squares and
sometimes write modulo expressions to define the edge availability. For example,
the constraint on the edge from u to v can be written as the ∃PA-formula as
∃y.(x = 3y) ∨ (x = 3y + 1) and so this edge is available at times 0, 1, 3, 4, 6, . . . .
The temporal graph underlying this game has period 15.

Player 1 has a winning strategy starting from (s, i) in the expansion by
staying in state s until time i′ ≥ i with i′ ≡ 0 mod 5 and then following the
edge to (t, i′+1). If Player 2 ever chooses to move to r, he is trapped in an even-
coloured cycle; if he stays in t forever, then the resulting game sees only colour
2 and is losing for him. Otherwise, if the game continues at (s, i′ + 2), Player 1
repeats as above (and wins plays that see both states s and t. The example
shows that Player 1 s strategies depend on the time and are not positional in
the vertices alone, even if the winning set has period 1. Indeed, the only possible
vertex-positional strategy (cycle in s) is losing.

The vertices {s, t} shaded in blue represent the vertex from which Player 1
can win starting at any time, following the strategy described above. From the
vertices shaded in red, Player 2 can win starting at certain times. For exam-
ple, Player 2 has a winning strategy from (u, i) if, and only if, i ≡ 0 mod 3
or i ≡ 1 mod 3 by moving to (v, i + 1). Notice that this edge is not available,
and thus Player 2 is forced to move to t at times x ≡ 2 mod 3. In partic-
ular therefore, Player 1 wins from (v, 0). The winning region for Player 1 is
{(s, k), (t, k), (r, k), (u, 3k + 2), (v, 3k), (w, 3k + 1) | k ∈ N}.

The algorithmic question we consider is determining the set of vertices from
which Player 1 wins starting at time 0.

Parity Games on Temporal Graphs 83



3 Reachability Games

We discuss a variant of temporal games that turns out to be central both for
upper and lower bounds for solving games on temporal graphs.

We call these punctual reachability games, which are played on a static graph
and Player 1 aims to reach the target precisely at a target time.

Definition 3. A punctual reachability game G = (V,E, s0, F ) is a game played
on a static graph with vertices V = V1 ⊎ V2, edges E ⊆ V 2, an initial state s0
and set of target vertices F ⊆ V . An additional parameter is a target time T ∈ N
given in binary. Player 1 wins a play if and only if a vertex in F is reached at
time T .

Punctual reachability games are really just a reformulation of the membership
problem for alternating finite automata (AFA) [7] over a unary input alphabet.
Player 1 wins the punctual reachability game with target T if, and only if, the
word aT is accepted by the AFA described by the game graph. Checking if a
given unary word aT is accepted by an AFA is complete for polynomial time if
T is given in unary [20]. We first observe that it is PSPACE-hard if T is given in
binary. We write in the terminology of punctual reachability games but the main
argument is by reduction from the emptiness problem for unary AFA, which is
PSPACE-compete [18,19]. We rely on the fact that the shortest word accepted
by an AFA is at most exponential in the number of states.

Lemma 1. Let G = (V,E, s0, F ) be a reachability game on a static graph. If
there exist T ∈ N so that Player 1 wins the punctual reachability game at target
time T , then there exists some such T ≤ 2|V |.

Proof. Assume towards contradiction that T ≥ 2|V | is the smallest number such
that Player 1 wins the punctual reachability game and consider some winning
strategy σ. For any time k ≤ T we can consider the set Sk ⊆ V of vertices
occupied on any branch of length k on σ. By the pigeonhole principle, we observe
k < k′ ≤ T with Sk = Sk′ , which allows to create a strategy σ′ that follows σ
until time k, then continues (and wins) according to σ as if it had just seen
a length k′ history leading to the same vertex. This shows that there exists a
winning strategy for target time T − (k−k′), which contradicts the assumption.

⊓⊔

A lower bound for solving punctual reachability games is now immediate.

Lemma 2. Solving punctual reachability games with target time T encoded in
binary is PSPACE-hard.

Proof. We reduce the non-emptiness problem of AFA over unary alphabets. In
our terminology this is the decision problem if, for a given a reachability game
G = (V,E, s0, F ) there exists some T ∈ N so that Player 1 wins the punctual
reachability game at target time T . This problem is PSPACE-complete [18].

84 P. Austin, S. Bose, and P. Totzke



By Lemma 1, positive instances can be witnessed by a small target T ≤ 2|V |

and so we know that it is PSPACE-hard to determine the existence of such a
small target time that allows Player 1 to win.

Consider now the punctual reachability game G′ that extends G by a new
initial vertex s′0 that is owned by Player 1 and which has a self-loop as well as an
edge to the original initial vertex s0 with target time T ′ def

= 2|V |. In G′, Player 1
selects some number T ≤ T ′ by waiting in the initial vertex for T ′−T steps and
then starts the game G with the target time T . Therefore, Player 1 wins in G′

for target T ′ if, and only if, she wins for some T ≤ 2|V | in G. ⊓⊔

Corollary 1. Solving reachability games on finite temporal graphs is PSPACE-
hard.

Proof. We reduce the punctual reachability game with target T to an ordinary
reachability game on a finite temporal graph. This can be done by introducing
a new vertex u as the only target vertex, so that it is only reachable via edges
from vertices in F at time exactly T . That is E(s, u)

def
= {T} and E(s, t) = [0, T ]

for all s, t ∈ V \{u}. Now Player 1 wins the reachability game for target u if, and
only if, she wins the punctual reachability game with target F at time T . ⊓⊔

A matching PSPACE upper bound for solving punctual reachability games, as
well as reachability games on finite temporal graphs can be achieved by comput-
ing the winning region backwards as follows.1 For any game graph with vertices
V =V1⊎V2, set S ⊆ V and i ∈ {1, 2}, let Prei(S) ⊆ V denote the set of vertices
from which Player i can force to reach S in one step.

Prei(S)
def
= {v ∈ Vi | ∃(v, v′) ∈ E.v′ ∈ S} ∪ {v ∈ V1−i | ∀(v, v′) ∈ E.v′ ∈ S}

A straightforward induction on the duration T shows that Player i wins the
punctual reachability game with target time T from vertex s if, and only if
s ∈ PreTi (F ), the T -fold iteration of Prei applied to the target set F .

Notice that knowledge of Prei(S) is sufficient to compute Prek+1
i (S). By

iteratively unfolding the definition of Preki , we can compute PreT1 (F ) from
Pre01(F ) = F in polynomial space2. Together with Lemma 2 we conclude the
following.

Theorem 1. Solving punctual reachability games with target time T encoded in
binary is PSPACE-complete.

1 For readers familiar with reachability games, the notion Pre1(S) above is very similar
to, but not the same as the k-step attractor of S: The former contains states from
which Player 1 can force to see the target in exactly k steps, whereas the latter
contains those where the target is reachable in k or fewer steps.

2 To be precise, naïvely unfolding the definition requires O(T+|V |2) time, exponential
in (the binary encoded input) T , and O(|V |+log(T )) space to memorise the current
set Prek ⊆ V as well as the time k ≤ T in binary.

Parity Games on Temporal Graphs 85



The same approach works for reachability games on finite temporal graphs if
applied to the expansion up to horizon h(G), leading to the same time and space
complexity upper bounds. The only difference is that computing Prek1(F ×{T})
requires to check edge availability at time T − k.

Theorem 2. Solving reachability games on finite temporal graphs is PSPACE-
complete.

Proof. Consider a temporal game with vertices V =V1⊎V2, edges E : V 2 → 2N

target vertices F ⊆ V and where T = h(G) is the latest time an edge is available.
We want to check if starting in an initial state s0 at time 0, Player 1 can force
to reach F at time T . In other words, for the game played on the expansion up
to time T we want to decide if (s0, 0) is contained in PreT1 (F × {T}).

By definition of the expansion, we have Pre1(S ×{n}) ⊆ V ×{n− 1} for all
S ⊆ V and n ≤ T . Since we can check the availability of an edge at time n in
polynomial space, we can iteratively compute Pren1 (F×{T}) backwards, starting
with Pre01(F×{T}) = F×{T}, and only memorising the current iteration n ≤ T
and a set Wn ⊆ V representing Pren1 (F × {T}) = Wn × {T − n}. ⊓⊔

4 Parity Games

We consider Parity games played on periodic temporal graphs. As input we take
a temporal graph G = (V,E) with period K, a partitioning V =V1⊎V2 of the
vertices, as well as a colouring col : V → C that associates a colour out of a
finite set C ⊂ N of colours to every state.

It will be convenient to write col(π)
def
= max{col(si) | 0 ≤ i ≤ k} for the max-

imal colour of any vertex visited along a finite path π = (s0, 0)(s1, 1) . . . (sk, k).
The following relations Rσ

s capture the guarantees provided by a strategy σ if
followed for one full period from vertex s.

Definition 4. For a strategy σ and vertex s ∈ V define Rσ
s ⊆ V × C be the

relation containing (t, c) ∈ Rσ
s if, and only if, there exists a finite play π =

(s, 0) . . . (t,K) consistent with σ, that starts in s at time 0, ends in t at time K,
and the maximum colour seen on the way is col(π) = c. We call Rσ

s the summary
of s with respect to strategy σ.

A relation B ⊆ V × C is s-realisable if there is a strategy σ with B = Rσ
s .

Example 2. Consider the game in Fig. 2 where vertex u ∈ V2 has colour 2 and
all other vertices have colour 1. The graph has period K = 2. The relations
{(t, 1)} and {(t, 2), (t′, 2)} are s-realisable, as witnessed by the strategies σ(s) = t
and σ(s) = u), respectively. However, {(t, 2)} is not s-realisable as no Player 1
strategy guarantees to visit s then u then t.

Lemma 3. Checking s-realisability is in PSPACE. That is, one can verify in
polynomial space for a given temporal Parity game, state s ∈ V and relation
B ⊆ V × C whether B is s-realisable.

86 P. Austin, S. Bose, and P. Totzke



s

1

u

2

t

1

t′

1
x ≡ 0 mod 2

true

x ≡
1 mod

2

x ≡ 1 mod 2

true

Fig. 2: The game from Example 2. Labels on vertices and edges denote colours
and available times, respectively. The graph has period 2. In two rounds, Player 1
can force to end in t having seen colour 1, or in either t or t′ but having seen a
better colour 2.

Proof. We reduce checking realisability to solving a reachability game on a
temporal graph that is only polynomially larger. More precisely, given a game
G = (V,E, col) consider the game G′ = (V ′, E′, col′) over vertices V ′ def

= V × C
that keep track of the maximum colour seen so far. That is, the ownership
of vertices and colours are lifted directly as (s, c) ∈ V ′

1 ⇐⇒ s ∈ V1 and
col′(s, c)

def
= col(s), and for any i ∈ N, s, t, s0 ∈ V , c, d ∈ C, we let (t, d)

be an i-successor of (s, c) if, and only if, both t is an i-successor of s and
d = max{c, col(t)}.

Consider some relation B ⊆ V ×C. We have that B is s-realisable if, and only
if, Player 1 wins the punctual reachability game on G′ from vertex (s, col(s)) at
time 0, towards target vertices B ⊆ V ′ at target time K. Indeed, any winning
Player 1 strategy in this game witnesses that B is s-realisable and vice versa. By
Theorem 2, the existence of such a winning strategy can be verified in polynomial
space by backwards-computing the winning region. ⊓⊔

The following defines a small, and PSPACE-verifiable certificate for Player 1
to win the parity game on a periodic temporal graph.

Definition 5 (Certificates). Given temporal parity game (V,E, col) with pe-
riod K, a certificate for Player 1 winning the game from initial vertex s0 ∈ V is
a multigraph where the vertex set V ′ ⊆ V contains s0, and edges E′ ⊆ V ′×C×V ′

are labelled by colours, such that

1. For every s ∈ V ′, the set Post(s)
def
= {(t, c) | (s, c, t) ∈ E′} is s-realisable.

2. The maximal colour on every cycle reachable from s0 is even.

Notice that condition 1 implies that no vertex in a certificate is a deadlock.
A certificate intuitively allows to derive Player 1 strategies based on those wit-
nessing the realisability condition.

Example 3. Consider the game from Example 1 played on the temporal graph
with period 15. A certificate for Player 1 winning from state v at time 0 is
depicted in Fig. 3. Indeed, the Player 1 strategy mentioned in Example 1 (aim

Parity Games on Temporal Graphs 87



s v

t r

2

2

2
4

2

3

3 4

4
4

Fig. 3: A certificate that Player 1 wins the game in Example 1 from state v at
time 0.

to alternate between s and t) witnesses that Post(v) = {(s, 3), (t, 3), (r, 4)} is
v-realisable because it allows Player 1 to enforce that after K = 15 steps from
v, the game ends up in one of those states via paths whose colour is dominated
by col(v) = 3 or col(r) = 4.

Lemma 4. Player 1 wins the parity game on G from vertex s0 if, and only if,
there exists a certificate.

Proof. For the backward implication we argue that a certificate C allows to
derive a winning strategy for Player 1 in the parity game G. By the realisability
assumption (1), for each vertex s ∈ V there must exist a Player 1 strategy σs

with Rσs
s = Post(s) that tells her how to play in G for K rounds if the starting

time is a multiple of K. Moreover, suppose she plays according to σs for K
rounds and let t and c be the vertex reached and maximal colour seen on the
way. Then by definition of the summaries, (t, c) ∈ Rσs

s = Post(s) and so in the
certificate C there must be some edge s

c−→ t.
Suppose Player 1 continues to play in G like this forever: From time i ·K to

(i+1) ·K she plays according to some strategy σsi determined by the vertex si
reached at time i·K. Any consistent infinite play ρ in G, chosen by her opponent,
describes an infinite walk ρ′ in C such that the colour seen in any step i ∈ N
of ρ′ is precisely the dominant colour on ρ between rounds iK and (i + 1)K.
Therefore the dominant colours seen infinitely often on ρ and ρ′ are the same
and, by certificate condition (2) on the colouring of cycles, even. We conclude
that the constructed strategy for Player 1 is winning.

For the forward implication, assume that Player 1 wins the game on G from
vertex s at time 0. Since the game G is played on a temporal graph with period
K, its expansion up to time K − 1 is an ordinary parity game on a static graph
with vertices V ×{0, 1, . . . ,K−1} where the second component indicates the time
modulo K. Therefore, by positional determinacy of parity games (Proposition 1),
we can assume that Player 1 wins in G using a strategy σ that is itself periodic.
That is, σ(hv) = σ(h′v) for any two histories h, h′ of lengths |h| ≡ |h′| mod K.
Moreover, we can safely assume that σ is uniform, meaning that it is winning

88 P. Austin, S. Bose, and P. Totzke



from any vertex (s, 0) for which a winning strategy exists. Such a strategy induces
a multigraph C = (V,E′) where the edge relation is defined by (s, c, t) ∈ E′ ⇐⇒
(t, c) ∈ Rσ

s . It remains to show the second condition for C to be a certificate,
namely that any cycle in C, reachable from the initial vertex s0, has an even
maximal colour. Suppose otherwise, that C contains a reachable cycle whose
maximal colour is odd. Then there must be play in G that is consistent with σ
and which sees the same (odd) colour infinitely often. But this contradicts the
assumption that σ was winning in G in the first place. ⊓⊔

Our main theorem is now an easy consequence of the existence of small
certificates.

Proof. Hardness already holds for reachability games Lemma 2. For the up-
per bound we show membership in NPSPACE and use Savitch’s theorem. By
Lemma 4 it suffices to guess and verify a candidate certificate C. These are by
definition polynomial in the number of vertices and colours in the given temporal
parity game. Verifying the cycle condition (2) is trivial in polynomial time and
verifying the realisability condition (1) is in PSPACE by Lemma 3. ⊓⊔

Remark 1. The PSPACE upper bound in Theorem 3 can easily be extended to
games on temporal graphs that are ultimately periodic, meaning that there exist
T,K ∈ N so that for all n ≥ T , s

n−→ t implies s
n+K−→ t. Such games can be

solved by first considering the periodic suffix according to Theorem 3 thereby
computing the winning region for Player 1 at time exactly T , and then solving
the temporal reachability game with horizon T .

5 Monotonicity

In this section, we consider the effects of monotonicity assumptions on the edge
relation with respect to time on the complexity of solving reachability games. We
first show that reachability games remain PSPACE-hard even if the edge relation
is decreasing (or increasing) with time. We then give a fragment for which the
problem becomes solvable in polynomial time.

Increasing and Decreasing temporal graphs: Let the edge between vertices
u, v ∈ V of a temporal graph be referred to as decreasing if u

i+1−→ v implies
u

i−→ v for all i ∈ N, i.e. edges can only disappear over time. Similarly, call the
edge increasing if for all i ∈ N we have that u

i−→ v implies u
i+1−→ v; i.e. an edge

available at current time continues to be available in the future. A temporal
graph is decreasing (increasing) if all its edges are. We assume that the times
at which edge availability changes are given in binary. More specifically, every
edge is given as inequality constraint of the form Φu,v(x)

def
= x ≤ n (respectively

x ≥ n) for some n ∈ N.

Parity Games on Temporal Graphs 89

Theorem 3. Solving parity games on periodic temporal graphs is PSPACE-
complete.



v w

⊤

⊥
x ≤ T − 1

x ≤ T + 1

Fig. 4: Reduction from a punctual reachability game to a reachability game on a
temporal graph that is finite and decreasing, see Theorem 4. Components added
are shown in red.

Although both restrictions imply that the graph is ultimately static, we ob-
serve that solving reachability games on such monotonically increasing or de-
creasing temporal graphs remains PSPACE-complete.

Theorem 4. Solving reachability and Parity games on decreasing (respectively
increasing) temporal graphs is PSPACE-complete.

Proof. The upper bound holds for parity games as the description of the tempo-
ral graph explicitly includes a maximal time T from which the graph becomes
static. One can therefore solve the Parity game for the static suffix graph (in
NP) and then apply the PSPACE procedure (Theorem 2) to solve for temporal
reachability towards the winning region at time T . Alternatively, the same upper
bound also follows from Theorem 3 and Remark 1.

For the lower bound we reduce from punctual reachability games which are
PSPACE-hard by Lemma 2. Consider a (static) graph G and a target time T ∈ N
given in binary. Without loss of generality, assume that the target vertex v has no
outgoing edges. We convert G into a temporal graph G′ with V ′ = V ∪{w,⊤,⊥},
V ′
1 = (V1\{v})∪{w}, V ′

2 = V ′\V ′
1 and new target ⊤. The vertex ⊥ is a sink state

and the original target vertex v is now controlled by Player 2. Edge availabilities
are v

x−→⊥ if x ≤ T − 1, v x−→ w if x ≤ T + 1, w x−→⊤ if x ≤ T + 1, and all
other edges disappear after time T +1. The constructed temporal graph is finite
and decreasing. See Fig. 4. The construction ensures that the only way to reach
⊤ is to reach v at time T , w at time T + 1 and take the edge from w to ⊤ at
time T +1. Player 1 wins in G′ if and only if she wins the punctual reachability
game on G.

A similar reduction works in the case of increasing temporal graphs by switch-
ing the ownership of vertices v and w. The vertex v, now controlled by Player 1
has the edge v

x−→ w at times x ≥ T and the edge v−→⊥ at all times. The
vertex w now controlled by Player 2 has the edge w−→⊤ available at all times
but the edge w

x−→⊥ becomes available at time x ≥ T + 2. ⊓⊔

90 P. Austin, S. Bose, and P. Totzke



Declining and improving temporal games: We now consider the restriction where
all edges controlled by one player are increasing and those of the over player are
decreasing. Taking the perspective of the system Player 1, we call a game on
a temporal graph declining if all edges u−→ v with u ∈ V1 are decreasing and
all edges u−→ v with u ∈ V2 are increasing. Note that declining is a property
of the game and not the graph as the definition requires a distinction based on
ownership of vertices, which is specified by the game and not the underlying
graph. From now on, we refer to such games as declining temporal reachability
(or parity) games. Notice that Player 1 has fewer, and Player 2 has more choices
to move at later times. Analogously, call the game improving if the conditions are
reversed, i.e., all edges u−→ v with u ∈ V1 are increasing and all edges u−→ v
with u ∈ V2 are decreasing.

We show that declining (and improving) temporal reachability games can be
solved in polynomial time.

Proof. We first give the proof for declining games. Consider the reachability
game on the expansion with vertices V × N such that the target set is F × N.
For k ∈ N let Wk ⊆ V be the set of those vertices u such that Player 1 has a
winning strategy from (u, k). We first show that

Wi+1 ⊆ Wi (1)

For sake of contradiction, suppose there exists u ∈ Wi+1 \Wi. Let σ1
i+1 be a

(positional) winning strategy from (u, i+1) for Player 1 in the expansion. Since
u ̸∈ Wi, by positional determinacy of reachability games (Proposition 1), Player 2
has a winning strategy σ2

i from (u, i). Consider a strategy σ1
i for Player 1, such

that for all v ∈ V1, σ1
i (v, k)

def
= σ1

i+1(v, k + 1), for all k ≥ i. Similarly, let σ2
i+1

be the strategy for Player 2, such that for all v ∈ V2, σ2
i+1(v, k + 1) = σ2

i (v, k),
for all k ≥ i, Note that this is well defined because by definition of declining
games, i.e, v k+1−→ u implies v k−→ u for all v ∈ V1, and v

k−→ u implies v k+1−→ u, for
all v ∈ V2. Starting from the vertex (u, i+ 1), the pair of strategies (σ1

i+1, σ
2
i+1)

defines a unique play πi+1, which is winning for Player 1. Similarly, the pair of
strategies (σ1

i , σ
2
i ) define a play πi which is winning for Player 2 starting from

(u, i). However, the two plays visit the same set of states, particularly, (v, k) is
visited in πi if and only if (v, k+1) is visited in πi+1. Therefore, either both are
winning for Player 1 or both are losing for Player 2, which is a contradiction.
Let N ⊆ N be the set of times at which the graph changes, i.e.

N = {c | ∃Φu,v(x) = x ◁ c, where ◁ ∈ {≤,≥}}}

Let m def
= max(N) be the latest time any edge availability changes. We show that

Wm = Wk for all k ≥ m. To see this, note that Wm is equal to the winning
region for Player 1 in the (static) reachability game played on Gm = (V,Em),

Parity Games on Temporal Graphs 91

Theorem 5. Solving declining (respectively improving) temporal reachability
games is in P.



Algorithm 1 Algorithm for declining games with set of change times N and
m = max(N)

W ← Solve(Gm) ▷ Computes Player 1 winning region in Gm

while N ̸= ∅ do
n← max(N)
if (Pre1(W × {n}) = W then

N ← N \ n ▷ Accelerate to next change time
else

W ← Pre1(W )
N ← N ∪ {n− 1} \ {n}

end if
end while

where Em = {(u, v) | u
m−→ v}. Consider a (positional) winning strategy σm

for Player 1 in Gm and define a positional strategy σ(v, k) = σm(v), for k ≥ m.
Since the graph is static after time m, this is well defined. Starting from a vertex
(u, k), a vertex (v, k+k′) is visited on a σ-consistent path if and only if there is a
σm-consistent path u−→

k′ v. Therefore, σ is a winning strategy from any vertex
(v, k) such that k ≥ m and v ∈ Wm. Moreover, the set Wm can be computed in
time O(|V |2) by solving the reachability game on Gm [13, Theorem 12].

To solve reachability on declining temporal games, we can first compute the
winning region Wm in the stabilised game Gm. This means Wm × [m,∞) is
winning for Player 1. To win the declining temporal reachability game, Player 1
can play the punctual reachability game with target set Wm at target time
m. The winning region for Player 1 at time 0 can therefore be computed as
Prem1 (Wm ×{m}) as outlined in the proof of Theorem 2. Note that naïvely this
only gives a PSPACE upper bound as in the worst case, we would compute Pre1
an exponential (m) times.

To overcome this, note that in the expansion graph Prei1(Wm × {m}) =
Wm−i × {m − i}. According to Eq. (1), Wm−i ⊆ Wm−i′ for i′ > i. Let i, i′ be
such that m−i and m−i′ are both consecutive change points, i.e, m−i,m−i′ ∈ N
and ∀ℓ ∈ N.ℓ < m− i′ ∨ ℓ > m− i. Since the edge availability of the graph does
not change between time m − i′ and m − i, we have Wm−i−1 = Wm−i implies
Wm−i′ = Wm−i. Therefore, we can accelerate the Pre1 computation and directly
move to the time step m− i′, i.e, the i′th iteration in the computation. This case
is illustrated at time n′ = m− i′ in Fig. 5.

With this change, our algorithm runs the Pre1 computation at most |V |+|N |,
as each Pre1 computation either corresponds to a step a time in N when the
graph changes, or a step in which the winning region grows such as at time n in
Fig. 5. Since each Pre1 computation can be done in polynomial time, we get a
PTIME algorithm in this case, shown in Algorithm 1.

The case for improving temporal reachability games can be solved similarly.
Instead of computing the winning region for Player 1 in Gm, we start with
computing the winning region W 2

m for Player 2 in Gm and switch the roles of
Player 1 and Player 2, i.e, Player 2 has the punctual reachability objective with

92 P. Austin, S. Bose, and P. Totzke



V

0 n′ n m

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 5: Illustration of Algorithm 1. The blue vertices at time i denote the winning
region Wi for Player 1. The times n, n′ ∈ N and Pre1 computation at change
point n increases the winning region but is stable at time n′.

target set W 2
m and target time m, which can be solved as above. This gives us

an algorithm to compute the winning region for Player 2 and by determinacy
of reachability games on infinite graphs, we can compute the winning region for
Player 1 at time 0 as well. ⊓⊔

Remark 2. Algorithm 1 also works for parity objectives by changing step 1,
where Solve(Gm) would amount to solving the parity game on the static graph
Gm. This can be done in quasi-polynomial time and therefore gives a quasi-
polynomial time algorithm to solve declining (improving) temporal parity games
and in particular, gives membership in the complexity class NP ∩ coNP.

Since the declining (improving) restriction on games on temporal graphs
allow for improved algorithms, a natural question is to try to lift this approach
to a larger class of games on temporal graphs. Note that the above restrictions
are a special case of eventually periodic temporal graphs with a prefix of time m
followed by a periodic graph with period 1. Now, we consider temporal graphs
of period K > 1 such that the game arena is declining (improving) within
each period. Formally, a game on a temporal graph G is periodically declining
(improving) if there exists a period K such that for all k ∈ N, k ∈ E(u, v) if and
only if k+K ∈ E(u, v); and the game on the finite temporal graph resulting from
G by making the graph constant from time K onwards, is declining (improving).
We prove that this case is PSPACE-hard, even with reachability objectives.

Theorem 6. Solving periodically declining (improving) temporal reachability games
is PSPACE-complete.

Proof. The upper bound follows from the general case of parity games on periodic
temporal graphs in Theorem 3. The lower bound is by reduction from punctual
reachability games. See Fig. 6. Given a (static) graph G with target state v and
target time T , we obtain a periodically declining game G′ with period K = T+1,
vertices V ∪{w,⊥,⊤}, new target ⊤, such that V ′

1 = V1∪{w,⊥,⊤} and V ′
2 = V2.

Parity Games on Temporal Graphs 93



v w

. . .

. . .

⊤

⊥

x < T

x <
1

x ≥ T

Fig. 6: Reduction from a punctual reachability game to a reachability game on a
temporal graphs that is periodic and declining, see Theorem 6. Parts added are
shown in red.

We assume without loss of generality that the original target v is a Player 1
vertex, i.e, v ∈ V1.

We describe the edge availability in G′ up to the period K = T + 1. For all
edges (s, t) of the original graph G, such that s ∈ V1, the edge s

x−→ t is available
if and only if x < T . Moreover for all s ∈ V1 \ {v}, there is a new edge s

x−→⊥
available at all times x ≤ T . For all s ∈ V2, there is an edge s

x−→ t is available at
all times (until end of period) and s

x−→⊥ is available after time x ≥ T . These
edges ensure that if a play in the original punctual reachability game ends in a
vertex of the game other than v at time T , then Player 2 can force the play to
reach the sink state ⊥ and win.

From the original target v, there is an edge to the new state w at all times.
From the state w, there are edges w−→⊥ at all times and w

x−→⊤ if x = 0. If
the state w is reached at time k such that 1 < k < T +1, then the play is forced
to go to ⊥. The only winning strategy for Player 1 is to reach v at time T , w
at time T + 1 at which the time is reset due to periodicity. The edge w

T+1−→⊤ is
now available for Player 1 and they can reach the new target ⊤.

The lower bound for the case of periodically increasing temporal reachability
games follows by the same construction and using the duality between improving
and declining games on temporal graphs. Given a punctual reachability game
G with vertices V = V1 ⊎ V2 with target set F , we obtain the dual punctual
reachability game Ĝ with same target time by first switch the ownership of
vertices, i.e, V̂i = V3−i, i ∈ {1, 2} and make the new target as V \ F . It is easy
to see that Player 1 wins G if and only if Player 2 wins Ĝ.

Applying the same construction as shown in Fig. 6 to Ĝ, we obtain a pe-
riodically declining temporal reachability game Ĝ′, preserving the winner. Now
switching the ownership of vertices in Ĝ′ yields a periodically improving tem-
poral reachability game G′ which is winning for Player 1 if and only if Player 1
wins G. ⊓⊔

94 P. Austin, S. Bose, and P. Totzke



6 Conclusion

In this work we showed that parity games on ultimately periodic temporal graphs
are solvable in polynomial space. The lower bound already holds for the very
special case of punctual reachability games, and the PSPACE upper bound, which
improves on the naïve exponential-space algorithm on the unfolded graph, is
achieved by proving the existence of small, PSPACE-verifiable certificates.

We stress again that all constructions are effective no matter how the tempo-
ral graphs are defined, as long as checking edge availability for binary encoded
times is no obstacle. In the paper we use edge constraints given in the existential
fragment of Presburger arithmetic but alternate representations, for example us-
ing compressed binary strings of length h(G) given as Straight-Line Programs [5,
Section 3] would equally work. Checking existence of edge at time i would cor-
respond to querying whether the ith bit is 1 or not which is P-complete [27,
Theorem 1].

The games considered here are somewhat orthogonal to parity games played
on the configuration graphs of timed automata, where time is continuous, and
constraints are quantifier-free formulae involving possibly more than one variable
(clocks). Solving parity games on timed automata with two clocks is complete
for EXP but is in P if there is at most one one clock [38] [16, Contribution 3(d)].
Games on temporal graphs with quantifier-free constraints corresponds to a sub-
class of timed automata games with two-clocks, with intermediate complexity
of PSPACE. This is because translating a temporal graph game to a timed au-
tomata game requires two clocks: one to hold the global time used to check the
edge predicate and one to ensure that time progresses one unit per step.

An interesting continuation of the work presented here would be to consider
mean-payoff games [11] played on temporal graphs, possibly with dynamic step-
rewards depending on the time. If rewards are constant but the edge availability
is dynamic, then our arguments for improved algorithms on declining/improving
graphs would easily transfer. However, the PSPACE upper bound using sum-
maries seems trickier, particularly checking realisability of suitable certificates.

Acknowledgements This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), grant EP/V025848/1. We thank Viktor
Zamaraev and Sven Schewe for fruitful discussions and constructive feedback.

Parity Games on Temporal Graphs 95

References

1. Automata Logics, and Infinite Games: A Guide to Current Research. Springer-
Verlag (2002). https://doi.org/10.1007/3-540-36387-4

2. Akrida, E.C., Mertzios, G.B., Spirakis, P.G., Zamaraev, V.: Temporal vertex cover
with a sliding time window. Journal of Computer and System Sciences 107, 108–
123 (2020). https://doi.org/https://doi.org/10.1016/j.jcss.2019.08.002

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183
– 235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

https://doi.org/https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-36387-4


96 P. Austin, S. Bose, and P. Totzke

4. Avni, G., Ghorpade, P., Guha, S.: A Game of Pawns. In: International Conference
on Concurrency Theory. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 279, pp. 16:1–16:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023).
https://doi.org/10.4230/LIPIcs.CONCUR.2023.16

5. Babai, L., Szemeredi, E.: On the complexity of matrix group problems i. In: Annual
Symposium on Foundations of Computer Science. pp. 229–240 (1984). https://
doi.org/10.1109/SFCS.1984.715919

6. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Symposium on Theory of Computing. pp. 252–263
(2017). https://doi.org/10.1145/3055399.3055409

7. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM
(JACM) 28(1), 114–133 (1981). https://doi.org/10.1145/322234.322243

8. Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Timed Parity Games: Complexity
and Robustness. Logical Methods in Computer Science Volume 7, Issue 4 (Dec
2011). https://doi.org/10.2168/LMCS-7(4:8)2011

9. Colcombet, T., Fijalkow, N.: Universal Graphs and Good for Games Automata:
New Tools for Infinite Duration Games. In: International Conference on Founda-
tions of Software Science and Computational Structures. LNCS, vol. 11425, pp.
1–26. Springer (2019). https://doi.org/10.1007/978-3-030-17127-8_1

10. De Carufel, J.L., Flocchini, P., Santoro, N., Simard, F.: Cops & robber on periodic
temporal graphs: Characterization and improved bounds. In: Structural Informa-
tion and Communication Complexity. pp. 386–405. Springer Nature Switzerland
(2023). https://doi.org/10.1007/978-3-031-32733-9_17

11. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory 8(2), 109–113 (Jun 1979). https://doi.org/
10.1007/BF01768705

12. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. Journal
of Computer and System Sciences 119, 1–18 (2021). https://doi.org/https:
//doi.org/10.1016/j.jcss.2021.01.005

13. Fijalkow, N., Bertrand, N., Bouyer-Decitre, P., Brenguier, R., Carayol, A., Fearn-
ley, J., Gimbert, H., Horn, F., Ibsen-Jensen, R., Markey, N., Monmege, B., Novotný,
P., Randour, M., Sankur, O., Schmitz, S., Serre, O., Skomra, M.: Games on graphs
(2023). https://doi.org/10.48550/arXiv.2305.10546

14. Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs.
In: Algorithms and Computation. pp. 534–543. Springer Berlin Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10631-6_55

15. Haase, C.: A survival guide to presburger arithmetic. SIGLOG News 5(3), 67–82
(2018). https://doi.org/10.1145/3242953.3242964

16. Hansen, T.D., Ibsen-Jensen, R., Miltersen, P.B.: A faster algorithm for
solving one-clock priced timed games (2013). https://doi.org/10.1007/
978-3-642-40184-8_37

17. Holme, P., Saramäki, J.: Temporal Network Theory (01 2019). https://doi.org/
10.1007/978-3-030-23495-9

18. Holzer, M.: On emptiness and counting for alternating finite automata. In: Inter-
national Conference on Developments in Language Theory. pp. 88–97 (1995)

19. Janćar, P., Sawa, Z.: A note on emptiness for alternating finite automata with a
one-letter alphabet. Inf. Process. Lett. 104(5), 164–167 (2007). https://doi.org/
10.1016/j.ipl.2007.06.006

20. Jiang, T., Ravikumar, B.: A note on the space complexity of some decision problems
for finite automata. Inf. Process. Lett. 40(1), 25–31 (1991). https://doi.org/
https://doi.org/10.1016/S0020-0190(05)80006-7

https://doi.org/10.4230/LIPIcs.CONCUR.2023.16
https://doi.org/10.4230/LIPIcs.CONCUR.2023.16
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/322234.322243
https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1007/978-3-031-32733-9_17
https://doi.org/10.1007/BF01768705
https://doi.org/10.1007/BF01768705
https://doi.org/https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.1007/978-3-642-10631-6_55
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1007/978-3-642-40184-8_37
https://doi.org/10.1007/978-3-642-40184-8_37
https://doi.org/10.1007/978-3-030-23495-9
https://doi.org/10.1007/978-3-030-23495-9
https://doi.org/10.1016/j.ipl.2007.06.006
https://doi.org/10.1016/j.ipl.2007.06.006
https://doi.org/https://doi.org/10.1016/S0020-0190(05)80006-7
https://doi.org/https://doi.org/10.1016/S0020-0190(05)80006-7


Parity Games on Temporal Graphs 97

21. Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata.
In: International Colloquium on Automata, Languages and Programming.
pp. 838–849. Springer Berlin Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73420-8_72

22. Jurdziński, M.: Deciding the winner in parity games is in up ∩ co-up. Inf. Pro-
cess. Lett. 68(3), 119–124 (1998). https://doi.org/https://doi.org/10.1016/
S0020-0190(98)00150-1

23. Jurdziński, M., Lazić, R.: Succinct Progress Measures for Solving Parity Games. In:
Annual IEEE Symposium on Logic in Computer Science. pp. 1–9. IEEE Computer
Society (2017). https://doi.org/10.1109/LICS.2017.8005092

24. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Symposium on Theory of Computing. p. 513–522. STOC ’10, Association for
Computing Machinery (2010). https://doi.org/10.1145/1806689.1806760

25. Lehtinen, K., Parys, P., Schewe, S., Wojtczak, D.: A Recursive Approach to Solving
Parity Games in Quasipolynomial Time. Logical Methods in Computer Science
18(1), 8:1–18 (2022). https://doi.org/10.46298/lmcs-18(1:8)2022

26. Lehtinen, K., Boker, U.: Register Games. Logical Methods in Computer Science
16(2), 6:1–6:25 (2020). https://doi.org/10.23638/LMCS-16(2:6)2020

27. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Interna-
tional Symposium on Mathematical Foundations of Computer Science. pp. 681–
692. Springer Berlin Heidelberg (2006). https://doi.org/10.1007/11821069_59

28. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: International Symposium on Theoretical Aspects of Computer Sci-
ence. pp. 229–242. Springer Berlin Heidelberg (1995). https://doi.org/10.1007/
3-540-59042-0_76

29. Mertzios, G.B., Molter, H., Niedermeier, R., Zamaraev, V., Zschoche, P.: Com-
puting maximum matchings in temporal graphs. Journal of Computer and System
Sciences 137, 1–19 (2023). https://doi.org/https://doi.org/10.1016/j.jcss.
2023.04.005

30. Mertzios, G.B., Molter, H., Zamaraev, V.: Sliding window temporal graph coloring.
Journal of Computer and System Sciences 120, 97–115 (2021). https://doi.org/
https://doi.org/10.1016/j.jcss.2021.03.005

31. Michail, O.: An Introduction to Temporal Graphs: An Algorithmic Perspective, pp.
308–343. Springer International Publishing (2015). https://doi.org/10.1007/
978-3-319-24024-4_18

32. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computa-
tion in possibly disconnected synchronous dynamic networks. Journal of Parallel
and Distributed Computing 74(1), 2016–2026 (2014). https://doi.org/10.1016/
j.jpdc.2013.07.007

33. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In:
International Symposium on Mathematical Foundations of Computer Science. pp.
553–564. Springer Berlin Heidelberg (2014). https://doi.org/10.1016/j.tcs.
2016.04.006

34. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Annual Sympo-
sium on Principles of Programming Languages. p. 179–190. POPL ’89, Association
for Computing Machinery (1989). https://doi.org/10.1145/75277.75293

35. Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations
of Computer Science. p. 46–57. SFCS ’77, IEEE Computer Society (1977). https:
//doi.org/10.1109/SFCS.1977.32

https://doi.org/10.1007/978-3-540-73420-8_72
https://doi.org/10.1007/978-3-540-73420-8_72
https://doi.org/https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.23638/LMCS-16(2:6)2020
https://doi.org/10.1007/11821069_59
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/https://doi.org/10.1016/j.jcss.2023.04.005
https://doi.org/https://doi.org/10.1016/j.jcss.2023.04.005
https://doi.org/https://doi.org/10.1016/j.jcss.2021.03.005
https://doi.org/https://doi.org/10.1016/j.jcss.2021.03.005
https://doi.org/10.1007/978-3-319-24024-4_18
https://doi.org/10.1007/978-3-319-24024-4_18
https://doi.org/10.1016/j.jpdc.2013.07.007
https://doi.org/10.1016/j.jpdc.2013.07.007
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32


Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

98 P. Austin, S. Bose, and P. Totzke

36. Ravi, R.: Rapid rumor ramification: Approximating the minimum broadcast time.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. pp.
202–213 (1994). https://doi.org/10.1109/SFCS.1994.365693

37. Scarpellini, B.: Complexity of subcases of presburger arithmetic. Transactions of
the American Mathematical Society 284, 203–218 (1984). https://doi.org/10.
1090/s0002-9947-1984-0742421-9

38. Trivedi, A.: Competitive optimisation on timed automata. Ph.D. thesis, University
of Warwick (April 2009)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SFCS.1994.365693
https://doi.org/10.1090/s0002-9947-1984-0742421-9
https://doi.org/10.1090/s0002-9947-1984-0742421-9


Categorical Semantics



Drawing from an Urn is Isometric

Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

bart@cs.ru.nl

Abstract. Drawing (a multiset of) coloured balls from an urn is one of the most
basic models in discrete probability theory. Three modes of drawing are com-
monly distinguished: multinomial (draw-replace), hypergeometric (draw-delete),
and Pólya (draw-add). These drawing operations are represented as maps from
urns to distributions over multisets of draws. The set of urns is a metric space
via the Wasserstein distance. The set of distributions over draws is also a metric
space, using Wasserstein-over-Wasserstein. The main result of this paper is that
the three draw operations are all isometries, that is, they preserve the Wasserstein
distances.

Keywords: probability · urn drawing · Wasserstein distance.

1 Introduction

We start with an illustration of the topic of this paper. We consider a situation with a set
C = {R,G,B} of three colours: red, green, blue. Assume that we have two urns υ1, υ2
with 10 coloured balls each. We describe these urns as multisets of the form:

υ1 = 8|G⟩+ 2|B ⟩ and υ2 = 5|R⟩+ 4|G⟩+ 1|B ⟩.

Recall that a multiset is like a set, except that elements may occur multiple times. Here
we describe urns as multisets using ‘ket’ notation | − ⟩. It separates multiplicities of
elements (before the ket) from the elements in the multiset (inside the ket). Thus, urn
υ1 contains 8 green balls and 2 blue balls (and no red ones). Similarly, urn υ2 contains
5 red, 4 green, and 1 blue ball(s).

Below, we shall describe the Wasserstein distance between multisets (of the same
size). How this works does not matter for now; we simply posit that the Wasserstein dis-
tance d(υ1, υ2) between these two urns is 1

2 — where we assume the discrete distance
on the set C of colours.

We turn to draws from these two urns, in this introductory example of size two.
These draws are also described as multisets, with elements from the set C = {R,G,B}
of colours. There are six multisets (draws) of size 2, namely:

2|R⟩ 1|R⟩+ 1|G⟩ 2|G⟩ 1|R⟩+ 1|B ⟩ 2|B ⟩ 1|G⟩+ 1|B ⟩. (1)

As we see, there are three draws with 2 balls of the same colour, and three draws with
balls of different colours.

(B)

© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574
https://doi.org/10.1007/978-3-031-57228-9_6

, pp. 101–120, 2024.

https://doi.org/10.1007/978-3-031-57228-9_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_6&domain=pdf


We consider the hypergeometric probabilities associated with these draws, from the
two urns. Let’s illustrate this for the draw 1|G⟩+ 1|B ⟩ of one green ball and one blue
ball from the urn υ1. The probability of drawing 1|G⟩ + 1|B ⟩ is 16

45 ; it is obtained as
sum of:

– first drawing-and-deleting a green ball from υ1 = 8|G⟩ + 2|B ⟩, with probability
8
10 . It leaves an urn 7|G⟩+ 2|B ⟩, from which we can draw a blue ball with proba-
bility 2

9 . Thus drawing “first green then blue” happens with probability 8
10 ·

2
9 = 8

45 .
– Similarly, the probability of drawing “first blue then green” is 2

10 · 8
9 = 8

45 .

We can similarly compute the probabilities for each of the above six draws (1) from urn
υ1. This gives the hypergeometric distribution, which we write using kets-over-kets as:

hg[2](υ1) = 28
45

∣∣∣2|G⟩
〉
+ 16

45

∣∣∣1|G⟩+ 1|B ⟩
〉
+ 1

45

∣∣∣2|B ⟩
〉
.

The fraction written before a big ket is the probability of drawing the multiset (of size
2), written inside that big ket, from the urn υ1.

Drawing from the second urn υ2 gives a different distribution over these multi-
sets (1). Since urn υ2 contains red balls, they additionally appear in the draws.

hg[2](υ2) = 2
9

∣∣∣2|R⟩
〉
+ 4

9

∣∣∣1|R⟩+ 1|G⟩
〉
+ 2

15

∣∣∣2|G⟩
〉

+ 1
9

∣∣∣1|R⟩+ 1|B ⟩
〉
+ 4

45

∣∣∣1|G⟩+ 1|B ⟩
〉
.

We can also compute the distance between these two hypergeometric distributions over
multisets. It involves a Wasserstein distance, over the space of multisets (of size 2)
with their own Wasserstein distance. Again, details of the calculation are skipped at this
stage. The distance between the above two hypergeometric draw-distributions is:

d
(

hg[2](υ1), hg[2](υ2)
)
= 1

2 = d
(
υ1, υ2

)
.

This coincidence of distances is non-trivial. It holds, in general, for arbitrary urns (of the
same size) over arbitrary metric spaces of colours, for draws of arbitrary sizes. More-
over, the same coincidence of distances holds for the multinomial and Pólya modes of
drawing. These coincidences are the main result of this paper, see Theorems 1, 2, and 3
below.

In order to formulate and obtain these results, we describe multinomial, hypergeo-
metric and Pólya distributions in the form of (Kleisli) maps:

D(X)
mn[K]

// D
(
M[K](X)

)
M[L](X)

hg[K]
oo

pl [K]
oo (2)

They all produce distributions (indicated by D), in the middle of this diagram, on mul-
tisets (draws) of size K, indicated by M[K], over a set X of colours. Details will be
provided below. Using the maps in (2), the coincidence of distances that we saw above
can be described as a preservation property, in terms of distance preserving maps —
called isometries. At this stage we wish to emphasise that the representation of these

102             B.  Jacobs



different drawing operations as maps in (2) has a categorical background. It makes it
possible to formulate and prove basic properties of drawing from an urn, such as natu-
rality in the set X of colours. Also, as shown in [8] for the multinomial and hypergeo-
metric case, drawing forms a monoidal transformation (with ‘zipping’ for multisets as
coherence map). This paper demonstrates that the three draw maps (2) are even more
well-behaved: they are all isometries, that is, they preserve Wasserstein distances. This
is a new and amazing fact.

This paper concentrates on the mathematics behind these isometry results, and not
on interpretations or applications. We do like to refer to interpretations in machine learn-
ing [14] where the distance that we consider on colours in an urn is called the ground
distance. Actual distances between colours are used there, based on experiments in
psychophysics, using perceived differences [16].

The Wasserstein — or Wasserstein-Kantorovich, or Monge-Kantorovich — dis-
tance is the standard distance on distributions and on multisets, going back to [12].
After some preliminaries on multisets and distributions, and on distances in general,
Sections 4 and 5 of this paper recall the Wasserstein distance on distributions and on
multisets, together with some basic results. The three subsequent Sections 6 – 8 demon-
strate that multinomial, hypergeometric and Pólya drawing are all isometric. Distances
occur on multiple levels: on colours, on urns (as multisets or distributions) and on draw-
distributions. This may be confusing, but many illustrations are included.

2 Preliminaries on multisets and distributions

A multiset over a set X is a finite formal sum of the form
∑
i ni|xi ⟩, for elements

xi ∈ X and natural numbers ni ∈ N describing the multiplicities of these elements
xi. We shall write M(X) for the set of such multisets over X . A multiset φ ∈ M(X)
may equivalently be described in functional form, as a function φ : X → N with finite
support: supp(φ) := {x ∈ X | φ(x) ̸= 0}. Such a function φ : X → N can be
written in ket form as

∑
x∈X φ(x)|x⟩. We switch back-and-forth between the ket and

functional form and use the formulation that best suits a particular situation.
For a multiset φ ∈ M(X) we write ∥φ∥ ∈ N for the size of the multiset. It is the

total number of elements, including multiplicities:

∥φ∥ :=
∑
x∈X

φ(x).

For a number K ∈ N we write M[K](X) ⊆ M(X) for the subset of multisets of size
K. There are ‘accumulation’ maps acc : XK → M[K](X) turning lists into multisets
via acc

(
x1, . . . , xK

)
:= 1|x1 ⟩+· · ·+1|xK ⟩. For instance acc

(
c, b, a, c, a, c) = 2|a⟩+

1|b⟩+ 3|c⟩. A standard result (see [10]) is that for a multiset φ ∈ M[K](X) there are
(φ) := K!

φ
many sequences x ∈ XK with acc(x) = φ, where φ =

∏
x φ(x)!.

Multisets φ,ψ ∈ M(X) can be added and compared elementwise, so that
(
φ +

ψ
)
(x) = φ(x)+ψ(x) and φ ≤ ψ means φ(x) ≤ ψ(x) for all x ∈ X . In the latter case,

when φ ≤ ψ, we can also subtract ψ − φ elementwise.

Drawing from an Urn is Isometric             103



The mapping X 7→ M(X) is functorial: for a function f : X → Y we have
M(f) : M(X) → M(Y ) given by M(f)(φ)(y) =

∑
x∈f−1(y) φ(x). This map M(f)

preserves sums and size.
For a multiset τ ∈ M(X × Y ) on a product set we can take its two marginals

M(π1)(τ) ∈ M(X) and M(π2)(τ) ∈ M(Y ) via functoriality, using the two projec-
tion functions π1 : X × Y → X and π2 : X × Y → Y . Starting from φ ∈ M(X) and
ψ ∈ M(Y ), we say that τ ∈ M(X × Y ) is a coupling of φ,ψ if φ and ψ are the two
marginals of τ . We define the decoupling map:

M(X × Y )
dcpl := ⟨M(π1),M(π2)⟩

// M(X)×M(Y ) (3)

The inverse image dcpl−1(φ,ψ) ⊆ M(X × Y ) is thus the subset of couplings of φ,ψ.

A distribution is a finite formal sum of the form
∑
i ri|xi ⟩ with multiplicities

ri ∈ [0, 1] satisfying
∑
i ri = 1. Such a distribution can equivalently be described as a

function ω : X → [0, 1] with finite support, satisfying
∑
x ω(x) = 1. We write D(X)

for the set of distributions onX . This D is functorial, in the same way as M. Both D and
M are monads on the category Sets of sets and functions, but we only use this for D.
The unit and multiplication / flatten maps unit : X → D(X) and flat : D2(X) → D(X)
are given by:

unit(x) := 1|x⟩ flat(Ω) :=
∑
x∈X

 ∑
ω∈D(X)

Ω(ω) · ω(x)

 |x⟩. (4)

Kleisli maps c : X → D(Y ) are also called channels and written as c : X → Y . Kleisli
extension c =≪(−) : D(X) → D(Y ) for such a channel, is defined on ω ∈ D(X) as:

c =≪ω := flat
(
D(c)(ω)

)
=
∑
y∈Y

(∑
x∈X

ω(x) · c(x)(y)

)
|y ⟩.

Channels c : X → Y and d : Y → Z can be composed to d ◦· c : X → Z via (d ◦·
c)(x) := d =≪ c(x). Each function f : X → Y gives rise to a deterministic channel
‹f› := unit ◦ f : X → Y , that is, via ‹f›(x) = 1

∣∣f(x)〉.
An example of a channel is arrangement arr : M[K](X) → D(XK). It maps a

multiset φ ∈ M[K](X) to the uniform distribution of sequences that accumulate to φ.

arr(φ) :=
∑

x∈acc−1(φ)

1

(φ)

∣∣x〉 =
∑

x∈acc−1(φ)

φ

K!

∣∣x〉. (5)

One can show that ‹acc› ◦· arr = D(acc) ◦ arr = unit : M[K](X) → D
(
M[K](X)

)
.

The composite in the other direction produces the uniform distribution of all permuta-
tions of a sequence:

arr ◦· ‹acc› = arr ◦ acc = prm where prm(x) :=
∑

t : K
∼=→K

1

K!

∣∣t(x)〉, (6)

104             B.  Jacobs



in which t
(
x1, . . . , xK

)
:= (xt(1), . . . , xt(K)). In writing t : K

∼=→ K we implicitly
identify the number K with the set {1, . . . ,K}.

Each multiset φ ∈ M(X) of non-zero size can be turned into a distribution via
normalisation. This operation is called frequentist learning, since it involves learning a
distribution from a multiset of data, via counting. Explicitly:

Flrn(φ) :=
∑
x∈X

φ(x)

∥φ∥
∣∣x〉.

For instance, if we learn from an urn with three red, two green and five blue balls, we
get the probability distribution for drawing a ball of a particular colour from the urn:

Flrn
(
3|R⟩+ 2|G⟩+ 5|B ⟩

)
= 3

10 |R⟩+ 1
5 |G⟩+ 1

2 |B ⟩.

This map Flrn is a natural transformation (but not a map of monads).
Given two distributions ω ∈ D(X) and ρ ∈ D(Y ), we can form their parallel

product ω ⊗ ρ ∈ D(X × Y ), given in functional form as:(
ω ⊗ ρ

)
(x, y) := ω(x) · ρ(y).

Like for multisets, we call a joint distribution τ ∈ D(X × Y ) a coupling of ω ∈ D(X)
and ρ ∈ D(Y ) if ω, ρ are the two marginals of τ , that is if, D(π1)(τ) = ω and D(π2) =
ρ. We can express this also via a decouple map dcpl = ⟨D(π1),D(π2)⟩ as in (3).

An observation on a set X is a function of the form p : X → R. Such a map p,
together with a distribution ω ∈ D(X), is called a random variable — but confusingly,
the distribution is often left implicit. The map p : X → R will be called a factor if it
restricts to non-negative reals X → R≥0. Each element x ∈ X gives rise to a point
observation 1x : X → R, with 1x(x

′) = 1 if x = x′ and 1x(x
′) = 0 if x ̸= x′. For a

distribution ω ∈ D(X) and an observation p : X → R on the same set X we write ω |=
p for the validity (expected value) of p in ω, defined as (finite) sum:

∑
x∈X ω(x) · p(x).

We shall write Obs(X) = RX and Fact(X) = (R≥0)
X for the sets of observations and

factors on X .

3 Preliminaries on metric spaces

A metric space will be written as a pair (X, dX), where X is a set and dX : X ×X →
R≥0 is a distance function, also called metric. This metric satisfies:

– dX(x, x′) = 0 iff x = x′;
– symmetry: dX(x, x′) = dX(x′, x);
– triangular inequality: dX(x, x′′) ≤ dX(x, x′) + dX(x′, x′′).

Often, we drop the subscriptX in dX if it is clear from the context. We use the standard
distance d(x, y) = |x− y| on real and natural numbers.

Definition 1. Let (X, dX), (Y, dY ) be two metric spaces.

Drawing from an Urn is Isometric             105



1. A function f : X → Y is called short (or also non-expansive) if:

dY
(
f(x), f(x′)

)
≤ dX

(
x, x′

)
, for all x, x′ ∈ X.

Such a map is called an isometry or an isometric embedding if the above inequality
≤ is an actual equality =. This implies that the function f is injective, and thus an
‘embedding’.
We write MetS for the category of metric spaces with short maps between them.

2. A function f : X → Y is Lipschitz or M -Lipschitz, if there is a number M ∈ R>0

such that:

dY
(
f(x), f(x′)

)
≤ M · dX

(
x, x′

)
, for all x, x′ ∈ X.

The number M is sometimes called the Lipschitz constant. Thus, a short function
is Lipschitz, with constant 1. We write MetL for the category of metric spaces with
Lipschitz maps between them (with arbitrary Lipschitz constants).

Lemma 1. For two metric spaces (X1, d1) and (X2, d2) we equip the cartesian product
X1 ×X2 of sets with the sum of the two metrics:

d
(
(x1, x2), (x

′
1, x

′
2)
)
:= dX1

(x1, x
′
1) + dX2

(x2, x
′
2). (7)

With the usual projections and tuples this forms a product in the category MetL .

The product × also exists in the category MetS of metric spaces with short maps.
There, it forms a monoidal product (a tensor ⊗) since there are no diagonals. In the
setting of [0, 1]-bounded metrics (with short maps) one uses the maximum instead of
the sum (7) in order to form products (possibly infinite). In the category MetL the
products X1 × X2 with maximum and with sum of distances are isomorphic, via the
identity maps. This works since for r, s ∈ R≥0 one as max(r, s) ≤ r + s and r + s ≤
2 ·max(r, s).

4 The Wasserstein distance between distributions

This section introduces the Wasserstein distance between probability distributions and
recalls some basic results. There are several equivalent formulations for this distance.
We express it in terms of validity and couplings, see also e.g. [1,3,6,4].

Definition 2. Let (X, dX) be a metric space. The Wasserstein metric d : D(X)×D(X) →
R≥0 is defined by any of the three equivalent formulas:

d
(
ω, ω′) :=

∧
τ∈dcpl−1(ω,ω′)

τ |= dX

=
∨

p, p′∈Obs(X), p⊕p′ ≤ dX

ω |= p + ω′ |= p′

=
∨

q∈FactS (X)

∣∣ω |= q − ω′ |= q
∣∣.

(8)

106             B.  Jacobs



This turns D(X) into a metric space. The operation ⊕ in the second formulation is
defined as (p ⊕ p′)(x, x′) = p(x) + p′(x′). The set FactS (X) ⊆ Fact(X) in the third
formulation is the subset of short factors X → R≥0. To be precise, we should write
FactS (X, dX) since the distance dX on X is a parameter, but we leave it implicit for
convenience. The meet

∧
and joins

∨
in (8) are actually reached, by what are called

the optimal coupling and the optimal observations / factor.

In this definition it is assumed thatX is a metric space. This includes the case where
X is simply a set, with the discrete metric (where different elements have distance 1).
The above Wasserstein distance can then be formulated as what is often called the total
variation distance. For distributions ω, ω′ ∈ D(X) it is:

d(ω, ω′) = 1
2

∑
x∈X

∣∣ω(x)− ω′(x)
∣∣.

This discrete case is quite common, see e.g. [11] and the references given there.
The equivalence of the first and second formulation in (8) is an instance of strong

duality in linear programming, which can be obtained via Farkas’ Lemma, see e.g. [13].
The second formulation is commonly associated with Monge. The single factor q in
the third formulation can be obtained from the two observations p, p′ in the second
formulation, and vice-versa. What we call the Wasserstein distance is also called the
Monge-Kantorovich distance.

We do not prove the equivalence of the three formulations for the Wasserstein dis-
tance d(ω, ω′) between two distributions ω, ω′ in (8), one with a meet

∧
and two with

a join
∨

. This is standard and can be found in the literature, see e.g. [15]. These three
formulations do not immediately suggest how to calculate distances. What helps is that
the minimum and maxima are actually reached and can be computed. This is done via
linear programming, originally introduced by Kantorovich, see [13,15,3]. In the sequel,
we shall see several examples of distances between distributions. They are obtained
via our own Python implementation of the linear optimisation, which also produces the
optimal coupling, observations or factor. This implementation is used only for illustra-
tions.

Example 1. Consider the set X containing the first eight natural numbers, so X =
{0, 1, . . . , 7} ⊆ N, with the usual distance, written as dX , between natural numbers:
dX(n,m) = |n−m|. We look at the following two distributions on X .

ω = 1
2 |0⟩+

1
2 |4⟩ ω′ = 1

8 |2⟩+
1
8 |3⟩+

1
8 |6⟩+

5
8 |7⟩.

We claim that the Wasserstein distance d(ω, ω′) is 15
4 . This will be illustrated for each

of the three formulations in Definition 2.

– The optimal coupling τ ∈ D(X ×X) of ω, ω′ is:

τ = 1
8

∣∣0, 2〉+ 1
8

∣∣0, 3〉+ 1
8

∣∣0, 6〉+ 1
8

∣∣0, 7〉+ 1
2

∣∣4, 7〉.

Drawing from an Urn is Isometric             107



It is not hard to see that τ ’s first marginal is ω, and its second marginal is ω′. We
compute the distances as:

d(ω, ω′) = τ |= dX

= 1
8 · dX(0, 2) + 1

8 · dX(0, 3) + 1
8 · dX(0, 6) + 1

8 · dX(0, 7) + 1
2 · dX(4, 7)

= 2
8 + 3

8 + 6
8 + 7

8 + 3
2 = 18

8 + 3
2 = 9

4 + 6
4 = 15

4 .

– There are the following two optimal observations p, p′ : X → R, described as sums
of weighted point predicates:

p = −1 · 11 − 2 · 12 − 3 · 13 − 4 · 14 − 5 · 15 − 6 · 16 − 7 · 17

p′ = 1 · 11 + 2 · 12 + 3 · 13 + 4 · 14 + 5 · 15 + 6 · 16 + 7 · 17.

It is not hard to see that (p ⊕ p′)(i, j) := p(i) + p′(j) ≤ dX(i, j) holds for all
i, j ∈ X . Using the second formulation in (8) we get:(

ω |= p
)
+
(
ω′ |= p′

)
= 1

2 · p(0) + 1
2 · p(4) + 1

8 · p′(2) + 1
8 · p′(3) + 1

8 · p′(6) + 5
8 · p′(7)

= −4
2 + 2

8 + 3
8 + 6

8 + 35
8 = −2 + 46

8 = 30
8 = 15

4 .

– Finally, there is a (single) short factor q : X → R≥0 given by:

q = 7 · 10 + 6 · 11 + 5 · 12 + 4 · 13 + 3 · 14 + 2 · 15 + 1 · 16.

Then: (
ω |= q

)
−
(
ω′ |= q

)
= 1

2 · q(0) + 1
2 · q(4)−

(
1
8 · q(2) + 1

8 · q(3) + 1
8 · q(6) + 5

8 · q(7)
)

= 7
2 + 3

2 −
(

5
8 + 4

8 + 1
8

)
= 10

2 − 10
8 = 20

4 − 5
4 = 15

4 .

From the fact that the coupling τ , the two observations p, p′, and the single factor q
produce the same distance one can deduce that they are optimal, using the formula (8).

We proceed with several standard properties of the Wasserstein distance on distri-
butions.

Lemma 2. In the context of Definition 2, the following properties hold.

1. For an M -Lipschitz function f : X → Y , the pushforward map D(f) : D(X) →
D(Y ) is also M -Lipschitz; as a result, D lifts to a functor D : MetL → MetL ,
and also to D : MetS → MetS .

2. If f : X → Y is an isometry, then so is D(f) : D(X) → D(Y ).
3. For anM -Lipschitz factor q : X → R≥0, the validity-of-q factor (−) |= q : D(X) →

R≥0 is also M -Lipschitz.
4. For each element x ∈ X and distribution ω ∈ D(X) one has: d

(
1|x⟩, ω

)
= ω |=

dX(x,−); especially, d
(
1|x⟩, 1|x′ ⟩

)
= dX(x, x′), making the map unit : X →

D(X) an isometry.

108             B.  Jacobs



5. The monad multiplication flat : D2(X) → D(X) is short, so that D lifts from a
monad on Sets to a monad on MetS and on MetL .

6. If a channel c : X → D(Y ) is M -Lipschitz, then so is its Kleisli extension c =≪
(−) := flat ◦ D(c) : D(X) → D(Y ).

7. If channel c : X → Y is M -Lipschitz and channel d : Y → Z is K-Lipschitz, then
their (channel) composite d ◦· c : X → Z is (M ·K)-Lipschitz.

8. For distributions ωi, ω′
i ∈ D(X) and numbers ri ∈ [0, 1] with

∑
i ri = 1 one has:

d
(∑

i ri · ωi,
∑
i ri · ω′

i

)
≤
∑
i ri · d

(
ωi, ω

′
i

)
.

9. The permutation channel prm : XK → D(XK) from (6) is short.

Proof. We skip the first two points since they are standard.

3. Let q : X → R≥0 be M -Lipschitz, then 1
M · q : X → R≥0 is short. The function

(−) |= q : D(X) → R≥0 is then also M -Lipschitz, since for ω, ω′ ∈ D(X),∣∣ω |= q − ω′ |= q
∣∣ = M ·

∣∣ω |= 1
M · q − ω′ |= 1

M · q
∣∣

≤ M ·
∨

p∈FactS (X)

∣∣ω |= p− ω′ |= p
∣∣

= M · d
(
ω, ω′).

4. The only coupling of 1|x⟩, ω ∈ D(X) is 1|x⟩ ⊗ ω ∈ D(X ×X). Hence:

d
(
1|x⟩, ω

)
= 1|x⟩ ⊗ ω |= dX =

∑
x′∈X

ω(x′) · dX(x, x′) = ω |= dX(x,−).

5. We first note that for a distribution of distributions Ω ∈ D2(X) and a short factor
p : X → R≥0 the validity inΩ of the short validity factor (−) |= p : D(X) → R≥0

from item 3 satisfies:

Ω |=
(
(−) |= p

)
=

∑
ω∈D(X)

Ω(ω) ·
(
ω |= p

)
=

∑
ω∈D(X)

∑
x∈X

Ω(ω) · ω(x) · p(x)

(4)
=
∑
x∈X

flat(Ω)(x) · p(x)

= flat(Ω) |= p.

Thus for Ω,Ω′ ∈ D2(X),

dX

(
flat(Ω), flat(Ω′)

)
=

∨
p∈FactS (X)

∣∣ flat(Ω) |= p − flat(Ω′) |= p
∣∣

=
∨

p∈FactS (X)

∣∣Ω |=
(
(−) |= p

)
− Ω′ |=

(
(−) |= p

) ∣∣ as just shown

≤
∨

Q∈FactS (D(X))

∣∣Ω |= Q − Ω′ |= Q
∣∣ by item 3

= dD(X)

(
Ω,Ω′).

Drawing from an Urn is Isometric             109



6. Directly by points (1) and (5).
7. The channel composite d◦· c = flat ◦ D(d) ◦ c consists of a functional composite of
M -Lipschitz,K-Lipschitz, and 1-Lipschitz maps, and is thus (M ·K ·1)-Lipschitz.
This uses items 1 and (5).

8. If we have couplings τi for ωi, ω′
i, then

∑
i ri · τi is a coupling of

∑
i ri · ωi and∑

i ri · ω′
i. Moreover:

d
(∑

i ri · ωi,
∑
i ri · ω′

i

)
≤
(∑

i ri · τi
)
|= dX =

∑
i ri ·

(
τi |= dX

)
.

Since this holds for all τi, we get: d
(∑

i ri · ωi,
∑
i ri · ω′

i

)
≤
∑
i ri · d

(
ωi, ω

′
i

)
.

9. We unfold the definition of the prm map from (6) and use the previous item in the
first step below. We also use that the distance between two sequences is invariant
under permutation (of both).

dD(XK)

(
prm(x), prm(y)

)
≤

∑
t : K

∼=→K

1

K!
· dD(XK)

(
1
∣∣t(x)〉, 1∣∣t(y)〉)

=
∑

t : K
∼=→K

1

K!
· dXK

(
t(x), t(y)

)
by item 4

=
∑

t : K
∼=→K

1

K!
· dXK

(
x,y

)
= dXK

(
x,y

)
.

Later on we need the following facts about tensors of distributions.

Proposition 1. Let X,Y be metric spaces, and K be a positive natural number.

1. The tensor map ⊗ : D(X)×D(Y ) → D(X × Y ) is an isometry.
2. The K-fold tensor map iid [K] : D(X) → D(XK), given by iid [K](ω) := ωK =
ω⊗· · ·⊗ω, isK-Lipschitz. Actually, there is an equality: d(ωK , ρK) = K ·d(ω, ρ).

Proof. 1. Let distributions ω, ω′ ∈ D(X) and ρ, ρ′ ∈ D(Y ) be given. For the in-
equality dD(X)×D(Y )

(
(ω, ρ), (ω′, ρ′)

)
≤ dD(X×Y )

(
ω⊗ ρ, ω′ ⊗ ρ′

)
one uses that a

coupling τ ∈ D
(
(X×Y )× (X×Y )

)
of ω⊗ρ, ω′⊗ρ′ ∈ D(X×Y ) can be turned

into two couplings τ1, τ2 of ω, ω′ and of ρ, ρ′, namely as τi := D
(
πi × πi

)
(τ).

For the reverse inequality one turns two couplings τ1, τ2 of ω, ω′ and ρ, ρ′ into a
coupling τ of ω ⊗ ρ, ω′ ⊗ ρ′ via τ := D

(
⟨π1 × π1, π2 × π2⟩

)(
τ1 ⊗ τ2

)
.

2. For ω, ρ ∈ D(X) and K ∈ N, using the previous item, we get:

dD(XK)

(
ωK , ρK

) 1
= dD(X)K

(
(ω, . . . , ω), (ρ, . . . , ρ)

)
(7)
= K · dD(X)

(
ω, ρ

)
.

5 The Wasserstein distance between multisets

There is also a Wasserstein distance between multisets of the same size. This section
recalls the definition and the main results.

110             B.  Jacobs



Definition 3. Let (X, dX) be a metric space and K ∈ N a natural number. We can
turn the metric dX : X × X → R≥0 into the Wasserstein metric d : M[K](X) ×
M[K](X) → R≥0 on multisets (of the same size), via:

d
(
φ,φ′) :=

∧
τ∈dcpl−1(φ,φ′)

Flrn(τ) |= dX

=
1

K
·

∧
x∈acc−1(φ),x′∈acc−1(φ′)

dXK

(
x,x′)

(7)
=

1

K
·

∧
x∈acc−1(φ),x′∈acc−1(φ′)

∑
0≤i<K

dX(xi, x
′
i).

(9)

All meets in (9) are finite and can be computed via enumeration. Alternatively, one
can use linear optimisation. We give an illustration below. The equality of the first two
formulations is standard, like in Definition 2, and is used here without proof. There is
an alternative formulation of the above distance between multisets that uses bistochastic
matrices, see e.g. [2,6], but we do not need it here.

Example 2. Consider the following two multisets of size 4 on the set X = {1, 2, 3} ⊆
N, with standard distance between natural numbers.

φ = 3|1⟩+ 1|2⟩ φ′ = 2|1⟩+ 1|2⟩+ 1|3⟩.

The optimal coupling τ ∈ M[4](X ×X) is:

τ = 2
∣∣1, 1〉+ 1

∣∣1, 2〉+ 1
∣∣2, 3〉.

The resulting Wasserstein distance d(φ,φ′) is:

Flrn(τ) |= dX = 1
2 · dX(1, 1) + 1

4 · dX(1, 2) + 1
4 · dX(2, 3) = 1

4 · 1 + 1
4 · 1 = 1

2 .

Alternatively, we may proceed as follows. There are (φ) = 4!
3!·1! = 4 lists that accu-

mulate to φ, and (φ′ ) = 4!
2!·1!·1! = 12 lists that accumulate to φ′. We can align them all

and compute the minimal distance. It is achieved for instance at:

1
4 · dX4

(
(1, 1, 1, 2), (1, 1, 2, 3)

)
(7)
= 1

4 ·
(
0 + 0 + 1 + 1

)
= 2

4 = 1
2 .

Lemma 3. We consider the situation in Definition 3.

1. Frequentist learning Flrn : M[K](X) → D(X) is an isometry, for K > 0.
2. For numbers K,n ≥ 1 the scalar multiplication function n · (−) : M[K](X) →

M[n ·K](X) is an isometry.
3. The sum of distributions +: M[K](X)×M[L](X) → M[K + L](X) is short.
4. If f : X → Y is M -Lipschitz, then M[K](f) : M[K](X) → M[K](Y ) is M -

Lipschitz too. Thus, the fixed size multiset functor M[K] lifts to categories of metric
spaces MetS and MetL .

5. For K > 0 the accumulation map acc : XK → M[K](X) is 1
K -Lipschitz, and

thus short.

Drawing from an Urn is Isometric             111



6. The arrangement channel arr : M[K](X) → XK is K-Lipschitz; in fact there is
an equality d

(
arr(φ), arr(φ′)

)
= K · d(φ,φ′).

Proof. 1. Via naturality of frequentist learning: if τ ∈ M[K](X×X) is a coupling of
φ,φ′ ∈ M[K](X), then Flrn(τ) ∈ D(X×X) is a coupling of Flrn(φ), Flrn(φ′) ∈
D(X). This gives d

(
φ,φ′) ≤ d

(
Flrn(φ), Flrn(φ′)

)
. The reverse inequality is a bit

more subtle. Let σ ∈ D(X × X) be an optimal coupling of Flrn(φ), Flrn(φ′).
Then, since any coupling τ ∈ M[K](X ×X) of φ,φ′ gives, as we have just seen,
a coupling Flrn(τ) ∈ D(X ×X) of Flrn(φ), Flrn(φ′), we obtain, by optimality:

d
(
Flrn(φ), Flrn(φ′)

)
= σ |= dX ≤ Flrn(τ) |= dX .

Since this holds for any coupling τ , we get d
(
Flrn(φ), Flrn(φ′)

)
≤ d
(
φ,φ′).

2. For multisets φ,φ′ ∈ M[K](X), by the previous item:

dM[K](X)

(
φ,φ′) = dD(X)

(
Flrn(φ), Flrn(φ′)

)
= dD(X)

(
Flrn(n · φ), Flrn(n · φ′)

)
= dM[n·K](X)

(
n · φ, n · φ′).

3. For multisets φ,φ′ ∈ M[K](X) and ψ,ψ′ ∈ M[L](X), using Lemma 2 (8),

d
(
φ+ ψ,φ′ + ψ′

)
1
= d

(
Flrn(φ+ ψ), Flrn(φ′ + ψ′)

)
= d

(
K

K+L · Flrn(φ) + L
K+L · Flrn(ψ), K

K+L · Flrn(φ′) + L
K+L · Flrn(ψ′),

)
≤ K

K+L · d
(
Flrn(φ), Flrn(φ′)

)
+ L

K+L · d
(
Flrn(ψ), Flrn(ψ′)

)
1
= K

K+L · d
(
φ,φ′)+ L

K+L · d
(
ψ,ψ′)

≤ d
(
φ,φ′)+ d

(
ψ,ψ′)

(7)
= d

(
(φ,ψ), (φ′, ψ′)

)
.

4. Let f : X → Y be M -Lipschitz. We use that frequentist learning Flrn is an isome-
try and a natural transformation M[K] ⇒ D. For multisets φ,φ′ ∈ M[K](X),

dM[K](Y )

(
M(f)

(
φ
)
,M(f)

(
φ′))

1
= dD(Y )

(
Flrn

(
M(f)

(
φ
))
, Flrn

(
M(f)

(
φ′)))

= dD(Y )

(
D(f)

(
Flrn(φ)

)
,D(f)

(
Flrn(φ′)

))
by naturality of Flrn

≤ M · dD(X)

(
Flrn(φ), Flrn(φ′)

)
by Lemma 2 (1)

1
= dM[K](X)

(
φ,φ′).

5. The map acc : XK → M[K](X) is 1
K -Lipschitz since for y,y′ ∈ XK ,

d
(

acc(y), acc(y′)
)
=

1

K
·

∧
x∈acc−1(acc(y)),x′∈acc−1(acc(y′))

dXK

(
x,x′)

≤ 1

K
· dXK

(
y,y′).

112             B.  Jacobs



6. For fixed φ,φ′ ∈ M[K](X), take arbitrary x ∈ acc−1(φ) and x′ ∈ acc−1(φ′).
Then:

dD(XK)

(
arr(φ), arr(φ′)

)
= dD(XK)

(
arr(acc(x)), arr(acc(x′))

)
(6)
= dD(XK)

(
prm(x), prm(x′)

)
≤ dXK

(
x,x′) by Lemma 2 (9).

Since this holds for all x ∈ acc−1(φ), x′ ∈ acc−1(φ′) we get an inequaltiy
dD(XK)

(
arr(φ), arr(φ′)

)
≤ K ·dM[K](X)

(
φ,φ′), see Definition 3. This inequality

is an actual equality since acc , and thus D(acc), is 1
K -Lipschitz:

dM[K](X)

(
φ,φ′) = dD(M[K](X))

(
1|φ⟩, 1|φ′ ⟩

)
= dD(M[K](X))

(
D(acc)

(
arr(φ)

)
,D(acc)

(
arr(φ′)

))
≤ 1

K · dD(XK)

(
arr(φ), arr(φ′)

)
6 Multinomial drawing is isometric

Multinomial draws are of the draw-and-replace kind. This means that a drawn ball is
returned to the urn, so that the urn remains unchanged. Thus we may use a distribu-
tion ω ∈ D(X) as urn. For a draw size number K ∈ N, the multinomial distribution
mn[K](ω) ∈ D

(
M[K](X)

)
on multisets / draws of size K can be defined via accu-

mulated sequences of draws:

mn[K](ω) := D(acc)
(
ωK
)

= D(acc)
(
iid [K](ω)

)
=

∑
φ∈M[K](X)

(φ) ·
∏
x∈X

ω(x)φ(x)
∣∣φ〉. (10)

We recall that (φ) = K!∏
x φ(x)!

is the number of sequences that accumulate to a multiset
/ draw φ ∈ M[K](X). A basic result from [8, Prop. 3] is that applying frequentist
learning to the draws yields the original urn:

Flrn =≪mn[K](ω) = ω. (11)

We can now formulate and prove our first isometry result.

Theorem 1. Let X be an arbitrary metric space (of colours), and K > 0 be a positive
natural (draw size) number. The multinomial channel

D(X)
mn[K]

// D
(
M[K](X)

)
is an isometry. This involves the Wasserstein metric (8) for distributions over X on the
domain D(X), and the Wasserstein metric for distributions over multisets of size K,
with their Wasserstein metric (9), on the codomain D

(
M[K](X)

)
.

Drawing from an Urn is Isometric             113



Proof. Let distributions ω, ω′ ∈ D(X) be given. The map mn[K] is short since:

dD(M[K](X))

(
mn[K](ω), mn[K](ω′)

)
(10)
= dD(M[K](X))

(
D(acc)(iid [K](ω)), D(acc)(iid [K](ω′))

)
≤ 1

K · dD(XK)

(
iid [K](ω), iid [K](ω′)

)
by Lemma 3 (5)

= 1
K ·K · dD(X)

(
ω, ω′) by Proposition 1 (2)

= dD(X)

(
ω, ω′).

There is also an inequality in the other direction, via:

dD(X)

(
ω, ω′) (11)

= dD(X)

(
Flrn =≪mn[K](ω), Flrn =≪mn[K](ω′)

)
≤ dD(M[K](X))

(
mn[K](ω), mn[K](ω′)

)
.

The latter inequality follows from the fact that frequentist learning Flrn is short, see
Lemma 3 (1), and that Kleisli extension Flrn =≪(−) is thus short too, see Lemma 2 (6).

Example 3. Consider the following two distributions ω, ω′ ∈ D(N).

ω = 1
3 |0⟩+

2
3 |2⟩ and ω′ = 1

2 |1⟩+
1
2 |2⟩ with d(ω, ω′) = 1

2 .

This distance d(ω, ω′) involves the standard distance on N, using the optimal coupling
1
3 |0, 1⟩+

1
6 |2, 1⟩+

1
2 |2, 2⟩ ∈ D

(
N× N

)
.

We take draws of size K = 3. There are 10 multisets of size 3 over {0, 1, 2}:

φ1 = 3|0⟩ φ2 = 2|0⟩+ 1|1⟩ φ3 = 1|0⟩+ 2|1⟩ φ4 = 3|1⟩
φ5 = 2|0⟩+ 1|2⟩ φ6 = 1|0⟩+ 1|1⟩+ 1|2⟩ φ7 = 2|1⟩+ 1|2⟩

φ8 = 1|0⟩+ 2|2⟩ φ9 = 1|1⟩+ 2|2⟩ φ10 = 3|2⟩.

These multisets occur in the following multinomial distributions of draws of size 3.

mn[3](ω) = 1
27

∣∣φ1

〉
+ 2

9

∣∣φ5

〉
+ 4

9

∣∣φ8

〉
+ 8

27

∣∣φ10

〉
mn[3](ω′) = 1

8

∣∣φ4

〉
+ 3

8

∣∣φ7

〉
+ 3

8

∣∣φ9

〉
+ 1

8

∣∣φ10

〉
.

The optimal coupling τ ∈ D
(
M[3](N) × M[3](N)

)
between these two multinomial

distributions is:

τ = 1
27

∣∣∣φ1, φ4

〉
+ 19

216

∣∣∣φ5, φ4

〉
+ 1

8

∣∣∣φ10, φ10

〉
+ 29

216

∣∣∣φ5, φ7

〉
+ 5

72

∣∣∣φ8, φ7

〉
+ 3

8

∣∣∣φ8, φ9

〉
+ 37

216

∣∣∣φ10, φ7

〉
.

We compute the distance between the multinomial distributions, using dM = dM[3](N).

d
(
mn[3](ω),mn[3](ω′)

)
= τ |= dM

= 1
27 · dM

(
φ1, φ4

)
+ 19

216 · dM
(
φ5, φ4

)
+ 1

8 · dM
(
φ10, φ10

)
+ 29

216 · dM
(
φ5, φ7

)
+ 5

72 · dM
(
φ8, φ7

)
+ 3

8 · dM
(
φ8, φ9

)
+ 37

216 · dM
(
φ10, φ7

)
= 1

27 · 1 + 19
216 · 1 + 1

8 · 0 + 29
216 · 2

3 + 5
72 · 2

3 + 3
8 · 1

3 + 37
216 · 2

3 = 1
2 .

114             B.  Jacobs



As predicted in Theorem 1, this distance coincides with the distance d(ω, ω′) = 1
2

between the original urn distributions. One sees that the computation of the distance
between the draw distributions is more complex, involving ‘Wasserstein over Wasser-
stein’.

7 Hypergeometric drawing is isometric

We start with some preparatory observations on probabilistic projection and drawing.

Lemma 4. For a metric space X and a number K, consider the probabilistic projec-
tion-delete PD and probabilistic draw-delete DD channels.

XK+1 PD // D
(
XK

)
M[K + 1](X)

DD // D
(
M[K](X)

)
They are defined via deletion of elements from sequences and from multisets:

PD(x1, . . . , xK+1) :=
∑

1≤i≤K+1

1

K + 1

∣∣x1, . . . , xi−1, xi+1, . . . , xK+1

〉
DD(ψ) :=

∑
x∈supp(ψ)

ψ(x)

K + 1

∣∣ψ − 1|x⟩
〉

=
∑

x∈supp(ψ)

Flrn(ψ)(x)
∣∣ψ − 1|x⟩

〉
.

Then:

1. ‹acc› ◦· PD = DD ◦· ‹acc›;
2. Flrn =≪DD(ψ) = Flrn(ψ);
3. PD is K

K+1 -Lipschitz, and thus short;
4. DD is an isometry.

Proof. The first point is easy and the second one is [8, Lem. 5 (ii)].

3. For x,y ∈ XK+1, via Lemma 2 (8) and (4),

d
(

PD(x), PD(y)
)

= d

 ∑
1≤i≤K+1

1

K + 1

∣∣x1, . . . , xi−1, xi+1, . . . , xK+1

〉
,∑

1≤i≤K+1

1

K + 1

∣∣y1, . . . , yi−1, yi+1, . . . , yK+1

〉
≤

∑
1≤i≤K+1

1

K + 1
· d
(
1
∣∣x1, . . . , xi−1, xi+1, . . . , xK+1

〉
,

1
∣∣y1, . . . , yi−1, yi+1, . . . , yK+1

〉)
=

∑
1≤i≤K+1

1

K + 1
· dXK

(
(x1, . . . , xi−1, xi+1, . . . , xK+1),

(y1, . . . , yi−1, yi+1, . . . , yK+1)
)

=
∑

1≤i≤K+1

1

K + 1
·K · dX(xi, yi)

(7)
=

K

K + 1
· dXK+1

(
x,y

)
.

Drawing from an Urn is Isometric             115



4. Via item 1 we get:

‹acc› ◦· PD ◦· arr = DD ◦· ‹acc› ◦· arr = DD ◦· unit = DD . (∗)

Now we can show that DD is short: for ψ,ψ′ ∈ M[K + 1](X)

dD(M[K](X))

(
DD(ψ), DD(ψ′)

)
(∗)
= dD(M[K](X))

(
D(acc)

(
PD =≪arr(ψ)

)
, D(acc)

(
PD =≪arr(ψ′)

))
≤ 1

K · dD(XK)

(
PD =≪arr(ψ), PD =≪arr(ψ′)

)
≤ 1

K · K
K+1 · dD(XK+1)

(
arr(ψ), arr(ψ′)

)
= 1

K+1 · (K + 1) · dM[K+1](X))

(
ψ, ψ′)

= dM[K+1](X))

(
ψ, ψ′).

For the reverse inequality we use item 2 and the fact that Flrn is a short:

dD(M[K](X))

(
DD(ψ),DD(ψ′)

)
≥ dD(M[K](X))

(
Flrn =≪DD(ψ), Flrn =≪DD(ψ′)

)
= dD(X)

(
Flrn(ψ), Flrn(ψ′)

)
= dM[K+1](X)

(
ψ,ψ′).

The hypergeometric channel hg[K] : M[L](X) → D
(
M[K](X)

)
, for urn size

L ≥ K, where K is the draw size, is an iteration of draw-delete’s, see [8, Thm. 6]:

hg[K](υ) := DD ◦· · · · ◦· DD︸ ︷︷ ︸
L−K times

=
∑

φ∈M[K](X), φ≤υ

(
υ
φ

)(
L
K

) ∣∣φ〉, (12)

where
(
υ
φ

)
:=
∏
x∈X

(
υ(x)
φ(x)

)
.

Theorem 2. The hypergeometric channel hg[K] : M[L](X) → D
(
M[K](X)

)
de-

fined in (12), for L ≥ K, is an isometry.

Proof. We see in (12) that hg[K] is a (channel) iteration of isometries DD , and thus
of short maps; hence it it short itself. Via iterated use of Lemma 4 (2) we get Flrn =≪
hg[K](ψ) = Flrn(ψ). This gives the inequality in the other direction, like in the proof
of Lemma 4 (2):

dM[K+1](X)

(
ψ,ψ′) = dD(X)

(
Flrn(ψ), Flrn(ψ′)

)
= dD(M[K](X))

(
Flrn =≪hg[K](ψ), Flrn =≪hg[K](ψ′)

)
≤ dD(M[K](X))

(
hg[K](ψ), hg[K](ψ′)

)
.

The very beginning of this paper contains an illustration of this result, for urns over
the set of colours C = {R,G,B}, considered as a discrete metric space.

116             B.  Jacobs



8 Pólya drawing is isometric

Hypergeometric distributions use the draw-delete mode: a drawn ball is removed from
the urn. The less well-known Pólya draws [7] use the draw-add mode. This means that
a drawn ball is returned to the urn, together with another ball of the same colour (as the
drawn ball). Thus, with hypergeometric draws the urn decreases in size, so that only
finitely many draws are possible, whereas with Pólya draws the urn grows in size, and
the drawing may be repeated arbitrarily many times. As a result, for Pólya distributions
we do not need to impose restrictions on the size K of draws. We do have to restrict
draws from urn υ to multisets φ ∈ M[K](X) with supp(φ) ⊆ supp(υ) since we can
only draw balls of colours that are in the urn. Pólya distributions are formulated in terms
of multi-choose binomials

((
n
m

))
:=
(
n+m−1

m

)
= (n+m−1)!

m!·(n−1)! , for n > 0. This multi-
choose number

((
n
m

))
is the number of multisets of size m over a set with n elements,

see [9,10] for details.

pl [K](υ) :=
∑

φ∈M[K](X), supp(φ)⊆supp(υ)

((
υ
φ

))((
L
K

)) ∣∣φ〉, (13)

where
((
υ
φ

))
:=

∏
x∈supp(υ)

((
υ(x)
φ(x)

))
.

Theorem 3. Each Pólya channel pl [K] : M[L](X) → D
(
M[K](X)

)
, for urn and

draw sizes L > 0,K > 0, is an isometry.

Proof. One inequality follows by exploiting the equation Flrn =≪ pl [K](ψ) = Flrn(ψ)
like in previous sections. The reverse inequality, for shortness, involves a draw-store-
add channel of the form:

M[L](X)×M[N ](X)
DSA // D

(
M[L](X)×M[N + 1](X)

)
defined as:

DSA(υ, φ) :=
∑

x∈supp(υ+φ)

Flrn(υ + φ)(x)
∣∣∣υ, φ+ 1|x⟩

〉

= 1
∣∣υ〉⊗

 ∑
x∈supp(υ+φ)

Flrn(υ + φ)(x)
∣∣φ+ 1|x⟩

〉 .

With some effort one shows that this channel DSA is short and that the Pólya channel
can be expressed via iterated draw-store-add’s, namely as:

pl [K](υ) = D(π2)
((

DSA ◦· · · · ◦· DSA︸ ︷︷ ︸
K times

)
(υ,0)

)
,

where 0 ∈ M[0](X) is the empty multiset. This makes the Pólya channel pl [K] short,
and thus an isometry.

Drawing from an Urn is Isometric             117



We illustrate that the Pólya channel is an isometry.

Example 4. We take as space of colours X = {0, 10, 50} ⊆ N with two urns:

υ1 = 3|0⟩+ 1|10⟩ υ2 = 1|0⟩+ 2|10⟩+ 1|50⟩.

The distance between these urns is 15, via the optimal coupling 1|0, 0⟩ + 2|0, 10⟩ +
1|10, 50⟩, yielding 1

4 · (0− 0) + 1
2 · (10− 0) + 1

4 · (50− 10) = 5 + 10 = 15.
We look at Pólya draws of size K = 2. This gives distributions:

pl [2](υ1) = 3
5

∣∣∣2|0⟩〉+ 3
10

∣∣∣1|0⟩+ 1|10⟩
〉
+ 1

10

∣∣∣2|10⟩〉
pl [2](υ2) = 1

10

∣∣∣2|0⟩〉+ 1
5

∣∣∣1|0⟩+ 1|10⟩
〉
+ 3

10

∣∣∣2|10⟩〉+ 1
10

∣∣∣1|0⟩+ 1|50⟩
〉

+ 1
5

∣∣∣1|10⟩+ 1|50⟩
〉
+ 1

10

∣∣∣2|50⟩〉
We compute the distance between these two distributions via the last formulation in (8),
using the optimal short factor p : M[2](X) → R≥0 given by:

p
(
2|0⟩

)
= 0 p

(
1|0⟩+ 1|10⟩

)
= 5 p

(
2|10⟩

)
= 10

p
(
1|0⟩+ 1|50⟩

)
= 25 p

(
1|10⟩+ 1|50⟩

)
= 30 p

(
2|50⟩

)
= 50.

Then:

pl [2](υ1) |= p = 3
5 · 0 + 3

10 · 5 + 1
10 · 10 = 5

2

pl [2](υ2) |= p = 1
10 · 0 + 1

5 · 5 + 3
10 · 10 + 1

10 · 25 + 1
5 · 30 + 1

10 · 50 = 35
2 .

As predicted by Theorem 3, the distance between the Pólya distributions then coincides
with the distance between the urns:

d
(

pl [2](υ1), pl [2](υ2)
)
=
∣∣∣ pl [2](υ1) |= p− pl [2](υ2) |= p

∣∣∣
= 35

2 − 5
2 = 15 = d

(
υ1, υ2

)
.

9 Conclusions

Category theory provides a fresh look at the area of probability theory, see e.g. [5]
or [10] for an overview. Its perspective allows one to formulate and prove new results.
This paper demonstrates that draw operations, viewed as (Kleisli) maps, are incredi-
bly well-behaved: they preserve Wasserstein distances. Such distances on urns filled
with coloured balls are relatively simple, starting from a ‘ground’ metric on the set of
colours. But on draw distributions, the distances involve Wasserstein-over-Wasserstein.
This paper concentrates on drawing from an urn. A natural question is whether other
probabilistic operations, as Kleisli maps, preserve distance. This is a topic for further
investigation.

Acknowledgments

Thanks are due to the anonymous reviewers for their detailed comments that improved
an earlier version of this work.

118             B.  Jacobs



References

1. F. van Breugel. An introduction to metric semantics: operational and denotational models for
programming and specification languages. Theor. Comp. Sci., 258(1-2):1–98, 2001. doi:
10.1016/S0304-3975(00)00403-5.

2. H. Brezis. Remarks on the Monge-Kantorovich problem in the discrete setting. Comptes
Rendus Mathematique, 356(2):207–213, 2018. doi:10.1016/j.crma.2017.12.
008.

3. Y. Deng and W. Du. The Kantorovich metric in computer science: A brief survey. In C. Baier
and A. di Pierro, editors, Quantitative Aspects of Programming Languages, number 253(3)
in Elect. Notes in Theor. Comp. Sci., pages 73–82. Elsevier, Amsterdam, 2009. doi:10.
1016/j.entcs.2009.10.006.

4. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled Markov
processes. Theor. Comp. Sci., 318:232–354, 2004.

5. T. Fritz. A synthetic approach to Markov kernels, conditional independence, and theorems
on sufficient statistics. Advances in Math., 370:107239, 2020. doi:10.1016/J.AIM.
2020.107239.

6. T. Fritz and P. Perrone. A probability monad as the colimit of spaces of finite samples. Theory
and Appl. of Categories, 34(7):170–220, 2019. doi:10.48550/arXiv.1712.05363.

7. F. Hoppe. Pólya-like urns and the Ewens’ sampling formula. Journ. Math. Biology, 20:91–
94, 1984. doi:10.1007/BF00275863.

8. B. Jacobs. From multisets over distributions to distributions over multisets. In Logic in
Computer Science. IEEE, Computer Science Press, 2021. doi:10.1109/lics52264.
2021.9470678.

9. B. Jacobs. Urns & tubes. Compositionality, 4(4), 2022. doi:10.32408/
compositionality-4-4.

10. B. Jacobs. Structured probabilitistic reasoning. Book, in preparation, see http://www.
cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf, 2023.

11. B. Jacobs and A. Westerbaan. Distances between states and between predicates. Logical
Methods in Comp. Sci., 16(1), 2020. See https://lmcs.episciences.org/6154.

12. L. Kantorovich and G. Rubinshtein. On a space of totally additive functions. Vestnik
Leningrad Univ., 13:52–59, 1958.

13. J. Matouĕk and B. Gärtner. Understanding and Using Linear Programming. Springer Verlag,
Berlin, 2006. doi:10.1007/978-3-540-30717-4.

14. Y. Rubner, C. Tomasi, and L. Guibas. The Earth Mover’s Distance as a metric for im-
age retrieval. Int. Journ. of Computer Vision, 40:99–121, 2000. doi:10.1023/A:
1026543900054.

15. C. Villani. Optimal Transport — Old and New. Springer, Berlin Heidelberg, 2009. doi:
10.1007/978-3-540-71050-9.

16. G. Wyszecki and W. Stiles. Color Science: Concepts and Methods, Quantitative Data and
Formulae. Wiley, 1982.

Drawing from an Urn is Isometric             119

https://doi.org/10.1016/S0304-3975(00)00403-5
https://doi.org/10.1016/S0304-3975(00)00403-5
https://doi.org/10.1016/j.crma.2017.12.008
https://doi.org/10.1016/j.crma.2017.12.008
https://doi.org/10.1016/j.entcs.2009.10.006
https://doi.org/10.1016/j.entcs.2009.10.006
https://doi.org/10.1016/J.AIM.2020.107239
https://doi.org/10.1016/J.AIM.2020.107239
https://doi.org/10.48550/arXiv.1712.05363
https://doi.org/10.1007/BF00275863
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.32408/compositionality-4-4
https://doi.org/10.32408/compositionality-4-4
http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf
http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf
https://lmcs.episciences.org/6154
https://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9


120             B.  Jacobs

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Enriching Diagrams with Algebraic Operations

Abstract. In this paper, we extend diagrammatic reasoning in monoidal
categories with algebraic operations and equations. We achieve this by
considering monoidal categories that are enriched in the category of
Eilenberg-Moore algebras for a monad. Under the condition that this
monad is monoidal and there is an adjunction between the free algebra
functor and the underlying category functor, we construct an adjunction
between symmetric monoidal categories and symmetric monoidal cate-
gories enriched over algebras for the monad. This allows us to devise
an extension, and its semantics, of the ZX-calculus with probabilistic
choices by freely enriching over convex algebras, which are the algebras
of the finite distribution monad. We show how this construction can be
used for diagrammatic reasoning of noise in quantum systems.

1 Introduction

Monoidal categories are one way of generalizing algebraic reasoning and they can
be used to draw intuitive diagrams that encapsulate this reasoning graphically.
That monoidal categories are a powerful abstraction has been demonstrated
in countless areas, such as linear logic [19] or quantum mechanics [1], just to
name a few, and are amenable to graphical reasoning [47] with diagrammatic
languages such as the ZX-calculus [15]. Another abstraction of algebraic reason-
ing are monads [3,37,43] and their algebras, or representations thereof [21,36],
which are distinct from monoidal categories in that identities (like associativ-
ity) always hold strictly and they allow rather arbitrary algebraic operations. In
this paper, we set out to combine these two approaches into one framework, in
which monoidal category diagrams can be composed not only sequentially and
in parallel with a tensor product but also with additional algebraic operations.

One such operation is the formation of convex combinations, which can be
used to create a probabilistic mix of two or more diagrams. This occurs, for
instance, when reasoning about the behaviour of noise in quantum circuits.
Figure 1 shows on the left two quantum logic gates, one called G and one
called E that, respectively, model the wanted behaviour and a possible error.
These two gates are mixed, where G gets a probability of 0.9 and E of 0.1.
The trapezoids delimit the combination of the gates, and A and B are the in-
put and output types of the gates1. In monoidal categories, the gates in the
1 We read diagrams from top to bottom.

Alejandro Villoria , Henning Basold ,
and Alfons Laarman

(B)

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 121–143, 2024.
https://doi.org/10.1007/978-3-031-57228-9_7

Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
{a.d.villoria.gonzalez,h.basold,a.w.laarman}@liacs.leidenuniv.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_7&domain=pdf
http://orcid.org/0000-0003-0787-2568
http://orcid.org/0000-0001-7610-8331
http://orcid.org/0000-0002-2433-4174


G E

A

B

0.9 0.1

G1 E

A

B

0.9 0.1

⊗ G2

C

D

= G1 G2 E G2

A⊗ C

B ⊗D

0.9
A C

0.1
A C

B D B D

Fig. 1: Left: Probabilistic mix of a gate G with an error E. Right: Interaction
of tensor and convex sum, where double wires visually indicate a tensor product

picture represent morphisms G,E : A → B and our aim is to interpret the
trapezoid block as a convex sum G +0.9 E of these morphisms, where we de-
fine G +p E = pG + (1 − p)E. Such sums should also nicely interact with the
tensor product. For instance, if G1 : A → B and G2 : C → D are gates, then an
identity such as (G1 +0.9 E) ⊗ G2 = (G1 ⊗ G2) +0.9 (E ⊗ G2) should hold for
these morphisms of type A⊗ C → B ⊗D, see Figure 1 on the right. Having an
operation to form convex combinations together with intuitive identities enables
reasoning about, for example, probabilistic combination and noise in quantum
circuits.

The difficulty lies in combining monoidal diagrams with algebraic operations
such that the algebraic identities and the monoidal identities interact coherently.
We will handle this difficulty by using enriched monoidal categories, where the
enrichment yields the algebraic operations and the monoidal structure the paral-
lel composition. More precisely, we will assume that the algebraic theory is given
by a monad T and that the monoidal categories are enriched over the Eilenberg-
Moore category AlgT of algebras for this monad. Our aim in this paper is to
construct for an arbitrary monoidal category C an AlgT -enriched monoidal cat-
egory FC that is free in the sense that there is an inclusion ιC : C → (FC)0 into
the underlying category of FC and for every AlgT -enriched monoidal category
D and monoidal functor G : C → D0, there is a unique AlgT -enriched monoidal
functor Ḡ0 : FC → D that makes the following diagram commute.

(FC)0 D0

C
G

ιC

Ḡ0

This free construction does not work for all monads, but we show that the free
enrichment always exists for monoidal Set-monads whose free T -algebra functor
is left adjoint to the underlying category functor AlgT (I,−) : AlgT → Set for
I the monoidal unit of AlgT .

Contributions
Specifically, we contribute a construction for free enrichment over algebras for
some monoidal monads in Theorem 1 and Corollary 1. We also show how the en-
richment preserves symmetric monoidal structure in Theorem 3 and Corollary 2.

122 A. Villoria et al.



Given this construction, we demonstrate how a graphical language for reasoning
in monoidal categories can be enriched with the free algebras for these monads,
which enables diagrammatic reasoning of the interaction between the sequen-
tial and parallel compositions with the algebraic structure. We show how the
theory can be applied to obtain convex combinations of ZX-diagrams and what
the resulting identities of diagrams are. By exploiting the mapping property of
the free enrichment, we automatically obtain sound interpretations of these op-
erations and identities. Lastly, we describe how we can use the enrichment of
ZX-diagrams to reason about noise in quantum systems.

Related Work
ZX-diagrams are universal in the sense that they can in principle represent any
linear map between Hilbert spaces of dimension C2n [15]. Indeed, sums and
linear/convex combinations [25,49] of ZX-diagrams can be encoded within the
language, but in practice these representations oftentimes lead to either very
large diagrams or to diagrams that do not reveal upon visual inspection the
(linear/convex) structure that the diagram is representing. This, in return, di-
minishes the advantages gained by reasoning in terms of abstract graphical rep-
resentations. Our perspective of using enrichment keeps the abstraction barrier
and thus makes reasoning about convex combinations of diagrams tractable. In
general, our theory also covers the recently developed linear combinations of
ZX-diagrams such as [50,39] and other, so far unexplored, algebraic operations
such as those of join-semilattices. Moreover, the identities that have to be crafted
carefully by hand and proven to be sound fall automatically out of our theory.
Other related work is that of Sheet diagrams [16] and Tape diagrams [5], recently
developed graphical languages for rig categories, which are categories with two
monoidal structures – one for addition and one for multiplication.

Outline
The paper is organised as follows. We start by introducing notation and recalling
some background of enriched and monoidal categories in Section 2. In Section 3,
we establish the necessary theory to define categories enriched over Eilenberg-
Moore algebras and we construct a free enrichment over those algebras. Our next
step in Section 4 is to extend these definitions and the free construction to also
include monoidal structures on categories, which ensures that these enrichment
and monoidal structure coherently interact. Section 5 is devoted to applying our
theory to enrich ZX-diagrams with convex sums to reason about probabilistic
processes such as quantum noise. We conclude the paper with directions for
future work in Section 6.

2 Background

In this section, we recall some terminology from category theory [8,34,35,45] and
introduce some notation. We denote the collection of objects of a category C as
|C|, and the morphisms from object A to B as C(A,B). A monoidal category

Enriching Diagrams with Algebraic Operations 123



(C,⊗, I ) is a category C together with a functor ⊗ : C × C → C called the
tensor product and an object I ∈ |C| called the tensor unit subject to some
conditions [28]. We will often refer to a monoidal category (C,⊗, I ) as just C.
A monoidal category is a symmetric monoidal category (SMC) when it also has
a braiding σA,B : A ⊗ B → B ⊗ A such that σB,A ◦ σA,B = IdA⊗B that is also
subject to coherence conditions [28].

Given a monoidal category (V,×, ∗), a V-(enriched) category C consists of

– a class |C| of objects,
– for each pair A,B ∈ |C|, an object C(A,B) ∈ |V| that we refer to as the

hom-object,
– for objects A,B,C ∈ |C|, a composition morphism ◦ : C(B,C)×C(A,B) →

C(A,C) in V, and
– for all A ∈ |C|, an identity element jA : ∗ → C(A,A)

subject to associativity and unit axioms [28]. We say that V is the base of en-
richment for C. A way to look at the above definition is that we construct a
V-enriched category C by identifying morphisms of some category C as ob-
jects from V, which we are able to compose by using the tensor product of V.
The most well-known example is that of locally small categories, in which the
morphisms between two objects form a set, and thus we can see them as ob-
jects in the monoidal category (Set,×, ∗) for × the Cartesian product and ∗ the
singleton set.

With a suitable definition of V-functors and V-natural transformations, V-
categories organise themselves into a 2-category [28], denoted by V-Cat. For an
SMC (V,×, ∗), V-Cat is also an SMC as follows. We define for V-categories C
and D a V-category C⊗D with objects |C⊗D| being the categorical product
and hom-objects (C ⊗ D)((A,B), (C,D)) = C(A,C) × D(B,D). The unit is
given by j(A,B) = ∗ ∼= ∗ × ∗ uA×vB−−−−−→ C(A,A) × D(B,B) in terms of the units
u of C and v of D. Similarly, one also defines the composition for C ⊗ D in
terms of the composition morphisms of C and D, appealing to the symmetry
in V [28, Sec. 1.4]. The tensor product also extends to V-functors and V-natural
transformations, which makes it a 2-functor. Finally, one defines I to be the unit
V-category with one object 0 and I(0, 0) = ∗ and we thus obtain, with suitable
definitions of associators etc., a symmetric monoidal 2-category (V-Cat,⊗, I).

Most of the categories we are interested in are also dagger-compact categories
(†-CC). These are SMCs (C,⊗, I ) with some additional structure. First, they
are equipped with an endofunctor † : Cop → C, that satisfies (IdA)

† = IdA,
(g ◦ f)† = f† ◦ g†, (f†)† = f , and (f ⊗ g)† = f† ⊗ g†. And secondly, for every
object A there exists a dual A∗ such that there exists unit ηA : I → A⊗A∗ and
counit ϵA : A∗ ⊗A→ I morphisms subject to some conditions [20].

We are interested in categories that let us reason about quantum mechanics.
One of them is FdHilb, the category of finite dimensional Hilbert spaces of
the form Cn and linear maps as morphisms. The category Qubit is the (full)
subcategory of FdHilb with objects Hilbert spaces of the form C2n and linear
maps. Similarly, the category CPM(Qubit) [48] has objects C2n and morphisms

124 A. Villoria et al.



completely positive linear maps between them [13]. We usually work in Qubit
when reasoning about pure quantum evolutions and in CPM(Qubit) when
impure quantum evolutions (such as noise) can take place. All of these categories
are †-CC, with the monoidal structure ⊗ given by the usual Kronecker product
of vector spaces and the dagger † being the conjugate transpose.

3 Algebraic Enrichment

In this section, we are going to recall the concept of monoidal and affine monads,
and discuss some properties of the Eilenberg-Moore category of a monad. We
also start applying the Distribution monad and the Multiset monad to running
examples that will be of interest in later sections.

The Distribution monad (D, µ, η)2 contains the functor D : Set → Set that
maps a set A to the set D(A) of (finitely supported) probability distributions
over elements of A. We write probability distributions as formal convex sums:∑

a pa[a] ∈ D(A) such that a ∈ A, pa ∈ [0, 1], and
∑

a pa = 1. D acts on
a morphism f by simply applying f to the underlying set: (Df)(

∑
a pa[a]) =∑

a pa[f(a)]. The unit of the monad is the map η : A → D(A) : a 7→ 1[a]
(the Dirac distribution), and the multiplication µ “flattens” a distribution of
distributions by multiplying the probabilities together: µ : D(D(A)) → D(A) :∑

q pq[
∑

a qa[a]] 7→
∑

a ra[a] where ra =
∑

q pqqa [23].
The functor D is also a monoidal functor, which makes (D, µ, η) a monoidal

monad. In particular, this means that there exists a map:

∇ : D(A)×D(B) → D(A×B) :

(∑
a

pa[a],
∑
b

pb[b]

)
7→
∑
a,b

papb[(a, b)]

for every A,B ∈ |Set|.
A monad T : C → C is affine if there is an isomorphism T (∗) ∼= ∗ for ∗ the

terminal object of C [24]. This is the case for D.
If D is a monad for expressing convex combinations of elements of a set, the

Multiset monad M is its analogue for linear combinations with coefficients over
some semiring.

We recall that given any monad T in C we can construct its Eilenberg-Moore
category, with objects T -algebras of the form (A,αA) for A ∈ |C| and T -action
αA : T (A) → A such that αA ◦ T (αA) = αA ◦ µA and αA ◦ ηA = IdA. Algebra
homomorphisms f : (A,αA) → (B,αB) are morphisms of the underlying objects
f : A→ B that commute with the action: f ◦αA = αB ◦T (f). The identity and
composition follow from the ones for the underlying objects [35].

For a monad T on C, we have that AlgT is complete whenever C is com-
plete. Cocompleteness is not as immediate, but if C = Set then AlgT is also
cocomplete [3,22]. This makes AlgT over monads on Set a complete and cocom-
plete category and in particular, AlgT has reflexive coequalizers, which we use
to define the tensor product of algebras.
2 We will often refer to a monad (T, µ, η) as T .

Enriching Diagrams with Algebraic Operations 125



When T is a monoidal monad on a monoidal category (C,⊗, I), the tensor
product of T algebras (A, a), (B, b), denoted (A, a) ⊗T (B, b), is (if it exists)
defined as the coequalizer diagram [46,10]

F (T (A)⊗ T (B)) F (A⊗B) (A, a)⊗T (B, b),
µ·F (∇)

F (a⊗b)

q (1)

where F : C → AlgT : A 7→ (T (A), µ) is the left adjoint to the forgetful
functor U : AlgT → C : (A,αA) 7→ A that maps objects to their free algebras
over T . Given that we need AlgT to be monoidal in order to use it as a base
of enrichment, diagram (1) above is a convenient representation of the tensor
product of algebras. The rest of the structure to make AlgT a (symmetric)
monoidal category follows under certain conditions, in particular when (C,⊗, I)
is a closed (S)MC and the coequalizer (1) exists for all algebras (A, a), (B, b) [46].

We can define (symmetric) monoidal structure in the category of free algebras
as follows. Using (1) for the category of free algebras over a monoidal monad,
we have that the following diagram forms a coequalizer.

F (TT (A)⊗ TT (B)) F (T (A)⊗ T (B)) F (A⊗B)
µ·F (∇)

F (µ⊗µ)

µ·F (∇)
(2)

Therefore, (T (A), µ) ⊗T (T (B), µ) ∼= F (A ⊗ B) [46, Prop. 2.5.2]. The monoidal
unit is IT = (T (I), µ), while the associator, unitor, and symmetry (if present) are
the images of the ones in (C,⊗, I) under F . We then have that (AlgT ,⊗T , IT )
is the (symmetric) monoidal category of free T -algebras.

A functor F : (V1,⊗V1 , IV1) → (V2,⊗V2 , IV2) between two monoidal cat-
egories can be lifted to a 2-functor F∗ : V1-Cat → V2-Cat [7]. This is called
a change of enriching, where we turn a V1-category into a V2-category. In-
deed, given a V1-category C, we can construct the V2-category F∗C by defining
|F∗C| := |C| and, for every A,B ∈ |F∗C|, the hom-objects are F∗C(A,B) :=
F (C(A,B)) with composition and identity element following from the ones in C
under F . For a symmetric monoidal category (V,⊗, I), an important instance
is the functor V(I,−)∗ : V-Cat → Cat called the underlying category functor
and it is denoted by (−)0.

The following lemma states explicitly the case when one of the enriching
categories is Set.

Lemma 1 ([7, Prop. 6.4.7]). Let (V,⊗, I) be a closed symmetric monoidal
category with coproducts. Then the hom-functor V(I,−) : V → Set has a left
adjoint F that sends a set X to F (X) =

∐
X I, the X-th fold copower of I.

Moreover, F is a strong morphism of symmetric monoidal categories and the
induced 2-functor F∗ is left-adjoint to the underlying category functor (−)0.

Theorem 1. A monoidal monad T on (Set,×, ∗) endows the category of T -
algebras AlgT with a bicomplete (complete and cocomplete) closed SMC struc-
ture. This allows to lift the free-forgetful adjunction of Lemma 1 as a change of
enriching between AlgT -categories and Set-categories for a monoidal T .

126 A. Villoria et al.



Proof. The proof follows from Lemma 1 and previous arguments. Given that
AlgT for T a monad on Set is bicomplete, then coequalizer (1) exists and we
can define tensor products of algebras. We can then make AlgT a symmetric
monoidal category given that Set is closed symmetric monoidal. Finally, AlgT

can be made into a closed category following [32] given that Set has equaliz-
ers. We can then use Lemma 1 to create a change of enriching between AlgT -
categories and Set-categories.

Corollary 1. Let T be a monoidal monad on Set defined by a free-forgetful
adjunction U : AlgT ⇄ Set : L. If L is naturally isomorphic to the functor F
from Lemma 1, that is (T (−), µ) ∼=

∐
(−)(TI, µ), then the induced 2-functor L∗ is

left adjoint to the underlying category functor (−)0. This lets us use Theorem 1
to enrich locally small categories with the free algebras over T . The condition
L ∼= F holds, in particular, when T is an affine monad.

Proof. Whenever we have that L ∼= F , the enrichment over free T -algebras
comes simply from substituting F with L in Lemma 1 and Theorem 1. To
see that this condition holds when T is affine, we construct hom isomorphisms
AlgT (L(X), Y ) ∼= Set(X,U(Y )) ∼= Set(X,AlgT (IT , Y )) ∼= AlgT (F (X), Y ) for
some X ∈ |Set|, Y ∈ |AlgT |, with the second and last isomorphism coming
from their respective adjunctions. The remaining one is due to T (∗) ∼= ∗, which
allows us to get algebra homomorphisms h : (T (∗), µ) 7→ (T (Y ), µ) from maps
h′ : ∗ 7→ Y , while the other direction just requires to forget the homomorphism
structure.

Let us construct an example for Theorem 1 and relate it to graphical lan-
guages. If we have a locally small monoidal category C with morphisms f, g :

A → B, h : B → C, represented graphically as f , g , h , we can freely

enrich C over AlgD following the change of enriching category method above.
Then, we can realize graphically a probabilistic process involving f and g with
probability 0.9 and 0.1 respectively, followed by applying h deterministically
(that is, it occurs with probability 1) afterwards as follows.

f g

0.9 0.1

h

(3)

Intuitively, we distinguish between probabilistic and deterministic processes
by having the former enclosed within distribution brackets (in the same way as
we would represent them as a formal sum 0.9[f ] + 0.1[g]), that we choose to
depict as trapezoids in this paper. Deterministic processes are depicted without
the bracket enclosing mostly as syntactic sugar, otherwise they would simply
have a single choice with probability 1. We can see how wires can have weights

Enriching Diagrams with Algebraic Operations 127



inside this environment, and how each wire represents a probabilistic choice.
Intuition also tells us that we could for example rewrite the diagram above
by distributing h over the two probabilistic branches. We will discuss in later
sections which graphical rules capture the interactions present in these enriched
categories.

It is natural to then ask if our enriched category C maintained its monoidal
structure, and if other desired properties (such as braiding and symmetry, if
present) would still hold too. We will address this in the next section.

4 Enriched Monoidal Categories

Recall from Section 2 that a symmetric monoidal category V gives rise to a
symmetric monoidal 2-category (V-Cat,⊗, I) of V-categories. This structure
allows us to define an enriched (symmetric) monoidal category to be a (sym-
metric) pseudo-monoid in V-Cat [18], which amounts to the following explicit
definition [33,38]. Let us denote by S the symmetry isomorphism of V-Cat. A
symmetric monoidal V-category is a tuple (C,⊙, U, α, λ, ρ, σ) consisting of:

– a V-enriched category C
– a V-functor U : I → C
– a V-functor ⊙ : C⊗C → C
– V-natural isomorphisms α : ⊙ ◦(⊙ ⊗ IdC) → ⊙ ◦ (IdC ⊗ ⊙) (associator),
λ : ⊙◦(U ⊗ IdC) → IdC (left unitor), ρ : ⊙◦(IdC⊗U) → IdC (right unitor),
and σ : ⊙ → ⊙ ◦ S (symmetry)

subject to the expected coherence axioms [18]. A (symmetric) monoidal V-
functor (C,⊙1, U1) → (D,⊙2, U2) is a lax (symmetric) pseudo-monoid homo-
morphism, which means that it consists of a V-functor h : C → D and two
V-natural transformations h0 : U2 → h ◦ U1 and h2 : ⊙2 ◦(h ⊗ h) → h ◦ ⊙1

that are coherent with the associators, unitors and symmetries [33]. Together,
symmetric monoidal V-categories and functors form a category V-SMCat.

Our goal is now to lift the adjunction between enriched categories from The-
orem 1 to also include enriched monoidal structure. To this end, we introduce
lax monoidal strict 2-functors, which are tuples (G,G0, G2) where G : V → W
is a strict functor of 2-categories and (G,G0, G2) : (V,⊗, I) → (W,×, ∗) is a lax
monoidal functor on the underlying 1-categories.

Theorem 2. Lax monoidal strict 2-functors (G,G0, G2) : (V,⊗, I) → (W,×, ∗)
induce 2-functors PMon(G) : PMon(V,⊗, I) → PMon(W,×, ∗) between 2-
categories of pseudo-monoids, lax homomorphisms and 2-cells that are compatible
with the homomorphism structures. If a G has a monoidal left adjoint F , then
PMon(F ) is left adjoint to PMon(G). Finally, if the monoidal categories and
functors are symmetric, then the adjunction can be improved to one between
symmetric pseudo-monoids.

Proof. The details and appropriate diagram chases are written in [51, Appendix
A], which go through the following steps. We begin by showing that PMon(G)

128 A. Villoria et al.



maps a pseudo-monoid (C,⊙, U, α, λ, ρ, σ) in (V-Cat,⊗, I) to a pseudo-monoid
(GC, G(⊙) ◦G2, G(U) ◦G0, Gα,Gλ,Gρ,Gσ) in (W-Cat,×, ∗) by checking that
it fulfills the pseudo-monoid axioms [18].

Similarly, we check that (G,G0, G2) maps a pseudo-monoid homomorphism
(h, h0, h2) to a pseudo-monoid homomorphism (G(h), G(h0), G(h2)).

If G has a strict left adjoint F , which is also strong monoidal, we show that
(F, F 0, F 2) ⊣ (G,G0, G2) is a monoidal 2-adjunction if the mates [27] of G0 and
G2 are the inverses of F 0 and F 2, respectively, as in the following equations,
where βA,B is the natural isomorphism W(A,GB)

∼=−→ V(FA,B) and η the unit
of the adjunction:

(F 0)−1 = β(G0) and (F 2)−1 = β(G2) ◦ F (η × η).

The following theorem, which shows that the change of enrichment extends to
monoidal enriched categories, follows from Theorem 2 using that V-SMCat =
PMon(V-Cat,⊗, I) and that the change of enrichment gives a lax monoidal
2-adjunction [7,17].

Theorem 3. If (G,G0, G2) : (V,⊗, I) → (W,×, ∗) is a symmetric monoidal
functor between symmetric monoidal categories with a monoidal left adjoint
(F, F 0, F 2), then there are adjunctions that commute with the forgetful functors
as in the following diagram.

V-SMCat W-SMCat

V-Cat W-Cat
G∗

G∗

F∗

F∗

⊣
⊣

From this theorem and combining the results from Section 3 we can derive
the following corollary, which is our main tool for building monoidal diagrams
that are enriched with algebraic operations.

Corollary 2. A monoidal monad T on Set with an adjunction between the free
T -algebra functor and the underlying category functor (see Corollary 1) gives
a free-underlying adjunction (−)0 : AlgT -Cat ⇄ Cat : F∗. This adjunction
lifts to an adjunction between the 2-categories of symmetric monoidal AlgT -
enriched and Set-enriched categories (−)0 : AlgT -SMCat ⇄ SMCat : F∗.
More explicitly, given such a monad T on Set and a SMC (C,⊗, I, α, λ, ρ, σ)
we can construct the freely AlgT -enriched SMC (C,⊗, I, α, λ, ρ, σ).

Knowing that we keep the symmetric monoidal structure after doing the free
enrichment, we can justify drawing parallel composition of probabilistic opera-
tions in diagram form. Continuing example (3), let us have another probabilistic
process in which f ′ and g′ occur with probabilities 0.7 and 0.3 (respectively)
parallelly composed. Then we can draw the following picture.

Enriching Diagrams with Algebraic Operations 129



f g

0.9 0.1

h

f ′ g′
0.7 0.3

(4)

5 Applications: ZX-calculus

In this section, we show an example application of the categorical constructions
of the previous sections. In particular, we are interested in demonstrating how we
can take the Distribution monad and enrich the quantum categories of interest
for reasoning about probabilistic processes in quantum systems. Most impor-
tantly, we show how the ZX-calculus, a graphical calculus for reasoning about
quantum processes, can be appropriately extended to accommodate the extra
structure on said categories and how additional graphical rewrite rules capture
the interaction of probabilistic and deterministic quantum operations. We begin
with a general introduction to quantum computing and ZX-calculus, and then
follow with the enrichment of our categories of interest, together with the intro-
duction of the extended notation, and we finish by giving an example of how we
can use this for diagrammatic reasoning of noise in quantum systems.

5.1 Quantum Computing

When referring to quantum systems and operations, we have to make a dis-
tinction whenever we take impure operations into account. In the pure states
formalisms, quantum states are normalized vectors in a Hilbert space of di-
mension C2n , with n the number of qubits (quantum bits) of the system. It is
common to use Dirac bra-ket notation to represent states, for example, some
important single-qubit states are |0⟩ = [ 10 ], |1⟩ = [ 01 ], |+⟩ = 1√

2
· (|0⟩+ |1⟩), |−⟩ =

1√
2
· (|0⟩ − |1⟩). We operate on qubits by performing unitary transformations U

on the quantum states. A multi-qubit quantum system with states |ψ⟩ and |ϕ⟩
corresponds to the tensor (Kronecker) product of the quantum states: |ψ⟩ ⊗ |ϕ⟩.
We will represent the n-fold tensor product of a state |ψ⟩ by |ψn⟩. Simultaneous
(but independent) operations also follow from tensoring unitaries.

When we take into consideration the possibility of applying non-unitary oper-
ations we require a more general framework, which is the density matrix and com-
pletely positive maps formalism. In this case, quantum states are positive semi-
definite Hermitian matrices ρ of trace one. We write them as ρ =

∑
i pi |ψi⟩⟨ψi|

(where ⟨ψi| = |ψi⟩†, for † the conjugate transpose), that is, a statistical en-
semble of quantum states |ψi⟩ (as density matrices) with probability pi. Op-
erations on density matrices are completely positive (CP) maps of the form
Φ : ρ →

∑
iKiρK

†
i with the condition

∑
iKiK

†
i ≤ 1 (notice how unitary maps

130 A. Villoria et al.



fall inside this description too). When we want to reason about quantum systems
in the presence of noise, we then have to use the density matrix and CP map
formalism. For more information on quantum computing, we refer the reader
to [40], and for a more categorical introduction to [20].

5.2 The ZX-calculus

The ZX-calculus [15] is a graphical language for reasoning about quantum states
and processes as diagrams. The language consists of a set of generators, which
are the green and red3 spiders (also called Z and X spiders), the Hadamard box,
the identity wire, the swap, the cup, the cap, and the empty diagram. In Figure 2
we can see the generators of the ZX-calculus and their signature, with input
wire(s) coming from the top and outputs going to the bottom. Spiders have a
phase α ∈ [0, 2π), which as we will see later is omitted when α = 0. We can also
see how to sequentially compose (◦) arbitrary diagrams by connecting inputs
with outputs, and how to parallely compose diagrams (as a tensor product ⊗)
by placing them side by side.

. . .

. . .

α

. . .

. . .

α
, , , , , ,

m m

n n

ZX-diagrams

,

· · ·

· · ·

· · ·

D1

D2

· · ·

· · · · · ·
D1 D2

· · ·· · ·

· · ·· · ·
D1D2 ◦ ⊗= =

· · ·

· · · · · ·
D1 D2

· · ·· · ·

,

Fig. 2: ZX-diagrams generators and how to compose them.

Each of the generators has a standard interpretation J·K as a linear map in
C2n that we can find in Figure 3.

Categorically, ZX-diagrams form the category ZX with |ZX| = N (where
some n ∈ N is the number of wires, which we can think of as an n-qubit quantum
system) and morphisms being the generators. The standard interpretation is a
(monoidal) functor J·K : ZX → Qubit that acts on objects as JnK = n and on
morphisms as defined in Figure 3 [53].

ZX-diagrams come with a set of rewrite rules that form the ZX-calculus.
These rewrite rules let us transform a diagram into a different one while pre-
serving the semantics (i.e. the interpretation). We have collected the rules in
3 Light and dark in grayscale, respectively.

Enriching Diagrams with Algebraic Operations 131



. . .

. . .

α

. . .

. . .

α
,

, ,

, ,

m m

n n

Standard interpretation

J·K7−−→ |0(m)⟩⟨0(n)|+ eiα|1(m)⟩⟨1(n)| J·K7−−→ |+(m)⟩⟨+(n)|+ eiα|−(m)⟩⟨−(n)|

J·K7−−→ 1√
2

[
1 1
1 −1

]
J·K7−−→

[
1 0
0 1

]
J·K7−−→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


J·K7−−→

[
1 0 0 1

] J·K7−−→
[
1 0 0 1

]T J·K7−−→ 1

· · ·

· · ·

· · ·

D1

D2

· · ·

· · · · · ·
D1 D2

· · ·
J·K7−−→ JD2K ◦ JD1K

J·K7−−→ JD1K ⊗ JD2K,

Fig. 3: Standard interpretation of ZX-diagrams.

Figure 4. There is also an important additional rule that can be summarized as
the only connectivity matters rule, which states that we can deform diagrams
at will without changing their meaning, as long as we maintain the connectivity
between the generators unchanged. For a thorough explanation of each rule we
refer the reader to [15,52].

The ZX-calculus satisfies important properties. ZX-diagrams are universal,
meaning that any linear map f of the form f : C2n → C2m can be represented
as a ZX-diagram. The rewrite rules are sound, meaning that they do not change
the interpretation of the diagram as a linear map. They are also complete, which
ensures that if two diagrams have the same interpretation, the ruleset is powerful
enough to always let us transform one diagram into the other. These properties
ensure that the ZX-calculus can be used as a tool for reasoning about quantum
computing, as it has been already demonstrated in tasks such as quantum circuit
optimisation [30], verification of quantum circuits [41], simulation [31], and as a
reasoning tool [4,29].

In (5) we have example one- and two-qubit gates as ZX-diagrams. We also
see the computational basis {|0⟩, |1⟩} and Hadamard basis {|+⟩, |−⟩} states.

132 A. Villoria et al.



. . .

. . .

α

π
4

,

,

ZX-calculus ruleset

. . .

. . .

β

...

. . .

. . .

α + β(f)
=

(id)
=

-π
4

,
(e)
=

aπ

α
(π)
=

aπ aπ eiaα
√
2 (b)

=

1√
2

,

,
(hd)
=

π
2

π
2

-π
2

. . .

. . .

α

. . .

. . .

α(h)
=

,

α1

α3

β2α2

β1

β3

eiγ
(eu)
=

Fig. 4: ZX-calculus ruleset. All rules also hold when swapping the colors of the
spiders. In (eu) we omit the calculation of the angles, which can be found in [52].

Z =

[
1 0
0 −1

]
= π X =

[
0 1
1 0

]
= π Y = iXZ =

[
0 −i
i 0

]
=

π

π
i

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =
√
2 CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =
√
2

|0⟩ = |1⟩ = π1√
2

1√
2

|+⟩ = |−⟩ = π1√
2

1√
2

(5)

5.3 Enriching the Categories Qubit and CPM(Qubit)

Our motivation is to highlight certain types of relevant physical phenomena
(probabilistic processes) that are present in quantum systems within our cat-
egories. It is then natural to use the Distribution monad D together with the
construction explained in the previous sections to enrich our categories for quan-
tum reasoning.

Indeed, we take CPM(Qubit) and perform a free enrichment over D. What
we get is the category (F∗CPM(Qubit),⊗, I) consisting of the same objects as
CPM(Qubit) and morphisms (incl. identity) for objects A,B the free algebras
over D of the hom-set CPM(Qubit)(A,B). Composites of morphisms are the
free algebra over the composite in CPM(Qubit), and the SMC structure is
preserved thanks to Corollary 2.

We also define the non-freely enriched category CPM(Qubit) so we can in-
terpret probability distributions as CP maps. For this, we define SMC-structure
in the non-free (AlgD,⊗D,D(∗)), with a tensor product of algebras defined by
the coequalizer (1), with a more detailed description in [51, Appendix B]. The
category (CPM(Qubit),⊙, U) has the same objects as CPM(Qubit) and for

Enriching Diagrams with Algebraic Operations 133



every pair of objects A,B the hom-object is an algebra (CPM(Qubit)(A,B), α)
with the D-action turning a formal convex sum of linear maps into an actual
sum by scalar multiplication and addition. Composition of hom-objects follows
from composition in CPM(Qubit), and for an object A the identity element
is jA : (∗, α) → (IdA, α). We define now its symmetric monoidal structure fol-
lowing the definition of enriched SMC from the beginning of Section 4. The
tensor product ⊙ on objects is the same as in CPM(Qubit), and on hom-
objects it is the tensor product in CPM(Qubit) to the underlying sets: ⊙ :
(CPM(Qubit)(A,A′), α)⊗D (CPM(Qubit)(B,B′), α) → (CPM(Qubit)(A⊗
B,A′⊗B′), α). The unit U is the one in CPM(Qubit). The associator, unitors,
and symmetry all follow from applying the ones in CPM(Qubit).

In the following sections, we will interpret ZX-diagrams into F∗CPM(Qubit)
as probability distributions of CP maps. From there, to interpret probability
distributions as CP maps, we define the functor ⟨⟨·⟩⟩ : F∗CPM(Qubit) →
CPM(Qubit) that sends objects to themselves and applies the monad alge-
bra to hom-objects i.e. we “evaluate” a probability distribution over CP maps
by multiplying the probabilities with the corresponding map and then adding
all maps together.

Technically, we can also enrich Qubit in the same way as we did with
CPM(Qubit), but density matrices and CP maps are the more sensible choices
to talk about probabilistic mixtures of operations. On the other hand, enriching
Qubit (or CPM(Qubit)) over algebras of the multiset monad M leads to an
enrichment over commutative monoids that exposes addition of linear maps [20].
This was recently formulated in [39,50] as a way to “split” parameterised Pauli
rotation gates in ZX-calculus in such a way that the parameter relocates from
its place inside the spider as a phase to a scalar on a wire using the identity
eiαP = cosαI + i sinαP for P a Pauli matrix (or any matrix satisfying P 2 = I).

5.4 Enriched ZX-diagrams and Their Interpretation

In the same manner as the ZX-calculus is a language for reasoning in Qubit, we
can create a graphical language with extra structure to reason in our enriched
categories. Since we are going to be enriching CPM(Qubit), we first need to
see how to turn the ZX-calculus into a graphical language for CP maps. This is
done straightforwardly by adding a discard operation to the list of generators
of Figure 2 plus additional rewrite rules (that we choose to omit here) stating
that isometries can be discarded [13]. The interpretation of a ZX-diagram D
as a CP map is then a superoperator ρ → JDK ρ JDK†, for JDK the standard
interpretation of D as in Figure 3 [9].

We then construct an enriched graphical language for CPM(Qubit) by
building on top of the ZX-calculus for CP maps. The notation will be simi-
lar to the running examples we have given throughout the text (cf. 1,3,4). The
main idea is as follows. We take the generators of the ZX-calculus and allow

them to be freely wrapped between opening
· · ·

· · ·
and closing

· · ·

· · ·
distribution

brackets.

134 A. Villoria et al.



Intuitively, we interpret diagrams that are within distribution brackets as a
probabilistic mixture of operations: diagrams placed side by side correspond to
different probabilistic choices with some weight attached to the corresponding
wires. Within each choice, sequential (and as we will see later, parallel) composi-
tion is allowed. The main difference to the usual graphical languages for monoidal
categories is that the parallel composition of each choice does not correspond to
the tensor product. In a way, we also subsume ZX-diagrams by drawing diagrams
that are not enclosed by distribution brackets, which are then interpreted as an
operation that occurs with probability 1.

For example, we can represent the single-qubit depolarizing channel [40] Φ :
ρ 7→ (1− p)ρ+ p

3 (XρX+Y ρY +ZρZ) that leaves a quantum state ρ unchanged
with probability (1 − p) or applies an X,Y or Z error with probability p

3 each
with the diagram on the left in Figure 5.

p 1− pπ

π

π

π

1− p p
3

p
3

p
3

i

Fig. 5: Left: Diagrammatic representation of the depolarizing channel.
Right: Diagrammatic representation of a mixture of two-qubit gates.

We need to take extra care when handling scalars inside the brackets. Indeed,
what we have inside distribution brackets is a formal convex sum of ZX-diagrams
(or, in the general case, string diagrams), meaning that the SMC rewriting ax-
ioms apply to each summand independently. Since summands are also juxta-
posed, it might seem like this notation allows for the transfer of scalars from one
summand to another. The crux is that, since what is enclosed by trapezoids is a
formal sum, we cannot drag scalars from one summand to another using those
same monoidal category axioms. This means that we can consider the probabil-
ities (and any scalar factor if present, such as the imaginary unit in Figure 5) to
be bound to the wires themselves, and only interact with the ZX-diagrams (or
generally string diagrams) that belong to that summand. An alternative is to
encapsulate each summand in “bubbles” for stronger visual separation [50,39].

A probabilistic mixture of operations with multiple inputs or outputs looks
similar to the 1-to-1 case, with the caveat that we need to be more careful
in the positioning of the wires as to distinguish between tensor product and
probabilistic choice.4 For example, if we want to represent applying the CNOT
4 One could use scalable notation [12] to allow wires to be multi-qubit quantum reg-

isters. This would help with the distinction when diagrams are larger in practice.

Enriching Diagrams with Algebraic Operations 135



gate and the CZ gate with probabilities p and 1 − p respectively we would get
the diagram on the right in Figure 5.

We can consider this extra notation as the result of a free enrichment of ZX
over AlgD giving us the category of enriched ZX-diagrams F∗ZX. We can then
define the interpretation J·KD of an AlgD-enriched diagram as a monoidal func-
tor from the category of enriched ZX-diagrams to CPM(Qubit). This functor
factors through F∗CPM(Qubit) as follows:

F∗ZX F∗CPM(Qubit)

CPM(Qubit)
J·KD

⟨⟨·⟩⟩

⟨⟨·⟩⟩∗

Where ⟨⟨·⟩⟩∗ interprets an enriched ZX-diagram as a probabilistic mixture
of operations which is then evaluated by ⟨⟨·⟩⟩ as explained in Section 5.3. An
example of the interpretation of an arbitrary distribution of ZX-diagrams of
arbitrary size can be seen in (6). When using the multiset monad M instead the
interpretation J·KM is similar.

J·KD−−−→ ρ 7→
∑

i piJDiK ρ JDiK†

· · ·

· · ·

D1 Dk

· · ·
p1 pk
· · ·n · · ·n

· · ·m · · ·m

m

n

(6)

Enriched ZX-diagrams are universal, that is, any morphism in CPM(Qubit)
can be represented by an enriched ZX-diagram. Indeed, since CPM(Qubit) is
still made of CP maps between Hilbert spaces, we can use universality of the
ZX-calculus alone to represent any morphism in CPM(Qubit).

5.5 Additional Rules for Enriched ZX-diagrams

With the new notation we can have new rewrite rules too, some of which were
already introduced in [50,39] ((es), (ep), (ec), and (eδ)) for the case of linear
combinations. We will display them here, including additional rules. The ruleset
of the enriched ZX-calculus for the distribution and multiset monads is the same
as the one for ZX-calculus plus additional rules that capture the interaction
between sums, products, tensor products, and scalars. We can see the additional
rules arising from the enrichment in Figure 6, which intuitively state:

– (es): The enriched sequential composition rule shows how to sequentially
compose distributions. Intuitively this rule follows from products distributing
over addition.

– (ep): The enriched parallel composition rule is the same as (es), but for
parallel composition instead of sequential.

136 A. Villoria et al.



· · ·

· · ·

· · ·

D1 Dk

· · ·
p1 pk · · ·

· · ·

(es)
=

· · ·

(ep)
=

· · ·

(ec)
=

n

· · ·n · · ·n

· · ·m · · ·m

m

D1 Dk

· · ·

p1q1 pkqℓ
· · ·n · · ·n

· · ·r · · ·r

r

D′
1 D′

ℓ

D1 Dk

· · ·
p1 pk
· · ·n · · ·n

· · ·m · · ·m

D′
1 D′

ℓ

· · ·
q1 qℓ
· · ·m · · ·m

· · ·r · · ·r

· · ·m · · ·m

r

n

m

n · · ·

· · ·

D′
1 D′

ℓ

· · ·
q1 qℓ
· · ·r · · ·r

· · ·s · · ·s

s

r

· · ·

· · ·

D1 · · ·

p1q1

· · ·n

· · ·m

m+ s

n+ r

D′
1

· · ·r

· · ·s
Dk

· · ·n

· · ·m
D′

ℓ

· · ·r

· · ·s

pkqℓ

· · ·

· · ·

D1 D2

p1 p2
· · ·n · · ·n

· · ·m · · ·m

m

n · · ·

· · ·

D2 D1

p2 p1
· · ·n · · ·n

· · ·m · · ·m

m

n · · ·

· · ·

D

1

m

n

· · ·

· · ·

(eδ)
= D

n· · ·

· · ·m

· · ·

· · ·

D D

p1 p2
· · ·n · · ·n

· · ·m · · ·m

m

n · · ·

· · ·

D

p1 + p2

m

n

· · ·

· · ·

(e+)
=

· · ·

· · ·

D1 D2

p 0
· · ·n · · ·n

· · ·m · · ·m

m

n · · ·

· · ·

D1

p

m

n

· · ·

· · ·

(e0)
=

Additional enriched ruleset

Fig. 6: Additional rules for the enriched ZX-calculus, alongside the ones of Fig-
ure 4. Diagrams D,D′ are arbitrary ZX-diagrams and weights p, q are probabil-
ities.

– (ec): The enriched commutativity rule shows that bracketed diagrams are
invariant under permutation of the branches.

– (eδ): The enriched Dirac delta distribution rule provides a shorthand for the
trivial Dirac delta distribution.

– (e+): The enriched addition rule shows that we can remove a branch if it is
identical to some other by adding the probabilities.

– (e0): The enriched 0-probability rule allows us to remove branches with 0
probability .

Rules (es),(ep),(ec) and (eδ) were proven to be sound in [39] but in the
context of linear combinations of diagrams interpreted in Qubit. We show that
these rules still hold as an enrichment in AlgD and interpreted in CPM(Qubit)
in [51, Appendix C]. Finding a complete ruleset (i.e. one that can show D1 = D2

whenever JD1KD = JD2KD) for enriched diagrams remains to be done. A possible
direction to tackle this problem would be to translate enriched diagrams into
ZXW [49] diagrams, which is a complete diagrammatic language with a W-spider
that can encode addition of phases. Another alternative would be to translate
into the controlled form of [25].

We conclude with a demonstration of how we can use this extension of the
ZX-calculus to study the effectiveness of Quantum Error Mitigation (QEM) tech-
niques for different noise models. Quantum Error Mitigation [11] are the series
of techniques that are used to reduce the effects of noise in near-term quan-

Enriching Diagrams with Algebraic Operations 137



tum systems. One such technique is Symmetry Verification [6], which states
that given a Hamiltonian (Hermitian operator that determines the evolution
of a system) Ĥ, and a symmetry S (an operator that commutes with Ĥ i.e.
[Ĥ, S] = ĤS − SĤ = 0), one can perform measurements of S to verify if the
state that (ideally) evolves under Ĥ was affected by errors. Indeed, under the
assumption that the initial state is a (+1) eigenvector of S, then it will stay
that way under ideal evolution under Ĥ. This implies that if there is an error E
that anti-commutes with S (i.e. {E,S} = ES + SE = 0) at some point in the
computation, we can measure S to detect a change in the eigenvalue. Symmetry
verification then proposes to perform a postselection on the result (+1), meaning
that we discard computations that give a (−1) outcome when measuring S.

Given a noisy state ρnoisy and a symmetry S, the probability of outcome
(+1) when measuring S is given by p(+1) = tr(P+1ρnoisy), for P+1 = I+S

2 the
projector onto the (+1) eigenspace of S and tr the trace operator. This value
tells us then with which probability the measurement “accepts” a noisy state, and
can be used to compare the effectiveness of different choices of S given a certain
noise model [26]. Let us consider ρnoisy = Φ(U |0⟩) for Φ the depolarizing noise
channel and U some single-qubit unitary – in other words, we have a single layer
of depolarizing noise at the end of our computation. For simplicity, let us further
assume that our state before the depolarizing channel is the (+1) eigenvector of
some Pauli operator e.g. the Pauli X, then we have U = H (the Hadamard gate)
and we can draw p(+1) = tr( I+S

2 ρnoisy) diagrammatically (up to scalar factor,
see [51, Appendix D]) as the following diagram:

π

π

π

π

1− p p
3

p
3

p
3

i

From top to bottom, the diagram represents applying H to the |0⟩ state,
followed by a depolarizing noise channel and the verification of X in the form of
a CNOT gate controlled on an auxiliary qubit. The auxiliary qubit on the right
starts in the |0⟩ state and has a Hadamard gate applied to it before and after the
CNOT. It is then postselected into ⟨0|, which is the corresponding state for the
(+1) outcome. The last operation in the form of corresponds to the trace. The
full diagrammatic calculation is in [51, Appendix D]. With similar diagrams, we
can study diagrammatically how well different QEM techniques mitigate certain
noise models, and apply them to representations of quantum algorithms that,
for example, have one layer of errors for every time step.

138 A. Villoria et al.



6 Discussion and Future Work

In this work, we have shown how to construct freely enriched symmetric monoidal
categories over the algebras of a monoidal monad on Set that satisfies F ⊣
AlgT (I,−) for F the free T -algebra functor and I the unit of the monoidal
structure, which is the case in particular when T is an affine monad. We have
then taken this construction and developed a graphical language that captures
the additional algebraic structure of the morphisms for the case of the Distribu-
tion monad. We then show how we can use this to study classical probabilistic
processes in quantum systems, a highly relevant type of operation for near-term
quantum applications. In particular, we extend the ZX-calculus to make it a
language for reasoning in an enriched version of CPM(Qubit).

We believe that this work opens several directions for future research. The
most evident one is to prove completeness of the enriched diagrams, which in
turn would facilitate automated implementations for tasks such as simulation of
noisy quantum systems, fine-tuned quantum circuit optimization techniques for
specific quantum devices, or comparison of the effectiveness of different Quantum
Error Mitigation techniques. An interesting venue would be to use enrichment
over M to reason about quantum circuit pre- and post-processing techniques,
such as circuit cutting [44,42], in which quantum circuits are “split” into linear
combinations of smaller ones that are executed separately. We also believe that it
could be possible to integrate monads that capture quantum behaviours into our
construction to represent in enriched ZX-diagrams phenomena such as superpo-
sition of execution orders, like what is done in the Many-Worlds calculus [14].

Strongly related to completeness is to have presentations of the diagrams in
terms of generators and equations. We achieved this by hand in Section 5 by using
that the algebras for the distribution monad can be presented as convex algebras
with a family of operations +p. The question is then what the analogue of convex
monads is when using algebras presented by Lawvere theories or sketches [21,36].

We are also interested in finding other monads that could capture interesting
processes outside of the quantum realm. For example, the non-empty powerset
monad could be used to encode non-deterministic operations and be used for
reasoning about a third party operating on a shared quantum system.

Acknowledgements This work was funded by the European Union under
Grant Agreement 101080142, EQUALITY project. AV was partly supported by
project PRG 946 funded by the Estonian Research Council. The authors would
like to thank anonymous reviewers for pointing out reference [2] regarding the
tensor product of convex algebras.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols (Mar
2007), http://arxiv.org/abs/quant-ph/0402130, arXiv:quant-ph/0402130

Enriching Diagrams with Algebraic Operations 139

http://arxiv.org/abs/quant-ph/0402130


2. Banaschewski, B., Nelson, E.: Tensor products and bimorphisms. Cana-
dian Mathematical Bulletin 19(4), 385–402 (1976). https://doi.org/10.4153/
CMB-1976-060-2

3. Barr, M., Wells, C.: Toposes, Triples and Theories, vol. 278. Springer-Verlag New
York (1985)

4. de Beaudrap, N., Horsman, D.: The ZX calculus is a language for surface
code lattice surgery. Quantum 4, 218 (jan 2020). https://doi.org/10.22331/
q-2020-01-09-218, https://doi.org/10.22331%2Fq-2020-01-09-218

5. Bonchi, F., Di Giorgio, A., Santamaria, A.: Deconstructing the Calculus of
Relations with Tape Diagrams (Oct 2022), http://arxiv.org/abs/2210.09950,
arXiv:2210.09950 [cs]

6. Bonet-Monroig, X., Sagastizabal, R., Singh, M., O’Brien, T.E.: Low-cost er-
ror mitigation by symmetry verification. Physical Review A 98(6), 062339 (Dec
2018). https://doi.org/10.1103/PhysRevA.98.062339, http://arxiv.org/abs/
1807.10050, arXiv:1807.10050 [quant-ph]

7. Borceux, F.: Handbook of Categorical Algebra, Encyclopedia of Mathematics and
its Applications, vol. 2. Cambridge University Press (1994). https://doi.org/10.
1017/CBO9780511525865

8. Borceux, F.: Handbook of Categorical Algebra: Volume 1: Basic Category Theory,
Encyclopedia of Mathematics and Its Applications, vol. 1. Cambridge University
Press, Cambridge (1994). https://doi.org/10.1017/CBO9780511525858

9. Borgna, A., Perdrix, S., Valiron, B.: Hybrid quantum-classical circuit simplification
with the ZX-calculus. vol. 13008, pp. 121–139 (2021). https://doi.org/10.1007/
978-3-030-89051-3_8, http://arxiv.org/abs/2109.06071, arXiv:2109.06071
[quant-ph]

10. Brandenburg, M.: Tensor categorical foundations of algebraic geometry (Oct 2014),
http://arxiv.org/abs/1410.1716, arXiv:1410.1716 [math]

11. Cai, Z., Babbush, R., Benjamin, S.C., Endo, S., Huggins, W.J., Li, Y., McClean,
J.R., O’Brien, T.E.: Quantum Error Mitigation (Jun 2023), http://arxiv.org/
abs/2210.00921, arXiv:2210.00921 [quant-ph]

12. Carette, T., Horsman, D., Perdrix, S.: SZX-calculus: Scalable Graphical Quantum
Reasoning

13. Carette, T., Jeandel, E., Perdrix, S., Vilmart, R.: Completeness of Graphical Lan-
guages for Mixed States Quantum Mechanics (Feb 2019), http://arxiv.org/abs/
1902.07143, arXiv:1902.07143 [quant-ph]

14. Chardonnet, K., de Visme, M., Valiron, B., Vilmart, R.: The many-worlds calculus
(2022)

15. Coecke, B., Duncan, R.: Interacting Quantum Observables: Categorical Al-
gebra and Diagrammatics. New Journal of Physics 13(4), 043016 (Apr
2011). https://doi.org/10.1088/1367-2630/13/4/043016, http://arxiv.org/
abs/0906.4725, arXiv:0906.4725 [quant-ph]

16. Comfort, C., Delpeuch, A., Hedges, J.: Sheet diagrams for bimonoidal categories
(Dec 2020), http://arxiv.org/abs/2010.13361, arXiv:2010.13361 [math]

17. Cruttwell, G.: Normed spaces and the change of base for enriched categories (2008)
18. Day, B., Street, R.: Monoidal Bicategories and Hopf Algebroids. Advances in Math-

ematics 129(1), 99–157 (Jul 1997). https://doi.org/10.1006/aima.1997.1649,
https://www.sciencedirect.com/science/article/pii/S0001870897916492

19. de Paiva, V.: Categorical Semantics of Linear Logic for All. In: Pereira, L.C.,
Haeusler, E.H., de Paiva, V. (eds.) Advances in Natural Deduction: A Celebra-
tion of Dag Prawitz’s Work, pp. 181–192. Trends in Logic, Springer Netherlands,
Dordrecht (2014). https://doi.org/10.1007/978-94-007-7548-0_9

140 A. Villoria et al.

https://doi.org/10.4153/CMB-1976-060-2
https://doi.org/10.4153/CMB-1976-060-2
https://doi.org/10.4153/CMB-1976-060-2
https://doi.org/10.4153/CMB-1976-060-2
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.22331%2Fq-2020-01-09-218
http://arxiv.org/abs/2210.09950
https://doi.org/10.1103/PhysRevA.98.062339
https://doi.org/10.1103/PhysRevA.98.062339
http://arxiv.org/abs/1807.10050
http://arxiv.org/abs/1807.10050
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1007/978-3-030-89051-3_8
https://doi.org/10.1007/978-3-030-89051-3_8
https://doi.org/10.1007/978-3-030-89051-3_8
https://doi.org/10.1007/978-3-030-89051-3_8
http://arxiv.org/abs/2109.06071
http://arxiv.org/abs/1410.1716
http://arxiv.org/abs/2210.00921
http://arxiv.org/abs/2210.00921
http://arxiv.org/abs/1902.07143
http://arxiv.org/abs/1902.07143
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
http://arxiv.org/abs/0906.4725
http://arxiv.org/abs/0906.4725
http://arxiv.org/abs/2010.13361
https://doi.org/10.1006/aima.1997.1649
https://doi.org/10.1006/aima.1997.1649
https://www.sciencedirect.com/science/article/pii/S0001870897916492
https://doi.org/10.1007/978-94-007-7548-0_9
https://doi.org/10.1007/978-94-007-7548-0_9


20. Heunen, C., Vicary, J.: Categories for Quantum Theory: An Introduction. Oxford
University Press (11 2019). https://doi.org/10.1093/oso/9780198739623.001.
0001, https://doi.org/10.1093/oso/9780198739623.001.0001

21. Hyland, M., Power, J.: The Category Theoretic Understanding of Universal Alge-
bra: Lawvere Theories and Monads. Electronic Notes in Theoretical Computer Sci-
ence 172, 437–458 (Apr 2007). https://doi.org/10.1016/j.entcs.2007.02.019

22. Jacobs, B.: Convexity, duality and effects. In: Calude, C.S., Sassone, V. (eds.) The-
oretical Computer Science. pp. 1–19. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

23. Jacobs, B.: New Directions in Categorical Logic, for Classical, Probabilistic and
Quantum Logic. Logical Methods in Computer Science Volume 11, Issue 3,
1600 (Oct 2015). https://doi.org/10.2168/LMCS-11(3:24)2015, https://lmcs.
episciences.org/1600

24. Jacobs, B.: Affine Monads and Side-Effect-Freeness. In: Hasuo, I. (ed.) Coalgebraic
Methods in Computer Science. pp. 53–72. Springer International Publishing, Cham
(2016)

25. Jeandel, E., Perdrix, S., Veshchezerova, M.: Addition and Differentiation of ZX-
diagrams (Mar 2023). https://doi.org/10.48550/arXiv.2202.11386, http://
arxiv.org/abs/2202.11386, arXiv:2202.11386 [quant-ph]

26. Kakkar, A., Larson, J., Galda, A., Shaydulin, R.: Characterizing error mit-
igation by symmetry verification in QAOA. In: 2022 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE (sep
2022). https://doi.org/10.1109/qce53715.2022.00086, https://doi.org/10.
1109%2Fqce53715.2022.00086

27. Kelly, G.M., Street, R.: Review of the elements of 2-categories. In: Kelly, G.M. (ed.)
Category Seminar. pp. 75–103. Lecture Notes in Mathematics, Springer, Berlin,
Heidelberg (1974). https://doi.org/10.1007/BFb0063101

28. Kelly, M.: Basic Concepts of Enriched Category Theory. No. 64 in Lecture Notes
in Mathematics, Cambridge University Press, reprints in theory and applications
of categories, no. 10 (2005) edn. (1982), http://www.tac.mta.ca/tac/reprints/
articles/10/tr10abs.html

29. Kissinger, A.: Phase-free zx diagrams are css codes (...or how to graphically grok
the surface code) (2022)

30. Kissinger, A., van de Wetering, J.: Reducing the number of non-
clifford gates in quantum circuits. Physical Review A 102(2) (aug 2020).
https://doi.org/10.1103/physreva.102.022406, https://doi.org/10.1103%
2Fphysreva.102.022406

31. Kissinger, A., van de Wetering, J.: Simulating quantum circuits with ZX-calculus
reduced stabiliser decompositions. Quantum Science and Technology 7(4), 044001
(jul 2022). https://doi.org/10.1088/2058-9565/ac5d20, https://doi.org/10.
1088%2F2058-9565%2Fac5d20

32. Kock, A.: Closed categories generated by commutative monads. Journal of the
Australian Mathematical Society 12(4), 405–424 (1971). https://doi.org/10.
1017/S1446788700010272

33. Kong, L., Yuan, W., Zhang, Z.H., Zheng, H.: Enriched monoidal categories I: Cen-
ters (Apr 2021). https://doi.org/10.48550/arXiv.2104.03121, http://arxiv.
org/abs/2104.03121

34. Leinster, T.: Basic Category Theory. Cambridge Studies in Advanced Mathemat-
ics, Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/
CBO9781107360068

Enriching Diagrams with Algebraic Operations 141

https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.2168/LMCS-11(3:24)2015
https://doi.org/10.2168/LMCS-11(3:24)2015
https://lmcs.episciences.org/1600
https://lmcs.episciences.org/1600
https://doi.org/10.48550/arXiv.2202.11386
https://doi.org/10.48550/arXiv.2202.11386
http://arxiv.org/abs/2202.11386
http://arxiv.org/abs/2202.11386
https://doi.org/10.1109/qce53715.2022.00086
https://doi.org/10.1109/qce53715.2022.00086
https://doi.org/10.1109%2Fqce53715.2022.00086
https://doi.org/10.1109%2Fqce53715.2022.00086
https://doi.org/10.1007/BFb0063101
https://doi.org/10.1007/BFb0063101
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
https://doi.org/10.1103/physreva.102.022406
https://doi.org/10.1103/physreva.102.022406
https://doi.org/10.1103%2Fphysreva.102.022406
https://doi.org/10.1103%2Fphysreva.102.022406
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1088%2F2058-9565%2Fac5d20
https://doi.org/10.1088%2F2058-9565%2Fac5d20
https://doi.org/10.1017/S1446788700010272
https://doi.org/10.1017/S1446788700010272
https://doi.org/10.1017/S1446788700010272
https://doi.org/10.1017/S1446788700010272
https://doi.org/10.48550/arXiv.2104.03121
https://doi.org/10.48550/arXiv.2104.03121
http://arxiv.org/abs/2104.03121
http://arxiv.org/abs/2104.03121
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1017/CBO9781107360068


35. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in
Mathematics, vol. 5. Springer, New York, NY (1978). https://doi.org/10.1007/
978-1-4757-4721-8, http://link.springer.com/10.1007/978-1-4757-4721-8

36. Manes, E.G.: Algebraic Theories, Graduate Texts in Mathematics, vol. 26.
Springer, New York, NY (1976). https://doi.org/10.1007/978-1-4612-9860-1

37. Moggi, E.: Notions of Computation and Monads. Information and Computation
93(1), 55–92 (1991). https://doi.org/10.1016/0890-5401(91)90052-4

38. Morrison, S., Penneys, D.: Monoidal categories enriched in braided monoidal cat-
egories (Jan 2017), http://arxiv.org/abs/1701.00567, arXiv:1701.00567 [math]

39. Muuss, G.: Linear combinations of ZX-diagrams for parameterized quantum cir-
cuits (Nov 2022), https://updownup.de/masterthesis.pdf

40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

41. Peham, T., Burgholzer, L., Wille, R.: Equivalence checking of quantum circuits
with the ZX-calculus. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 12(3), 662–675 (sep 2022). https://doi.org/10.1109/jetcas.2022.
3202204, https://doi.org/10.1109%2Fjetcas.2022.3202204

42. Peng, T., Harrow, A.W., Ozols, M., Wu, X.: Simulating large quantum cir-
cuits on a small quantum computer. Physical Review Letters 125(15) (oct
2020). https://doi.org/10.1103/physrevlett.125.150504, https://doi.org/
10.1103%2Fphysrevlett.125.150504

43. Plotkin, G.D., Power, J.: Notions of Computation Determine Monads. In: Nielsen,
M., Engberg, U. (eds.) Proceedings of Foundations of Software Science and Com-
putation Structures, 5th International Conference, FOSSACS 2002. Lecture Notes
in Computer Science, vol. 2303, pp. 342–356. Springer (2002). https://doi.org/
10.1007/3-540-45931-6_24

44. Pérez-Salinas, A., Draškić, R., Tura, J., Dunjko, V.: Reduce&chop: Shallow
circuits for deeper problems (May 2023), http://arxiv.org/abs/2212.11862,
arXiv:2212.11862 [quant-ph]

45. Riehl, E.: Category Theory in Context. Aurora: Dover Modern Math Originals,
Dover Publications (2016), http://www.math.jhu.edu/~eriehl/context/

46. Seal, G.J.: Tensors, monads and actions (Jun 2013), http://arxiv.org/abs/1205.
0101, arXiv:1205.0101 [math]

47. Selinger, P.: A Survey of Graphical Languages for Monoidal Categories. In:
Coecke, B. (ed.) New Structures for Physics, pp. 289–355. Lecture Notes
in Physics, Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-12821-9_4

48. Selinger, P.: Dagger Compact Closed Categories and Completely Positive Maps:
(Extended Abstract). Electronic Notes in Theoretical Computer Science 170, 139–
163 (2007). https://doi.org/https://doi.org/10.1016/j.entcs.2006.12.018,
https://www.sciencedirect.com/science/article/pii/S1571066107000606

49. Shaikh, R.A., Wang, Q., Yeung, R.: How to sum and exponentiate Hamiltonians in
ZXW calculus (Dec 2022). https://doi.org/10.48550/arXiv.2212.04462, http:
//arxiv.org/abs/2212.04462, arXiv:2212.04462 [quant-ph]

50. Stollenwerk, T., Hadfield, S.: Diagrammatic Analysis for Parameterized Quan-
tum Circuits (Apr 2022), http://arxiv.org/abs/2204.01307, arXiv:2204.01307
[quant-ph]

51. Villoria, A., Basold, H., Laarman, A.: Enriching diagrams with algebraic operations
(2023)

142 A. Villoria et al.

https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
http://link.springer.com/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4612-9860-1
https://doi.org/10.1007/978-1-4612-9860-1
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
http://arxiv.org/abs/1701.00567
https://updownup.de/masterthesis.pdf
https://doi.org/10.1109/jetcas.2022.3202204
https://doi.org/10.1109/jetcas.2022.3202204
https://doi.org/10.1109/jetcas.2022.3202204
https://doi.org/10.1109/jetcas.2022.3202204
https://doi.org/10.1109%2Fjetcas.2022.3202204
https://doi.org/10.1103/physrevlett.125.150504
https://doi.org/10.1103/physrevlett.125.150504
https://doi.org/10.1103%2Fphysrevlett.125.150504
https://doi.org/10.1103%2Fphysrevlett.125.150504
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-45931-6_24
http://arxiv.org/abs/2212.11862
http://www.math.jhu.edu/~eriehl/context/
http://arxiv.org/abs/1205.0101
http://arxiv.org/abs/1205.0101
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/https://doi.org/10.1016/j.entcs.2006.12.018
https://www.sciencedirect.com/science/article/pii/S1571066107000606
https://doi.org/10.48550/arXiv.2212.04462
https://doi.org/10.48550/arXiv.2212.04462
http://arxiv.org/abs/2212.04462
http://arxiv.org/abs/2212.04462
http://arxiv.org/abs/2204.01307


52. Vilmart, R.: A Near-Optimal Axiomatisation of ZX-Calculus for Pure
Qubit Quantum Mechanics (Dec 2018), http://arxiv.org/abs/1812.09114,
arXiv:1812.09114 [quant-ph]

53. van de Wetering, J.: ZX-calculus for the working quantum computer scientist (Dec
2020), http://arxiv.org/abs/2012.13966, arXiv:2012.13966 [quant-ph]

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Enriching Diagrams with Algebraic Operations 143

http://arxiv.org/abs/1812.09114
http://arxiv.org/abs/2012.13966
http://creativecommons.org/licenses/by/4.0/


Monoidal Extended Stone Duality

Abstract. Extensions of Stone-type dualities have a long history in
algebraic logic and have also been instrumental for proving results in
algebraic language theory. We show how to extend abstract categorical
dualities via monoidal adjunctions, subsuming various incarnations of
classical extended Stone and Priestley duality as a special case. Guided by
these categorical foundations, we investigate residuation algebras, which
are algebraic models of language derivatives, and show the subcategory
of derivation algebras to be dually equivalent to the category of profinite
ordered monoids, restricting to a duality between boolean residuation
algebras and profinite monoids. We further extend this duality to capture
relational morphisms of profinite ordered monoids, which dualize to
natural morphisms of residuation algebras.

Keywords: Stone Duality · Profinite Monoids · Regular Languages.

1 Introduction

Marshall H. Stone’s representation theorem for boolean algebras, the foundation
for the so called Stone duality between boolean algebras and Stone spaces,
manifests a tight connection between logic and topology. It has thus become an
ubiquitous tool in various areas of theoretical computer science, not only in logic,
but also for example in domain theory and automata theory.

From algebraic logic arose the need for extending Stone duality to capture
boolean algebras equipped with additional operators (modelling quantifiers or
modalities). Originating in Jónsson and Tarski’s representation theorem for
boolean algebras with operators [21,22], a representation in the spirit of Stone
was proven by Halmos [17]; the general categorical picture of the duality of Kripke
frames and modal algebras is based on an adjunction between operators and
continuous relations developed by Sambin and Vaccaro [31].

In the study of regular languages, the need for extensions of Stone duality
was not discovered until this millenium: while Pippenger [27] has already shown
that the boolean algebra of regular languages on an alphabet Σ corresponds,
under Stone duality, to the Stone space Σ̂∗ of profinite words, Gehrke et al. [15]
discovered that, under Goldblatt’s form of extended Priestley duality [16], the
⋆ All authors are supported by Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under project 470467389

Fabian Birkmann1 ⋆, Henning Urbat1 ⋆,
and Stefan Milius1 ⋆

(B)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{fabian.birkmann,stefan.milius,henning.urbat}@fau.de

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 144–1

9

5, 2024.
https://doi.org/10.1007/978-3-031-57228-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_8&domain=pdf
http://orcid.org/0000-0001-5890-9485
http://orcid.org/0000-0002-3265-7168
http://orcid.org/0000-0002-2021-1644


residuals of language concatenation dualize to multiplication on the space of
profinite words. But while categorical frameworks have identified Stone-type
dualities to be one of the cornerstones of algebraic language theory [36,30], the
correspondence between residuals and multiplication via extended duality has
not yet been placed in the categorical big picture. One reason is that, despite
some progress in recent years [6,18], extended (Stone) dualities for (co-)algebras
are themselves not fully understood as instances of a crisp categorical idea.

Therefore we introduce as our first main contribution a simple, yet powerful
framework to extend any categorical duality C ≃op Ĉ via monoidal adjunctions :
For a given adjunction on C with a strong monoidal right adjoint U we prove a
dual equivalence between the category of U -operators on C to dual operators
in the Kleisli category of the monad on Ĉ arising from the dual of the given
adjunction. We show how to instantiate the abstract extended duality to Priest-
ley duality, which not only recovers Goldblatt’s original duality for distributive
lattices with operators [16] but also applies more generally to bialgebraic op-
erators with relational morphisms. Guided by our categorical foundations for
extended Stone duality we investigate the correspondence between language
derivatives and multiplication of profinite words in the setting of residuation
algebras originally studied by Gehrke [14]. The key observation is that on finite
distributive lattices the residuals are equivalent to a coalgebraic operator on the
lattice, and we show how to lift this correspondence to locally finite structures,
i.e. structures built up from finite substructures. By identifying suitable non-full
subcategories – derivation algebras and locally finite comonoids, respectively –
and an appropriate definition of morphism for residuation algebras, we augment
Gehrke’s characterization of Stone-topological algebras in terms of residuation
algebras to a duality between the categories of derivation algebras and that of
profinite ordered monoids:

Der ∼= Comonlf ≃op ProfOrdMon. (1.1)

The above duality clarifies the relation between Gehrke’s results and the duality
by Rhodes and Steinberg [29] between profinite monoids and counital boolean
bialgebras. The extended duality now suggests that the dual equivalence between
profinite ordered monoids on one side and locally finite comonoids as well as
derivation algebras on the other side extends to a more general duality capturing
morphisms of relational type of profinite ordered monoids. To this end, we identify
a natural notion of relational morphism for residuation algebras and comonoids,
and use our abstract extended duality theorem to obtain the dual equivalence

RelDer ∼= RelComonlf ≃op RelProfOrdMon

which extends (1.1) to relational morphisms. To our knowledge, this is the first
duality result for relational morphisms of profinite monoids, which have become
an ubiquitous tool in algebraic language theory [26] and semigroup theory [29].
Full proof details can be found in the full version [5] of this paper.

Related Work. Duality for (complete) boolean algebras with operators goes back
to Jónsson and Tarski [21,22]. This duality was refined by the topological approach

Monoidal Extended Stone Duality 145



via Stone spaces taken by Halmos [17], which allowed to characterize the relations
arising as the duals of operators, namely boolean relations. Halmos’ duality
was extended to distributive lattices with (n-ary) operators by Goldblatt [16]
and Cignoli [7]. Kupke et al. [24] recognized that boolean relations elegantly
describe descriptive frames as coalgebras for the (underlying functor of) the
Vietoris monad on Stone spaces; notions of bisimulation for these coalgebras were
investigated by Bezhanishvili et al. [2]. Bosangue et al. [6] introduced a framework
for dualities over distributive lattices equipped with a theory of operators for
a signature, which are dual to certain coalgebras. Hofmann and Nora [18] have
taken a categorical approach to extend natural dualities to algebras for a signature
equipped with unary operators preserving only some of the operations prescribed
by the signature; they relate these to coalgebras for (the underlying functor of) a
suitable monad T . In their framework T is a parameter required to satisfy certain
conditions for the duality to work, while in our work T is already determined by
the adjunction. The recent work by Bezhanishvili et al. [1] clarifies the relation
between free constructions on distributive lattices and the different versions of
the Vietoris monad to derive several dualities between distributive lattices with
different types of operators and their corresponding Priestley relations.

Residuated boolean algebras, i.e. boolean algebras with a residuated binary
operator,were explicitly considered by Jónsson and Tsinakis [23] to highlight
the roles of the residuals in relation algebra. Gehrke et al. [15] discovered the
connection between the residuals of the concatenation of regular languages and
the multiplication on profinite words and investigated applications to automata
theory, most notably a duality-theoretic proof of Eilenberg’s variety theorem [8].
The duality theory behind the correspondence of general residuation algebras
and Priestley-topological algebras was given via canonical extensions [12,11] and
Goldblatt’s extended Stone duality [16] by Gehrke [14]. She has also provided
conditions under which the dual relations of the residuals is functional; Fussner
and Palmigiano [10] have shown that functionality of the dual relation is not
equationally definable in the language of residuation algebras.

2 Preliminaries

Readers are assumed to be familiar with basic category theory, such as functors,
natural transformations, adjunctions and monoidal categories [25]. We briefly
recall the foundations of Stone duality [34] and Priestley duality [28]. By the
latter we mean the dual equivalence DL ≃op Priest between the category DL
of bounded distributive lattices and lattice homomorphisms, and the category
Priest of Priestley spaces (ordered compact topological spaces in which for every
x ̸≤ y there exists a clopen up-set containing x but not y) and continuous mono-
tone maps. The duality sends a distributive lattice D to the pointwise-ordered
space DL(D, 2) of homomorphisms into the two-element lattice (equivalently
prime filters, ordered by inclusion), and topologized via pointwise convergence.
In the reverse direction, it sends a Priestley space X to the distributive lat-
tice Priest(X, 2) of continuous maps into the two-element poset 2 = {0 ≤ 1}

146 F. Birkmann, S. Milius, H. Urbat



with discrete topology (equivalently clopen upsets), with the pointwise lattice
structure. Priestley duality restricts to Stone duality BA ≃op Stone between
the full subcategories BA of boolean algebras and Stone of Stone spaces (dis-
cretely ordered Priestley spaces). Moreover, it restricts to Birkhoff duality [3]
DLf ≃op Posf between finite distributive lattices and finite posets, sending
a finite distributive lattice to its poset of join-irreducibles and a poset to its
lattice of upsets – note that the pointwise order on homorphisms induces the
reverse order on join-irreducibles. For a comprehensive introduction to ordered
structures and their dualities, see the first two chapters of the classic textbook
by Johnstone [20].

3 Extending Dualities

We present the first contribution of our paper, a general categorical framework
for extending Stone-type dualities via monoidal adjunctions, motivated by the
extension of Priestley duality to operators due to Goldblatt [16] recovered in
Section 4. It serves as the basis for our duality results in the next two sections.

Notation 3.1. (1) For U : C → D being right adjoint to F : D → C we write
F : D ⊣ C :U or simply F ⊣ U . We denote the unit and counit by η and ε
and the transposing isomorphisms by

(−)+ : D(C,UD) ∼= C(FC,D) : (−)− with f+ = ε · Ff, g− = Ug · η.

(2) For dually equivalent categories C and Ĉ we denote the equivalence functors
in both directions by (−̂) : C

≃−→ Ĉ and (−̂) : Ĉ
≃−→ C. Moreover, if if F : C → D

is a functor and D̂ is dual to D, we denote its dual by F̂ = (−̂)◦F ◦ (−̂) : Ĉ → D̂.
(3) The Kleisli category of a monad (T, η, µ) on C is denoted by CT . It has
the same objects as C and CT (X,Y ) = C(X,TY ) with Kleisli composition
g ◦ f = µ · Tg · f . A morphism f : C → TD of the Kleisli category is pure if
f = η · f ′ for some f ′ : C → D in C. (We omit the components of η and µ.)

Assumptions 3.2. We fix monoidal categories C,D with dually equivalent
categories Ĉ, D̂; we regard Ĉ, D̂ as monoidal categories with tensor products
⊗̂ dual to the tensor products ⊗ of C,D. Moreover, we fix an adjunction
F : D ⊣ C :U with unit η : Id → UF and counit ε : FU → Id, and assume that U
is a strong monoidal functor with associated natural isomorphisms λ : UX ⊗
UY ∼= U(X ⊗ Y ) and ϵ : ID ∼= UIC. One can extend λ to an isomorphism
λ :

⊗n
i=1 UXi

∼= U(
⊗n

i=1 Xi) for all finite n. The dual functor Û : Ĉ → D̂ is a
strong monoidal left adjoint to F̂ and the unit and counit of this dual adjunction
are ε̂ and η̂. We denote the monad dual to the comonad FU by T = F̂ Û with
unit e = ε̂ : Id → T and multiplication m = F̂ η̂Û : TT → T .

D D̂

C Ĉ

≃op

F F̂

≃op

U⊣

T

⊢ Û
(3.1)

Monoidal Extended Stone Duality 147



Remark 3.3. Since Û is strong monoidal with ϵ̂ : ÎD ∼= Û ÎC and λ̂ : ÛX⊗̂ÛY ∼=
Û(X⊗̂Y ) its right adjoint F̂ is (lax) monoidal (see e.g. [32, p. 17]) with

((η̂⊗̂η̂) · λ̂−1)− : F̂X⊗̂F̂ Y → F̂ (X⊗̂Y ) and (ε̂−1)− : ÎC → F̂ ÎD.

This makes Û ⊣ F̂ a monoidal adjunction, which then induces a monoidal monad
T = F̂ Û on Ĉ. Let δ : TX⊗̂TY → T (X⊗̂Y ) denote the witnessing natural
transformation, which also extends to any arity. The tensor product ⊗̂ of Ĉ lifts
to the Kleisli category ĈT ; the lifting sends a pair (f : X → TY, g : X ′ → TY ′) of
ĈT -morphisms to the ĈT -morphism δ · (f⊗̂g) : X⊗̂X ′ → TY ⊗̂TY ′ → T (Y ⊗̂Y ′).
This makes ĈT itself a monoidal category [33, Prop. 1.2.2] with tensor ⊗̂ and
the canonical left adjoint JT : Ĉ → ĈT a strict monoidal functor.

Definition 3.4. Let G : A → B be a functor between monoidal categories, and
let m,n ∈ N. An (m,n)-ary G-operator consists of an object A ∈ A and a
morphism a : (GA)⊗m → (GA)⊗n of B. An (m,n)-ary G-operator morphism
from (A, b) to (B, b) is a morphism h : GA → GB of B such that

(GA)⊗m (GA)⊗n

(GB)⊗m (GB)⊗n

a

h⊗m h⊗n

b

commutes. The category of (m,n)-ary G-operators is denoted by Opm,n
G (A). We

call (m, 1)-ary G-operators G-algebras and (1, n)-ary G-operators G-coalgebras.
If G is strong monoidal we call an operator pure if it is of the form λ−1 ·Ga′ · λ,
for λ analogous to Assumptions 3.2, and an operator morphism pure if it is of
the form Gh′.

Note that the full subcategory of B consisting of the objects in the image of
G fully embeds into Op1,1G (A) via GA 7→ (GA, idGA).

Theorem 3.5 (Abstract Extended Duality). The category of (m,n)-ary
U -operators is dually equivalent to the category of (n,m)-ary JT -operators:

Opm,n
U (C) ≃op Opn,mJT

(Ĉ).

Proof (Sketch). The functor Opn,mJT
(Ĉ) → Opm,n

U (C) is defined as follows. An ob-
ject of Opn,mJT

(Ĉ) is an operator â : Â⊗̂n → TÂ⊗̂m. By dualization, transposition
and conjugation with λ it is mapped to

λ−1 · a− · λ : (UA)⊗m ∼= UA⊗m → UA⊗n ∼= (UA)⊗n.

An operator morphism f̂ : (Â, â) → (B̂, b̂) is mapped to f− : UB → UA, the dual
of its transpose; a diagram chase shows that this is indeed an operator morphism.
One then proves that this yields a dual equivalence ⊓⊔

148 F. Birkmann, S. Milius, H. Urbat



An advantage of extending dualities via adjunctions is that adjunctions
compose, making the extensions modular : let E be a monoidal category with
monoidal adjunctions F1 : E ⊣ C :U1 and F2 : D ⊣ E :U2 splitting F ⊣ U , i.e.,
F = F1F2 and U = U2U1 and λ = U2λ1 ·λ2U1. Then the following lifting property
applies to operators (set A = B) as well as operator morphisms (set m = n = 1):

Proposition 3.6. A morphism a : (UA)⊗m → (UB)⊗n in D lifts to a morphism
b : (U1A)⊗m → (U1B)⊗n with a = λ−1

2 · U2b · λ2 iff the dual of a factors through
the canonical monad morphism F̂1ε̂2Û1 : T1 → T , where T1 = F̂1Û1.

Remark 3.7. (1) A special case of Proposition 3.6 proves that extended dualities
preserve purity: splitting F ⊣ U into F1 = Id ⊣ Id = U1 and F2 = F ⊣ U = U2

we see that a U -operator (or operator morphism) a is pure iff its dual f is pure
as a Kleisli morphism, i.e. factors through the unit e of T .
(2) The right adjoint U2 often is faithful and in this case F̂1ε̂2Û1 is monic, i.e. T1

is a submonad of T : faithfulness of U2 is equivalent to having an epic counit ε2,
hence ε̂2Û1 is mono, and the right adjoint F̂1 preserves monos. In particular, if T
is “powerset-like”, then ĈT is a category of relations, and we think of U -operators
(or operator morphisms) of the form a = λ−1

2 · U2b · λ2 as dualizing to “more
functional” relations. The examples of Section 4.2 illustrate this idea.

4 Example: Extended Priestley Duality

As a first application of our adjoint framework, we investigate the classical
Priestley duality (Section 2) and derive a generalized version of Goldblatt’s
duality [16] between distributive lattices with operators and relational Priestley
spaces. We instantiate (3.1) to the following categories and functors, which we
will subsequently explain in detail:

D D̂

C Ĉ

≃op

F F̂

≃op

U⊣

T

⊢ Û
=

JSL StoneJSL

DL Priest

≃op

F F̂

≃op

U⊣

V↓

⊢ Û

Categories The upper duality is Hofman-Mislove-Stralka duality [19] between the
category of join-semilattices with bottom and the category of Stone semilattices
(i.e. topological join-semilattices with bottom whose underlying topological space
is a Stone space) and continuous semilattice homomorphisms. The duality maps
a join-semilattice J to the Stone semilattice JSL(J, 2) of semilattice homomor-
phisms into the two-element semilattice, topologized by pointwise convergence.
Equivalently, JSL(J, 2) is the space Idl(J) of ideals (downwards closed and up-
wards directed subsets) of J , ordered by reverse inclusion, with topology generated
by the subbasic open sets σ(j) = {I ∈ Idl(J) | j ∈ I} and their complements for
j ∈ J . In the other direction, a Stone semilattice X is mapped to its semilattice
StoneJSL(X, 2) of clopen ideals, ordered by inclusion.

Monoidal Extended Stone Duality 149



Functors The functor U : DL → JSL is the obvious forgetful functor. Its left
adjoint F : JSL → DL maps a join-semilattice to the set U◦

fg(J) of finitely
generated upsets of J ordered by reverse inclusion. The dual right adjoint F̂
of the left adjoint F is the forgetful functor mapping a Stone semilattice to its
underlying Priestley space. Indeed, as U2 = 2 we compute for the underlying
Priestley space |X| of a Stone semilattice X that

F̂X = DL(F (StoneJSL(X, 2)), 2) ∼= |JSL(StoneJSL(X, 2), U2)| ∼= |X|,

and this bijection is a homeomorphism. Its left adjoint Û : Priest → StoneJSL
maps a Priestley space X to the space

ÛX̂ = JSL(U(Priest(X, 2)), 2) ∼= Idl(Cl↑ X) ∼= V↓X

of ideals of clopen upsets of X. This space is isomorphic to the (downset) Vietoris
hyperspace V↓X of X that has as carrier the set of closed downsets of X. The
isomorphism Idl(Cl↑ X) ∼= V↓X maps an ideal I to the intersection

⋂
U∈I X \ U ;

its inverse sends a closed downset C to the ideal {U ∈ Cl↑ X | C ⊆ X \ U}
of complements of the basic clopen downsets that contain it. The topology of
pointwise convergence on JSL(U(Priest(X, 2)), 2) translates to the hit-or-miss
topology on V↓X generated by the subbasic open sets

{A ⊆ X closed | A ∩ U ̸= ∅} for U ∈ Cl↑ X

and their complements. For a detailed exposition of these results we refer the
reader to the recent work by Bezhanishvili et al. [1]; the free join-semilattice
structure on V↓X was already observed by Johnstone [20, Sec. 4.8]. The unit
e : X → V↓X of the Vietoris monad is given by x 7→ ↓x and multiplication is
given by union [18]. The monad V↓ restricts to the full subcategory Stone of
Stone spaces. We denote the restriction of this monad simply by V.

Remark 4.1 (Continuous Relations). Continuous maps in Priest of the
form ρ : X → V↓Y have a variety of names, we use the term Priestley relation as
in [7,16] or Stone relation if X,Y are Stone spaces. We write x ρ y for y ∈ ρ(x),
and sometimes identify ρ with a subset of X × Y . Let us note that some authors
(e.g. [29]) call a relation R ⊆ X × Y between topological spaces continuous if it
is closed as a subspace of X × Y . Every Priestley relation is continuous, but a
continuous relation between Priestley spaces is generally not a Priestley relation.

Monoidal Structure The category JSL of join-semilattices has a tensor product
⊗ with the universal property that it extends join-bilinear maps:

Bilin(J × J ′,K) ∼= JSL(J ⊗ J ′,K).

Join-bilinear maps J×J ′ → K and their corresponding JSL-morphisms J⊗J ′ →
K are often tacitly identified. The tensor product ⊗ makes JSL a monoidal

150 F. Birkmann, S. Milius, H. Urbat



category with unit 2, i.e. 2⊗ J ∼= J . The tensor product has a representation by
the generators {j ⊗ j′ | j ∈ J, j′ ∈ J ′} and relations

j⊗0 = 0⊗j′ = 0, (j1∨j2)⊗k = j1⊗k∨j2⊗k and j⊗(k1∨k2) = j⊗k1∨j⊗k2.

We call generating elements j⊗ j′ pure tensors. If D,D′ are bounded distributive
lattices then so is UD⊗UD′ [9], with meet given on pure tensors as (d⊗d′)∧(e⊗
e′) = (d∧e)⊗(d′∧e′). The lattice UD⊗UD′ moreover is the coproduct of D,D′ in
DL: the coproduct injections are ι(d) = d⊗1′ and ι′(d′) = 1⊗d′ for d ∈ D, d′ ∈ D′,
and the copairing of lattice homomorphisms f : D → E, f ′ : D′ → E is given by
the extension of the join-bilinar map

∧ · (f × f ′) : D ×D′ → E, (d, d′) 7→ f(d) ∧ f(d′).

Taking coproducts yields a monoidal structure on DL and since U(D +D′) =
UD ⊗ UD′ the functor U is strong monoidal. The dual monoidal structure on
Priest takes binary products, and the natural transformation δ of Remark 3.3 is
the expected product of sets

δ : V↓X × V↓Y → V↓(X × Y ), (C,D) 7→ C ×D.

Spelling out Definition 3.4, the category Opn,mJV↓
(Priest) is given as follows:

Definition 4.2. A ((n,m)-ary) relational Priestley space consists of a carrier
Priestley space X and a Priestley relation ρ : Xn → V↓X

m. A relational morphism
from a relational Priestley space (X, ρ) to (X ′, ρ′) is given by a Priestley relation
β : X → V↓Y such that, for all x ∈ Xn,y ∈ Xm,y′ ∈ X ′m,

x ρ y ∧ (∀i : yi β y′i) ⇒ ∃x′ : (∀i : xi β x′
i) ∧ x′ ρ′ y′,

and, for all x ∈ Xn,x′ ∈ X ′n,y′ ∈ X ′m,

(∀i : xi β x′
i) ∧ x′ ρ′ y′ ⇒ ∃y : x ρ y ∧ (∀i : yi β y′i).

We let Opn,mJV↓
(Priest) denote the category of (n,m)-ary relational Priestley

operators and relational morphisms.

Then Theorem 3.5 instantiates to the following result:

Theorem 4.3 (Extended Priestley duality). The category of (m,n)-ary U -
operators of distributive lattices is dually equivalent to the category of (n,m)-ary
relational Priestley spaces and relational morphisms:

Opm,n
U (DL) ≃op Opn,mJV↓

(Priest).

By taking n = 1 and restricting the operator morphisms to be pure, we
recover Goldblatt’s duality [16]. Here, pure relational morphisms are called
bounded morphisms and n-ary U -algebras (UD)⊗n → UD in JSL are called
n-ary join-hemimorphisms.

Corollary 4.4 (Goldblatt, 1989). The category of distributive lattices with n-
ary join-hemimorphisms, and pure morphisms between them, is dually equivalent
to the category of (1, n)-relational Priestley spaces and bounded morphisms.

Monoidal Extended Stone Duality 151



4.1 Deriving Concrete Formulas

We proceed to show how an enriched extension of our adjoint framework can be
used to methodically derive concrete (i.e. element-based) formulas for the dual
join operator of a continuous relation and vice versa. Let us first observe that all
involved categories are order-enriched, i.e. the homsets are (pointwise) partially
ordered; for JSL and DL this is clear and relations X → V↓Y are ordered by
inclusion, as usual. Moreover, from the definitions it is clear that the transposing
isomorphisms of the adjunction F ⊣ U and the duality DL ≃op Priest are
order-isomorphisms.

Second, in Priest we can represent an element x̂ of a space X̂ as a continuous
function 1 → X that we also denote by x̂; on the lattice side, elements of a
join-semilattice J correspond bijectively to JSL-morphisms 2 → J .

For the rest of the section we fix a U -algebra h : (UX)⊗n → UX with dual
Priestley relation ρ : X̂ → V↓X̂

n. We first show how to express ρ in terms of h.
Two elements x̂ ∈ X̂, x̂ ∈ X̂n are related by ρ (i.e. x̂ ρ x̂) iff the inequality
e(x̂) = ↓x̂ ≤ ρ(x̂) holds, equivalently, iff the left diagram below commutes laxly:

X̂ V↓X̂
n UX (UX)⊗n

1 X̂n 1n U2 (U2)⊗n

ρ

≥
Ux

≥

h

⊗
i Uxix̂

x̂

∆

e ∏
i x̂i ∇

The duals of x̂, x̂i are DL morphisms x, xi : X → 2. Under duality and transposi-
tion the left diagram corresponds to the right diagram where ∇ is the codiagonal
given by n-fold conjunction, i.e. it sends

⊗n
i=1 xi to

∧n
i=1 xi. Writing Fz = z−1(1)

for the prime filter corresponding to a morphism z ∈ DL(X, 2) the right dia-
gram yields Goldblatt’s formula [16, p. 186] for the dual Priestley relation of an
algebra h: we have x̂ ρ x̂ iff h[

∏
i Fxi

] ⊆ Fx.
To express h in terms of ρ, it suffices to describe h(x) for a pure tensor

x ∈ (UX)⊗n by the universal property of the tensor product. We factor x =⊗
i xi · ∇−1 : U2 ∼= (U2)⊗n → (UX)⊗n to see that the element h(x) corresponds

to the following morphism representing an element of the join-semilattice UX:

h ·
⊗
i

xi · ∇−1 : U2 ∼= (U2)⊗n → (UX)⊗n → UX.

Its dual is the characteristic function

X̂
ρ−→ V↓X̂

n V↓(
∏

i Ci)−−−−−−→ V↓(V↓1)
n V↓δ−−→ V↓V↓1

n
⋃
−→ V↓1

n V↓∆−1

−−−−→ V↓1 = 2,

where Ci = x̂+
i is the clopen upset of X̂ dual to

xi ∈ JSL(U2, UX) ∼= DL(FU2, X) ∼= Priest(X̂,V↓1) ∼= Priest(X̂, 2).

This shows that h(x) ∈ X ∼= Cl↑ X̂ corresponds to the clopen upset

h(x) = {a ∈ X̂ | ∃(b1, . . . , bn) ∈ ρ(a) : ∀i : bi ∈ Ci = x̂+
i } ∈ Cl↑(X̂),

which is Goldblatt’s formula [16, p. 184] for the dual algebra of a relation ρ.

152 F. Birkmann, S. Milius, H. Urbat



4.2 Partial Functions and Total Relations

As a further application of the adjoint framework we characterize those operators
whose dual Priestley relation is a partial function or a total relation, respectively.
We achieve this by considering two splittings of the adjunction F : JSL ⊣ DL :U
(Proposition 3.6 and Remark 3.7). The tensor on all categories considered is the
tensor product of their underlying join-semilattices.

First, split the adjunction into Q : DL0 ⊣ DL :P and Q′ : JSL ⊣ DL0 :P ′,
where DL0 is the category of distributive lattices that are only bounded from
below, and P, P ′ are forgetful functors. The left adjoint Q adds a fresh top
element to a lattice in DL0. The dual submonad Q̂P̂ ↪→ V↓ on Priest is given by

Q̂P̂ D̂ ∼= Q̂PD ∼= DL(QPD, 2) ∼= DL0(PD,P2).

Every f ∈ DL0(PD,P2) either satisfies f(1) = 1, in which case f ∈ D̂ is prime,
or f(1) = 0 but then f is the constant zero map 0! : PD → P2; note that 0! is
clearly the bottom element in the pointwise ordering of DL0(PD,P2), so the
monad Q̂P̂ just freely adds a bottom element. In particular, the dual category of
DL0 is readily seen to be equivalent to Priest0, the category of Priestley spaces
with a bottom element, and bottom-preserving continuous monotone maps. A
continuous relation ρ : X → Q̂P̂ X̂ is thus simply a partial continuous function.

Another splitting of the adjunction F ⊣ U is given by L : JSL1 ⊣ DL :R and
L′ : JSL ⊣ JSL1 :R′, where JSL1 is the category of join-semilattices with both
a bottom and top element (which are preserved by homomorphisms). The right
adjoints R,R′ are forgetful functors. The left adjoint L maps J ∈ JSL1 to the
distributive lattice U◦

fg+ of non-empty finitely generated upsets of J , ordered by
reverse inclusion. The submonad L̂R̂ ↪→ V↓ thus maps a Priestley space D̂ to

L̂R̂D̂ ∼= DL(LRD, 2) ∼= JSL1(RD,R2) ∼= V+
↓ D̂,

where V+
↓ is the submonad of V↓ taking non-empty closed downsets. Morphisms

of type X → V+
↓ Y therefore are total Priestley relations. Proposition 3.6 thus

yields the following result (the unary case is folklore, see e.g. [18, Lemma 4.6]):

Corollary 4.5. The dual Priestley relation of a U -operator (operator morphism,
respectively) is a partial function iff the operator (operator morphism, respectively)
preserves non-empty meets, and total iff it preserves ⊤.

5 Residuation Algebras

The abstract extended duality will now guide us in deriving a categorical duality
between profinite ordered monoids and a full subcategory of residuation algebras
which we call derivation algebras. This result is a non-trivial restriction of Gehrke’s
duality [13,14] between Priestley-topological algebras and residuation algebras.
Our result is obtained by combining two ingredients: our framework for extended
Stone duality from the previous sections and an isomorphism between residuation

Monoidal Extended Stone Duality 153



algebras and certain lattice coalgebras. The latter is first established for finite
algebras via an operator on complete lattices we call tensor implication ; extending
it to locally finite algebras (Definition 5.22) then yields the desired duality with
the category of profinite ordered monoids. To this end we introduce the notion of
residuation morphism (Definition 5.8). The abstract extended duality then allows
us to extend our results to relational morphisms of profinite ordered monoids
and residuation algebras.

5.1 The Tensor Product of Distributive Lattices Revisited

Notation 5.1. By a lattice we always mean a bounded and distributive lattice,
i.e. an object of DL. We often write de for d∧ e. The dual lattice of D is denoted
by D◦. The category of meet-semilattices (with a top element) is denoted MSL.
Analogous to JSL it has a tensor product M ⊠M ′ and is dual to the category
of Stone meet-semilattices [19]. From now on we denote the forgetful functors
from DL to JSL and MSL by U∨ and U∧, respectively. Sometimes we omit the
forgetful functors U∧ and U∨ for notational brevity and just write the respective
tensor products of the underlying semilattices as D ⊗D′ and D ⊠D′.

Remark 5.2. The monad induced by the dual of F∧ ⊣ U∧ sends a Priestley space
X to its hyperspace V↑X of closed upsets [1]. The comonads of the adjunctions
F∧ ⊣ U∧ and F∨ ⊣ U∨ are not isomorphic but conjugate: F∧U∧ ∼= (F∨U∨(−)◦)◦.
Their restrictions to the category of boolean algebras are isomorphic since their
dual monads satisfy V↓ = V = V↑ – trivially so, as the order on their dual
Priestley space is discrete. On the category of finite Priestley spaces, which are
simply posets, V↓ restricts to the downset monad, which further restricts to the
finite powerset monad on the category of finite sets (i.e., discrete finite posets).

Remark 5.3 (Adjunctions on Lattices). By the adjoint functor theorem [25,
Thm. V.6.1] a monotone function f : D → D′ between complete lattices pre-
serves all joins iff it has a right adjoint f∗ : D

′ → D, which is then given
by f∗(d

′) =
∨

f(d)≤d′ d; dually, it preserves all meets iff it has a left adjoint
f∗ : D′ → D, given by f∗(d′) =

∧
d′≤f(d) d. Finite lattices are complete, so every

lattice homomorphism f between finite lattices has a left and a right adjoint.
The join-irreducibles JD of a finite lattice D are precisely those elements p ∈ D
whose characteristic function χp : D → 2 (mapping x ∈ D to 1 iff p ≤ x) is a
lattice morphism. The left adjoint of χp, also denoted p : 2 → D, maps 1 7→ p.

Lemma 5.4. (1) The join- and meet-semilattice tensor products of distributive
lattices D,E are isomorphic, that is, there is an isomorphism ω : D⊗E ∼= D⊠E.
(2) Adjunctions on lattices “compose horizontally”: Given adjunctions f : D ⊣
E :g and f ′ : D′ ⊣ E′ :g′ on lattices, the following composites are adjoints:

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

⊣

ω−1ω

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

⊣ ω−1ω

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

ω−1ω ⊣

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

ω−1ω

⊣

f⊗f ′

154 F. Birkmann, S. Milius, H. Urbat



Construction 5.5. For every finite lattice D the map x ⊗ (−) : D → D ⊗ D
preserves all joins, so it admits a right adjoint x ⊸ (−) : U∧(D⊗D) → U∧D which
we call tensor implication. By Remark 5.3, it is given by x ⊸ T =

∨
x⊗y≤T y.

Analogously, we let (−) ⊸x denote the right adjoint of (−)⊗ x.

Definition 5.6. A (boolean) residuation algebra consists of a (boolean) lattice
R ∈ DL equipped with MSL-morphisms \ : R◦⊠R → R and / : R⊠R◦ → R, the
left and right residual, satisfying the residuation property : b ≤ a\c ⇐⇒ a ≤ c / b.
We call R associative if it satisfies x \ (z / y) = (x \ z) / y for all x, y, z ∈ R. A
join-irreducible element e ∈ JR is a unit if it satisfies e \ z = z = z / e.

Residuals may be thought of algebraic generalizations of language derivatives,
but as the following examples indicate they are not limited to this interpretation.

Examples 5.7. (1) Every distributive Heyting algebra is an associative residu-
ation algebra with residuals a \ c = a → c and c / b = b → c.
(2) Every boolean algebra B is a non-associative residuation algebra with x\1 = 1
and x \ z = ¬x for z ̸= 1. If |B| > 1 it does not have a unit.
(3) The dual boolean algebra X̂ of a continuous algebra · : X ×X → X on a
Stone space X forms a residuation algebra: given clopens A,C ⊆ X, put

A \ C = {x ∈ X | ∀(a ∈ A) : a · x ∈ C},
C / A = {x ∈ X | ∀(b ∈ B) : x · b ∈ C}.

(4) The regular languages RegΣ over a finite alphabet Σ form an associative
boolean residuation algebra with residuals given by (extended) left and right
derivatives : K \ L = {v ∈ Σ∗ | Kv ⊆ L} and L / K = {v ∈ Σ∗ | vK ⊆ L}. The
singleton empty word {ε} is a unit. This example is a special case of item (3)
obtained by taking as Stone algebra the free profinite monoid Σ̂∗.

We now introduce the notion of a residuation morphism between residuation
algebras and also its relational generalization.

Definition 5.8. (1) A lattice morphism f : R → S between unital residuation
algebras is a (pure) residuation morphism if it satisfies the conditions

f(x \ z) ≤ f(x) \ f(z) (Forth)
∀(y, z) ∈ S ×R : ∃(xy,z ∈ R) : y ≤ f(xy,z) ∧ y \ f(z) = f(xy,z \ z) (Back)
∀x : e ≤ x ⇔ e′ ≤ f(x) (Unit)

The morphism f is open if, additionally, it has a left adjoint. The category of
unital residuation algebras with residuation morphisms is denoted Res.
(2) A (lax) relational residuation morphism from a unital residuation algebra R
to a unital residuation algebra S is a morphism ρ ∈ JSL1(R,S) satisfying

ρ(x \ z) ≤ ρ(x) \ ρ(z) and e′ ≤ ρ(e).

Monoidal Extended Stone Duality 155



Unital residuation algebras with relational residuation morphisms form a category
RelRes.

We use the convention that for a subcategory C of Res or RelRes we denote
the full subcategory of C with boolean carriers by BC.

Remark 5.9. Let us provide some intuition behind the choices made in Defini-
tion 5.8. Recall that a relational monoid morphism from a finite monoid M to N
is a total relation ρ : M → PN such that ρ(x)ρ(y) ⊆ ρ(xy) and 1N ∈ ρ(1M ).

(1) The notion of residuation morphism is derived from a result by Gehrke [14,
Theorem 3.19], where it is shown to capture precisely the conditions satisfied by
the duals of morphisms of binary Stone algebras.
(2) We speak about relational morphisms of residuation algebras since for finite
algebras these will dualize precisely to relational morphisms of finite monoids,
which model inverses of surjective monoids homomorphisms [29, p. 38]: on finite
monoids the inverse relation e−1 : N → PM of a surjective homomorphism
e : M ↠ N is the right adjoint e ⊣ e−1 in the order-enriched category Rel with
sets as objects and relations as morphisms, i.e. as relations they satisfy id ≤ e−1 ·e
and e · e−1 ≤ 1. Under duality the composition is reversed, so e−1 dualizes to
a left adjoint ê−1 ⊣ ê. As left adjoints between finite lattices are precisely the
join-preserving functions this suggests the choice that relational morphisms of
residuation algebras preserve finite joins (and not necessarily meets). Surjectivity
of e is equivalent to totality of e−1, which by Corollary 4.5 is equivalent to ê−1

preserving the top element.
(3) This is also the reasoning behind the naming for open residuation morphisms:
if e : M ↠ N is a continuous surjection between profinite monoids (that is,
topological monoids in Stone), then e−1 : N → VM is continuous precisely iff e
is an open map.

For open residuation morphisms the conditions (Back) and (Forth) can be
combined into a much simpler condition. Over finite residuation algebras this is
particularly convenient since every residuation morphism is open.

Lemma 5.10. Let R,S be residuation algebras. A lattice morphism f : R → S
is an open residuation morphism iff f∗(e′) = e and it satisfies the condition

y \ f(z) = f(f∗(y) \ z). (Open)

Example 5.11. Let Σ, ∆ be finite alphabets. Every substitution f0 : Σ → ∆∗

can be extended to a monoid homomorphism f : Σ∗ → ∆∗, and for regular
languages L ∈ RegΣ and K ∈ Reg∆ both f [L] and f−1[K] are also regular.
Then f−1 : Reg∆ → RegΣ is an open residuation morphism. Indeed, its left
adjoint is f [−], and we have f [{ε}] = {f(ε)} = {ε} and

K \ f−1[L] = {w | Kw ⊆ f−1[L]} = {w | f [K]f(w) ⊆ L} = f−1(f [K] \ L).

156 F. Birkmann, S. Milius, H. Urbat



5.2 Finite Residuation Algebras

We will start by characterizing finite residuation algebras, and then generalize
the results to locally finite residuation algebras This approach allows us to first
introduce the key concepts and constructions of the duality on a finite level,
and then extend them to more general structures by forming appropriate free
completions. All results of this section apply more generally to structures with a
complete and completely distributive lattice as carrier.

Construction 5.12. In a finite residuation algebra R the partially applied
residuals (x \ −), (− / y) have respective left adjoints µ(x,−) ⊣ (x \ −) and
µ(−, y) ⊣ (− / y) that can be combined, by the universal property of ⊗, into a U∨-
algebra µ : U∨R⊗U∨R → U∨R called multiplication. Every algebra U∨D⊗U∨D →
U∨D on a finite lattice D has a right adjoint γ : U∧D → U∧(D ⊗D) that can,
by using the isomorphism ω from Lemma 5.4, be extended to a U∧-coalgebra

γ̂ = U∧ω · γ : U∧D → U∧(D ⊗D) ∼= U∧(D ⊠D) = U∧D ⊠ U∧D.

Since γ and γ̂ are essentially the same function (differing only by the isomor-
phism ω) we refer to both as comultiplication or coalgebra structure. Conversely,
we obtain a U∨-algebra from a comultiplication γ : U∧D → U∧(D⊗D) by taking
its left adjoint. In summary, each of /, \, µ, γ determine each other uniquely:

x ≤ z / y ⇐⇒ y ≤ x \ z ⇐⇒ µ(x⊗ y) ≤ z ⇐⇒ x⊗ y ≤ γ(z),

Lemma 5.13. In a finite residuation algebra R the residuals can be expressed
via comultiplication γ and tensor implication as x \ z = x ⊸ γ(z) and z / y =
γ(z) ⊸y. Conversely, the comultiplication can be expressed via residuals as

γ(z) =
∨

x∈R
x⊗ (x \ z) =

∨
p∈JR

p⊗ (p \ z).

First we investigate when the comultiplication is a pure, i.e. lifts to a lattice
morphism R → R+R.

Lemma 5.14. For a finite residuation algebra R, the following are equivalent:
(1) The comultiplication is pure, i.e., γ(0) = 0 and γ(x ∨ y) = γ(x) ∨ γ(y).
(2) For all p ∈ JR we have p \ 0 = 0 = 0 / p, and the following equations hold:

p \ (x ∨ y) = p \ x ∨ p \ y and (x ∨ y) / p = x / p ∨ y / p.

(3) For all x, y ∈ R : µ(x⊗ y) = 0 ⇐⇒ x = 0 ∨ y = 0, and µ[J (R+R)] ⊆ JR.

Next we inspect how structural identities like (co-)associativity or unitality
translate to the other operations. Note that while the statements are to be
expected, the proof is non-trivial due to the complication introduced by the
seemingly innocent isomorphism ω : R ⊗ R ∼= R ⊠ R. Recall that a coalgebra
c : U∧R → U∧R⊠ U∧R is coassociative if (c⊠ id) · c = (id⊠ c) · c and counital if
it is equipped with a counit ε ∈ DL(R, 2) such that (ε⊠ id) · c = id = (id⊠ ε) · c.

Monoidal Extended Stone Duality 157



Lemma 5.15. The following are equivalent for a finite residuation algebra R:
(1) The comultiplication on R is coassociative and has a counit.
(2) The residuals are associative and R has a unit.
(3) The multiplication µ is associative and has a unit, i.e. a join-irreducible
e ∈ JR satisfying µ(e⊗−) = id = µ(−⊗ e).

These lemmas suggest the following definitions.

Definition 5.16. (1) A finite residuation algebra R is pure if it satisfies (one
of) the equivalent conditions of Lemma 5.14.
(2) A finite residuation algebra R is a finite derivation algebra if it is pure,
associative and has a unit. The respective full subcategories of Resf and RelResf
are denoted by Derf and RelDerf .
(3) A (not necessarily finite) U∧-coalgebra γ̂ : U∧C → U∧C ⊠ U∧C is a U∧-
comonoid if its coassociative and counital, and a (lattice) comonoid if γ̂ is pure.

In order to extend the correspondence of (finite) residuation algebras and
U∧-coalgebras to a categorical equivalence we introduce appropriate morphisms.

Definition 5.17. (1) A pure morphism from a counital U∧-coalgebra (C, γ̂, ϵ)
to (C ′, γ̂′, ϵ′) is a lattice morphism f : C → D satisfying (f ⊠ f) · γ̂ = γ̂′ · f and
ϵ = ϵ′ · f .

U∧C U∧C
′

U∧C ⊠ U∧C U∧C
′ ⊠ U∧C

′

U∧f

γ̂ γ̂′

U∧f⊠U∧f

U∧C U∧C
′

U∧2

U∧f

U∧ϵ
U∧ϵ′

The category of counital U∧-coalgebras with pure morphisms is denoted by
Coalg(U∧) and its full subcatgegory of U∧-comonoids by Comon(U∧), again
with the full subcategory Comon of comonoids.
(2) Let C and C ′ be comonoids. A (lax) relational morphism from C to C ′ is a
morphism ρ ∈ JSL1(C,C

′) satisfying (ρ⊗ ρ) · γ ≤ γ′ · ρ and ϵ ≤ ϵ′ · ρ, i.e. the
following diagrams in JSL commute laxly:

U∨C U∨C
′ U∨C U∨C

′

U∨C ⊗ U∨C U∨C
′ ⊗ U∨C

′ U∨2

ρ

U∨γ U∨γ′

ρ

U∨ϵ
U∨ϵ′

ρ⊗ρ

≤ ≤

Comonoids with relational morphisms form a category RelComon.

Theorem 5.18. The following categories are isomorphic:

Coalgf(U∧) ∼= Resf , Comonf
∼= Derf and RelComonf

∼= RelDerf .

158 F. Birkmann, S. Milius, H. Urbat



Proof (Sketch). On objects the isomorphism swaps between residuals and comul-
tiplication; the residual unit is left adjoint of the counit. The first isomorphism
restricts to the second by Lemmas 5.14 and 5.15. On morphisms one proves that
a lattice morphism f : C → C ′ is a pure coalgebra morphism iff it is an (open)
residuation morphism, and if C and C ′ are comonoids, then ρ ∈ JSL1(C,C

′) is
a relational comonoid morphism iff it is a relational residuation morphism.

From Theorem 5.18 we obtain the following dual characterization of finite
ordered monoids; it restricts to the order-discrete setting of ordinary finite
monoids and finite boolean derivation algebras.

Theorem 5.19. (1) The category of finite ordered monoids is dually equivalent
to the category of finite derivation algebras (or finite lattice comonoids):

OrdMonf ≃op Comonf
∼= Derf .

(2) The category of finite ordered monoids with relational morphisms is dually
equivalent to the category of finite derivation algebras (or finite lattice comonoids)
with relational morphisms.

RelOrdMonf ≃op RelComonf
∼= RelDerf .

Proof. The first statement is a trivial extension of Theorem 5.18 by (finite)
Priestley duality since finite ordered monoids dualize to finite lattice comonoids.
For item (2) note that a relational ordered monoid morphism (M, ·M , 1M ) →
(N, ·N , 1N ) is a total relation ρ : M → DN (where D is the downset monad)
making the following diagrams commute laxly:

M ×M M 1 M

DN ×DN D(N ×N) DN N DN

·M

ρ×ρ ρ

1M

1N ρ

δ

≤
D(·N )

≤
η

If we view N as a finite Priestley space, then DN = V↓N , so the dual of ρ under
(order-enriched) extended duality is a relational morphism ρ̂− ∈ JSL1(N̂ , M̂) of
finite lattice comonoids, or equivalently, a relational residuation morphism.

5.3 Locally Finite Residuation Algebras

The main complication in the generalization from finite to infinite structures
comes from the reliance on adjoints, as these may not exist anymore on infinite
lattices. The prime example of a residuation algebra in automata theory suggests
a local translation between residuals and comultiplication:

Example 5.20. It is well-known that the boolean algebra RegΣ of regular
languages dualizes under Stone duality to the free profinite monoid Σ̂∗ (see
Pippenger [27]). The multiplication µ : Σ̂∗× Σ̂∗ → Σ̂∗ of profinite words dualizes

Monoidal Extended Stone Duality 159



under Stone duality to a comultiplication µ−1 : RegΣ → RegΣ + RegΣ on
regular languages defined on L ∈ RegΣ by

µ−1(L) =
∨

[v]∈SynL

[v]⊗ [v] \ L. (5.1)

Here SynL is the syntactic monoid of L, whose elements are the equivalence
classes of the equivalence relation on Σ∗ defined by v ≡L w iff v, w belong to the
same residuals K \ L / M . Gehrke [13, Thm. 15] has shown that, under Stone
duality, SynL dualizes to the residuation ideal generated by L ∈ RegΣ.

Definition 5.21. A residuation ideal of a residuation algebra R is a sublattice
I ↪→ R such that for all z ∈ I and x ∈ R one has x \ z, z / x ∈ R. We denote the
residuation ideal generated by a subset X ⊆ R by \X/.

Residuation ideals were used by Gehrke [14] to characterize quotients of Priest-
ley topological algebras. Note that in the formula (5.1) for the comultiplication
on regular languages it is crucial that the residuation ideal \{L}/ generated by a
single regular language L is finite, as otherwise the join might not exist. This
leads to the following restriction.

Definition 5.22. (1) A residuation algebra R is locally finite if every finite
subset of R is contained in a finite residuation ideal of R.
(2) A U∧-coalgebra C is locally finite if every finite subset of C is contained in
a finite subcoalgebra of C. The category of locally finite comonoids is denoted
Comonlf .

Note that not every residuation algebra is locally finite, consider for example
an infinite boolean algebra in Example 5.7(2).

Proposition 5.23. (1) Every locally finite residuation algebra R yields a locally
finite U∧-coalgebra γ\ : U∧R → U∧(R⊗R) with comultiplication given by

γ\(z) = (ιA ⊗ ιA)(γA(z)) =
∨

x∈A
ιA(x)⊗ ιA(x \ z) =

∨
p∈JA

ιA(p)⊗ ιA(p \ z)

for any finite residuation ideal ιA : A ↪→ R containing z (here γA is the comulti-
plication on A as in Construction 5.12).
(2) Every locally finite U∧-coalgebra (C, γ) yields any locally finite residuation
algebra with the left residual given by x \γ z = ιA(x \A z) = ιA(x ⊸ γ(z)) for
any finite subcoalgebra ιA : A ↪→ C containing x, z (here \A is the residual on
A as given by Construction 5.12). The residual has a canonical presentation as
x \γ z = ιz(ι

∗
z(x) \ z), where ιz : ⟨z⟩ → C is the smallest (finite) subcoalgebra

containing z. The right residual is defined analogously.
(3) These translations are mutually inverse.

Proposition 5.23 shows that every locally finite residuation algebra carries
a unique U∧-coalgebra structure and vice versa. We may thus translate at will
between the residuals and comultiplication as in the finite case and omit the
subscripts. We extend Lemmas 5.14 and 5.15 to locally finite structures:

160 F. Birkmann, S. Milius, H. Urbat



Lemma 5.24. Let R be a locally finite residuation algebra.
(1) Finite residuation ideals correspond to finite subcoalgebras.
(2) The residuals are associative iff the comultiplication is coassociative.
(3) The residuals have a unit iff the comultiplication is counital.
(4) The comultiplication is pure iff every finite residuation ideal is pure (see
Definition 5.16).

Remark 5.25. Lemma 5.24(4) characterizes locally finite residuation algebras
with a pure comultiplication. By extended duality, their dual Priestley relation
is functional. We note that Gehrke [14, Proposition 3.15] presented a necessary
and sufficient condition for a general residuation algebra R to have a functional
dual relation, namely join-preservation at primes :

∀F ∈ DL(R, 2) : ∀(a ∈ F ), ∀(b, c ∈ R) : ∃a′ ∈ F : a \ (b ∨ c) ≤ (a′ \ b) ∨ (a′ \ c).

One can show that every locally finite residuation algebra satisfying Lemma 5.24(4)
is join-preserving at primes.

Definition 5.26. A residuation algebra R is a derivation algebra if it is locally
finite, associative, unital and every finite residuation ideal I is pure. The ensuing
full subcategories of Res and RelRes are denoted Der and RelDer.

Theorem 5.27. (1) The category of locally finite residuation algebras and resi-
duation morphisms is isomorphic to the category of locally finite unital U∧-
coalgebras and pure coalgebra morphisms.
(2) The isomorphism restricts to the full subcategories of derivation algebras and
locally finite comonoids.
(3) The categories of derivation algebras and relational residuation morphisms
and locally finite comonoids with relational morphisms are isomorphic.

Combining this characterization with our approach to extended Priestley
duality we establish a duality between profinite ordered monoids and derivation
algebras, and extend it to relational morphisms. Conceptually, this general duality
is an extension of the finite duality OrdMonf ≃op Comonf

∼= Derf by forming
suitable completions: Profinite ordered monoids are the Pro-completion (the free
completion under cofiltered limits) of the category of finite ordered monoids;
dually a routine verification establishes that lattice comonoids (and therefore also
derivation algebras by Theorem 5.27(2)) form Ind-completions (free completions
under directed colimits) of their respective subcategories of finite objects.

Proposition 5.28. The category of locally finite comonoids forms the Ind-
completion of the category of finite comonoids:

Comonlf ≃ Ind(Comonf).

We define a Priestley relational morphism between profinite ordered monoids
X,Y to be a Priestley relation ρ : X → V↓Y such that ρ(x)ρ(x′) ⊆ ρ(xx′) and
1N ∈ ρ(1M ).

Monoidal Extended Stone Duality 161



Theorem 5.29. (1) The category of derivation algebras is dually equivalent to
the category of profinite ordered monoids:

Der ∼= Comonlf ≃op ProfOrdMon.

(2) The category of derivation algebras and relational residuation morphisms
is dually equivalent to the category of profinite ordered monoids and Priestley
relational morphisms:

RelDer ∼= RelComonlf ≃op RelProfOrdMon.

Remark 5.30. (1) Theorem 5.29 clearly restricts to profinite monoids with
Stone relational morphisms and boolean derivation algebras. It is well-known
that every Stone monoid is profinite (see e.g. [20]). So dually, every boolean
comonoid is locally finite.
(2) All results of Section 5 hold analogously for the extension of the “discrete”
duality between posets (or sets) and algebraic completely distributive lattices (or
completely atomic boolean algebras) along the free-forgetful adjunction between
completely distributive lattices and complete join-semilattices. This yields a
duality between the category of all (ordered) monoids and (completely distributive
lattices) completely atomic boolean residuation algebras with open residuation
morphisms. Moreover, this duality also can be extended to relational morphisms.

6 Conclusion and Future Work

We have presented an abstract approach to extending Stone-type dualities based
on adjunctions between monoidal categories and instantiated it to recover and
generalize extended Priestley duality. Guided by these foundations we have
investigated residuation and derivation algebras and proved a duality between
the latter and (ordered) profinite monoids, Moreover, we have extended this
duality to relational morphisms.

Relational morphisms are an important tool in algebraic language theory,
notably for charaterizing language operations algebraically. For instance, aperiodic
relational morphisms are tightly connected to the concatenation product and the
star operation on regular languages. In future work we intend to apply the new
duality-theoretic results on relational morphisms to illuminate such connections,
much in the spirit of the duality-theoretic persepective of Eilenberg’s Variety
Theorem by Gehrke et. al. [15].

Another goal is to apply our abstract duality framework beyond classical
Stone and Priestley dualities. Specifically, we aim to develop an extended duality
theory for the recently developed nominal Stone duality [4], which would allow
to generalize our present results on residuation algebras to the nominal setting
and uncover new results about data languages.

A conceptually rather different dual characterization of the category of profi-
nite monoids and continuous monoid morphisms in terms of semi-Galois categories
has been provided by Uramoto [35]. Extending this result to relational morphisms,
similar to our Theorem 5.29, is another interesting point for future work.

162 F. Birkmann, S. Milius, H. Urbat



References

1. Bezhanishvili, G., Harding, J., Morandi, P.: Remarks on hyperspaces for priestley
spaces. Theoretical Computer Science 943, 187–202 (2023). https://doi.org/https:
//doi.org/10.1016/j.tcs.2022.12.001

2. Bezhanishvili, N., Fontaine, G., Venema, Y.: Vietoris bisimulations. J. Log. Comput.
20(5), 1017–1040 (2010). https://doi.org/10.1093/logcom/exn091

3. Birkhoff, G.: Rings of sets. Duke Mathematical Journal 3, 443–454 (1937)
4. Birkmann, F., Milius, S., Urbat, H.: Nominal topology for data languages. In: 50th

International Colloquium on Automata, Languages, and Programming, ICALP
2023, July 10-14, 2023, Paderborn, Germany. LIPIcs, vol. 261, pp. 114:1–114:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/
LIPIcs.ICALP.2023.114

5. Birkmann, F., Urbat, H., Milius, S.: Monoidal extended stone duality (2024),
https://arxiv.org/abs/2401.08219

6. Bonsangue, M., Kurz, A., Rewitzky, I.: Coalgebraic representations of distributive
lattices with operators. Topology and its Applications 154(4), 778–791 (2007).
https://doi.org/https://doi.org/10.1016/j.topol.2005.10.010

7. Cignoli, R., Lafalce, S., Petrovich, A.: Remarks on priestley duality for distributive
lattices. Order 8(3), 299–315 (1991). https://doi.org/10.1007/BF00383451

8. Eilenberg, S.: Automata, Languages, and Machines, vol. 2. Academic Press, New
York (1976)

9. Fraser, G.A.: The semilattice tensor product of distributive lattices. Transactions
of the American Mathematical Society 217, 183–194 (1976). https://doi.org/https:
//doi.org/10.1007/BF02485362

10. Fussner, W., Palmigiano, A.: Residuation algebras with functional duals. Algebra
universalis 80(4), 40 (2019). https://doi.org/10.1007/s00012-019-0613-5

11. Gehrke, M., Priestley, H.: Canonical extensions of double quasioperator algebras:
An algebraic perspective on duality for certain algebras with binary operations.
Journal of Pure and Applied Algebra 209(1), 269–290 (2007). https://doi.org/https:
//doi.org/10.1016/j.jpaa.2006.06.001

12. Gehrke, M.: Stone duality and the recognisable languages over an algebra. In: Alge-
bra and Coalgebra in Computer Science. pp. 236–250. Springer Berlin Heidelberg
(2009). https://doi.org/https://doi.org/10.1007/978-3-642-03741-2_17

13. Gehrke, M.: Duality in computer science. In: Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, July 5-8, 2016. pp. 12–26. ACM (2016). https://doi.org/10.1145/2933575.
2934575

14. Gehrke, M.: Stone duality, topological algebra, and recognition. Journal of Pure
and Applied Algebra 220(7), 2711–2747 (2016). https://doi.org/https://doi.org/10.
1016/j.jpaa.2015.12.007

15. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular
languages. In: Automata, Languages and Programming. pp. 246–257. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/https://doi.org/10.
1007/978-3-540-70583-3_21

16. Goldblatt, R.: Varieties of complex algebras. Annals of Pure and Applied Logic
44(3), 173–242 (1989). https://doi.org/10.1016/0168-0072(89)90032-8

17. Halmos, P.R.: Algebraic logic, i. monadic boolean algebras. Journal of Symbolic
Logic 23(2), 219–222 (1958). https://doi.org/10.2307/2964417

Monoidal Extended Stone Duality 163

https://doi.org/https://doi.org/10.1016/j.tcs.2022.12.001
https://doi.org/https://doi.org/10.1016/j.tcs.2022.12.001
https://doi.org/https://doi.org/10.1016/j.tcs.2022.12.001
https://doi.org/https://doi.org/10.1016/j.tcs.2022.12.001
https://doi.org/10.1093/logcom/exn091
https://doi.org/10.1093/logcom/exn091
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://arxiv.org/abs/2401.08219
https://doi.org/https://doi.org/10.1016/j.topol.2005.10.010
https://doi.org/https://doi.org/10.1016/j.topol.2005.10.010
https://doi.org/10.1007/BF00383451
https://doi.org/10.1007/BF00383451
https://doi.org/https://doi.org/10.1007/BF02485362
https://doi.org/https://doi.org/10.1007/BF02485362
https://doi.org/https://doi.org/10.1007/BF02485362
https://doi.org/https://doi.org/10.1007/BF02485362
https://doi.org/10.1007/s00012-019-0613-5
https://doi.org/10.1007/s00012-019-0613-5
https://doi.org/https://doi.org/10.1016/j.jpaa.2006.06.001
https://doi.org/https://doi.org/10.1016/j.jpaa.2006.06.001
https://doi.org/https://doi.org/10.1016/j.jpaa.2006.06.001
https://doi.org/https://doi.org/10.1016/j.jpaa.2006.06.001
https://doi.org/https://doi.org/10.1007/978-3-642-03741-2_17
https://doi.org/https://doi.org/10.1007/978-3-642-03741-2_17
https://doi.org/10.1145/2933575.2934575
https://doi.org/10.1145/2933575.2934575
https://doi.org/10.1145/2933575.2934575
https://doi.org/10.1145/2933575.2934575
https://doi.org/https://doi.org/10.1016/j.jpaa.2015.12.007
https://doi.org/https://doi.org/10.1016/j.jpaa.2015.12.007
https://doi.org/https://doi.org/10.1016/j.jpaa.2015.12.007
https://doi.org/https://doi.org/10.1016/j.jpaa.2015.12.007
https://doi.org/https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/10.1016/0168-0072(89)90032-8
https://doi.org/10.1016/0168-0072(89)90032-8
https://doi.org/10.2307/2964417
https://doi.org/10.2307/2964417


18. Hofmann, D., Nora, P.: Dualities for modal algebras from the point of view
of triples. Algebra universalis 73(3), 297–320 (2015). https://doi.org/10.1007/
s00012-015-0324-5

19. Hofmann, K., Mislove, M., Stralka, A.: The Pontryagin Duality of Compact 0-
dimensional Semilattices and Its Applications. Lecture notes in mathematics,
Springer-Verlag (1974)

20. Johnstone, P.: Stone Spaces. Cambridge Studies in Advanced Mathematics, Cam-
bridge University Press (1982)

21. Jónsson, B., Tarski, A.: Boolean algebras with operators. part i. American Journal
of Mathematics 73(4), 891–939 (1951)

22. Jónsson, B., Tarski, A.: Boolean algebras with operators. American Journal of
Mathematics 74(1), 127–162 (1952)

23. Jónsson, B., Tsinakis, C.: Relation algebras as residuated boolean algebras. Algebra
Universalis 30(4), 469–478 (1993). https://doi.org/10.1007/BF01195378

24. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoretical Computer Science
327(1), 109–134 (2004). https://doi.org/https://doi.org/10.1016/j.tcs.2004.07.023

25. MacLane, S.: Categories for the Working Mathematician. Springer-Verlag (1971)
26. Pin, J.: Relational morphisms, transductions and operations on languages. In:

Formal Properties of Finite Automata and Applications, LITP Spring School on
Theoretical Computer Science, Ramatuelle, France, May 23-27, 1988, Proceedings.
Lecture Notes in Computer Science, vol. 386, pp. 34–55. Springer (1988). https:
//doi.org/10.1007/BFb0013110

27. Pippenger, N.: Regular languages and Stone duality. Theory Comput. Syst. 30(2),
121–134 (1997). https://doi.org/https://doi.org/10.1007/BF02679444

28. Priestley, H.A.: Representation of distributive lattices by means of ordered stone
spaces. Bulletin of The London Mathematical Society 2, 186–190 (1970). https:
//doi.org/https://doi.org/10.1112/blms/2.2.186

29. Rhodes, J., Steinberg, B.: The q-theory of Finite Semigroups. Springer Mono-
graphs in Mathematics, Springer US (2009). https://doi.org/https://doi.org/10.
1007/b104443

30. Salamanca, J.: Unveiling eilenberg-type correspondences: Birkhoff’s theorem for
(finite) algebras + duality. CoRR (2017)

31. Sambin, G., Vaccaro, V.: Topology and duality in modal logic. Annals of Pure
and Applied Logic 37(3), 249–296 (1988). https://doi.org/10.1016/0168-0072(88)
90021-8

32. Schwede, S., Shipley, B.: Equivalences of monoidal model categories. Algebraic and
Geometric Topology 3 (10 2002). https://doi.org/10.2140/agt.2003.3.287

33. Seal, G.J.: Tensors, monads and actions. Theory and Applications of Categories
28(15), 70–71 (1953)

34. Stone, M.H.: The theory of representation for boolean algebras. Transactions of
the American Mathematical Society 40(1), 37–111 (1936)

35. Uramoto, T.: Semi-galois categories i: The classical eilenberg variety theory. In:
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science. p. 545–554. LICS ’16, Association for Computing Machinery (2016). https:
//doi.org/10.1145/2933575.2934528

36. Urbat, H., Adámek, J., Chen, L., Milius, S.: Eilenberg theorems for free. In: MFCS
2017. LIPIcs, vol. 83, pp. 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017)

164 F. Birkmann, S. Milius, H. Urbat

https://doi.org/10.1007/s00012-015-0324-5
https://doi.org/10.1007/s00012-015-0324-5
https://doi.org/10.1007/s00012-015-0324-5
https://doi.org/10.1007/s00012-015-0324-5
https://doi.org/10.1007/BF01195378
https://doi.org/10.1007/BF01195378
https://doi.org/https://doi.org/10.1016/j.tcs.2004.07.023
https://doi.org/https://doi.org/10.1016/j.tcs.2004.07.023
https://doi.org/10.1007/BFb0013110
https://doi.org/10.1007/BFb0013110
https://doi.org/10.1007/BFb0013110
https://doi.org/10.1007/BFb0013110
https://doi.org/https://doi.org/10.1007/BF02679444
https://doi.org/https://doi.org/10.1007/BF02679444
https://doi.org/https://doi.org/10.1112/blms/2.2.186
https://doi.org/https://doi.org/10.1112/blms/2.2.186
https://doi.org/https://doi.org/10.1112/blms/2.2.186
https://doi.org/https://doi.org/10.1112/blms/2.2.186
https://doi.org/https://doi.org/10.1007/b104443
https://doi.org/https://doi.org/10.1007/b104443
https://doi.org/https://doi.org/10.1007/b104443
https://doi.org/https://doi.org/10.1007/b104443
https://doi.org/10.1016/0168-0072(88)90021-8
https://doi.org/10.1016/0168-0072(88)90021-8
https://doi.org/10.1016/0168-0072(88)90021-8
https://doi.org/10.1016/0168-0072(88)90021-8
https://doi.org/10.2140/agt.2003.3.287
https://doi.org/10.2140/agt.2003.3.287
https://doi.org/10.1145/2933575.2934528
https://doi.org/10.1145/2933575.2934528
https://doi.org/10.1145/2933575.2934528
https://doi.org/10.1145/2933575.2934528


Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Monoidal Extended Stone Duality 165

http://creativecommons.org/licenses/by/4.0/


Towards a Compositional Framework for Convex
Analysis (with Applications to Probability

Theory)

Abstract. We introduce a compositional framework for convex analysis
based on the notion of convex bifunction of Rockafellar. This framework
is well-suited to graphical reasoning, and exhibits rich dualities such
as the Legendre-Fenchel transform, while generalizing formalisms like
graphical linear algebra, convex relations and convex programming. We
connect our framework to probability theory by interpreting the Laplace
approximation in its context: The exactness of this approximation on
normal distributions means that logdensity is a functor from Gaussian
probability (densities and integration) to concave bifunctions and maxi-
mization.

Keywords: convex analysis · category theory · categorical probability

1 Introduction

Convex analysis is a classical area of mathematics with innumerous applications
in engineering, economics, physics, statistics and information theory. The central
notion is that of a convex function f : Rn → R, satisfying the inequality f(tx+
(1 − t)y) ≤ tf(x) + (1 − t)f(y) for all t ∈ [0, 1]. Convexity is a useful property
for optimization problems: Every local minimum of f is automatically a global
minimum. Convex functions furthermore admit a beautiful duality theory; the
ubiquitous Legendre-Fenchel transform (or convex conjugation) defined as

f∗(x∗) = sup
x

{⟨x∗, x⟩ − f(x)}

encodes f in terms of all affine functions ⟨x∗, x⟩− c majorized by f (here ⟨−,−⟩
denotes the standard inner product on Rn). The function f∗ is convex regardless
of f , and under a closedness assumption we recover f∗∗ = f .

While convex analysis is a rich field, its compositional structure is not readily
apparent; the central notion, convex functions, is not closed under composition.
The notion which does compose is less well known: a convex bifunction, due
to [27], is a jointly convex function F : Rm × Rn → R of two variables. Such
bifunctions compose via infimization

(F ◦G)(x, z) = inf
y

{F (y, z) +G(x, y)}

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 1

99

–187, 2024.
https://doi.org/10.1007/978-3-031-57228-9_9

Dario Stein1(B) and Richard Samuelson2

1 Radboud University Nijmegen, Nijmegen, The Netherlands
dario.stein@ru.nl

2 University of Florida, Gainesville, USA

rsamuelson@ufl.edu

https://doi.org/10.1007/978-3-031-57228-9_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_9&domain=pdf


Categorical Methods In this work, we will study bifunctions and their associated
dualities in the framework of category theory. Graphical methods are ubiqui-
tous in engineering and statistics, and can used to derive efficient algorithms
by making use of the factorized structure of a problem. The language of props
and string diagrams unifies these methods, as a large body of work on graphical
linear algebra and applied category theory shows [2, 1, 19, 7]. We extend these
methods to problems of convex analysis and optimization. Our category of bi-
functions subsumes an array of mathematical structures, such as linear maps and
relations, convex relations, and (surprisingly) multivariate Gaussian probability.

Fig. 1. Addition of independent normal variables X,Y . Left: pdf and convolution,
right: logpdf and sup-convolution

Applications to Probability Theory Convex analysis offers a rich perspective on
Gaussian (multivariate normal) probability distributions: The log-density h(x) =
log f(x) of a Gaussian random variable is a concave function of the form3

h(x) = − (x− µ)2

2σ2

It turns out that anything we can do with Gaussian densities and integration can
instead be done with logdensities and maximization. For example, to compute
the density of a sum of independent variables, we may take a convolution of
densities, or instead compute a sup-convolution of logdensities (see Fig. 1), as

log

∫
fX(x)fY (z − x)dx = sup

x
{hX(x) + hY (z − x)}

This is highly particular to Gaussians. We can elegantly formalize this state-
ment in categorical terms, as our main theorem states: Logprobability defines a
functor from Gaussian probability to concave bifunctions (Theorem 5)

In this sense, the essence of Gaussians is captured by concave quadratic
functions. By extending our viewpoint to partial concave quadratic functions, we

3 we intentionally disregard a scalar +C

A Compositional Framework for Convex Analysis 167



obtain a generalized notion of Gaussian relation which includes improper priors.
Such entities are subtle to describe measure-theoretically, but straightforward
in the convex analytic view. The duality theory of bifunctions generalizes the
duality of precision and covariance, and more generally connects to the notion
of cumulant-generating function in probability theory.

We elegantly formalize the connections between convex analysis and proba-
bility theory using the language of Markov categories [17], which are a categorical
formalism for probability theory, and have close connections to the semantics of
probabilistic programs [30].

Contribution and Outline This paper is intended to serve as a high-level roadmap
to a categorical treatment of convex analysis. Our aim is to spell out the un-
derlying structures, and present a diverse range of connections, especially with
diagrammatic methods and categorical probability. For the sake of presentation,
we choose to stick to general statements and keep some technical notions (such
as regularity conditions) informal. Spelling out the details in a concrete setting
is a starting point for future developments. We elaborate one such particular
setting in detail, namely Gaussian probability.

We begin §2 by recalling the relevant notions of convex analysis, and proceed
to define and study the categorical structure of bifunctions in §3. This includes
two structures as a hypergraph category and the duality theory of §3.1.

In §4, we elaborate different examples of categories which embed in bifunc-
tions, such as linear and affine algebra, linear algebra, convex relations and con-
vex optimization problems. In each case, the embedding preserves the relevant
categorical structures and dualities. In particular, we show that the theory of
bifunctions is a conservative extension of graphical linear algebra [25].

In §5 we begin making connections to probability theory. We recall Gaussian
probability from a categorical point of view, and construct the embedding functor
to bifunctions. We discuss how partial quadratic functions can be seen as an
extension of Gaussian probability beyond measure theory.

We conclude with §6-7 discussing the wider context of this work, elaborating
connections of probability and convex analysis such as the Laplace approxima-
tion and cumulant generating functions, and the idea of idempotent analysis as
a ‘tropical limit’ of ordinary analysis.

2 Overview of Convex Analysis

The following section is a brief overview of standard material in convex analysis;
all propositions and conventions are taken from [27].

Caveat: An important feature of convex analysis is that it deals with formal
infinities +∞,−∞ in a consistent fashion. This is crucial because optimization
problems may be unbounded. Traditionally, one considers the extended real num-
bers R = [−∞,+∞] and extends the usual laws of arithmetic to them. The case
(+∞) + (−∞) is left undefined and carefully avoided like 0/0 in real analysis.

168 D. Stein and R. Samuelson



A more systematic approach [37, 18] is based on enriched category theory, and
endows R with the structure of a commutative quantale, which gives it totally
defined operations with a particular arithmetic.

A more serious caveat is that many results in convex analysis require specific
regularity assumptions to hold. As these assumptions are not the focus of the
present paper, so we will state some big picture theorems in §3 under reservation
of these conditions. We then elaborate an array of concrete examples §4-5 where
we make sure that all regularity conditions are indeed satisfied. We discuss this
drawback in §7.

A subset A ⊆ Rn is convex if for all x, y ∈ A and t ∈ [0, 1], we have tx +
(1 − t)y ∈ A. The epigraph of a function f : Rn → R is the set epi(f) =
{(x, y) ∈ Rn+1 : y ≥ f(x)}. We say that f is convex if epi(f) is a convex subset
of Rn+1. This is equivalent to the well-known definition from the introduction,
while accounting for infinities. We say that f is concave if (−f) is convex.

Example 1. The following functions are convex: linear functions, |x|, x2, exp(x),
− ln(x). For a convex subset A ⊆ Rn, the convex indicator function δA : Rn → R
is defined by

δA(x) =

{
0, x ∈ A

+∞, x /∈ A

We also write indicator functions using modified Iverson brackets as {|x ∈ A|} =
δA (x). The concave indicator function of A is −δA (x).

2.1 Conjugacy – the Legendre-Fenchel transform

Definition 1. For a convex function f : Rn → R, its convex conjugate f∗ :
Rn → R is the convex function

f∗(x∗) = sup
x

{⟨x∗, x⟩ − f(x)}

For a concave function g : Rn → R, its concave conjugate g∗ : Rn → R is the
concave function

g∗(x∗) = inf
x

{⟨x∗, x⟩ − g(x)}

Note that if g = −f then g∗(x∗) = −f∗(−x∗)

Geometrically, f∗ encodes information about which affine functions ⟨x∗,−⟩ − c
are majorized by f . It is thus natural to view f∗ as a function on covectors
x∗ ∈ (Rn)∗. This is for example done in [37], but in order to keep notation
consistent with [27], we make the traditional identification (Rn)∗ ∼= Rn via the
inner product, and the notation x∗ is purely decoration. The Legendre-Fenchel

A Compositional Framework for Convex Analysis 169

The infimal convolution of convex functions f, g : Rn → R is defined by
(f � g)(x) = infy {f(x − y) + g(y)}. The convex function f is called closed if
epi(f) is a closed subset of Rn+1; this is equivalent to f being lower semicontin-
uous.



transform has applications in many areas of mathematics and physics [34], such
as the Hamiltonian formalism in mechanics, statistical mechanics or large devi-
ation theory (e.g. §6.2).

A closed convex function f is the pointwise supremum of all affine functions
h ≤ f [27, 12.1]. This allows them to be recovered by their Legendre transform

Proposition 1 ([27, Theorem 12.2]). For any convex function f : Rn → R,
f∗ is a closed convex function. We have f∗∗ = f if and only if f is closed.

For arbitrary functions f , the operation f 7→ f∗∗ is a closure operator which we
denote by cl(f). This is the largest closed convex function majorized by f .

Example 2. The absolute value function f(x) = |x| is convex and closed. The
supremum supx {cx− |x|} equals 0 if |c| ≤ 1, and ∞ otherwise. Hence f∗(c) =
{||c| ≤ 1|}, and f∗∗ = f .

Example 3. Let f(x) = ax2 for a > 0. Then x 7→ c · x− ax2 is differentiable and
has a maximum at x = c/2a. We obtain f∗(c) = 1

4ac
2. In particular, we see that

the function f(x) = 1
2x

2 is a fixed point of the Legendre transform.

Proposition 2 ([27, Theorem 16.4]). If f, g are closed convex functions, then
under certain regularity conditions (f □ g)∗ = f∗ + g∗ and (f + g)∗ = f∗ □ g∗.

3 Categories of Convex Bifunctions

We now come to the central definition of this article, namely that of convex (or
concave) bifunctions. This concept is due to [27] and scattered throughout his
book.

A bifunction F from Rm to Rn is the convex analysis terminology for a
curried function Rm → (Rn → R). The uncurried function F : Rm+n → R is
referred to as the graph function of F . We will suppress the partial application
and write F (x)(y) and F (x, y) interchangeably.

Definition 2. A bifunction F from Rm to Rn is called convex (or concave,
closed) if its graph function F : Rm+n → R has that property. The closure
operation cl(F ) is applied on the level of graph functions. We denote a convex
bifunction by F : Rm ⇀ Rn and a concave bifunction by F : Rm ⇁ Rn.

Bifunction composition is known as product in [27, § 38].

Definition 3 (Categories of bifunctions). We define a category CxBiFn of
convex bifunctions as follows

– objects are the spaces Rn
– morphisms are convex bifunctions Rm ⇀ Rn
– the identity Rn ⇀ Rn is given by the indicator function

idn(x, y) = {|x = y|}

170 D. Stein and R. Samuelson



– composition is infimization over the middle variable

(F
⇀◦ G)(x, z) = inf

y
{G(x, y) + F (y, z)}

Analogously, the category CvBiFn of concave bifunctions is defined as

– objects are the spaces Rn
– morphisms are concave bifunctions Rm ⇁ Rn
– the identity Rn ⇁ Rn is given by the concave indicator function

−idn(x, y) = −{|x = y|}

– composition is supremization over the middle variable

(F
⇁◦ G)(x, z) = sup

y
{G(x, y) + F (y, z)}

Proof (of well-definedness). This construction is a subcategory of the the cate-
gory of weighted relations Rel(Q) taking values in a commutative quantale Q
[3, 12, 23], where Q = R are the extended reals. It suffices to verify that con-
vex bifunctions are closed under composition, tensor (addition) and contain the
identities ([27, p. 408]).

We will write bifunction composition as F ◦G when it is clear from context
whether we use the convex or concave variety. We will write I for the unit space
R0, and 0 for its unique element.

Example 4. The states (morphisms I ⇀ Rn out of the unit) are in bijection with
convex functions f : Rn → R, as are the effects Rn ⇀ I. States and effects in
CvBiFn are in bijection with concave functions f : Rn → R.

3.1 Duality for Bifunctions

Unless otherwise stated, theorems phrased for convex bifunctions will hold for
concave bifunctions by selecting the appropriate versions of the operations.

The duality theory of convex functions extends to bifunctions as follows.

Definition 4 ([27, §30]). The adjoint of a convex bifunction F : Rm ⇀ Rn is
the concave bifunction F ∗ : Rn ⇁ Rm defined by

F ∗(y∗, x∗) = inf
x,y

{F (x, y) + ⟨x∗, x⟩ − ⟨y∗, y⟩}

The adjoint of a concave bifunction is convex and uses sup instead of inf. The
adjoint of the convex bifunction F is related to the conjugate of its graph function
F using the formula F ∗(y∗, x∗) = −F ∗(−x∗, y∗). (Note the slight asymmetry that
one input is negated)

The analogue of Proposition 1 for bifunctions is as follows

A Compositional Framework for Convex Analysis 171



Proposition 3 ([27, Theorem 30.1]). For any convex bifunction F , the ad-
joint F ∗ is a closed concave bifunction, and we have F ∗∗ = cl(F ). In particular,
if F is a closed convex bifunction, then F ∗∗ = F .

Theorem 1 ([27, Theorem 38.5]). Under regularity assumptions, the adjoint
operation respects composition. That is, for F : Rm ⇀ Rn and G : Rn ⇀ Rk, we
have

(G
⇀◦ F )∗ = F ∗ ⇁◦ G∗

That is, the adjoint operation defines a pair of mutually inverse functors

CxBiFnop CvBiFn

(−)∗

(−)∗

We indicate with dashed arrows that the functoriality depends on regularity as-
sumptions.

For the interested reader, the regularity assumptions in Theorem 1 include
closedness, as well as properness and certain (relative interiors of) domains of the
involved bifunctions intersecting [27, § 38]. These assumptions are not necessary
conditions.

As a corollary of functoriality, we can derive the following well-known fact:

Corollary 1 (Fenchel duality). Let f : Rn → R be convex, g : Rn → R
concave, and let f∗, g∗ be their convex and concave conjugates respectively. Then
under sufficient regularity assumptions, we have

inf
x

{f(x)− g(x)} = sup
x∗

{g∗(x∗)− f∗(x∗)}

Proof. Consider the convex function h = −g and form the state sf : I ⇀
Rn, sf (0, x) = f(x) and effect eh : Rn ⇀ I, eh(x,0) = h(x). The proof proceeds

by using functoriality to compute the scalar (eh
⇀◦ sf )∗ = (s∗f

⇁◦ e∗h) in two ways:
On the one hand, we have

(eh
⇀◦ sf )(0,0) = inf

x
{sf (0, x) + eh(x,0)} = inf

x
{f(x)− g(x)}

On the other hand, we express the adjoints in terms of the conjugates f∗, g∗

s∗f (x
∗,0) = inf

x
{sf (0, x)− ⟨x∗, x⟩} = −f∗(x∗)

e∗h(0, x
∗) = inf

x
{eh(x,0) + ⟨x∗, x⟩} = g∗(x∗)

The adjoint acts as the identity on scalars, so we obtain

inf
x

{f(x)− g(x)} = (eh
⇀◦ sf )∗(0,0) = (s∗f

⇁◦ e∗h)(0,0) = sup
x

{g∗(x∗)− f∗(x∗)}

172 D. Stein and R. Samuelson



3.2 Hypergraph Structure and Symmetries

Bifunctions can not only be composed in sequence, but also in parallel. The
relevant structure is that of a symmetric monoidal category (C,⊗, I). In this
work, we are dealing with a particular simple form of such categories called a
prop. A prop C is a strict monoidal category which is generated by a single object
R so that every object is of the form R⊗n for some n ∈ N. The monoid of objects
(ob(C),⊗, I) is thus isomorphic to (N,+, 0).

Proposition 4. Convex bifunctions have the structure of a prop, generated by
the object R

1. The tensor is Rm ⊗ Rn = Rm+n

2. The unit is I = R0.
3. The tensor of bifunctions is given by addition: If F : Rm1 ⇀ Rn1 , G : Rm2 ⇀

Rn2 then F ⊗G : Rm1+m2 ⇀ Rn1+n2 is defined as

(F ⊗G)((x1, x2), (y1, y2)) = F (x1, y1) +G(x2, y2)

Proof (of well-definedness). General fact about categories of weighted relations
Rel(Q) ([23]).

Symmetric monoidal categories are widely studied and admit a convenient
graphical language using string diagrams [28]. It is useful to consider further
pieces of structure on such a category

1. in a copy-delete category [11], every object carries the structure of a com-
mutative comonoid copyX : X → X ⊗ X and discardX : X → I. This lets
information be used in a non-linear way (in the sense of linear logic).

2. in a hypergraph category [14], every object carries the structure of a special
commutative Frobenius algebra

Every hypergraph category is in particular a copy-delete category. The pieces of
structure of a hypergraph category are often rendered as cups and caps in string
diagrams

copy discard multiply unit

subject to equations such as the Frobenius law

= =

This gives rise to a rich graphical calculus, which has been explored for a
number of engineering applications like signal-flow diagrams or electrical circuits
[25, 8, 7, 9, 2, 1]

A Compositional Framework for Convex Analysis 173



Proposition 5. CxBiFn has the structure of a hypergraph category in two dif-
ferent ways, which we call the additive and co-additive structure. That is, every
object carries two different structures as a special commutative Frobenius algebra

1. The additive structure is given by

unit : I ⇀ Rn, unit(0, x) = 0

discard : Rn ⇀ I, discard(x,0) = 0

copy : Rn ⇀ Rn ⊗ Rn copy(x, y, z) = {|x = y = z|}
comp : Rn ⊗ Rn ⇀ Rn, comp(x, y, z) = {|x = y = z|}

2. The co-additive structure is given by

zero : I ⇀ Rn, zero(0, x) = {|x = 0|}
cozero : Rn ⇀ I, cozero(x,0) = {|x = 0|}

add : Rn ⊗ Rn ⇀ Rn, add(x, y, z) = {|x+ y = z|}
coadd : Rn ⇀ Rn ⊗ Rn, coadd(z, x, y) = {|x+ y = z|}

The analogous structures on CvBiFn use concave indicator functions instead.

We can motivate the names of the hypergraph structures by observing how
multiplications acts on states. This duality is clarified in what follows.

Example 5. Let f, g : I ⇀ Rn be two states. Then

(copy ◦ (f ⊗ g))(z) = inf
x,y

{f(x) + g(y) + {|x = y = z|}} = f(z) + g(z)

(add ◦ (f ⊗ g))(z) = inf
x,y

{f(x) + g(y) + {|x+ y = z|}} = f(z) □ g(z)

Definition 5. The dagger of a bifunction F : Rm ⇀ Rn is given by reversing
its arguments

F † : Rn ⇀ Rm, F †(y, x) = F (x, y)

The inverse of a bifunction F : Rm ⇀ Rn is the concave bifunction [27, p. 384]

F∗(x, y) = −F (y, x)

Both these operations define involutive4 functors

(−)† : CxBiFnop → CxBiFn, (−)∗ : CxBiFnop → CvBiFn

The functor (−)† is a dagger functor in the sense of [29].

Proposition 6 ([27, p. 384]). The operations of inverse and adjoint commute,
i.e. for F : Rm ⇀ Rn we have (F ∗)∗ = (F∗)

∗.

4 i.e. applying the appropriate version of these operations twice is the identity

174 D. Stein and R. Samuelson



The composite operation F ∗
∗ defines another covariant functor CxBiFn →

CxBiFn, which we now interpret: As is customary in graphical linear algebra, we
render the two hypergraph structures as follows

copy discard compunit

coadd cozero addzero

(1)

We refer to the additive structure as ‘black’ (•) and the co-additive one as
‘white’ (◦). This presentation reveals an array of symmetries (mirror-image and
color-swap5), which we are relating now:

Theorem 2. The adjoint operation interchanges the additive and co-additive
structure. That is we have functors of hypergraph categories

(−)∗ : (CxBiFnop, •) → (CvBiFn, ◦)
(−)∗ : (CxBiFnop, ◦) → (CvBiFn, •)

Note that the opposite of a hypergraph category is again a hypergraph category
where cups and caps are interchanged.

Proof. Follows from the results in §4.1, as the hypergraph structures are induced
by linear maps.

In terms of the generators (1), the mirror image is given by the (−)† functor.
Both hypergraph structures consist of †-Frobenius algebras, meaning that (−)†

is a functor of hypergraph categories CxBiFnop → CxBiFn.

The color-swap operation is given by the inverse adjoint F ∗
∗ , which gives a hy-

pergraph equivalence (CxBiFn, •) → (CxBiFn, ◦). This equivalence does however
not commute with †, i.e. is not an equivalence of dagger hypergraph categories.

4 Example Categories of Bifunctions

We now elaborate example subcategories of bifunctions on which functoriality
and duality work as desired (that is, all regularity conditions apply).

5 we will discuss these symmetries in more detail in Section 4.1

A Compositional Framework for Convex Analysis 175



4.1 Linear Algebra

The identities and dualities of convex bifunctions generalize those of linear alge-
bra. Let A : Rm → Rn be a linear map. The convex indicator bifunction of A is
defined as

FA(x, y) = {|y = Ax|}

The following facts hold [27, p 310]:

1. For composable linear maps, A,B we have FAB = FA ◦ FB
2. The adjoint F ∗

A is the concave indicator bifunction of the transpose AT

F ∗
A(y

∗, x∗) = −{|x∗ = AT y∗|}

3. if A is invertible, then the inverse (FA)∗ is the concave indicator bifunction
associated to the inverse A−1. In that case, Proposition 6 generalizes the
identity (A−1)T = (AT )−1.

In more categorical terms, let Vect denote the prop of the vector spaces Rn
and linear maps. This is a copy-delete category equipped with the linear maps
∆ : Rn → Rn ⊕ Rn and ! : Rn → R0. For a linear map A : Rm → Rn, define

FA : Rm ⇀ Rn, FA(x, y) = {|y = Ax|}
GA : Rn ⇁ Rm, GA(y, x) = −{|x = AT y|}

Theorem 3. We have a commutative diagram of functors between copy-delete
categories

Vect

(CvBiFnop, ◦) (CxBiFn, •)

FG

(−)∗

(2)

Proof. Functoriality and commutativity follow from the above facts. For the
copy-delete structures, notice that copy, delete, add, zero are the indicator bifunc-
tions of the linear maps ∆ and !. The transpose of ∆ is summation (x, y) 7→ x+y.

We call a diagram like (2) a duality situation. The dashed arrows indicate
that, while (−)∗ is neither a functor nor idempotent on all bifunctions without
further conditions, everything works out on the image of F,G respectively. We
could thus obtain a genuine commutative diagram of functors by characterizing
these images exactly (which we refrain from doing here for the sake of simplicity).

Linear Relations Graphical Linear Algebra [25] is the diagrammatic study of the
prop LinRel of linear relations, which are relations R ⊆ Rm × Rn that are also
vector subspaces. This category is a hypergraph category using the two structures

176 D. Stein and R. Samuelson



shown in (1), and the operations mirror-image and color-swap are defined for
linear relations via relational converse and a twisted orthogonal complement

R† = {(y, x) : (x, y) ∈ R}
Rc = {(x∗, y∗) : ∀(x, y) ∈ R, ⟨x∗, x⟩ − ⟨y∗, y⟩ = 0}

The operations (−)† and (−)c commute and define a composite contravariant
involution (−)∗ : LinRelop → LinRel. The following theorem shows that bifunc-
tions are a conservative extension of graphical linear algebra.

Theorem 4. If we embed a linear relation R ⊆ Rm×Rn via its indicator func-
tion as a bifunction IR : Rm ⇀ Rn, then we have a commutative diagram

LinRelop LinRel

CvBiFnop CxBiFn

(−)∗

(−)∗

I−I (3)

In addition, the functor I preserves both hypergraph structures.

Affine Relations Graphical linear algebra has been extended to affine relations
[6]; those are affine subspaces R ⊆ Rm × Rn. This still forms a hypergraph
category with both structures •, ◦, however the color-swap symmetry of linear
relations is broken. That is because the affine generator 1 : 0 → 1 representing
the affine relation {(0, 1)} does not have an obvious color-swapped dual; affine
subspaces are not recovered by their orthogonal complements.

The embedding into bifunctions suggests an avenue to recover such a sym-
metry: Taking the embedding (3) as a starting point, the indicator bifunction
of 1 is f : I ⇀ R, f(0, x) = {|x = 1|}. Its adjoint is f∗(x∗,0) = −x∗, which
is a perfectly well-defined bifunction but not the indicator bifunction of any
affine relation. This suggests that an extension of affine relations with color-
swap symmetry can be obtained using a category of partial affine function (e.g.
[27, p. 107]) but details are to left for future work. We will discuss the case of
partial quadratic functions in §5.2.

4.2 Convex Relations

Generalizing the previous example even further, a convex relation R ⊆ Rm×Rn
is a relation which is also a convex subset of Rm+n. Convex relations are closed
under the usual relation composition and thus form a prop CxRel [3, 12, 23].

Every linear relation is in particular convex, and like linear relations, convex
relations embed into convex bifunctions via the indicator function.

We sketch a certain converse to this embedding: The space (R,+, 0) is a
monoid object in CxRel. We consider the ‘writer’ monad T : CxRel → CxRel

A Compositional Framework for Convex Analysis 177



associated to that monoid, i.e. T (Rm) = Rm+1. If S ⊆ Rm × Rn+1 and R ⊆
Rn × Rk+1 are Kleisli arrows, then Kleisli composition takes the following form

R • S = {(x, z, t1 + t2) : (x, y, t1) ∈ S, (y, z, t2) ∈ R}

Given a convex bifunction F : Rm ⇀ Rn, the epigraph of its graph function
epi(F ) ⊆ Rm × Rn+1 is thus a Kleisli arrow for T . Under sufficient regularity
assumptions, this is functorial, and we have an embedding epi : CxBiFn →
CxRelT .

4.3 Ordinary Convex Programs

We briefly discuss the historical origins of bifunctions in convex optimization
[27, § 29-30]: For simplicity, we say that a ordinary convex program P is a
minimization problem of the form

inf{f(x) : x ∈ Rn, g1(x) ≤ 0, . . . , gk(x) ≤ 0}

where the objective function f and the constraints g1, . . . , gk : Rn → R are finite
convex functions. The bifunction associated to P is defined as

FP : Rk ⇀ Rn, FP (v, x) = f(x) +

k∑
i=1

{|fi(x) ≤ vi|}

The inputs of v ∈ Rk can be thought of as perturbations of the constraints. The
so-called perturbation function of P is the parameterized minimization prob-
lem (inf FP )(v) = infx {FP (v, x)}. The convex function FP (0,−) represents the
unperturbed problem and (inf FP )(0) is the desired solution. Note that in cate-
gorical language, the perturbation function is straightforwardly obtained as the
bifunction composite (discard ◦ FP ) : Rk ⇀ I, or graphically

FPRk

The associated bifunction FP contains all information about the problem P , and
allows one to find the dual problem P ∗ by taking its adjoint. This way one can
think of any bifunction Rk ⇀ Rn as a generalized convex program ([27, p. 294]).

Example 6 ([27, p. 312]). Consider a linear minimization problem P of the form

inf{⟨c, x⟩ : b−Ax ≤ 0}

The associated bifunction and its adjoint are

F (v, x) = ⟨c, x⟩+ {|x ≥ 0, b−Ax ≤ v|}
F ∗(x∗, v∗) = ⟨b, v∗⟩ − {|v∗ ≥ 0, c−AT v∗ ≥ x∗|}

which is the concave bifunction associated to the dual maximization problem

sup{⟨b, y⟩ : y ≥ 0, c−AT y ≥ 0}

178 D. Stein and R. Samuelson



5 Gaussian Probability and Convexity

We now study the probabilistic applications of our categorical framework: Re-
cently, a sizeable body of work in categorical probability theory has been devel-
oped in terms of copy-delete and Markov categories. A Markov category [17] is
a copy-delete category (C,⊗, I) where every morphism f : X → Y is discardable
in the sense that discardY ◦f = discardX . Classic examples of Markov categories
are the category FinStoch of finite sets and stochastic matrices, and the category
Stoch of measurable spaces and Markov kernels. Discardability expresses that
probability measures are normalized (integrate to 1). Markov categories provide
a natural semantic domain for probabilistic programs [30].

In this section, we will focus on Gaussian probability, by which we mean the
study of multivariate normal (Gaussian) distributions and affine-linear maps.
This is a small but expressive fragment of probability, which suffices for a range of
interesting application from linear regression and Gaussian processes to Kalman
filters. The univariate normal distribution N (µ, σ2) is defined on R via the den-
sity function

f(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
Multivariate Gaussian distributions are easiest described as the laws of ran-

dom vectors A·X+µ where A ∈ Rn×k andX1, . . . , Xk ∼ N (0, 1) are independent
variables. The law is fully characterized by the mean µ and the covariance ma-
trix Σ = AAT . Conversely, for every vector µ ∈ Rn and positive semidefinite
matrix Σ ∈ Rn×n, there exists a unique Gaussian law N (µ,Σ). If X ∼ N (µ,Σ)
and Y ∼ N (µ′, Σ′) are independent then X + Y ∼ N (µ + µ′, Σ + Σ′) and
AX ∼ N (Aµ,AΣAT ). Gaussians are self-conjugate: If (X,Y ) are jointly Gaus-
sian, then so is the conditional distribution X|Y = y for any constant y ∈ Rk.

If the covariance matrix Σ is positive definite, then the Gaussian has a density
with respect to the Lebesgue measure on Rn given by

f(x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x− µ)TΩ(x− µ)

)
(4)

where Ω = Σ−1 is known as the precision matrix. This suggests two equivalent
representations of Gaussians with different advantages (e.g. [20, 31]):

– In covariance representation Σ, pushforwards (addition, marginalization)
are easy to compute. Conditioning requires solving an optimization problem

– In precision representation Ω, conditioning is straightfoward. Pushforwards
require solving an optimization problem.

If Σ is singular, the Gaussian distribution is only supported on the affine
subspace µ + S where S = im(Σ). In that case, the distribution has a density
only with respect to the Lebesgue measure on S. This variability of base measure
makes it complicated to work with densities, and by extension the precision
representation.

A Compositional Framework for Convex Analysis 179



The situation becomes clearer if we represent Gaussians by the quadratic
functions induced by their covariance and precision matrices. These functions
are convex (concave), and turn out to be adjoints of each other. This explains
the duality of the two representations, and paves the way for generalizations
of Gaussian probability like improper priors [31] which correspond to partial
quadratic functions (§5.2).

5.1 Embedding Gaussians in Bifunctions

We now give a categorical account of Gaussian probability (in covariance rep-
resentation). A Gaussian morphism Rm → Rn is a stochastic map of the form
x 7→ Ax+N (µ,Σ), that is a linear map with Gaussian noise.

Definition 6 ([17, §6]). The Markov prop Gauss is given as follows

1. objects are the spaces Rn, and Rm ⊗ Rn = Rm+n

2. morphisms Rm → Rn are tuples (A,µ,Σ) with A ∈ Rn×m, µ ∈ Rn and
Σ ∈ Rn×n positive semidefinite

3. composition and tensor are given by the formulas

(A,µ,Σ) ◦ (B,µ′, Σ′) = (AB,µ+Aµ′, Σ +AΣ′AT )

(A,µ,Σ)⊗ (B,µ′, Σ′) = (A⊕B,µ⊕ µ′, Σ ⊕Σ′))

where ⊕ is block-diagonal composition.
4. the copy-delete structure is given by the linear maps ∆, !

We have a Markov functor Gauss → Stoch which sends Rn to the measurable
space (Rn,Borel(Rn)) and assigns (A,µ,Σ) to the probability kernel given by
x 7→ N (Ax+µ,Σ). Functoriality expresses that the formulas of Definition 6 agree
with composition of Markov kernels given by integration of measures. Our main
theorem shows that, surprisingly, the representation of Gaussians by quadratic
functions is also functorial, i.e. we have an embedding Gauss → CxBiFn.

Theorem 5. We have functors of copy-delete categories in a duality situation

Gauss

(CvBiFnop, •) (CxBiFn, ◦)

logpdf cgf

(−)∗

The functors are defined as follows: Let f = (A,µ,Σ) ∈ Gauss(Rm,Rn), and
define bifunctions

logpdff : Rn ⇁ Rm, logpdff (y, x) = −1

2
⟨z,Σ−z⟩ − {|z ∈ S|}

cgff : Rm ⇀ Rn, cgff (x, y) =
1

2
⟨y,Σy⟩+ ⟨µ, y⟩+ {|x = AT y|}

where z = y − (Ax+ µ), S = im(Σ) and Σ− denotes any generalized inverse of
Σ.

180 D. Stein and R. Samuelson



Proof (Sketch). Functoriality of cgf follows from a straightforward computation,
and one can check that cgf∗f = logpdff using the formula of [27, p. 109]. Func-
toriality for logpdf then follows from Theorem 1. The full proof is elaborated in
the extended version of this paper [32].

The value logpdff (y, x) is indeed the conditional log-probability (4) minus a
scalar. The name cgf is short for cumulant-generating function, which we elabo-
rate in §6.2. For now, we can see cgf as a generalized covariance representation.

5.2 Outlook: Gaussian Relations

Measure-theoretically, there is no uniform probability distribution over the real
line. Such a distribution, if it existed, would be useful to model complete ab-
sence of information about a point X – in Bayesian inference, this is called an
uninformative prior. Intuitively, such a distribution should have density 1, but
this would not integrate to 1. On the other hand, a formal logdensity of 0 makes
sense – this is simply the indicator function of the full subset R ⊆ R.

An extended Gaussian distribution, as described in [31], is a formal sum
N (µ,Σ)+D of a Gaussian distribution and a vector subspace D ⊆ Rn, called a
fibre, thereby blending relational and probabilistic nondeterminism. Such enti-
ties were considered by Willems in the control theory literature, under the name
of linear open stochastic systems [35, 36]; he identifies them with Gaussian distri-
butions on the quotient space Rn/D. A categorical account based on decorated
cospans is developed in [31].

It is straightforward to embed extended Gaussian distributions into convex
bifunctions, by taking the sum of the interpretations from Theorems 4 and 5.
The distribution ψ = N (µ,Σ) +D has a convex interpretation given by

cgfψ(x) =
1

2
⟨x,Σx⟩+ ⟨µ, x⟩+ {|x ∈ D⊥|}

Functions of this form are partial convex quadratic functions, which are known
to form a well-behaved class of convex functions (see appendix of the extended
version [32]). The theory of such functions can be understood as an extension
of Gaussian probability with relational nondeterminism and conditioning, which
we term Gaussian relations. In Gaussian relations, we achieve full symmetry
between covariance and density representation (that is, there exists a color-swap
symmetry).

Partiality is necessary to be able to interpret all generators of (1); on the
upside, the presence of partiality makes conditioning a first-class operation: For
example, if f : R2 ⇁ I is the joint logdensity of Gaussian variables (X,Y ), then
conditioning on Y = 0 is the same as computing the bifunction composite with
the zero map, which is a simple restriction of logdensity fX|Y=0(x) = f(x, 0). On
the other hand, conditioning in the covariance representation f∗ requires solving
the infimization problem infy∗ {f∗(x∗, y∗)}. Graphically, we have

f f∗vs.

A Compositional Framework for Convex Analysis 181



6 A Wider Perspective

The example of Gaussian probability was particular situation in which we could
map probabilistic concepts to concepts of convex analysis in a functorial way. In
this section, we will take an even wider perspective and view convex bifunctions
as a categorical model of probability on its own. We will then point out known
connections between probability theory and convex analysis, such as the Laplace
approximation and cumulant generating functions.

6.1 The Laplace Approximation

For every copy-delete category C, the subcategory of discardable morphisms is a
Markov category, and can therefore be seen as a generalized model of probability
theory. We investigate this notion for categories of bifunctions.

Proposition 7. Let F : Rm ⇀ Rn, G : Rn ⇁ Rm be bifunctions. Then

1. F is discardable in (CxBiFn, •) if ∀x, infy F (x, y) = 0
2. G is discardable in (CvBiFnop, ◦) if ∀x,G(0, x) = {|x = 0|}
and the adjoint (−)∗ defines a bijection between the two.

Proof. Direct calculation.

The embedding of Theorem 5 takes values in discardable bifunctions and hence
preserve Markov structure. Functoriality means that the composition of Gaus-
sians (integration) and the composition of bifunctions (optimization) coincide.
For general probability distributions, this will no longer be the case. We can how-
ever understand bifunction composition as an approximation of ordinary proba-
bility theory under the so-called Laplace approximation. In its simplest instance,
Laplace’s method (or method of steepest ascent) is a method to approximate
certain integrals by finding the maxima of its integrand (e.g. [34])∫

en(⟨c,x⟩−f(x))dx ≈ exp

(
n sup

x
{⟨c, x⟩ − f(x)}

)
for n→ ∞

A wide class of commonly used probability distributions is log-concave, in-
cluding Gaussian, Laplace, Dirichlet, exponential and uniform distributions.
Laplace’s approximation (e.g. [22, §27]) is a way of approximating such distri-
butions around their mode x0 by a normal distribution, as the Taylor expansion
of their logdensity resembles a Gaussian one

h(x) ≈ h(x0) +
1

2
h′′(x0)(x− x0)

2

We can attempt to reduce questions about such distributions to mode-finding
(maximization). The Laplace approximation is fundamental in many applica-
tions such as neuroscience [15, 16] and has been generalized to a large body of
literature on so-called saddle-point methods [10, 24]. The existence of the functor
from Gaussians to bifunctions expresses that, as desired, the Laplace approxima-
tion is exact on Gaussians. We give an example of the approximation not being
exact (ironically) on Laplacian distributions.

182 D. Stein and R. Samuelson



Example 7. The standard Laplacian distribution has the density function f(x) =
1
2 exp(|x|) on the real line. The logpdf h(x) = |x| is a convex function whose
convex conjugate is given by h∗(x∗) = {||x∗| ≤ 1|} (see Example 2). The latter
function is idempotent under addition, and conversely h □ h = h, so h is idem-
potent under infimal convolution. In contrast, the density f(x) is not idempotent
under integral convolution: The sum of independent standard Laplacians is not
itself Laplacian.

6.2 Convex Analysis in Probability Theory

For a random variable X on Rn, the moment generating function MX is defined
by the following expectation (provided that it exists) MX(x∗) = E[e⟨x∗,X⟩]. The
cumulant-generating function is defined as its logarithm cX(x∗) = logMX(x∗).
The function cX is always convex. The cumulant-generating function of a mul-
tivariate Gaussian X ∼ N (µ,Σ) is precisely

cX(x∗) =
1

2
⟨x∗, Σx∗⟩+ ⟨x∗, µ⟩ (5)

which explains our choice of the convex bifunction cgf associated to a Gaus-
sian morphism in Theorem 5. The notion of cumulant-generating function has a
central place in the study of exponential families.

It is a particular fact about Gaussians that the cumulant-generating function
is the convex conjugate of the logdensity. In the general case, the convex conju-
gate c∗X(x) does have a probabilistic interpretations as a so called-rate function
in large deviations theory (Cramér’s theorem, [13]). It has also been used to
formulate a variational principle [38].

6.3 Idempotent Mathematics

We zoom out to an even wider perspective: This subsection briefly outlines some
further background of the connections between convex and probabilistic world:
The logarithm of base t < 1 defines an isomorphism of semirings ([0,∞),×,+) →
(R ∪ {+∞},+,⊕t) where ⊕t is x ⊕t y = logt(t

x + ty). In the ‘tropical limit’
t ↘ 0, we have x ⊕t y ≈ min(x, y), so we can consider working in the semiring
(R,+,min) as a limit or deformation of the usual operations on the reals. The
semiring R is idempotent, meaning x ⊕ x = min(x, x) = x, hence this field of
study is also known as idempotent mathematics [26], and the limiting procedure
has been called Maslov dequantization [21]. Our definition of convex bifunctions
in terms of the idempotent semiring R thus carries a strong flavor of idempotent
mathematics.

Idempotent analogues of measure theory are discussed in [26, 21], and many
theorems in classical probability theory are mirrored by theorems of idempotent
probability theory. For example, the idempotent analogue of integration is in-
fimization; under this view, the tropical analogue of the Laplace transform (cf.
moment-generating function) is the Legendre transform [21, §7]∫

e⟨x
∗,x⟩f(x)dx ↔ inf

x
{⟨x∗, x⟩+ f(x)}

A Compositional Framework for Convex Analysis 183



which explains the appearance of the cumulant-generating function in our work.
Theorem 5 means that for Gaussians, it makes no difference whether we work in
the real-analytic or idempotent world. Idempotent Gaussians have been defined
in [26, 1.11.10] using the same formula (5).

7 Related and Future Work

We have described categories of bifunctions as a compositional setting for con-
vex analysis which subsumes a variety of formalisms like linear functions and
relations, as well as convex optimization problems, and has a rich duality theory
and an elegant graphical language. We have then explored connections between
convex analysis and probability theory, and showed that Gaussian probability
can be equivalently described in a measure-theoretic and a convex-analytic lan-
guage. The equivalence of these two perspectives is elegantly formalized as a
structure-preserving functor between copy-delete categories. It will be interest-
ing to see how this approach can be generalized to larger classes of distributions
such as exponential families.

Concurrently to our work, the categorical structure of convex bifunctions
has been exploited by [19] to compositionally build up objective functions for
MPC in control theory. That work does not explore Legendre duality and the
connections with categorical models of probability theory. The language of props
has a history of applications in engineering [2, 1, 7], and our work was directly
inspired by the semantics of probabilistic programming [33, 30].

A starting point for future work is to flesh out the outlook given in §5.2,
that is to define a hypergraph category of partial quadratic convex functions,
which generalizes Gaussian and extended Gaussian probability. It is also inter-
esting to give a presentation for this prop in the style of [25]: We believe that
this is achieved by the addition of a single generator ν : I → R to graphi-
cal affine algebra [6] which represents the quadratic function f(x) = 1

2x
2, and

that its equational theory is essentially given by invariance under the orthogonal
groups O(n). A similar equational theory has been attempted in [33] though
no completeness has been proven. Diagrammatic presentations of concepts from
geometry and optimization such as polyhedral algebra and Farkas lemma have
been given in [4, 5].

We realize that the dependence on regularity assumptions (the caveat of §2)
makes general theorems about categories of bifunctions like Theorem 1 somewhat
awkward to state. We still believe that using a general categorical language is a
useful way of structuring the field and making connections, but see the following
avenues of improving the technical situation

1. Identifying specific, well-behaved subcategories of bifunctions (such as con-
vex relations, (partial) linear and (partial) quadratic functions) on which
everything behaves as desired. This was pursued in §4 and §5.

2. The Legendre-Fenchel transform has been phrased in terms of enriched ad-
junctions in [37]. It stands to hope that developing this enriched-categorical
approach may take care of some regularity conditions in a systematic way.

184 D. Stein and R. Samuelson



Acknowledgements We thank the anonymous reviewers for their careful re-
views and suggestions for this work.

References

1. Baez, J.C., Coya, B., Rebro, F.: Props in network theory (2018)

2. Baez, J.C., Erbele, J.: Categories in control. Theory Appl. Categ. 30, 836–881
(2015)

3. Bolt, J., Coecke, B., Genovese, F., Lewis, M., Marsden, D., Piedeleu, R.: Interacting
conceptual spaces i: Grammatical composition of concepts. Conceptual spaces:
Elaborations and applications pp. 151–181 (2019)

4. Bonchi, F., Di Giorgio, A., Sobociński, P.: Diagrammatic Polyhedral Alge-
bra. In: Bojańczyk, M., Chekuri, C. (eds.) 41st IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 213, pp. 40:1–40:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.40,
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.40

5. Bonchi, F., Di Giorgio, A., Zanasi, F.: From Farkas’ Lemma to Linear Pro-
gramming: an Exercise in Diagrammatic Algebra. In: Gadducci, F., Silva,
A. (eds.) 9th Conference on Algebra and Coalgebra in Computer Science
(CALCO 2021). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 211, pp. 9:1–9:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CALCO.2021.9,
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2021.9

6. Bonchi, F., Piedeleu, R., Sobocinski, P., Zanasi, F.: Graphical affine algebra. In:
Proc. LICS 2019 (2019)

7. Bonchi, F., Sobociński, P., Zanasi, F.: A categorical semantics of signal flow
graphs. In: CONCUR 2014–Concurrency Theory: 25th International Conference,
CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings 25. pp. 435–450.
Springer (2014)

8. Bonchi, F., Sobocinski, P., Zanasi, F.: The calculus of signal flow diagrams I: linear
relations on streams. Inform. Comput. 252 (2017)

9. Bonchi, F., Sobociński, P., Zanasi, F.: Interacting Hopf algebras. Journal of Pure
and Applied Algebra 221(1), 144–184 (2017)

10. Butler, R.W.: Saddlepoint approximations with applications, vol. 22. Cambridge
University Press (2007)

11. Cho, K., Jacobs, B.: Disintegration and Bayesian inversion via string diagrams.
Mathematical Structures in Computer Science 29, 938 – 971 (2019)

12. Coecke, B., Genovese, F., Lewis, M., Marsden, D., Toumi, A.: Gener-
alized relations in linguistics & cognition. Theoretical Computer Science
752, 104–115 (2018). https://doi.org/https://doi.org/10.1016/j.tcs.2018.03.008,
https://www.sciencedirect.com/science/article/pii/S0304397518301476, quantum
structures in computer science: language, semantics, retrieval

13. Cramér, H.: Sur un nouveau theoreme-limite de la theorie des probabilities. Scien-
tifiques et Industrielles 736, 5–23 (1938)

14. Fong, B., Spivak, D.I.: Hypergraph categories. Journal of Pure and Applied Algebra
223(11), 4746–4777 (2019)

A Compositional Framework for Convex Analysis 185



15. Friston, K., Kiebel, S.: Predictive coding under the free-energy principle. Philo-
sophical transactions of the Royal Society B: Biological sciences 364(1521), 1211–
1221 (2009)

16. Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W.: Variational
free energy and the laplace approximation. Neuroimage 34(1), 220–234 (2007)

17. Fritz, T.: A synthetic approach to markov kernels, conditional independence and
theorems on sufficient statistics. Advances in Mathematics 370, 107239 (2020)

18. Fujii, S.: A categorical approach to l-convexity. arXiv preprint arXiv:1904.08413
(2019)

19. Hanks, T., She, B., Hale, M., Patterson, E., Klawonn, M., Fairbanks, J.: A
compositional framework for convex model predictive control. arXiv preprint
arXiv:2305.03820 (2023)

20. JAMES, A.: The variance information manifold and the functions
on it. In: Multivariate Analysis–III, pp. 157–169. Academic Press
(1973). https://doi.org/https://doi.org/10.1016/B978-0-12-426653-7.50016-8,
https://www.sciencedirect.com/science/article/pii/B9780124266537500168

21. Litvinov, G.L.: Maslov dequantization, idempotent and tropical mathematics: A
brief introduction. Journal of Mathematical Sciences 140, 426–444 (2007)

22. MacKay, D.J.: Information theory, inference and learning algorithms. Cambridge
university press (2003)

23. Marsden, D., Genovese, F.: Custom hypergraph categories via generalized relations.
arXiv preprint arXiv:1703.01204 (2017)

24. McCullagh, P.: Tensor methods in statistics. Courier Dover Publications (2018)
25. Paixão, J., Rufino, L., Sobociński, P.: High-level axioms for graph-

ical linear algebra. Science of Computer Programming 218, 102791
(2022). https://doi.org/https://doi.org/10.1016/j.scico.2022.102791,
https://www.sciencedirect.com/science/article/pii/S0167642322000247

26. Puhalskii, A.: Large deviations and idempotent probability. CRC Press (2001)
27. Rockafellar, R.T.: Convex Analysis, vol. 11. Princeton University Press (1997)
28. Selinger, P.: A Survey of Graphical Languages for Monoidal Cate-

gories, pp. 289–355. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-12821-9˙4

29. Selinger, P.: Dagger compact closed categories and completely positive maps. Elec-
tronic Notes in Theoretical computer science 170, 139–163 (2007)

30. Stein, D.: Structural foundations for probabilistic programming languages. Univer-
sity of Oxford (2021)

31. Stein, D., Samuelson, R.: A category for unifying gaussian probability and non-
determinism. In: 10th Conference on Algebra and Coalgebra in Computer Science
(CALCO 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2023)

32. Stein, D., Samuelson, R.: Towards a compositional framework for convex analysis
(with applications to probability theory) (2023)

33. Stein, D., Staton, S.: Compositional semantics for probabilistic programs with
exact conditioning. In: 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). pp. 1–13. IEEE (2021)

34. Touchette, H.: Legendre-fenchel transforms in a nutshell. Unpublished Report
(Queen Mary University of London) (2005)

35. Willems, J.C.: Constrained probability. In: 2012 IEEE International
Symposium on Information Theory Proceedings. pp. 1049–1053 (2012).
https://doi.org/10.1109/ISIT.2012.6283011

36. Willems, J.C.: Open stochastic systems. IEEE Transactions on Automatic Control
58(2), 406–421 (2013). https://doi.org/10.1109/TAC.2012.2210836

186 D. Stein and R. Samuelson



37. Willerton, S.: The Legendre-Fenchel transform from a category theoretic perspec-
tive. arXiv preprint arXiv:1501.03791 (2015)

38. Zajkowski, K.: A variational formula on the cramér function of series of independent
random variables. Positivity 21(1), 273–282 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

A Compositional Framework for Convex Analysis 187

http://creativecommons.org/licenses/by/4.0/


Automata and Synthesis



  

Determinization of Integral Discounted-Sum
Automata is Decidable⋆⋆⋆

Shaull Almagor and Neta Dafni

Technion, Haifa, Israel
shaull@technion.ac.il

netad@campus.technion.ac.il

Keywords: Discounted Sum Automata · Determinization · Quantita-
tive Automata

1 Introduction

Traditional methods of modelling systems rely on Boolean automata, where ev-
ery word is assigned a Boolean value (i.e., accepted or rejected). This setting is
often generalized into a richer, quantitative one, where every word is assigned a
numerical value, and thus the Boolean concept of a language, i.e., a set of words,
is lifted to a more general function, namely a function from words to values.

A particular instance of quantitative automata is that of discounted-sum
automata. There, the weight function sums the weights along the run, but dis-
counts the future. Discounting as a general notion is a well studied concept in
game theory and various social choice models [9]. Computational models with
discounting, such as discounted-payoff games [21, 3, 1], discounted-sum Markov
⋆ This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No.

989/22)
⋆⋆ The full version can be found on https://arxiv.org/abs/2310.09115

(B)

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 191–211, 2024.
https://doi.org/10.1007/978-3-031-57228-9_10

Abstract. Nondeterministic Discounted-Sum Automata (NDAs) are non-
deterministic finite automata equipped with a discounting factor λ > 1,
and whose transitions are labelled by weights. The value of a run of an
NDA is the discounted sum of the edge weights, where the i-th weight is
divided by λi. NDAs are a useful tool for modelling systems where the
values of future events are less influential than immediate ones.
While several problems are undecidable or open for NDA, their deter-
ministic fragment (DDA) admits more tractable algorithms. Therefore,
determinization of NDAs (i.e., deciding if an NDA has a functionally-
equivalent DDA) is desirable.
Previous works establish that when λ ∈ N, then every complete NDA,
namely an NDA whose states are all accepting and its transition function
is complete, is determinizable. This, however, no longer holds when the
completeness assumption is dropped.
We show that the problem of whether an NDA has an equivalent DDA is
decidable when λ ∈ N (in particular, it is in EXPSPACEand is PSPACE−hard).

https://doi.org/10.1007/978-3-031-57228-9_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_10&domain=pdf
http://orcid.org/0000-0001-9021-1175


Decision Processes [17, 19, 14] and discounted-sum automata [15, 12, 13, 11], are
therefore useful to model settings where the far future has less influence than
the immediate future.

In this work we focus on non-deterministic discounted-sum automata (NDAs).
An NDA is a quantitative automaton equipped with a discounting factor λ > 1.
The value of a run is the discounted sum of the transitions along the run, where
the value of transition i is divided by λi. The value of a word is then the value
of the minimal accepting run on it. We also allow final weights that are added
to the run at its end (with appropriate discounting).

Unlike Boolean automata, NDAs are strictly more expressive than their de-
terministic counterpart (DDAs) [11]. In particular, certain decision problems for
NDAs are undecidable, but become decidable for DDAs [5]. There is, however,
a subclass of NDAs that always admit an equivalent DDA: the complete integral
NDAs [6]. An automaton is complete if its transition function is total and all
its states are accepting with final weight 0. This means that runs never “die”,
and that all runs are accepting. An NDA is integral if its discounting factor λ
is an integer. It is further shown in [6] that if the completeness requirement is
removed then for every discounting factor there is an integral NDA that is not
determinizable.

The existence of NDAs that are not determinizable implies that the deter-
minization problem is not trivial. However, its decidability and complexity have
not been studied. In this work, we show that determinization of integral NDAs
is decidable. Specifically, we show that determinization is in EXPSPACE and is
PSPACE− hard.

Example 1. We demonstrate the determinization problem, as well as some intri-
cacies involved in its analysis. Consider the NDA in Figure 1a. Intuitively, the
NDA either reads only a’s, or reads a word of the form a∗b. However, it guesses
in q0 whether it is going to read many a’s, in which case it may be worthwhile
incurring weight 3 to q2 in order to read the remaining a’s at cost 0.

q0 q1q2
b, 0

a, 2

a, 3

a, 0

(a) NDA A.

s0 s1
b, 0

a, 2

(b) Equivalent DDA for λ = 3.

Fig. 1: The NDA A on the left is determinizable with λ = 3, with an equivalent
DDA depicted on the right. However, A is not determinizable with λ = 2.

We now ask if this NDA has a deterministic equivalent. As it turns out,
this is dependent on the discounting factor. Indeed, consider the discounting
factor λ = 3, then when reading the word ak, the run that remains in q0 has
weight

∑k
i=0 2 · 3−i = 3 − 3−k < 3, whereas a run that moves to q2 at step

j ≥ 0 has weight
∑j−1

i=0 2 · 3−i + 3 · 3−j = 3− 3−j + 3−j = 3. Thus, it is always

192 S. Almagor and N. Dafni



beneficial to remain in q0. In this case, we do have a deterministic equivalent,
depicted in Figure 1b. We remark that the fact that this deterministic equivalent
is obtained by removing transitions is not a standard behaviour, and typically
determinization involves a blowup.

Next, consider the discounting factor λ = 2. Similar analysis shows that for
the word ak, the weight of the run that stays in q0 is

∑k
i=0 2 · 2−i = 4− 2 · 2−k,

whereas leaving to state q2 at step 0 yields cost 3, so the latter is preferable for
large k. Intuitively, this means that nondeterminism is necessary in this setting,
since the NDA does not “know” whether b will be seen. Indeed, for λ = 2 this
NDA is not determinizable.

Observe that in the case of λ = 2, the two “extreme” runs on ak, namely the
one that stays in q0 and the one that immediately leaves to q2, create a “gap”
between their values that tends toward 1 as k increases. Keeping in mind that
for large k the transition value is multiplied by 2−k, intuitively this gap becomes
huge. As we show in this work, this concept of gaps exactly characterizes whether
an NDA can be determinized. ⊓⊔

We remark that for non-integral NDAs, many problems, including the deter-
minization problem, are open due to number-theoretic difficulties [8]. Therefore,
it is unlikely that progress is made there, pending breakthroughs in number
theory.

Related Work Discounted-sum automata have been studied in various contexts.
Specifically, certain algorithmic problems for them are still open, and are closely
related to longstanding open problems [8]. In addition, they are not closed under
standard Boolean operations [7] (which is often the case in quantitative models,
due to the “minimum” semantics which conflicts with notions of conjunction).

Recently, discounted sum automata were also studied in the context of two-
player games [10]. Of particular interest are “regret-minimizing strategies”, where
the concept of regret minimization is closely related to determinization of au-
tomata [16].

An extension of discounted-sum automata to multiple discounting factors
(NMDAs) was studied in [4, 5], where NMDAs are NDAs where every transition is
allowed a different discounting factor. NMDAs are generally non-determinizable,
but imposing certain restrictions on the choice of discounting factors can ensure
determinizability [4]. We remark that the study of NMDAs is still only with
respect to complete automata.

Determinization of other quantitative models has also received some attention
in recent years. A major open problem is the decidability of determinization for
weighted automata over the tropical semiring (for some subclasses it is known to
be decidable [20, 18]). Interestingly, a tropical weighted automaton can be seen
as the “limit” of NDAs where λ → 1. This, however, does not seem to help in
resolving the decidability of the former.

In [2], the determinization problem for one-counter nets (OCNs) is studied.
OCNs are automata equipped with a counter that cannot decrease below zero.
They can be thought of as pushdown automata with a singleton stack alphabet.

Determinization of Integral Discounted-Sum Automata is Decidable 193



Most notions of determinizability introduced in [2] are undecidable, with one
case being open (and seemingly related to the setting of weighted automata).

Due to space constraints, some proofs appear in the full version.

2 Preliminaries

A nondeterministic integral discounted-sum automaton (NDA) is a tuple A =
(Σ,Q,Q0, α, δ, val, fval, λ), where Σ is a finite alphabet, Q is a finite set of
states, Q0 ⊆ Q is a set of initial states, α ⊆ Q is a set of accepting states,
δ ⊆ Q × Σ × Q is a transition relation, val : δ → Z is a weight function that
assigns to each transition (p, σ, q) ∈ δ a weight val((p, σ, q)) ∈ Z, fval : α → Z
is a final weight function that assigns a final weight1 to every accepting state,
and 1 < λ ∈ N is an integer discounting factor.

The existence of a transition (p, σ, q) ∈ δ means that when A is in state p and
reads the letter σ it can move to state q. If there exists q such that (p, σ, q) ∈ δ,
we say that p has a σ-transition. If p does not have a σ-transition, that means
that when in state p and reading the letter σ, A’s run cannot continue.

Consider a word w = w1 · · ·wn ∈ Σ∗. A run of A on w is a sequence of
states ρ = ρ0, ρ1, . . . , ρn such that ρ0 ∈ Q0 and (ρi−1, wi, ρi) ∈ δ for every
1 ≤ i ≤ n. The run is accepting if ρn ∈ α. The weight of ρ is the discounted sum
val(ρ) = Σn−1

i=0 λ−ival(ρi, wi+1, ρi+1).
The value of w by A, denoted A∗(w), is min{val(ρ) + λ−nfval(ρn) | ρ =

ρ0, . . . , ρn is an accepting run on w}, that is, the minimal weight of a run on w
including final weights, or ∞ if no such run exists. Two NDAs A,B are equivalent
if A∗(w) = B∗(w) for every w ∈ Σ∗.

We say that A is deterministic (DDA, for short) if |Q0| = 1 and {q ∈
Q|(p, σ, q) ∈ δ} ≤ 1 for every p ∈ Q, σ ∈ Σ. Note that if A is deterministic
then for every word there is at most one run starting in each state. For a DDA
we define the partial function δ∗ : Q × Σ∗ ↪→ Q such that δ∗(q, w) is the final
state in the run on w starting in q, if such a run exists. We say that an NDA A
is determinizable if it has an equivalent DDA.

It will also be useful to consider non-accepting runs and runs that start and
end in specific states of A. For sets of states P, P ′ ⊆ Q we define A[P→P ′](w)
to be the weight of a minimal run of A on w from some state in P to some
state in P ′. Similarly, A[P→fP ′](w) is the minimal weight of an accepting run
including final weights. When P or P ′ is a singleton {p} we omit the parenthesis.
When P = Q0 and P ′ = Q (or α, for the setting of including final weights) we
omit the sets and write e.g., A(w) instead of A[Q0→Q](w), and A∗(w) instead of
A[Q0→fα](w). Under these notations, if a run does not exist, the assigned value
is ∞. For the remainder of the paper, fix an integral NDA A.

1 In some works, the weights are assumed to be rational. For determinizability we
can assume all weights are integers, since we can always multiply every weight by a
common denominator.

194 S. Almagor and N. Dafni



3 Gaps and Separation of Runs

In this section we lay down the basic definitions we use throughout the paper,
concerning the ways several runs on the same word accumulate different weights.

Denote by mA the maximal absolute value of a weight of a transition or a final
weight in A. Recall that the geometric sum (for λ > 1) satisfies

∑∞
i=0 λ

−i = λ
1−λ .

Therefore, λ
λ−1mA is an upper bound on |val(ρ)| for any run ρ. Indeed, we have

|val(ρ0, . . . , ρn)| = |Σn−1
i=0 λ−ival(ρi, wi+1, ρi+1)| ≤ Σn−1

i=0 λ−imA <
λ

λ− 1
mA

Clearly, the same bound holds when including final weights.
Let M = 2 λ

λ−1mA, then for every two runs ρ1, ρ2 we have |val(ρ1) −
val(ρ2)| < λ

λ−1mA − (− λ
λ−1mA) = M. The constant M is central in our study

of gaps between runs.
Consider a word w ∈ Σ∗. The run attaining the minimal value A∗(w) might

not be minimal while reading prefixes of w. The gap between the value of an
eventually-minimal run and minimal runs on prefixes of w is central to char-
acterizing determinizability of NDAs [6]. This gap is captured by the following
definition.

Definition 1 (Recoverable gap). Consider words w, z ∈ Σ∗ and states
qu, ql ∈ Q. the tuple (w, qu, ql) is called a recoverable gap with respect to z,
or simply a recoverable gap, if the following hold:

1. A[Q0→ql](w) ≤ A[Q0→qu](w), and
2. A[Q0→qu](w) + λ−|w|A[qu→fα](z) = A∗(wz) < ∞.

Intuitively, in a recoverable gap (w, qu, ql) there are runs ρ1 and ρ2 of A on
w that end in qu and ql, respectively, where ρ1 attains a higher value than ρ2,
but there is a suffix z that “recovers” this gap: when reading z from qu starting
with weight val(ρ1), the resulting minimal run including final weight attains the
minimal value of a run of A on w · z. This is depicted in Figure 2.

For a recoverable gap (w, qu, ql) we define gap(w, qu, ql) = λ|w|(A[Q0→qu](w)−
A[Q0→ql](w)). The normalizing factor λ|w| eliminates the effect of the length of
w on the gap, allowing us to study gaps independently of the length of their
corresponding words.

While gaps refer to two distinct runs, we sometimes need a more global view
of gaps. To this end, we lift the definition to all the reachable states, as follows.

Definition 2 (n-separation). For a word w and n ∈ N, we say that w has the
n-separation property if there exists a partition of Q into two non-empty sets of
states U,L such that the following holds:

Determinization of Integral Discounted-Sum Automata is Decidable 195

We say that A has finitely/infinitely many recoverable gaps if the set
{gap(w, qu, ql) | w ∈ Σ∗, qu, ql ∈ Q} is finite/infinite, respectively. Note that
since A is integral, λ|w|(A[Q0→qu](w) − A[Q0→ql](w)) is always an integer and so
the existence of infinitely many recoverable gaps is equivalent to the existence
of unboundedly large recoverable gaps.



w z

qu

ρu1

ρu2

ql

ρl1

ρl2

Fig. 2: The run ρl1, ending in state ql, is the minimal run of A on w. The higher
run ρu1 is the minimal run on w that ends in state qu, thus creating a gap
between qu and ql. However, the concatenation ρu1 · ρu2 is the minimal run on the
concatenated word wz, while the concatenation ρl1 · ρl2, where ρl2 is the minimal
run on z starting in ql, is not smaller. Therefore, the gap is recoverable. Note
that here the final weights are zero.

1. For every qu ∈ U and ql ∈ L, λ|w|(A[Q0→qu](w)−A[Q0→ql](w)) > n.
2. There exist qu ∈ U and z ∈ Σ∗ such that for every ql ∈ L, (w, qu, ql) is a

recoverable gap with respect to z.

We sometimes explicitly specify that w has the n-separation property with re-
spect to (U,L, qu), or with respect to (U,L, qu, z). If there exists w with the
n-separation property, we say that A has the n-separation property.

See Figure 3 for a depiction of n-separation.

4 Determinizability of Integral NDAs is Decidable –
Proof Overview

Recall that our goal is to show the decidability of the determinization problem.
As showed in [6], determinizability is closely related to recoverable gaps. More

precisely, a DDA D that “attempts” to be equivalent to A must keep track of all
the relevant runs of A. If two runs end in the same state, it is clearly enough to
track only the minimal one. However, this may still require keeping track of runs
that attain unboundedly high values (when normalized). Therefore, in order for
D to be finite, it must discard information on runs that get too high. The main
issue is whether we can give a bound above which runs are no longer relevant.

For complete integral NDAs, there are always finitely many recoverable gaps,
and this is used to show that complete NDAs are always determinizable [6]. For
a general integral NDA A, we similarly show in Section 5 that if there are only
finitely many recoverable gaps, then A is determinizable.

There are now two main challenges: First, to show that if A has infinitely
many recoverable gaps, then it is not determinizable, and second, that it is
decidable whether A has finitely many recoverable gaps.

196 S. Almagor and N. Dafni



w z

q1 ×
q2

q4

q3

> n

Fig. 3: Depicted are minimal runs of an NDA on a word w that end in each of
four states, q1, q2, q3, q4, and minimal runs on z starting in each of them. The
run from q1 (lowest) “gets stuck”, i.e., such a run from q1 on z does not exist.
The states are partitioned into two sets L = {q1, q2} and U = {q3, q4}, with a
gap larger than n between them after reading w; additionally, one of the upper
runs then becomes minimal after reading z, since each of the lower runs either
ends higher or “gets stuck”. This means that the word w has the n-separation
property with respect to (U,L, q3, z).

We start by showing in Section 6.1 that we can compute a bound N such
that A has infinitely many recoverable gaps if and only if it has a recoverable
gap larger than N . Next, in Section 6.2, we show that the existence of a gap
larger than N is also equivalent to some word having the N -separation property.

We then turn to exhibit a small-model property on witnesses for N -separation.
Specifically, we show in Section 7 that if there exist w, z such that w has the N -
separation property with respect to (U,L, qu, z), then we can bound the length
of the shortest w, z.

Using the above, we obtain the decidability of whether A has infinitely many
recoverable gaps. In addition, we use these results to prove (in Lemma 11) that
if A has infinitely many recoverable gaps, then it is not determinizable. This
allows us to conclude the decidability of determinization in Theorem 1.

Conceptually, our approach can be viewed as a “standard” one when treat-
ing determinization of quantitative models, in the sense that considering gaps
between runs generally characterizes when a deterministic equivalent exists [16,
2]. The crux is showing that this condition is decidable. To this end, our work
greatly differs from other works on weighted automata in that we establish the
decidability of the condition. Technically, this involves careful analysis of the
behaviours of runs under discounting.

Determinization of Integral Discounted-Sum Automata is Decidable 197



5 Finitely Many Recoverable Gaps Imply
Determinizability

The main result of this section is an adaptation of the determinization techniques
in [6] from complete to general automata. While the construction itself is similar,
the correctness proof requires finer analysis. We remark that in the case that A
is a complete NDA and all final weights are zero, the construction obtains a
complete DDA with all final weights zero, thus generalizing the result in [6].

Lemma 1. If an NDA A has finitely many recoverable gaps, then it is deter-
minizable.

Proof. Let A = (Σ,Q,Q0, α, δ, val, fval, λ) be an NDA with finitely many re-
coverable gaps. We construct a DDA D = (Σ,QD, {v0}, αD, δD, valD, fvalD, λ)
that is equivalent to A.

Since A has finitely many recoverable gaps, there exists a bound B ∈ N on the
size of those gaps. The states of D are then QD = {0, . . . , B,∞}Q. Intuitively,
a run of D tracks, for each q ∈ Q, the gap between the minimal run of A on
w ending in q and the minimal run on w overall. When this gap becomes too
large to be recoverable, the states corresponding to the higher run are assigned
∞. For v ∈ QD and q ∈ Q, we denote by (vq) the entry in v corresponding to q.

The initial state is therefore (v0)q =

{
0 q ∈ Q0

∞ q /∈ Q0

, assigning for each q ∈ Q the

weight of the minimal run of A on the empty word ending in q.
We now turn to define δD. Intuitively, when taking a transition, D D first

updates the vector entry of every state with the value of the minimal run on
the new word ending in it, using the values specified in the last vector. Then,
if the minimal entry is not 0, the entries are shifted so that it becomes 0, and
the value subtracted from every entry is assigned to the transition weight. Fi-
nally, the entries are all multiplied by λ to account for the word length. Thus,
the actual value of the minimal run is exactly the value attained by D, and
the vector entries correctly represent the normalized gaps. The construction is
demonstrated in Figure 4. Formally:

– For every v ∈ QD, and for every σ ∈ Σ such that there exists q ∈ Q with
vq < ∞ and q has a σ-transition, define u ∈ {0, . . . , B,∞}Q as follows.
• Define the intermediate vector u′: For every q ∈ Q, u′

q = minq′∈Q(vq′ +
val(q′, σ, q)), where val(q′, σ, q) is regarded as ∞ if (q′, σ, q) /∈ δ.

• Define r = minq∈Q u′
q, the offset of the vector from 0. Note that r is

finite due to the requirement that there exists q ∈ Q with vq < ∞ and q
has a σ-transition.

• For every q ∈ Q, uq =

{
λ(u′

q − r) λ(u′
q − r) ≤ B

∞ otherwise

198 S. Almagor and N. Dafni

Where ∞ is handled using the standard semantics. Note that u ∈ {0, . . . , B,∞}Q
as A is integral. The manipulations done on the intermediate vector u′

q

when defining uq should be viewed as normalization – first subtracting r



so that the gap represented by uq is with respect to the minimal run overall
over w; then multiplying by λ to account for the length of w. Note that
the subtraction of r also implies that minq∈Q uq = 0, as is expected since
minq∈Q A[Q0→q](w) = A(w).

– We now introduce the transition (v, σ, u) ∈ δD.
– We set valD(v, σ, u) = r. This can be viewed, together with the subtraction

of r from every entry of u′, as transferring the weight from each entry of u′

to the transition.

q0 q1
a, 0

a, 1

b, 0

(a) an NDA A.

0,∞ 2, 0

a, 0

b, 0

b, 2

a, 2

(b) An equivalent DDA D.

Fig. 4: An example of an NDA A (on the left) and the resulting DDA D (on the
right), with λ = 2. The name of each state of D corresponds to a vector whose
first entry tracks q0 and the second q1. We demonstrate the construction using
the a-transition from (2, 0) to itself. First we construct the intermediate vector
u′: (u′)q0 = min(2 + val(q0, a, q0), 0 + val(q1, a, q0)) = min(2 + 1, 0 + ∞) = 3
and (u′)q1 = min(2 + val(q0, a, q1), 0 + val(q1, a, q1)) = min(2 + 0, 0 +∞) = 2,
and so u′ = (3, 2). We then have r = 2, which is assigned to the weight of the
transition, and u = 2(3− 2, 2− 2) = (2, 0).

We next define αD and fvalD. We set αD to include every vector v such
that vq < ∞ for some q ∈ α. We note that the construction can be viewed as
a generalization of the standard subset construction, where for a vector v, the
states q that satisfy vq < ∞ represent the states that can be reached by A when
reading w, ignoring those states whose gap is unrecoverable. For v ∈ αD, we
set fvalD(v) = minq∈α(vq + fval(q)). Figure 4 depicts an example for an NDA
and the DDA constructed from it (with no final weights). Note that we do not
yet actually provide an algorithm for constructing D from A, since that requires
computing B.

The correctness of this construction is proved in the full version. ⊓⊔

6 Recoverable Gaps and n-separation

6.1 A Large Gap is Equivalent to Infinitely Many Gaps

In this section we show that the existence of infinitely many recoverable gaps is
characterized by the existence of a (computable) large-enough recoverable gap.

Determinization of Integral Discounted-Sum Automata is Decidable 199



Consider a run ρ = ρ0 . . . ρn, and recall that val(ρ) is the weight of ρ and
that M = 2 λ

λ−1mA, where mA is the maximal absolute value of a weight of a
transition or a final weight in A. We denote by Γ (ρ) = λnval(ρ) the normalized
“un-discounted” value of ρ. For two runs ρ1, ρ2 on the same word w, we are
interested in the value Γ (ρ1) − Γ (ρ2), as it captures how far the runs are from
each other, in the sense of how difficult it is to recover their gap. We claim that
if two runs get too far from each other, the gap between them from that point on
can only increase. Intuitively, this is because at each step the value is multiplied
by λ, and so beyond a certain gap size, this multiplication separates the runs
further even if their added values pull them closer before multiplying by λ.

In particular, once the gap between ρ1, ρ2 is larger than M, concatenating
any runs to ρ1, ρ2 can only increase the gap and therefore cannot result in ρ1

“bypassing” ρ2.

Corollary 1. Let ρ1 = ρ10, . . . , ρ
1
n and ρ2 = ρ20, . . . , ρ

2
n be two runs such that

val(ρ1) ≤ val(ρ2). Then for every 0 ≤ i ≤ n, it holds that Γ (ρ10, . . . , ρ
1
i ) −

Γ (ρ20, . . . , ρ
2
i ) ≤ M.

On the other hand, the gap between two runs cannot increase too much within
a small number of steps. We capture the contra-positive of this, by showing that
if two runs reach a large enough gap, then the runs have been far from each
other for a long suffix.

We also need a version of Corollary 1 where the inequality between the
weights of the runs includes final weights. We claim that concatenating any runs
to runs that are far from each other cannot result in the lower run "bypassing"
the upper run, including final weights:

Lemma 4. Let ρu, ρl be two runs of A on w, ending in states qu, ql respec-
tively, such that Γ (ρu) − Γ (ρl) > M. Let ρuf , ρlf be accepting runs on z start-
ing in qu, ql respectively and ending in quf

, qul
respectively. Then val(ρuρuf ) +

λ−|wz|fval(quf
) > val(ρlρlf ) + λ−|wz|fval(qlf ).

In particular, once a gap becomes too large, the only way to recover from it
is if the lower run cannot continue at all.

Lemma 5. Consider a recoverable gap (w, qu, ql) with respect to z such that
gap(w, qu, ql) > M, then A[qu→fα](z) < ∞ and A[ql→fα](z) = ∞.

200 S. Almagor and N. Dafni

Lemma 2. Let ρ1 = ρ10, . . . , ρ
1
n+1 and ρ2 = ρ20, . . . , ρ

2
n+1 be two runs of A, such

that Γ (ρ10, . . . , ρ
1
n)−Γ (ρ20, . . . , ρ

2
n) >M. Then Γ (ρ10, . . . , ρ

1
n+1)−Γ (ρ20, . . . , ρ

2
n+1)>

Γ (ρ10, . . . , ρ
1
n)− Γ (ρ20, . . . , ρ

2
n).

Lemma 3. Consider nsteps, ngap ∈ N, there exists an effectively computable
number N such that for any two runs ρ1 = ρ10, . . . , ρ

1
n and ρ2 = ρ20, . . . , ρ

2
n, if

Γ (ρ1)−Γ (ρ2) > N then n > nsteps and Γ(ρ10, . . . , ρ
1
n−nsteps

)−Γ (ρ20, . . . , ρ
2
n−nsteps

)>
ngap.



Proof. From the second condition in the definition of recoverable gap (Defini-
tion 1), we have A[qu→fα](z) < ∞. Let ρu, ρl be minimal runs on |w| ending in
qu, ql respectively. Assume by way of contradiction that A[ql→fα](z) < ∞, that is,
there exists an accepting run ρl′ on z starting in ql. Let ρu′ be a minimal accept-
ing run on z starting in qu. Since λ|w|(val(ρu)− val(ρl)) = gap(w, qu, ql) > M,
Lemma 4 contradicts the fact that ρ1ρ1′ is a minimal accepting run on wz by
the definition of recoverable gap. ⊓⊔

We can now prove the main result of this section.

Lemma 6. There exists an effectively computable number N (depending on A)
such that A has infinitely many recoverable gaps if and only if there exists a
recoverable gap (w, qu, ql) such that gap(w, qu, ql) > N .

Proof Overview We start with an overview of the more complex direction –
the existence of a large recoverable gap implies the existence of infinitely many
recoverable gaps. Assume that (w, qu, ql) is a large recoverable gap with respect
to z. We consider two minimal runs ρqu , ρql on w ending in qu and ql, respectively.
These two runs end “far” from each other, so we can use Lemma 3 to claim that
for a large enough N , they have already been far from each other for a while.
Specifically, for the last nsteps steps the gap between the runs was at least ngap
for some large nsteps, ngap that we choose to fit our needs.

We now look for two indices i < j among the last nsteps indices of w such that
pumping the infix of w between i and j generates words that induce unboundedly
large recoverable gaps. To do so, we choose nsteps such that Q can be partitioned
into two sets of states – an upper set U and a lower set L, that are far from
each other and "separate" the runs ρqu , ρql at step i. In particular, pumping the
infix does not interleave the runs, and maintains the growing gap. The above is
depicted in Figure 5. We require the following properties:

1. Every two runs on the prefix w1 · · ·wi of w ending in U and in L, respectively,
that are minimal runs ending in their respective states, are far enough from
each other to satisfy the condition of Lemma 2;

2. Every run on w that is minimal among the runs ending in qu has to visit U
at the i’th step;

3. Every run on w that is minimal among the runs ending in ql has to visit L
at the i’th step;

As we show, finding such a partition is possible by choosing ngap = (|Q| − 1)M.
Next, we show that in fact, U and L induce a certain separation of the run

trees emanating from them on the pumped words. Specifically, we show that:

(i) There exist runs of A on the pumped words (denoted w(∗)) ending in qu, ql.
(ii) Every run on w(∗) (ending in any state) that is a prefix of a minimal run

on w(∗)z has to visit U at the i’th step. That is, a variant of Condition (2),
where instead of qu we consider any state p reached after reading w(∗) along
a minimal run on w(∗)z.

Determinization of Integral Discounted-Sum Automata is Decidable 201



i j
β1 x (Pumped infix) β2

L

q2

U

q1

>M

qlq2

quq1
p

×

Fig. 5: At step i of A’s run on w, the states are partitioned into an upper set
U and a lower set L that are separated by a large gap. The runs ρqu , ρql visit
U,L respectively, meaning the gap between them can only grow after step i. The
indices i, j are chosen such that both runs ρqu , ρql repeat states and the sets
of ancestors Ancq(i),Ancq(j) are identical for each q ∈ Q. The state p, which
is visited after reading a pumped word w(∗) by a minimal run on w(∗)z, is not
reachable from L on any of the pumped suffixes.

(iii) Condition (3) above holds not only for w but for the pumped words w(∗) as
well.

Note that (ii) and (iii) imply that runs on w(∗) also induce a recoverable gap.
From this, it follows from Condition 1 and Lemma 2 that the pumped words

induce unboundedly large recoverable gaps.
In order to ensure (i), we require nsteps ≥ |Q|2 (which is the length of the

“large gaps” suffix) such that both runs ρqu , ρql must repeat their pair of respec-
tive states at some indices i, j. Consequently, the runs ρqu , ρql can be pumped
to achieve the desired runs.

To ensure (ii), it follows from Corollary 1 and the fact that ρqu is a prefix
of a minimal run on wz that any state p reached along a run on w(∗)z after
reading w(∗) is not reachable from L when reading wi+1 · · ·w|w|, and we want to
ensure that p is not reachable from L when reading the pumped suffix as well.
For that, for each state q and for each index of w we consider the set of states
Ancq(i) from which q is reachable when reading the respective suffix (from index
i), called the ancestors of q at index i, and it is enough to require that for each
state q this set is identical for indices i and j. This, in turn, requires to increase
nsteps by a factor of 2|Q|2 . Combined with the previous requirement on i, j, we
choose nsteps = |Q|22|Q|2 .

Finally, for condition (3) in (iii), we use the fact that there exists a run
ending in ql that visits L at the i’th step (namely the pumped run) and apply

202 S. Almagor and N. Dafni



Corollary 1. Indeed, any run that does not visit L at the i’th step must visit
U instead, and by Corollary 1 and the gap between U and L, it must be larger
than the run we have that visits L and therefore not minimal. ⊓⊔

Proof (of Lemma 6). Consider runs ρ10, . . . , ρ1n and ρ20, . . . , ρ
2
n. From Lemma 3, we

can effectively compute N such that if Γ (ρ10, . . . , ρ
1
n)− Γ (ρ20, . . . , ρ

2
n) > N , then

n > |Q|22|Q|2 and Γ (ρ10, . . . , ρ
1
n−|Q|22|Q|2 )−Γ (ρ20, . . . , ρ

2
n−|Q|22|Q|2 ) > (|Q|−1)M.

– For every q ∈ Q, Ancq(i) = Ancq(j),
– ρqui = ρquj and ρqli = ρqlj .

Write w = β1xβ2 where β1 = w1 · · ·wi, x = wi+1 · · ·wj and β2 = wj+1 · · ·w|w|.
We now turn to show that by pumping x, we can obtain unboundedly large re-
coverable gaps.

Let k ∈ N. We can easily show that β1x
kβ2 induces unboundedly large gaps

between qu and ql, but that would not be sufficient: We also need those gaps
to be recoverable with respect to z, that is, the minimal run on β1x

kβ2z has to
visit qu after reading β1x

kβ2. However, this is not necessarily true: It can visit a
different state, and we need to show that that state is also far enough from ql. The
runs ρqu0 . . . ρqui (ρqui+1 . . . ρ

qu
j )kρquj+1 . . . ρ

qu
|w| and ρql0 . . . ρqli (ρ

ql
i+1 . . . ρ

ql
j )

kρqlj+1 . . . ρ
ql
|w|

are runs on β1x
kβ2 ending in qu, ql respectively. In particular, since there exists

a run on z starting in qu, we have that A has a run on β1x
kβ2z. Let ρ be minimal

among those runs, and let qmink
be the state ρ visits after reading β1x

kβ2. Let
ρqmink

,k, ρql,k be runs on β1x
kβ2 that are minimal among the runs ending in

qmink
, ql respectively. Note that ρqmink

,k can be obtained as a prefix of ρ, since
ρ is minimal. Then we have gap(β1x

kβ2, qmink
, ql) = Γ (ρqmink

,k)− Γ (ρql,k), and
it remains to show that Γ (ρqmink

,k) − Γ (ρql,k) can get unboundedly large for a
large enough k.

We already know that the runs ρqu , ρql are far enough from each other at
their i’th step to satisfy the condition of Lemma 2, and we want to show that
the same is true for ρqmink

,k, ρql,k.
To do so, we intuitively show that after reading β1, the runs ρqu , ρql have

become so far apart that they now stem from disjoint sets of states with a large

Determinization of Integral Discounted-Sum Automata is Decidable 203

Assume that (w, qu, ql) is a recoverable gap with respect to z and gap(w, qu, ql) >
N . Let ρqu = ρqu0 . . . ρqu|w| be a run on w ending in qu that is minimal among the
runs on w ending in qu, and similarly ρql = ρql0 . . . ρql|w| for ql. Since these runs are
minimal runs ending in their respective states, it holds that Γ (ρqu) − Γ (ρql) =

gap(w, qu, ql) > N , and so we have |w| > |Q|22|Q|2 and Γ (ρ10, . . . , ρ
1
|w|−|Q|22|Q|2 )−

Γ (ρ20, . . . , ρ
2
|w|−|Q|22|Q|2 ) > (|Q| − 1)M.

For every q ∈ Q and 1 ≤ i ≤ |w|, letAnc q(i) = {q′∈ Q | A[q′→q](wi+1 · · · w|w|)<

∞} be the set of ancestors of q at step i, i.e., states from which q is reachable
when reading the input wi+1, · · · , w|w|. By the pigeonhole principle there exist
|w| − |Q|22|Q|2 ≤ i < j ≤ |w| such that



gap between them. Formally, consider the sets

U ′ = {q ∈ Q | there exists a run ρ on w with val(ρ) = A[Q0→qu](w) and ρi = q}
L′ = {q ∈ Q | there exists a run ρ on w with val(ρ) = A[Q0→ql](w) and ρi = q}

That is, U ′ (resp. L′) is the set of states that appear at step i in a minimal run
to qu (resp. ql). For every q ∈ Q, let v(q) = λiA[Q0→q](β1) be the “undiscounted”
value of a minimal run of A on β1 ending in q. Then, from Lemma 3 and the
constants we chose, for every q′u ∈ U ′, q′l ∈ L′ we have v(q′u)−v(q′l) > (|Q|−1)M.

In particular, there is a partition of Q into two sets U,L such that U ′ ⊆
U,L′ ⊆ L and v(p) − v(q) > M for every p ∈ U and q ∈ L. Indeed, otherwise
the maximal gap between two states is less than (|Q|−1)M. We next show that
(i) ρ

qmink
,k

i ∈ U , and (ii) ρql,ki ∈ L.
For (i), we note that A[L→qmink

](xβ2) = ∞: Otherwise, since A[qmink
→fα](z) <

∞, there exists an accepting run on wz that visits L after reading β1 and qmink

after reading w. By Lemma 4, such a run must be of lower weight than any run
that visits U after reading β1, in contradiction to the fact that ρqu is a prefix of
a minimal run on wz by the definition of recoverable gap. Since Ancqmink

(i) =

Ancqmink
(j), we also have that A[L→qmink

](x
kβ2) = ∞. In particular, ρqmink

,k

i ∈
U .

For (ii), the run ρql0 . . . ρqli (ρ
ql
i+1 . . . ρ

ql
j )

kρqlj+1 . . . ρ
ql
|w| satisfies ρqli ∈ L (since it

is in L′), and in particular A[L→ql](x
kβ2) < ∞. By Corollary 1, any run whose

i’th state is in U results in a higher weight than any run whose i’th state is in
L, and so since ρql,k is minimal we have ρql,ki ∈ L.

It remains to show that the runs ρqmink
,k, ρql,k, being far from each other at

the i’th step, get unboundedly far from each other as k increases. Let fu, fl :
{i, i+ 1, . . .} → N be defined as follows:

– fu(i) = minq∈U v(q)
– For m ≥ i, fu(m+ 1) = λ(fu(m)−mA)
– fl(i) = maxq∈L v(q)
– For m ≥ i, fl(m+ 1) = λ(fl(m) +mA)

Intuitively, fu (resp. fl) represents a lower (resp. upper) bound on the "undis-
counted" weight of runs visiting U (resp. L) in their i’th step. That is, for every
m ≥ i we have Γ (ρ

qmink
,k

0 . . . ρ
qmink

,k
m ) ≥ fu(m), and Γ (ρql,k0 . . . ρql,km ) ≤ fl(m).

Additionally, fu(i) − fl(i) > M and so the function fu(m) − fl(m) increases
with m. Thus, for every M ∈ N, taking a large enough k, we can obtain
Γ (ρqmink

,k) − Γ (ρql,k) ≥ fu(|β1x
kβ2|) − fl(|β1x

kβ2|) > M . This concludes the
proof that if A has a large recoverable gap, then it has infinitely many recoverable
gaps.

For the converse direction, assume A has infinitely many recoverable gaps.
Since A is integral, the term λ|w|(A[Q0→p](w)−A[Q0→q](w)) is always an integer,
therefore infinitely many recoverable gaps imply the existence of unboundedly
large recoverable gaps, and in particular one larger than N . ⊓⊔

204 S. Almagor and N. Dafni



Remark 1. Following the arguments in the proofs of Lemmas 3 and 6, the number
N provided by Lemma 6 equals λ|Q|22|Q|2

((|Q| − 1)M − M) + M. We denote
this value by N .

6.2 A Large Gap is Equivalent to Separation

Recall that a gap refers to minimal runs that end in two specific states, but
ignores the remaining states (to an extent). A more “holistic” view of gaps is
via separations (Definition 2). In this section we show that the two views are
equivalent, and that both characterize when A has infinitely many gaps.

Lemma 7. A has a recoverable gap larger than N if and only if A has the
N -separation property.

Proof. Assume that A has a recoverable gap larger than N . By Lemma 6, there
exist unboundedly large recoverable gaps, and in particular there exists a recov-
erable gap (w, qu, ql) with gap(w, qu, ql) > (|Q| − 1)N .

Intuitively, when ordering the states by the weight of the minimal run that
reaches each state, such a gap implies a gap of at least N between two successive
states, leading to the desired partition. We then claim that the sets are separated
by the same suffix z that separates the states from the original gap.

Write Q = {q1, . . . , q|Q|} such that A[Q0→q1](w) ≤ . . . ≤ A[Q0→q|Q|](w) (recall
that if there is no run on w ending in q, then A[Q0→q](w) = ∞), and let il < iu
be indices such that ql = qil , qu = qiu . Then there exists j ∈ {il, . . . , iu−1}
such that A[Q0→qj+1](w) − A[Q0→qj ](w) > N . Let U = {qj+1, . . . , q|Q|} and
L = {q1, . . . , qj}. Then for every q′u ∈ U, q′l ∈ L we have λ|w|(A[Q0→q′u]

(w) −
A[Q0→q′l]

(w)) > N .
Consider z ∈ Σ∗ such that the gap (w, qu, ql) is recoverable with respect to

z. Note that N > M, and so it follows from Lemma 4 that A[q′l→fα](z) = ∞
for every q′l ∈ L. Indeed, if A had a run on z starting in q′l, concatenating it to
a minimal run on w ending in q′l would result in a run of lower weight than any
run on wz that visits qu after reading w, contradicting the fact that (w, qu, ql)
is a recoverable gap. Additionally, it follows from (w, qu, ql) being a recoverable
gap that there exists a minimal run on wz that visits qu after reading w. Then
(w, qu, q

′
l) is a recoverable gap with respect to z, and so w has the N -separation

property with respect to (U,L, qu, z).
For the converse direction, assume that w has the N -separation property with

respect to some (U,L, qu, z). In particular, A[Q0→qu](w)+λ−|w|A[qu→fα](z) < ∞.
Let q′u ∈ U be such that A[Q0→q′u]

(w) + λ−|w|A[q′u→fα](z) is minimal. Let some
q′l ∈ L. Then (w, q′u, q

′
l) is a recoverable gap with respect to z, and it is larger

than N , as needed. ⊓⊔

7 Bounding the Witnesses for Separation

In Section 6 we show that A has infinitely many recoverable gaps if and only if
there exists a word w with the N -separation property. Expanding Definition 2,

Determinization of Integral Discounted-Sum Automata is Decidable 205



this happens if and only if there exist a partition of Q into two sets U,L and
there exist words w, z that “separate” U from L. In this section we can bound
the length of such minimal w, z. We start with w (see the full version for the
detailed proof).

Lemma 8. Let C = λ
λ−1 (N|Q| + 2mA). Assume that w has the N -separation

property for some w ∈ Σ∗. Then there exists w′ such that w′ has the N -
separation property and |w′| ≤ (C + 2)|Q|.

Proof (Sketch). Assume that w has the N -separation property with respect to
(U,L, qu, z).

We start by using an identical construction to that of Lemma 1, with bound
C, in order to define a sequence of vectors v0, . . . , v|w| with vi ∈ {0, . . . , C,∞}Q
for every 0 ≤ i ≤ |w| that, intuitively, keep track of the runs of A on w, as
follows.

– For every q ∈ Q set (v0)q =

{
0 q ∈ Q0

∞ otherwise
– For every i > 0, q ∈ Q let v′i,q = minq′∈Q((vi−1)q′ + val(q′, wi, q)), where

val(q′, σ, q) is regarded as ∞ if (q′, σ, q) /∈ δ (the v′i,q are “intermediate”
values).

– For every i > 0 let ri = minq∈Q v′i,q (the ri are the offset of the vector from
0).

– For every i > 0, q ∈ Q set (vi)q =

{
λ(v′i,q − ri) λ(v′i,j − ri) ≤ C

∞ otherwise

Recall that intuitively, (vi) tracks, for each q ∈ Q, the gap between the
minimal run on w1 · · ·wi ending in q and the minimal run on this prefix overall.
When this gap becomes large enough that recovering from it implies the existence
of N -separation, it is denoted ∞.

Denote the normalized difference λi(A[Q0→q](w1 · · ·wi) − A(w1 · · ·wi)) by
∆q,i(w). It is easy to show that vi keeps the correct weight of runs whose gap
from the minimal one remains always under C. However, if a gap of a run goes
over C but then comes back down, then vi no longer tracks it correctly. To
account for this, we claim that since w has the N -separation property, for every
q, i at least one of the following must hold:

– (vi)q =

{
∆q,i(w) ∆q,i(w) ≤ C

∞ otherwise
.

– There exists i′ < i such that w1 · · ·wi′ has the N -separation property.

That is, either vi tracks the runs correctly, or there is some shorter prefix that
already has the N -separation property.

The proof is by induction on i, with the only problematic case arising when
(vi−1)q′ = ∞, and so the information about the exact value of the gap repre-
sented by (vi−1)q′ is gone. We consider the normalization value ri (i.e., the offset
of the minimal run from 0): if ri is small, then the gap represented by (vi)q is

206 S. Almagor and N. Dafni



still very large, and we show that marking it as ∞ is sound. Otherwise, if ri is
large, then the above gap might indeed be wrongly marked as ∞. However, we
show that in this case, ri is so large that we can actually obtain an N -separation
property “below” ri, using a shorter witness. More precisely:

– If (vi−1)q′ = ∞ and ri ≤ C λ−1
λ − mA, then since (vi−1)q′ = ∞, we have

(vi)q = ∞. It remains to show that λi(A[Q0→q](w1 · · ·wi)−A(w1 · · ·wi)) >
C. Indeed,

λi(A[Q0→q](w1 · · ·wi)−A(w1 · · ·wi))

≥λi(A[Q0→q′](w1 · · ·wi−1)−A(w1 · · ·wi−1)− (mA + ri) · λ−(i−1))

=λ(λi−1(A[Q0→q′](w1 · · ·wi−1)−A(w1 · · ·wi−1))− ri −mA)

>λ(C − (C
λ− 1

λ
−mA)−mA) = λ(λ−1C +mA −mA) > C

where the first transition follows by observing that when reading wi, in the
worst case, the weight of a specific run can decrease by λ−(i−1)mA, and the
overall weight of the word can increase by λ−(i−1)ri.

– ri > C λ−1
λ − mA. This is only possible if for every ql such that (vi−1)ql <

C λ−1
λ − 2mA = N|Q|, ql has no wi-transition. Let L′′ = {ql ∈ Q | (vi−1)ql <

N|Q|}. Write Q = q1, . . . , q|Q| such that (vi−1)q1 ≤ . . . ≤ (vi−1)q|Q| , and so
L′′ = {q1, . . . , q|L′′|}. Since w has the N -separation property, in particular
A has a run on w and so L′′ ⊊ Q. Then, there exists 1 ≤ r ≤ |L′′| such
that (vi−1)qr+1 − (vi−1)qr > N . Let U ′ = {qr+1, . . . , q|Q|}, L′ = {q1, . . . , qr},
and note that for every q′l ∈ L′, q′l has no wi-transition. For every q′l ∈
L′, q′u ∈ U ′, we have λi−1(A[Q0→q′u]

(w1 · · ·wi−1) − A[Q0→q′l]
(w1 · · ·wi−1) =

(vi−1)q′u − (vi−1)q′l > N . Let q′u ∈ U ′ be such that A[Q0→q′u]
(w1 · · ·wi−1) +

λ−(i−1)A[q′u→fα](wi) is minimal. Then for every q′l ∈ L′, (w1 · · ·wi−1, q
′
u, q

′
l)

is a recoverable gap with respect to wi, and so w1 · · ·wi−1 has the N -
separation property with respect to (U ′, L′, q′u, wi), and we are done.

Now, it remains to show that if |w| > (C + 2)|Q|, there exists w′ such that
|w′| < |w| and w′ has the N -separation property.

To this end, we use the induction hypothesis and the pigeonhole principle
to remove an infix of w, and argue that the resulting word w′ also has the N -
separation property with respect to some (U ′, L′, q′u): Either all of the minimal
runs ending in the states of L have values far enough (below) of C, in which case
U ′, L′ can be chosen to be U,L respectively; or some state of L attains a high
value, in which case there must be a large gap between two consecutive states of
L, and the resulting lower set can be chosen as L′. As for q′u, it is simply enough
to consider the state in U ′ that the minimal run on w′z visits after reading w′

(see the full version for the details). ⊓⊔

Next, we give a bound on the length of the minimal separating suffix z from
Definition 2. Recall that by Lemma 5, a large gap can only be recoverable if the
smaller runs cannot continue at all. Following that, we can now limit the search

Determinization of Integral Discounted-Sum Automata is Decidable 207



to suffixes that separate runs in a Boolean sense (i.e., making one accept and
another reject). This yields a bound from standard arguments about Boolean
automata, as follows.

Lemma 9. Consider a word w that has the N -separation property with respect
to (U,L, qu, z). Then there exists z′ such that w has the N -separation property
with respect to (U,L, qu, z

′) and |z′| ≤ 22|Q|.

8 Determinizability of Integral NDAs is Decidable

In this section we establish the decidability of determinization. To this end, we
start by completing the characterization of determinizable NDAs by means of
gaps, and then use the results from previous sections to conclude the decidability
of this characterization.

Recall that in Lemma 1 we show that finitely many recoverable gaps imply
determinizability. In this section we show the converse, thus completing the char-
acterization of determinizable integral NDAs as exactly those that have finitely
many recoverable gaps.

We first need the following lemma which is proved in [6, Lemma 5].

Lemma 10. Consider an NDA A for which there is an equivalent DDA D. If
there is a state q of A and words w,w′, z such that:

– A has runs on w and w′ ending in q;
– gap(w, q, p) ̸= gap(w′, q, p′), where p, p′ are the last states of some minimal

runs of A on w,w′ respectively;
– both gaps (w, q, p) and (w′, q, p′) are recoverable with respect to z;

then the runs of D on w and w′ end in different states.

We now show the converse of Lemma 1.

Lemma 11. If an NDA A has infinitely many recoverable gaps, it is not deter-
minizable.

Proof. Assume by way of contradiction that A has an equivalent DDA D and
infinitely many recoverable gaps. For every q ∈ Q, let

Gq = {w | A has a recoverable gap of the form (w, q, p) for some p}

Since Q is finite and A has infinitely many recoverable gaps, there exists q ∈ Q
such that Gq is infinite. By Lemma 9, there is a finite collection Z of words
such that every recoverable gap is recoverable with respect to some word in
Z. Therefore there exist z ∈ Z and an infinite subset G′

q ⊆ Gq such that for
every w ∈ G′

q, the gap (w, q, p) is recoverable with respect to z for some p. By
Lemma 10, for every two words w,w′ ∈ G′

q, the runs of D on w and w′ end in
different states, in contradiction to the fact that D has finitely many states. ⊓⊔

208 S. Almagor and N. Dafni



Consider an NDA A. By Lemmas 1, 6 to 9 and 11 we have that A has an
equivalent DDA if and only if for every w, z such that |w| ≤ ( λ

λ−1 (N|Q|+2mA)+

2)|Q| and |z| ≤ 22|Q|, it holds that w does not have the N -separation property
with respect to (U,L, qu, z) for every U,L, qu. Since the latter condition can be
checked by traversing finitely many words and simulating the runs of A on each
of them, we can conclude our main result.

Theorem 1. The problem of whether an integral NDA has a deterministic equiv-
alent is decidable.

Remark 2 (Complexity of Determinization). Using the bounds on w, z, one can
guess w, z on-the-fly, while keeping track of the weights of minimal runs to all
states, discarding those that go above C as per Lemma 8, to check whether A has
the N -separation property. Since N is double exponential in the size of A, this
procedure can be done in NEXPSPACE = EXPSPACE. Thus, determinizability
is in EXPSPACE. For a lower bound, determinizability is also PSPACE− hard by
a standard reduction from NFA universality. Tightening this gap is left open.
Note that for lowering the upper bound, we would need a refined application of
the pigeonhole principle in Lemma 6, which seems somewhat out of reach for
the pumping argument. Conversely, for increasing the lower bound, we would
need to show that using discounting we can somehow force a double-exponential
blowup in determinization. While this might be within reach, no such example
are known for e.g., tropical weighted automata, suggesting that this may be very
difficult.

Acknowledgments The authors thank Guy Raveh for fruitful discussion re-
garding Lemma 3.

References

1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems
theory. In: Automata, Languages and Programming. pp. 1022–1037 (2003)

2. Almagor, S., Yeshurun, A.: Determinization of one-counter nets. In: 33rd Interna-
tional Conference on Concurrency Theory, CONCUR 2022 (Sep 2022)

3. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI
Student Session. pp. 91–98. Citeseer (2006)

4. Boker, U., Hefetz, G.: Discounted-Sum Automata with Multiple Discount Fac-
tors. In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
vol. 183, pp. 12:1–12:23 (2021)

5. Boker, U., Hefetz, G.: On the comparison of discounted-sum automata with multi-
ple discount factors. Foundations of Software Science and Computation Structures
LNCS 13992 p. 371 (2023)

6. Boker, U., Henzinger, T.A.: Determinizing Discounted-Sum Automata. In: Com-
puter Science Logic (CSL’11) - 25th International Workshop/20th Annual Con-
ference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 12, pp. 82–96 (2011)

Determinization of Integral Discounted-Sum Automata is Decidable 209



7. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. Logical Methods in Computer Science 10 (2014)

8. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In: 2015
30th Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 750–761.
IEEE (2015)

9. Broome, J.: Discounting the future. Philosophy & Public Affairs 23(2), 128–156
(1994)

10. Cadilhac, M., Pérez, G.A., Van Den Bogaard, M.: The impatient may use limited
optimism to minimize regret. In: Foundations of Software Science and Computation
Structures: 22nd International Conference, FOSSACS 2019. pp. 133–149. Springer
(2019)

11. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Computer
Science Logic. pp. 385–400 (2008)

12. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In:
Fundamentals of Computation Theory. pp. 3–13 (2009)

13. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. In: 2009 24th Annual IEEE Symposium on Logic In
Computer Science. pp. 199–208 (2009). https://doi.org/10.1109/LICS.2009.16

14. Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verifi-
cation in graphs and mdps. In: Logic for Programming, Artificial Intelligence, and
Reasoning. pp. 228–242 (2013)

15. Droste, M., Kuske, D.: Skew and infinitary formal power series. Theoretical Com-
puter Science 366(3), 199–227 (2006)

16. Filiot, E., Jecker, I., Lhote, N., Pérez, G.A., Raskin, J.F.: On delay and regret
determinization of max-plus automata. In: 2017 32nd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS). pp. 1–12. IEEE (2017)

17. Gimbert, H., Zielonka, W.: Limits of multi-discounted markov decision processes.
In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007). pp.
89–98 (2007). https://doi.org/10.1109/LICS.2007.28

18. Kirsten, D.: A burnside approach to the termination of mohri’s algorithm for poly-
nomially ambiguous min-plus-automata. RAIRO - Theoretical Informatics and Ap-
plications 42(3), 553–581 (2008). https://doi.org/10.1051/ita:2008017

19. Madani, O., Thorup, M., Zwick, U.: Discounted deterministic markov decision
processes and discounted all-pairs shortest paths. ACM Trans. Algorithms 6(2)
(apr 2010)

20. Mohri, M.: Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23(2), 269–311 (1997)

21. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theo-
retical Computer Science 158(1), 343–359 (1996)

210 S. Almagor and N. Dafni



Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Determinization of Integral Discounted-Sum Automata is Decidable 211

http://creativecommons.org/licenses/by/4.0/


Checking History-Determinism is NP-hard
for Parity Automata

Abstract. We show that the problem of checking if a given nonde-
terministic parity automaton simulates another given nondeterministic
parity automaton is NP-hard. We then adapt the techniques used for
this result to show that the problem of checking history-determinism for
a given parity automaton is NP-hard. This is an improvement from Ku-
perberg and Skrzypczak’s previous lower bound of solving parity games
from 2015. We also show that deciding if Eve wins the one-token game or
the two-token game of a given parity automaton is NP-hard. Finally, we
show that the problem of deciding if the language of a nondeterministic
parity automaton is contained in the language of a history-deterministic
parity automaton can be solved in quasi-polynomial time.

1 Introduction

Deciding language inclusion between two automata is a fundamental problem in
verification, wherein we ask whether all executions of an implementation satisfy
a given specification. Unfortunately, the problem of checking language inclusion
is often computationally hard. For parity automata—which are the focus of this
paper—it is PSPACE-complete, with PSPACE-hardness already occurring for
finite state automata [39].

On the other hand, simulation is a fundamental behavioural relation between
two automata [33,23], which is a finer relation than language inclusion and is
easier to check. For parity automata, simulation can be decided in polynomial
time if the parity indices are fixed; otherwise it is in NP [13]. Note that while
simulation between two automata is sufficient to guarantee language inclusion,
it is not necessary.

For history-deterministic automata, however, the relation of language inclu-
sion is equivalent to simulation [9,8], thus making them suitable for verification.
These are nondeterministic automata where the nondeterminism can be resolved
‘on-the-fly’, just based on the prefix of the word read so far. The definition we
use here was introduced by Henzinger and Piterman in 2006, where they dubbed
it ‘good-for-games’ automata, while the term ‘history-determinism’ was coined
by Colcombet [15] in the context of regular cost automata.

History-deterministic parity automata are more succinct than their deter-
ministic counterparts [28] whilst still maintaining tractability for the problems of

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 212–233, 2024.
https://doi.org/10.1007/978-3-031-57228-9_11

University of Warwick,
aditya.prakash@warwick.ac.uk

Coventry UK

Aditya Prakash(B)

https://orcid.org/0000-0002-2404-0707
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_11&domain=pdf


verification and synthesis on them [24,28,8]. Consequently, history-deterministic
parity automata have been the subject of extensive research [28,5,3,37,2,29],
and has garnered significant attention over the recent years beyond parity au-
tomata as well, extending to quantitative automata [6,7], infinite state sys-
tems [21,31,35,10,20], and timed automata [9].

Despite these recent research efforts, a significant gap remains in understand-
ing the complexity of checking whether a given parity automaton is history-
deterministic. While Henzinger and Piterman have shown an EXPTIME upper
bound [24], the best lower bound known so far is by Kuperberg and Skrzypczak
since 2015 [28], who showed that checking for history-determinism is at least as
hard as finding the winner of a parity game [28]—a problem that can be solved
in quasi-polynomial time and is in NP∩ coNP (and even in UP∩ coUP [26]).

Kuperberg and Skrzypczak also gave a polynomial-time algorithm to check
for history-determinism of co-Büchi automata in their work [28]. This was fol-
lowed by a polynomial time algorithm to check for history-determinism of Büchi
automata in 2018 by Bagnol and Kuperberg [3], who showed that in order to
check if a Büchi automaton is history-deterministic, it suffices to find the winner
of the so-called ‘two-token game’ of the automaton. This connection between
history-determinism and two-token games was extended in 2020 to co-Büchi au-
tomata by Boker, Kuperberg, Lehtinen, and Skrzypczak [4]. It is conjectured
that the winner of the two-token game of a parity automaton characterises its
history-determinism. While the two-token conjecture is open to date, showing
this conjecture would imply that one can check history-determinism of a given
parity automata with a fixed parity index in polynomial time.

Our contributions. We show that checking for simulation between two parity
automata is NP-hard when the parity index is not fixed. Since simulation is
known to be in NP, this establishes the problem to be NP-complete (Theo-
rem 11).

An adaptation of our proof of Theorem 11 gives us that checking history-
determinism for a parity automata is also NP-hard (Theorem 15), when the par-
ity index is not fixed. This is an improvement on Kuperberg and Skrzypczak’s
result from 2015, which shows that checking history-determinism for parity au-
tomata is at least as hard as solving parity games [28]. We also show, using the
same reduction, that checking whether Eve wins the 2-token game (of a given
parity automaton) is NP-hard, while checking whether Eve wins the 1-token
game is NP-complete (Theorem 15).

As remarked earlier, for history-deterministic parity automata, the relation
of language inclusion is equivalent to simulation. This gives us an immediate
NP upper bound for checking language inclusion of a nondeterministic par-
ity automaton in an HD-parity automata, as was observed by Schewe [37]. We
show that we can do better, by showing the problem to be decidable in quasi-
polynomial time (Theorem 20).

Checking History-Determinism is NP-hardfor Parity Automata 213



Overview of the paper: one reduction for all. The central problem used
in our reduction is of checking whether Eve wins a 2-D parity game, which is
known to be NP-complete due to Chatterjee, Henzinger and Piterman [13]. In
Section 3, we give a reduction from this problem to checking for simulation be-
tween two parity automata, thus establishing its NP-hardness (Theorem 11). We
then show, in Section 4.1, that the problem of checking whether Eve wins a good
2-D parity games—a technical subclass of 2-D parity games—is also NP-hard.
In Section 4.2, we show that modifying the reduction in proof of Theorem 11
to take as inputs good 2-D parity games yields NP-hardness for the problems
of checking history-determinism (Lemma 14) and of checking if Eve wins the
1-token game or the 2-token game (Theorem 15). Finally, in Section 5, we give a
quasi-polynomial algorithm to check whether the language of a nondeterministic
parity automaton is contained in the language of a history-deterministic parity
automaton (Theorem 20), by reducing to finding the winner in a parity game.

2 Preliminaries

We let N = {0, 1, 2, · · · } to be the set of natural numbers, and ω to be the
cardinality of N. We will use [i, j] to denote the set of integers in the interval
{i, i + 1, . . . , j} for two natural numbers i, j with i < j, and [j] for the interval
[0, j]. An alphabet Σ is a finite set of letters. We use Σ∗ and Σω to denote the
set of words with finite and ω length over Σ respectively. We also let ε denote
the unique word of length 0.

2.1 Parity conditions

Let G = (V,E) be a (finite or infinite) directed graph equipped with a priority
function χ : E −! N that assigns each edge with a natural number, called its
priority. We say that an infinite path ρ in G satisfies the χ-parity condition if
the highest priority occurring infinitely often in the path is even. When clear
from the context, we will drop ‘parity condition’ and instead say that ρ satisfies
χ.

A parity condition is easily dualised. Given a priority function χ as above,
consider the priority function χ′ := χ + 1 that is obtained by increasing all the
labels by 1. Then, an infinite path satisfies χ′ if and only if it does not satisfy χ.

2.2 Parity automata

A nondeterministic parity automaton A = (Q,Σ, q0, ∆,Ω) contains a finite di-
rected graph with edges labelled by letters in Σ. These edges are called transi-
tions, which are elements of the set ∆ ⊆ Q × Σ × Q, and the vertices of this
graph are called states, which are elements of the set Q.

Each automaton has a designated initial state q0 ∈ Q, and a priority function
Ω : ∆ −! [i, j] which assigns each transition a priority in [i, j], for i < j two

214 A. Prakash



natural numbers. For states p, q and an alphabet a ∈ Σ, we use p
a:c
−−! q to

denote a transition from p to q on the letter a that has the priority c.
A run on an infinite word w in Σω is an infinite path in the automaton,

starting at the initial state and following transitions that correspond to the
letters of w in sequence. We say that such a run is accepting if it satisfies the
Ω-parity condition, and a word w in Σω is accepting if the automaton has an
accepting run on w. The language of an automaton A, denoted by L(A), is the
set of words that it accepts. We say that the automaton A recognises a language
L if L(A) = L. A parity automaton A is said to be deterministic if for any given
state in A and any given letter in Σ, there is at most one transition from the
given state on the given letter.

If A’s priorities are in [i, j], we say that (j− i+1) is the number of priorities
of A. Since decreasing (or increasing) all of these priorities in the automaton by 2
does not change the acceptance of a run— and hence a word—in the automaton,
we will often assume i to be 0 or 1. With this assumption, the interval [i, j] is
then said to be the parity index of A. A Büchi (resp. co-Büchi) automaton is a
parity automaton whose parity index is [1, 2] (resp. [0, 1]).

Remark 1. We note that we allow an automatonto be incomplete, i.e. there might
be letter and state pairs in an automaton such that there are no transitions on
that letter from that state.

2.3 Game arenas

An arena is a directed graph G = (V,E) with vertices partitioned as V∀∀∀ and V∃∃∃
between two players Adam and Eve respectively. Additionally, a vertex v0 ∈ V∀∀∀
is designated as the initial vertex. We say that the set of vertices V∃∃∃ is owned
by Eve while the set of vertices V∀∀∀ is owned by Adam. Additionally, we assume
that the edges E don’t have both its start and end vertex in V∃∃∃ or V∀∀∀.

Given an arena as above, a play of this arena is an infinite path starting at
v0, and is formed as follows. A play starts with a token at the start vertex v0,
and proceeds for countably infinite rounds. At each round, the player who owns
the vertex on which the token is currently placed chooses an outgoing edge, and
the token is moved along this edge to the next vertex for another round of play.
This creates an infinite path in the arena, which we call a play of G.

A game G consists of an arena G = (V,E) and a winning condition given by
a language L ⊆ Eω. We say that Eve wins a play ρ in G if ρ is in L, and Adam
wins otherwise. A strategy for Eve in such a game G is a function from the set
of plays that end at an Eve’s vertex to an outgoing edge from that vertex. Such
an Eve strategy is said to be a winning strategy for Eve if any play that can be
produced when she plays according to her strategy is winning for Eve. We say
that Eve wins the game if she has a winning strategy. Winning strategies are
defined for Adam analogously, and we say that Adam wins the game if he has a
winning strategy.

In this paper we will deal with ω-regular games. These are games where the
languages specifying the winning condition are recognised by a parity automata.

Checking History-Determinism is NP-hardfor Parity Automata 215



Such games are known to be determined [32,22], i.e. each game has a winner.
Two games are equivalent if they have the same winner.

2.4 Parity games

A parity game G is played over a finite game arena G = (V,E), with the edges of
G labelled by a priority function χ : E −! {0, 1, 2, · · · , d}. A play ρ in the arena
of G is winning for Eve if and only if ρ satisfies the χ-parity condition.

2.5 Muller conditions and Zielonka trees

A (C,F)-Muller conditions consists of a finite set of colours C, and a set F
consisting of subsets of C. An infinite sequence in Cω satisfies the (C,F)-Muller
condition if the set of colours seen infinitely often along the sequence is in F .

A Muller game G consists of an arena G = (V,E), a colouring function
π : E −! C and a Muller condition (C,F). An infinite play ρ in G is winning
for Eve if the set of colours seen infinitely often along the play is in F , and Eve
wins the Muller game G if she has a winning strategy.

Every Muller game can be converted to an equivalent parity game, as shown
by Gurevich and Harrington [22]. We will use the conversion of Dziembowski,
Jurdziński, and Walukiewikz that involve Zielonka trees [16,12], which we define
below.

Definition 2 (Zielonka tree). Given a Muller condition (C,F), the Zielonka
tree of a Muller condition, denoted ZC,F , is a tree whose nodes are labelled by
subsets of C, and is defined inductively. The root of the tree is labelled by C.
For a node that is already constructed and labelled with the set X, its children
are nodes labelled by distinct maximal non-empty subsets X ′ ⊊ X such that
X ∈ F ⇔ X ′ /∈ F . If there are no such X ′, then the node labelled X is a leaf of
ZC,F and has no attached children.

Given a (C,F)-Muller condition, consider the language L ⊆ Cω consisting of
words w that satisfy the (C,F)-Muller condition. The language L is then said
to be the language of the (C,F)-Muller condition, and can be recognised by a
deterministic parity automaton, whose size depends on the size of the Zielonka
tree [12].

Lemma 3 ([12]). Let (C,F) be a Muller condition with the Zielonka tree ZC,F
that has n leaves and height h. Then there is a deterministic parity automaton
DC,F that can be constructed in polynomial time such that DC,F has n states and
(h+ 1) priorities, and accepts the language of the the (C,F)-Muller condition.

Consider a Muller game G on the arena G = (V,E) with the colouring func-
tion π : E −! C and the Muller condition (C,F). We can then construct an
equivalent parity game G′ by taking the product of G with the automaton DC,F
from Lemma 3. In more details, the set of vertices V ′ of G′ consists of vertices
of the form v′ = (v, q), where v is a vertex in G and q is a state in DC,F . The

216 A. Prakash



owner of the vertex (v, q) is the owner of the vertex v, and the initial vertex is
(ι, q0), where ι is the initial vertex in G and q0 is the initial state in DC,F . We
have the edge e′ = (v, q) −! (v′, q′) in G′ if e = v −! v′ is an edge in G with the
colour π(e) = c, and δ = q

c
−! q′ is a transition in DC,F . The edge e′ is assigned

the priority Ω(δ) in G′, where Ω is the priority function of the automaton DC,F .
The game G′ then is such that Eve wins G if and only if Eve wins G′.

Lemma 4. Let G be a Muller game on an arena consisting of m vertices with
a Muller condition (C,F) whose Zielonka tree ZC,F has n leaves and height h.
Then, G can be converted to an equivalent parity game G′ which has mn many
vertices and h+ 1 priorities.

2.6 2-dimensional parity game

Multi-dimensional parity games were introduced by Chatterjee, Henzinger and
Piterman, where they called it generalised parity games [13]. For our purposes,
it suffices to consider 2-dimensional (2-D) parity games, which is what we define
now.

A 2-dimensional parity game G is similar to a parity game, but we now have
two priority functions π1 : E −! [0, d1] and π2 : E −! [0, d2] on E. Any infinite
play in the game is winning for Eve if the following holds: if the play satisfies
π1, then it satisfies π2.
We say that Adam wins the game otherwise. We call the problem of deciding
whether Eve wins a 2-D parity game as 2-D parity game.

2-D parity game: Given a 2-D parity game G, does Eve win G?

If Eve has a strategy to win a 2-D parity game, then Eve has a positional winning
strategy to do so, i.e. she can win by always choosing the same edge from each
vertex in V∃∃∃, which is given by a function σ : V∃∃∃ −! E. This can be inferred
directly from seeing the 2-D parity game as a Rabin game, which are known to
have positional strategies for Eve [17]. Furthermore, given a positional strategy σ
for Eve in a 2-D parity game (or a Rabin game), one can check in polynomial time
if σ is a winning strategy [17]. This gives us a nondeterministic polynomial time
procedure to decide if Eve wins a given 2-D parity game. In 1988, Emerson and
Jutla established NP-hardness for Rabin games [18,19]. This was later extended
by Chatterjee, Henzinger, and Piterman in 2007 to show NP-hardness for 2-D
parity games as well [13].

Theorem 5 ([13]). The problem of deciding whether Eve wins a given 2-D
parity game is NP-complete.

Remark 6. Chatterjee, Henzinger and Piterman give a slightly different and a
more natural definition of 2-D parity games [13], where the winning condition for
Eve requires every play to satisfy either of two given parity conditions. It is easy
to see, however, that both definitions are log-space inter-reducible to each other,
by dualising the first parity condition. Our definition, although less natural,
makes the connection to simulation games and our reductions in Sections 3
and 4 more transparent.

Checking History-Determinism is NP-hardfor Parity Automata 217



2.7 Simulation

We say a parity automaton A simulates another parity automaton B if for any
(finite or infinite) run on B, there is a corresponding run on A on the same word
that can be constructed on-the-fly such that if the run in B is accepting, so is the
corresponding run in A. This is made more formal by the following simulation
game.

Definition 7 (Simulation game). Given nondeterministic parity automata
A = (Q,Σ, q0, ∆A, ΩA) and B = (P,Σ, p0, ∆B , ΩB), the simulation game be-
tween A and B, denoted Sim(A,B), is defined as a two player game between
Adam and Eve as follows, with positions in P × Q. A play of the simulation
game starts at the position (p0, q0), and has ω many rounds. For each i ∈ N, the
(i+ 1)th round starts at a position (pi, qi) ∈ P ×Q, and proceeds as follows:

– Adam selects a letter a ∈ Σ, and a transition pi
a
−! pi+1 in B.

– Eve selects a transition qi
a
−! qi+1 on the same letter in A.

The new position is (pi+1, qi+1), for another round of the play.
The player Eve wins the above play if either her constructed run in A is

accepting, or Adam’s constructed run in B is rejecting. If Eve has a winning
strategy in Sim(A,B), then we say that A simulates B, and denote it by B ≲ A.

We call the problem of checking whether a parity automaton simulates another
as Simulation:

Simulation: Given two parity automata A and B, does A simulate B?

The simulation game Sim(A,B) can naturally be seen as a 2-D parity game,
where the arena is the product of two automata with Adam selecting letters and
transitions in A and Eve transitions in B, and the priority functions χ1 and χ2

based on corresponding priorities of transitions in A and B respectively. Since
2-D parity game can be solved in NP, Simulation can be solved in NP as
well.

2.8 History-determinism

A history-deterministic (HD) parity automaton is a nondeterministic parity au-
tomaton in which the nondeterminism can be resolved ‘on-the-fly’ just based
on the prefix read so far, without knowing the rest of the word. The history-
determinism of a parity automaton can be characterised by the letter game,
which is a 2-player turn-based game between Adam and Eve, who take alternat-
ing turns to select a letter and a transition in the automaton (on that letter),
respectively. After the game ends, the sequence of Adam’s choices of letters is
an infinite word, and the sequence of Eve’s choices of transitions is a run on that
word. Eve wins the game if her run is accepting or Adam’s word is rejecting, and
we say that an automaton is history-deterministic if Eve has a winning strategy
in the history-determinism game.

218 A. Prakash



Definition 8 (Letter game). Given a parity automaton A = (Q,Σ, q0, ∆,Ω),
the letter game of A is defined between the two players Adam and Eve as follows,
with positions in Q × Σ∗. The game starts at (q0, ε) and proceeds in ω many
rounds. For each i ∈ N, the (i+1)th round starts at a position (qi, wi) ∈ Q×Σi,
and proceeds as follows:

– Adam selects a letter ai ∈ Σ
– Eve selects a transition qi

ai−! qi+1 ∈ ∆

The new position is (qi+1, wi+1), where wi+1 = wiai.
Thus, the play of a letter game can be seen as Adam constructing a word

letter-by-letter, and Eve constructing a run transition-by-transition on the same
word. Eve wins such a play if the following holds: if Adam’s word is in L(A),
then Eve’s run is accepting.

We note that the letter game is an ω-regular game: the set of winning plays P for
Eve are sequences of alternating letters and transitions, so that the word formed
by just the letters is accepting in A, while the run formed by just the transitions
is rejecting. Since parity automata can be determinised, it is clear that P is an
ω-regular language, hence the letter game is an ω-regular game, and therefore
the letter game is determined [32,22].

If Eve has a winning strategy on the letter game of A, then A is said to
be history-deterministic. We are interested in the problem of checking whether
a given parity automaton is history-deterministic, which we shall denote by
History-deterministic.

History-deterministic: Given a parity automaton A, is A history-
deterministic?

2.9 Token games

Token games, or k-token games are defined on an automaton and are similar to
letter games. Similar to as in a letter game, Adam constructs a word letter-by-
letter and Eve constructs a run transition-by-transition on the same word over
ω many rounds. But additionally, Adam also constructs k runs transition-by-
transition on that word. The winning objective of Eve requires her to construct
an accepting run if one of k Adam’s runs is accepting.

Definition 9 (k-token game). Given a nondeterministic parity automaton
A = (Q,Σ, , q0, ∆,Ω), the k-token game of A is defined between the two players
Adam and Eve as follows, with positions in Q×Qk. The game starts at (q0, (q0)k)
and proceeds in ω many rounds. For each i ∈ N, the (i + 1)th round starts at a
position (qi, (p

1
i , p

2
i , · · · , pki )) ∈ Q×Qk, and proceeds as follows:

– Adam selects a letter ai ∈ Σ
– Eve selects a transition qi

ai−! qi+1 ∈ ∆

– Adam selects k transitions p1i
ai−! p1i+1, p

2
i

ai−! p2i+1, · · · pki
ai−! pki+1,

Checking History-Determinism is NP-hardfor Parity Automata 219



The new position is (qi+1, (p
1
i+1, p

2
i+1, · · · , pki+1)), from where the (i+2)th round

begins.
Thus, in a play of the k-token game, Eve constructs a run and Adam k runs,

all on the same word. Eve wins such a play if the following holds: if one of
Adam’s k runs is accepting, then Eve’s run is accepting.

Bagnol and Kuperberg have shown that for any parity automaton A, the
2-token game of A, and the k-token game of A for any k ≥ 2, are equivalent.

Lemma 10 ([3]). Given a parity automaton A, Eve wins 2-token game of A if
and only if Eve wins the k-token game of A for all k ≥ 2.

If A is a nondeterministic Büchi or co-Büchi automaton, then Eve wins the 2-
token game of A if and only if A is history-deterministic[3,4], and it is conjectured
that this result extends to all parity automata.

Two-token conjecture: Given a nondeterministic parity automa-
ton A, Eve wins the 2-token game of A if and only if A is history-
deterministic.

3 Simulation is NP-hard

In this section, we show that the problem of deciding if a parity automaton
simulates another is NP-hard, by giving a reduction from the problem of deciding
whether Eve wins a 2-D parity game, which was shown to be NP-complete by
Chatterjee, Henzinger and Piterman [13]. Since a simulation game can be solved
in NP (see Section 2.7), we obtain NP-completeness.

Theorem 11. Given two parity automata A and B, deciding if A simulates B
is NP-complete.

Since A simulates B if and only if Eve wins the simulation game, which is
a 2-dimensional parity game (see Section 2.7), and deciding if Eve wins a 2-D
parity game is in NP [13], we get that the problem of checking for simulation is
in NP. Hence, we show that Simulation is NP-hard in the rest of this section,
by giving a reduction from 2-D parity game.

Let G be a two-dimensional parity game played on the arena G = (V,E), with
two priority functions χ1 and χ2. We recall that the winning condition for Eve
in such a game requires a play to satisfy the χ2-parity condition if the χ1-parity
condition is satisfied (see Section 2.6).

Overview of the reduction. We shall construct two parity automata H and
D such that H simulates D if and only if Eve wins G. The automata H and D are
over the alphabet E∪{$}, where $ is a letter added for padding. The automaton
D is deterministic, while the automaton H has nondeterminism on the letter $
and contains a copy of D.

220 A. Prakash



Adam, by his choice of letter in Sim(H,D), captures his moves from Adam
vertices in G. Similarly, Eve, by means of choosing her transition on $ in H,
captures her moves from Eve vertices in G. After each $-round in Sim(H,D),
we require Adam to ‘replay’ Eve’s choice as the next letter. Otherwise, Eve can
take a transition to the same state as Adam (recall that H contains a copy of
D), from where she wins the play in Sim(H,D) by copying Adam’s transitions
in each round from here on-wards. The priorities of D are based on χ1, while the
priorities of H are based on χ2. This way D and H roughly accept words that
correspond to plays in G satisfying χ1 and χ2 respectively.

We first present our reduction on an example 2-D parity game whose sub-
game consists of vertices u, v, v′, w, w′ with edges between them as shown in
Fig. 1. For Adam’s vertex u, we have corresponding states uD in D and uH in
H. An Adam move from u in G corresponds to one round of Sim(H,D) from
the position (uD, uH). In G, Adam chooses an outgoing edge, say e = (u, v) from
u such that χ1(u) = c1 and χ2(u) = c2. This corresponds to Adam choosing
the letter e in Sim(H,D). We then have the corresponding unique transitions
uD

e:c1−−! v$ in D and uH
e:c2−−! vH in H, and hence the simulation game goes to

(v$, vH). An Eve move from v in G corresponds to two rounds of the simulation
game from (v$, vH). In Sim(H,D), Adam must select a letter $ and the unique
$ transition v$

$:0
−−! vD on D, since $ is the only letter on which there is an

outgoing transition from v$. Eve must now select a transition on $ from vH .
Suppose she picks vH

$:0
−−! (vH , f) where f = (v, w) is an outgoing edge from v

in G with χ1(f) = c5 and χ2(f) = c6. This corresponds to Eve selecting the edge
f from her vertex v in G. The simulation game goes to the position (vD, (vH , f)).
From here, Adam may select any outgoing edge from v as the letter. If he picks

f ′ = (v, w′) and the transition vD
f ′:c7−−−! w′

D, then Eve can pick the transition

(vH , f)
f ′:c8−−−! w′

D and move to the same state as Adam: such transitions are
indicated by dashed edges in Fig. 1. From here, Eve can win Sim(H,D) by
simply copying Adam’s transitions. Otherwise, Adam picks the edge f as the
letter, same as Eve’s ‘choice’ in the previous round, resulting in the transition
vD

f :c5−−! wD in D and (vH , f)
f :c6−−! wH in H, and the simulation game goes to

the position (wD, wH), from where the game continues similarly.

The reduction. We now give formal descriptions of the two parity automata
D and H such that H simulates D if and only if Eve wins G. We encourage the
reader to refer to Fig. 1 while reading the construction of the automata described
below.

Both automata D and H are over the alphabet Σ = E∪{$}. The automaton
D is given by D = (P,Σ, p0, ∆D, ΩD), where the set P consists of the following
states:

– states uD for each Adam vertex u ∈ V∀∀∀,
– states v$ and vD for each Eve vertex v ∈ V∃∃∃.

Checking History-Determinism is NP-hardfor Parity Automata 221



G: u v w

v′ w′

e : (c1, c2)

e ′
: (c

3 , c
4 )

f : (c5, c6)

f ′
: (c7 , c8)

g : (c9, c10)

D: uD v$ vD wD

v′$ v′D w′
D

e : c1

e ′
: c3

$ : 0

$ : 0

f : c5

f ′
: c7

g : c9

H: uH vH

v′H

vH , f

vH , f ′

vH , g

wH

w′
H

e : c2

e ′
: c
4

$ : 0

$ : 0

$ : 0

f : c6

f ′
: c8

g : c10

f
′ : c8

f
: c

6

Fig. 1. A snippet of a game G, and the corresponding automata D and H constructed
in the reduction. The Adam vertices are represented by pentagons and Eve vertices by
squares. The automaton D is deterministic, and H contains a copy of D.

222 A. Prakash



The state p0 = ιD is the initial vertex, where ι is the initial vertex of the game
G. The set ∆D consists of the following transitions with their priorities (given
by ΩD) as indicated:

– transitions uD
e:χ1(e)
−−−−! v$ for every edge e = (u, v) in G such that u ∈ V∀∀∀ is

an Adam-vertex in G,
– transitions v$

$:0
−−! vD for every v ∈ V∃∃∃ that is an Eve-vertex in G,

– transitions vD
f :χ1(f)
−−−−−! wD for every edge f = (v, w) in G such that v ∈ V∃∃∃

is an Eve vertex in G

The automaton H is given by H = (Q,Σ, q0, ∆H , ΩH), where the set Q
consists of the following states:

– states uH for each Adam vertex u ∈ V∀∀∀,
– states vH for each Eve vertex v ∈ V∃∃∃,
– states (vH , f) for each edge f = (v, w) in G such that v ∈ V∃∃∃ is an Eve

vertex,
– all states in P , the set of states of D.

The state q0 = ιH is the initial vertex. The set ∆H consists of the following
transitions with their priorities (given by ΩH) as indicated:

– transitions uH
e:χ2(e)
−−−−! vH for every edge e = (u, v) in G such that u ∈ V∀∀∀ is

an Adam-vertex in G,
– transitions vH

$:0
−−! (vH , f) for every edge f = (v, w) in G that is outgoing

from an Eve-vertex v ∈ V∃∃∃,
– transitions (vH , f)

f :χ2(f)
−−−−−! wH for every edge f = (v, w) in G outgoing from

an Eve-vertex v ∈ V∃∃∃,

– transitions (vH , f)
f ′:χ2(f

′)
−−−−−−! w′

D for every edge f ′ = (v, w′) ̸= f in G outgoing
from an Eve-vertex v ∈ V∃∃∃,

– all transitions of D.

Note that, by construction, H contains a copy of D as a sub-automaton.

Correctness of the reduction. We now show that Eve wins the simulation
game Sim(H,D) if and only if Eve wins the game G. Call any play of the
simulation game uncorrupted if the following holds: whenever Eve’s state in H
is at (vH , f) at the start of a round of Sim(H,D), Adam plays the letter f .
If Adam plays a letter f ′ ̸= f , then we call such a move corrupted. Any play
consisting of a corrupted move is called a corrupted play.

It is clear that Eve wins any play of Sim(H,D) that is corrupted, since a
corrupted move causes Eve’s state in H and Adam’s state in D to be the same
in Sim(H,D). Then, both Eve’s and Adam’s runs are identical and determined
by the choices of Adam’s letters. In particular, Eve’s run is accepting if Adam’s
run is.

Thus, it suffices to consider only uncorrupted plays. We first observe an
invariant that is preserved throughout any uncorrupted play of Sim(H,D).

Checking History-Determinism is NP-hardfor Parity Automata 223



Invariant: At the start of any round of the simulation game Sim(H,D)
following an uncorrupted play:
– Adam’s state is at uD for some u ∈ V∀∀∀ if and only if Eve’s state is

at uH

– Adam’s state is at v$ for some v ∈ V∃∃∃ if and only if Eve’s state is at
vH

– Adam’s state is at vD for some v ∈ V∃∃∃ if and only if Eve’s state is at
(vH , f) for some edge f that is outgoing from v.

This invariant is easy to observe from the construction, and can be shown by a
routine inductive argument.

Note that if Adam constructs the word w = e0$f0e1$f1 . . .—which we denote
by (ei$fi)i≥0 for succinctness—in an uncorrupted play of Sim(H,D), then Eve’s
run on H is uniquely determined, since the letter fi indicates how nondetermin-
ism on H was resolved by Eve on the ith occurrence of $ in Sim(H,D). Thus,
any uncorrupted play in the simulation can be thought of as Adam selecting
the ei’s and Eve selecting the fi’s, resulting in the word w = (ei$fi)i≥0 being
constructed in the simulation game. Note that then, by construction, (eifi)i≥0 is
a play in G. Conversely, if (eifi)i≥0 is a play in G, then there is an uncorrupted
play of Sim(H,D) whose word is w = (ei$fi)i≥0.

Furthermore, observe that the transitions on a letter e ∈ E in D and H
in any uncorrupted play have the priorities χ1(e) and χ2(e) respectively, while
transitions on $ have priority 0. Thus, in a uncorrupted play of Sim(H,D) whose
word is (ei$fi)i≥0, the highest priorities occurring infinitely often in the run on D
and H are the same as the highest χ1-priority and χ2-priority occurring infinitely
often in the play (eifi)i≥0 respectively.

Thus, an uncorrupted play in Sim(H,D) whose word is w = (ei$fi)i≥0 is
winning for Eve if and only if the play (eifi)i≥0 in G is winning for Eve. Since
Eve wins any corrupted play, the equivalence of the games G and Sim(H,D)
follows easily now. If Eve has a winning strategy in G, she can use her strategy
to select transitions so that the word w = (ei$fi)i≥0 that is constructed in any
uncorrupted play ρ of Sim(H,D) corresponds to a winning play for her in G,
and hence ρ is winning in Sim(H,D). If Adam ever makes a corrupted move,
she wins trivially.

Conversely, if she has a winning strategy in Sim(H,D), then she can use her
strategy to choose moves in G so that the play (eifi)i≥0 corresponds to a winning
uncorrupted play of Sim(H,D) in which the word (ei$fi)i≥0 is constructed, thus
resulting in the play (eifi)i≥0 to also be winning for Eve.

4 Checking History-Determinism is NP-hard

In this section, we show that the problem of deciding whether a given nondeter-
ministic parity automaton is history-deterministic is NP-hard, as is the problem
of deciding whether Eve wins the 1-token game or the 2-token game of a given
parity automaton. To show this, we reduce from deciding whether Eve wins a
2-D parity game with priority functions χ1 and χ2 that satisfies the following

224 A. Prakash



property: any play satisfying the χ2-parity condition also satisfies the χ1-parity
condition. We call such games ‘good 2-D parity games’. We first show in Sec-
tion 4.1 that deciding whether Eve wins a good 2-D parity game is NP-hard,
and then use this to show NP-hardness for the problems mentioned above in
Section 4.2.

4.1 Good 2-D parity games

Definition 12 (Good 2-D parity game). A 2-D parity game G with the
priority functions χ1 and χ2 is called good if any play in G that satisfies χ2 also
satisfies χ1.

We call the problem of deciding whether Eve wins a 2-D parity game as good
2-D parity game. Chatterjee, Henzinger and Piterman’s reduction from SAT
to 2-D parity game [13] can also be seen as a reduction to Good 2-D parity
game, as we show below.

Lemma 13. Deciding whether Eve wins a good 2-D parity game is NP-hard.

Proof. We reduce from the problem of SAT. Let ϕ be a Boolean formula over
the variables X = {x1, x2, · · · , xM} that is a conjunction of terms ti for each
i ∈ [1, N ], where each term ti is a finite disjunction of literals—elements of the set
L = {x1, x2, · · · , xM ,¬x1,¬x2, · · · ,¬xM}. We shall construct a good 2-D parity
game Gϕ such that Eve wins Gϕ if and only if ϕ has a satisfying assignment.

Let T = {t1, t2, · · · , tN} be the set of all terms in ϕ. The game Gϕ has the
set T ∪ L as its set of vertices. The elements of L are Adam vertices, while the
elements of T are Eve vertices. We set the element x1 in L to be the initial
vertex. Each Adam vertex l in L has an outgoing edge e = (l, t) to every term t
in T , and every Eve vertex t ∈ T has an outgoing edge f = (t, l) to a literal l if
l is a literal in t. Thus, each play in the game Gϕ can be seen as Adam and Eve
choosing a term and a literal in that term in alternation respectively.

The game Gϕ has priority functions χ1 and χ2. To every edge e = (l, t) that
is outgoing from an Adam vertex, both priority functions χ1 and χ2 assign e the
priority 0, i.e., χ1(e) = χ2(e) = 0. Every edge e = (t, l) that is outgoing from an
Eve vertex is assigned priorities as follows:

χ1(e) =

{
2j + 2 if l = xj

2j + 1 if l = ¬xj

χ2(e) =

{
2j if l = xj

2j + 1 if l = ¬xj

This concludes our description of the game Gϕ. We now show that Gϕ is a
good 2-D parity game, which Eve wins if and only if ϕ is satisfiable.

Gϕ is a good 2-D parity game. Let ρ be a play in Gϕ that satisfies the χ2

parity condition. If 2c is the largest χ2-priority occurring infinitely often in ρ,
then by construction, 2c + 2 is the largest χ1-priority occurring infinitely often
in the ρ, which is also even. Thus, ρ satisfies the χ1 parity condition.

Checking History-Determinism is NP-hardfor Parity Automata 225



If ϕ is satisfiable, then Eve wins Gϕ. Let f : {x1, x2, · · · , xM} −! {⊤,⊥}
be a satisfying assignment of ϕ. Let σ be a function which assigns, to each term
ti, a literal l ∈ ti that is assigned ⊤ in f . Consider the Eve-strategy σ∃∃∃ in Gϕ

defined by σ∃∃∃(t) = (t, σ(l)). We claim that σ∃∃∃ is a winning strategy. Indeed, let
ρ be a play in Gϕ following σ∃∃∃, and consider the largest i such that xi or ¬xi

appear infinitely often in ρ. Since σ∃∃∃ is obtained from a satisfying assignment, we
know that either only xi appears infinitely often, or only ¬xi appears infinitely
often. In the former case, the highest χ2 priority appearing infinitely often is 2i,
which is even, and hence ρ is winning for Eve. In the latter case, the highest χ1

priority appearing infinitely often is 2i+1, which is odd, and hence the χ1-parity
condition is not satisfied, implying ρ is winning for Eve.

If Eve wins Gϕ, then ϕ is satisfiable. If Eve wins Gϕ, then we know she
can win using a positional strategy since Gϕ is a 2-dimensional parity game. Let
σ∃∃∃ : T −! L be such a strategy, where Eve chooses the edge (t, σ∃∃∃(t)) at a vertex
t. If there are no two terms t, t′ such that σ∃∃∃(t) = xi and σ∃∃∃(t

′) = ¬xi for some
xi, then consider the assignment σ defined as follows. The assignment σ maps
all variables x that are in the image of σ∃∃∃ to ⊤, while any terms xj such that
neither xj or ¬xj appear in the image are assigned ⊤ and ⊥ respectively. It is
clear then that σ is a satisfying assignment, since each term t in ϕ evaluates to
⊤.

Otherwise, if there are terms t, t′ with σ∃∃∃(t) = xi and σ∃∃∃(t
′) = ¬xi, we claim

that Adam wins the game Gϕ. Adam can alternate between picking t and t′,
and then the highest χ1 priority appearing infinitely often is 2i + 2 while the
highest χ2 priority appearing infinitely often is 2i+1. This implies that the play
is winning for Adam, which is a contradiction since σ∃∃∃ is a winning strategy for
Eve. ⊓⊔

4.2 NP-hardness of checking history-determinism

We now show that deciding the history-determinism, whether Eve wins the 1-
token game, and whether Eve wins the 2-token game of a given parity automaton
is NP-hard (Theorem 15). Much of the work towards this has already been done
in the reduction from 2-D parity game to Simulation given in Section 3. We
show that the automaton H that is constructed when using this reduction from
a good 2-D parity game G is such that Eve wins G if and only if H is history-
deterministic. Since Good 2-D parity game is NP-hard (Lemma 13), we get
that History-deterministic is NP-hard as well.

Lemma 14. Checking whether a given nondeterministic parity automaton is
history-deterministic is NP-hard.

Proof. Let us consider a good 2-D parity game G. Recall the construction of the
automata H and D in Section 3, which is such that Eve wins G if and only if H
simulates D. We will show that if G is a good 2-D parity game, then the following
statements are equivalent.

226 A. Prakash



1. Eve wins G.
2. H simulates D.
3. H is history-deterministic.

The equivalence of 1 and 3 would then conclude the proof. The equivalence of 1
and 2 has already been shown in the proof of Theorem 11, and we now focus on
showing that 2 and 3 are equivalent.

Towards this, let Σ = E ∪ {$}, and consider the languages Lj over Σ con-
sisting of the words (ei$fi)i≥0 such that (eifi)i≥0 is a play in G that satisfies
χj , for j = 1, 2. By construction, we know L(D) = L1, and L(H) = L1 ∪ L2.
Furthermore, since G is good, we know that L1 ⊇ L2 and hence L(D) = L(H).
Observe that by construction, D is deterministic.

If H is history-deterministic, then since L(D) = L(H), Eve wins the simula-
tion game between H and D: she can use her strategy in the letter game of H
to play in Sim(H,D), ignoring Adam’s transitions in D.

The converse direction follows from [24, Theorem 4.1], where Henzinger
and Piterman show that if a nondeterministic parity automaton N simulates a
language-equivalent deterministic parity automaton, then N is history-determin-
istic. We include a proof nevertheless, for self-containment. Supposing H simu-
lates D, Eve can use her winning strategy in Sim(H,D) to win the letter game
of H as follows. Eve, during the letter game of H, will keep in her memory, a play
of the game Sim(H,D). On each round in the letter game of H, Adam gives a
letter, and Eve, in the game Sim(H,D), lets Adam pick the same letter and the
unique transition on that letter in D. She then uses her strategy in Sim(H,D)
to pick a transition in H, and she plays the same transition in the letter game
of H. We claim that any resulting play of the letter game of H if Eve plays as
above is winning for Eve. Indeed, if Adam constructs an accepting word in H,
then it is accepting in D as well. Hence, since D is deterministic, Adam’s run on
D in the simulation game between H and D that is stored in Eve’s memory is
accepting. Since Eve is playing according to a winning strategy in Sim(H,D),
Eve’s run in H, which is the same in Sim(H,D) and the letter game of H, is
accepting as well. Hence, Eve wins the letter game of H, and thus H is history-
deterministic. ⊓⊔

We also argue in the full version of the paper [34] that the automaton H in
proof of Lemma 14 above is such that Eve wins the 1-token game of H if and only
if Eve wins the 2-token game of H if and only if H is history-deterministic. This
gives us that checking whether Eve wins the 1-token game or the 2-token game
of a parity automaton is NP-hard. Since 1-token games can naturally be seen
as a 2-D parity game, we get that deciding whether Eve wins the 1-token game
of a given parity automaton is in NP, and hence the problem is NP-complete.

Theorem 15. The following problems are NP-hard:

1. Given a parity automaton A, is A history-deterministic?
2. Given a parity automaton A, does Eve win the 2-token game of A?

Additionally, the following problem is NP-complete: Given a parity automaton
A, does Eve win the 1-token game of A?

Checking History-Determinism is NP-hardfor Parity Automata 227



5 Language Containment

In this section, we consider the following problem:

HD-automaton containment: Given two parity automata A and B
such that B is history-deterministic, is L(A) ⊆ L(B)?

While the problem of checking language inclusion between two non-deterministic
parity automata is PSPACE-complete (regardless of whether the parity in-
dex is fixed or not) [30,1], the same for deterministic parity automata is NL-
complete [36, Theorem 1]. For history-deterministic parity automata with fixed
parity indices, however, the problem of language inclusion reduces to checking
for simulation (Lemma 16), which can be solved in polynomial time when the
parity indices are fixed [13]. This gives us that checking for language inclusion
between two history-deterministic parity automata with fixed parity index can
be done in polynomial time (Corollary 17). This observation has been treated
as folklore, and we prove it here for completeness.

Lemma 16 ([37,9]). Given a nondeterministic parity automaton A and a
history-deterministic parity automaton B, the following are equivalent:

1. B simulates A
2. L(A) ⊆ L(B)

Proof. (1) ⇒ (2): Fix σ∃∃∃ to be a winning strategy for Eve in Sim(B,A). Let w
be a word accepted by A via an accepting run ρ. Consider a play of Sim(B,A)
where Adam constructs the run ρ on the word w, and Eve plays according to
σ∃∃∃. Then, the run in B that Eve constructs must be accepting, and hence w is
accepted by B.

(2) ⇒ (1): Let σB be a winning strategy for Eve in the letter game of B.
Consider the strategy for Eve in Sim(B,A) where Eve chooses the transitions
on B according to σB , ignoring Adam’s transitions in A. If Adam constructs an
accepting run in A on a word w in Sim(B,A), then w ∈ L(A) ⊆ L(B). Hence
σB would have constructed an accepting run in B in Sim(B,A). It follows that
Eve wins Sim(B,A), and hence B simulates A. ⊓⊔

Corollary 17. Given a nondeterministic parity automaton A and a history-
deterministic parity automaton B such that both A and B have priorities in [d]
for a fixed d, the problem of whether L(A) ⊆ L(B) can be decided in polynomial
time.

We now focus on the problem HD-automaton containment when the
parity index is not fixed. From Lemma 16, we know that this can be reduced to
Simulation. Since Simulation is in NP [13], we get an immediate NP-upper
bound for HD-automaton containment [37, Lemma 3]. We show that we can
do better, in quasi-polynomial time, by giving a polynomial time reduction to
finding the winner in a parity game[11,27].

Towards this, let us fix a nondeterministic parity automaton A and a history-
deterministic parity automaton B over the alphabet Σ throughout the rest of

228 A. Prakash



this section, for which we want to decide if L(A) ⊆ L(B). Suppose that A has
n1 states and priorities in [d1], and B has n2 states and priorities in [d2].

It is well known that every such parity automaton A can be converted effi-
ciently to a language-equivalent nondeterministic Büchi automaton A′ that has
at most (n1 · d1) states [14,38]. Then, from Lemma 16, it suffices to check if Eve
wins the game Sim(B,A′). Note that Sim(B,A′) is a 2-D parity game G with
(n1 · d1 · n2 · |Σ|)-many vertices that has the priority functions χ1 : V −! [1, 2]
and χ2 : V −! [d2], where V is the set of vertices of G.

The game G can be viewed equivalently as a Muller game with the condition
(C,F), where C = [1, 2]×[d2] and F consists of sets F ⊆ C such that if max(F |1)
is even, then max(F |2) is even. Here, F |i for i ∈ {1, 2} indicates the projection
of F onto the ith component. Call the Zielonka tree (Definition 2) of this Muller
condition as Zd2

. We shall show that the size of Zd2
is polynomial in d2.

Lemma 18. The Zielonka tree Zd2 has (⌈d2

2 ⌉) many leaves and its height is d2.

The proof of the lemma, obtained via an inductive argument, can be found
in the full version of the paper [34]. Lemma 18 allows us to use Lemma 4 on
Sim(B,A′) to obtain an equivalent Parity game G′ with (n1 · d1 · n2 · |Σ| · ⌈d2

2 ⌉)
vertices which has d2 + 1 priorities, such that Eve wins Sim(B,A′) if and only
if Eve wins G′.

Lemma 19. Given a nondeterministic parity automaton A with n1 states and
a history-deterministic parity automaton B with n2 states whose priorities are
in [d2] that are both over the alphabet Σ, the problem of deciding whether L(A)
is contained in L(B) can be reduced in polynomial time to finding the winner of
a parity game G which has (n1 · d1 · n2 · |Σ| · ⌈d2

2 ⌉) many vertices and d2 + 1
priorities.

Since parity games can be solved in quasi-polynomial time[11,27], Lemma 19
implies that the problem of language containment in a history-deterministic
automaton can be solved in quasi-polynomial time as well.

Theorem 20. Given a nondeterministic parity automaton A with n1 states and
priorities in [d1], and a history-deterministic parity automaton B with n2 states
whose priorities are in [d2], checking whether the language of A is contained in
the language of B can be done in time

(n1 · d1 · n2 · d2 · |Σ|)O(log d2).

6 Discussion

We have shown NP-hardness for the problem of checking for simulation be-
tween two parity automata (when their parity indices are not fixed). We have
also established upper and lower bounds of several decision problems relating
to history-deterministic parity automata. The most significant amongst these,
in our view, is the NP-hardness for the problem of deciding if a given parity

Checking History-Determinism is NP-hardfor Parity Automata 229



automaton is history-deterministic, which is an improvement from the previous
lower bound of solving a parity game [28].

There still remains a significant gap between the lower bound of NP-hardness
and the upper bound of EXPTIME for checking history-determinism, however.
Furthermore, note that even if one shows the two-token conjecture [3,4], this
would only imply a PSPACE-upper bound (when the parity index is not fixed),
since 2-token games can be seen as Emerson-Lei games [25]. Thus, a natural
direction for future research is to try to show that the problem of checking for
history-determinism is PSPACE-hard.

On the other hand, however, it is also plausible that checking whether Eve
wins the 2-token game of a given parity automaton can be done in NP. A proof
for this might show that if Eve wins a 2-token game, then she has a strategy
that can be represented and verified polynomially. Such an approach, which
would involve understanding the strategies for the players in the 2-token games
better, could also yield crucial insights for proving or disproving the two-token
conjecture (see Section 2.9).

Boker and Lehtinen showed in their recent survey that for a ‘natural’ class of
automata T , checking history-determinism for T -automata is at least as hard as
solving T -games [8]. Interestingly, the problem of checking history-determinism
over T -automata also has the matching upper bound of solving T -games for
all classes of automata T over finite words, and over infinite words with safety
and reachability objectives on which the notion of history-determinism has been
studied so far [7,21,35,9,20]. Our result of the problem of checking history-
determinism being NP-hard for parity automata deviates from this trend (unless
parity games are NP-hard, which would have the drastic and unlikely conse-
quence of NP = NP ∩ coNP), and demonstrates the additional intricacy that
parity conditions bring.

Acknowledgements We thank Marcin Jurdziński, Neha Rino, K. S. The-
jaswini, and anonymous reviewers for their feedback and suggesting numerous
improvements to the paper. Additionally, we are grateful to K. S. Thejaswini
for several insightful discussions and pointing out a flaw in an earlier proof of
Theorem 11.

References

1. Abdulla, P.A., Chen, Y., Clemente, L., Holík, L., Hong, C., Mayr, R., Vojnar, T.:
Advanced ramsey-based büchi automata inclusion testing. In: CONCUR. Lecture
Notes in Computer Science, vol. 6901, pp. 187–202. Springer (2011), https://doi.
org/10.1007/978-3-642-23217-6_13

2. Abu Radi, B., Kupferman, O.: Minimization and canonization of GFG transition-
based automata. Log. Methods Comput. Sci. 18(3) (2022), https://doi.org/10.
46298/lmcs-18(3:16)2022

3. Bagnol, M., Kuperberg, D.: Büchi good-for-games automata are efficiently recog-
nizable. In: FSTTCS. LIPIcs, vol. 122, pp. 16:1–16:14. Schloss Dagstuhl - Leibniz-

230 A. Prakash

https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.46298/lmcs-18(3:16)2022


Zentrum für Informatik (2018), https://doi.org/10.4230/LIPIcs.FSTTCS.2018.
16

4. Boker, U., Kuperberg, D., Lehtinen, K., Skrzypczak, M.: On the succinctness
of alternating parity good-for-games automata. CoRR abs/2009.14437 (2020),
https://arxiv.org/abs/2009.14437

5. Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are good-for-games
automata? In: FSTTCS. LIPIcs, vol. 93, pp. 18:1–18:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017), https://doi.org/10.4230/LIPIcs.FSTTCS.2017.
18

6. Boker, U., Lehtinen, K.: History determinism vs. good for gameness in quantita-
tive automata. In: FSTTCS. LIPIcs, vol. 213, pp. 38:1–38:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021), https://doi.org/10.4230/LIPIcs.
FSTTCS.2021.38

7. Boker, U., Lehtinen, K.: Token games and history-deterministic quantitative au-
tomata. In: FoSSaCS. Lecture Notes in Computer Science, vol. 13242, pp. 120–139.
Springer (2022), https://doi.org/10.1007/978-3-030-99253-8_7

8. Boker, U., Lehtinen, K.: When a little nondeterminism goes a long way: An
introduction to history-determinism. ACM SIGLOG News 10(1), 24–51 (2023),
https://doi.org/10.1145/3584676.3584682

9. Bose, S., Henzinger, T.A., Lehtinen, K., Schewe, S., Totzke, P.: History-
deterministic timed automata. CoRR abs/2304.03183 (2023), https://doi.org/
10.48550/arXiv.2304.03183

10. Bose, S., Purser, D., Totzke, P.: History-deterministic vector addition systems. In:
CONCUR. LIPIcs, vol. 279, pp. 18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2023), https://doi.org/10.4230/LIPIcs.CONCUR.2023.18

11. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasi-polynomial time. SIAM J. Comput. 51(2), 17–152 (2022), https://doi.
org/10.1137/17m1145288

12. Casares, A., Colcombet, T., Fijalkow, N.: Optimal transformations of games and
automata using muller conditions. In: ICALP. LIPIcs, vol. 198, pp. 123:1–123:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021), https://doi.org/10.
4230/LIPIcs.ICALP.2021.123

13. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: FoS-
SaCS. Lecture Notes in Computer Science, vol. 4423, pp. 153–167. Springer (2007),
https://doi.org/10.1007/978-3-540-71389-0_12

14. Choueka, Y.: Theories of automata on omega-tapes: A simplified approach. J. Com-
put. Syst. Sci. 8(2), 117–141 (1974), https://doi.org/10.1016/S0022-0000(74)
80051-6

15. Colcombet, T.: The theory of stabilisation monoids and regular cost functions.
In: ICALP. Lecture Notes in Computer Science, vol. 5556, pp. 139–150. Springer
(2009), https://doi.org/10.1007/978-3-642-02930-1_12

16. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to
win infinite games? In: LICS. pp. 99–110. IEEE Computer Society (1997), https:
//doi.org/10.1109/LICS.1997.614939

17. Emerson, E.A.: Automata, tableaux and temporal logics (extended abstract). In:
Logics of Programs, Conference, Brooklyn College, New York, NY, USA, June 17-
19, 1985, Proceedings. Lecture Notes in Computer Science, vol. 193, pp. 79–88.
Springer (1985), https://doi.org/10.1007/3-540-15648-8_7

18. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams (extended abstract). In: SFCS. pp. 328–337. IEEE Computer Society (1988),
https://doi.org/10.1109/SFCS.1988.21949

Checking History-Determinism is NP-hardfor Parity Automata 231

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://arxiv.org/abs/2009.14437
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-030-99253-8_7
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.48550/arXiv.2304.03183
https://doi.org/10.48550/arXiv.2304.03183
https://doi.org/10.4230/LIPIcs.CONCUR.2023.18
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/3-540-15648-8_7
https://doi.org/10.1109/SFCS.1988.21949


19. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29(1), 132–158 (1999), https://doi.org/10.1137/
S0097539793304741

20. Erlich, E., Guha, S., Jecker, I., Lehtinen, K., Zimmermann, M.: History-
deterministic parikh automata. In: CONCUR. LIPIcs, vol. 279, pp. 31:1–31:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023), https://doi.org/10.
4230/LIPIcs.CONCUR.2023.31

21. Guha, S., Jecker, I., Lehtinen, K., Zimmermann, M.: A bit of nondeterminism
makes pushdown automata expressive and succinct. In: MFCS. LIPIcs, vol. 202,
pp. 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021), https:
//doi.org/10.4230/LIPIcs.MFCS.2021.53

22. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC. pp. 60–65.
ACM (1982), https://doi.org/10.1145/800070.802177

23. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Inf. Comput.
173(1), 64–81 (2002), https://doi.org/10.1006/inco.2001.3085

24. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: CSL.
Lecture Notes in Computer Science, vol. 4207, pp. 395–410. Springer (2006), https:
//doi.org/10.1007/11874683_26

25. Hunter, P., Dawar, A.: Complexity bounds for regular games. In: MFCS. Lecture
Notes in Computer Science, vol. 3618, pp. 495–506. Springer (2005), https://doi.
org/10.1007/11549345_43

26. Jurdzinski, M.: Deciding the Winner in Parity Games is in UP ∩ co-UP. Inf.
Process. Lett. 68(3), 119–124 (1998), https://doi.org/10.1016/S0020-0190(98)
00150-1

27. Jurdzinski, M., Lazic, R.: Succinct progress measures for solving parity games. In:
LICS. pp. 1–9. IEEE Computer Society (2017), https://doi.org/10.1109/LICS.
2017.8005092

28. Kuperberg, D., Skrzypczak, M.: On determinisation of good-for-games automata.
In: ICALP. Lecture Notes in Computer Science, vol. 9135, pp. 299–310. Springer
(2015), https://doi.org/10.1007/978-3-662-47666-6_24

29. Kupferman, O.: Using the past for resolving the future. Frontiers Comput. Sci. 4
(2022), https://doi.org/10.3389/fcomp.2022.1114625

30. Kupferman, O., Vardi, M.Y.: Verification of fair transition systems. Chic. J. Theor.
Comput. Sci. 1998 (1998), http://cjtcs.cs.uchicago.edu/articles/1998/2/
contents.html

31. Lehtinen, K., Zimmermann, M.: Good-for-games ω-pushdown automata. Log.
Methods Comput. Sci. 18(1) (2022), https://doi.org/10.46298/lmcs-18(1:3)
2022

32. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975),
http://www.jstor.org/stable/1971035

33. Milner, R.: An algebraic definition of simulation between programs. In: IJCAI. pp.
481–489. William Kaufmann (1971), http://ijcai.org/Proceedings/71/Papers/
044.pdf

34. Prakash, A.: Checking history-determinism is np-hard for parity automata. CoRR
abs/2310.13498 (2023), https://doi.org/10.48550/arXiv.2310.13498

35. Prakash, A., Thejaswini, K.S.: On history-deterministic one-counter nets. In: FoS-
SaCS 2023. Lecture Notes in Computer Science, vol. 13992, pp. 218–239. Springer
(2023), https://doi.org/10.1007/978-3-031-30829-1_11

36. Schewe, S.: Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-
Complete. In: FSTTCS. LIPIcs, vol. 8, pp. 400–411. Schloss Dagstuhl - Leibniz-

232 A. Prakash

https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.4230/LIPIcs.CONCUR.2023.31
https://doi.org/10.4230/LIPIcs.CONCUR.2023.31
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.1145/800070.802177
https://doi.org/10.1006/inco.2001.3085
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/11549345_43
https://doi.org/10.1007/11549345_43
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.3389/fcomp.2022.1114625
http://cjtcs.cs.uchicago.edu/articles/1998/2/contents.html
http://cjtcs.cs.uchicago.edu/articles/1998/2/contents.html
https://doi.org/10.46298/lmcs-18(1:3)2022
https://doi.org/10.46298/lmcs-18(1:3)2022
http://www.jstor.org/stable/1971035
http://ijcai.org/Proceedings/71/Papers/044.pdf
http://ijcai.org/Proceedings/71/Papers/044.pdf
https://doi.org/10.48550/arXiv.2310.13498
https://doi.org/10.1007/978-3-031-30829-1_11


Zentrum für Informatik (2010), https://doi.org/10.4230/LIPIcs.FSTTCS.2010.
400

37. Schewe, S.: Minimising Good-For-Games Automata Is NP-Complete. In: FSTTCS.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 182, pp. 56:1–56:13.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020),
https://drops.dagstuhl.de/opus/volltexte/2020/13297

38. Seidl, H., Niwinski, D.: On distributive fixed-point expressions. RAIRO Theor. In-
formatics Appl. 33(4/5), 427–446 (1999), https://doi.org/10.1051/ita:1999101

39. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Prelimi-
nary report. In: STOC. pp. 1–9. ACM (1973), https://doi.org/10.1145/800125.
804029

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Checking History-Determinism is NP-hardfor Parity Automata 233

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://drops.dagstuhl.de/opus/volltexte/2020/13297
https://doi.org/10.1051/ita:1999101
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
http://creativecommons.org/licenses/by/4.0/


Tighter Construction of Tight Büchi Automata

Marek Jankola1⋆

1 LMU Munich, Munich, Germany
marek.jankola@sosy.ifi.lmu.de

2 Masaryk University, Brno, Czechia
strejcek@fi.muni.cz

Abstract. Tight automata are useful in providing the shortest coun-
terexample in LTL model checking and also in constructing a maximally
satisfying strategy in LTL strategy synthesis. There exists a translation of
LTL formulas to tight Büchi automata and several translations of Büchi
automata to equivalent tight Büchi automata. This paper presents an-
other translation of Büchi automata to equivalent tight Büchi automata.
The translation is designed to produce smaller tight automata and it
asymptotically improves the best-known upper bound on the size of a
tight Büchi automaton equivalent to a given Büchi automaton. We also
provide a lower bound, which is more precise than the previously known
one. Further, we show that automata reduction methods based on quo-
tienting preserve tightness. Our translation was implemented in a tool
called Tightener. Experimental evaluation shows that Tightener usually
produces smaller tight automata than the translation from LTL to tight
automata known as CGH.

1 Introduction

When a model checking algorithm decides that a given system violates a given
specification, a counterexample showing the undesired system behavior is pro-
duced. If the system has only finitely many states and it violates the specification
given by a formula of Linear Temporal Logic (LTL) or directly by a Büchi au-
tomaton accepting all erroneous behaviors, there exists a counterexample of the
form u.vω called lasso-shaped or ultimately periodic. A serious research effort
has been devoted to algorithms that produce short counterexamples, where the
length of a counterexample u.vω is given by |uv| [7, 12,13,15,19,22,24].

In 2005, Schuppan and Biere [24] defined tight Büchi automata, where each
lasso-shaped word accepted by such an automaton is accepted by a lasso-shaped
run of the same length. Hence, the product of a tight automaton A with an arbi-
trary transition system accepts the shortest lasso-shaped behavior of the system
that is in the language of A by the shortest lasso-shaped accepting run. This
property makes tight automata very useful for automata-based model checking

⋆ This research was conducted partly during Master’s studies of M. Jankola at Masaryk
University in Brno, Czechia.

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 234–255, 2024.
https://doi.org/10.1007/978-3-031-57228-9_12

and Jan Strejček2(B)

https://orcid.org/0009-0008-7961-190X
https://orcid.org/0000-0001-5873-403X
https://eapls.org/pages/artifact_badges/
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_12&domain=pdf


algorithms looking for shortest counterexamples, which was the original motiva-
tion for the definition. Tight automata found another application in autonomous
robot action planning, where they are used in the algorithm synthesizing a max-
imally satisfying discrete control strategy while taking into account that the
robot’s action executions may fail [27].

There exist only few algorithms producing tight automata. The oldest is the
translation of LTL formulas into generalized Büchi automata introduced by
Clarke, Grumberg, and Hamaguchi [6] in 1994. The fact that this translation cre-
ates tight automata was shown about 10 years later by Schuppan and Biere [24],
who named the translation CGH. They extended the translation to handle also
past LTL operators and implemented it. The implementation produces automata
in symbolic representation suitable for the model checker NuSMV [5].

There are also two constructions transforming Büchi automata into tight
Büchi automata. The first was introduced by Schuppan [23] and it accepts even
generalized Büchi automata as input. For a (non-generalized) Büchi automaton
with n states, this construction creates a tight automaton with O((

√
2n)2n)

states. The second (and completely different) construction was introduced by

Ehlers [13] and it produces tight automata of size 2O(n2) states. Kupferman
and Vardi [20] provided the lower bound 2Ω(n) as a side result when analyzing
counterexamples of safety properties. We are not aware of any implementation
of these constructions.

This paper presents another construction transforming Büchi automata to
tight Büchi automata. More precisely, our construction accepts (state-based)
Büchi automata (BA) or transition-based Büchi automata (TBA) and produces
tight BA or tight TBA. The construction is similar to the one of Schuppan [23],
but it produces less states: while Schuppan’s construction creates states that
represent a sequence of up to 2n states of the original automata, our construc-
tion creates states representing at most n states of the original automaton and
these n states are pairwise different (potentially with a single exception). The
construction gives us an upper bound in O(n! · n3) which is strictly below both

O((
√
2n)2n) and 2O(n2). We also provide a lower bound in Ω(n−1

2 !) for any
transformation of BA into equivalent tight BA or TBA and a lower bound in
Ω((n − 1)!) for any transformation of TBA into equivalent tight BA or TBA.
Note that the lower bound Ω(n−1

2 !) is strictly above the previous lower bound

2Ω(n). Additionally, we show that tight automata can be reduced by quotienting
with use of an arbitrary good-for-quotienting (GFQ) relation [8] and the resulting
automaton is equivalent and tight.

Our paper also delivers some practical results. The tightening algorithm has
been implemented in a tool called Tightener. The tool can be easily combined
with other automata tools as it accepts and produces automata in the HOA
format [2]. Furthermore, it also accepts LTL formulas on input. When Tightener
receives an LTL formula, it calls the LTL to TBA translation of Spot [10] as the
first step. We compare Tightener against the CGH translation as this is (as far as
we know) the only other implemented algorithm producing tight automata. Our

             Tighter Construction of Tight Büchi Automata 235



experimental evaluation shows that tight automata produced by CGH usually
have more states than the ones by Tightener.

Contributions of the paper. The paper brings the following contributions:

• a construction transforming BA/TBA into tight BA/TBA with the lowest
theoretical upper bound on the rise of the state space so far,

• lower bounds on any transformation of BA or TBA into equivalent tight
BA/TBA that are currently the highest lower bounds,

• a proof that the automata reduction based on quotienting preserves tight-
ness,

• a tool Tightener producing tight BA/TBA from LTL formulas or BA/TBA,
• an experimental comparison of tight automata by Tightener and CGH.

Structure of the paper. The following section introduces the basic terminology
used in the paper. Section 3 formulates some observations crucial for our tighten-
ing construction, which is then presented in Section 4 together with the implied
upper bound. Section 5 shows the lower bounds on the tightening process. The
postprocessing of tight automata is discussed in Section 6. Section 7 describes
the implementation of our tightening construction in Tightener and Section 8
compares it to the CGH translation in terms of the sizes of produced tight au-
tomata. Finally, Section 9 concludes the paper.

2 Preliminaries

A transition-based Büchi automaton (TBA) is a tuple A = (Q,Σ, δ, I, δF ), where

• Q is a finite set of states,
• Σ is a finite alphabet,
• δ ⊆ Q×Σ ×Q is a transition relation,
• I ⊆ Q is a set of initial states, and
• δF ⊆ δ is a set of accepting transitions.

A run of A over an infinite word u = u0u1 . . . ∈ Σω is an infinite sequence
ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω of consecutive transitions starting in an initial
state q0 ∈ I. By ρi, we denote the transition (qi, ui, qi+1) from ρ. A run ρ is
accepting if (qi, ui, qi+1) ∈ δF holds for infinitely many i. An automaton accepts
a word u if there exists an accepting run over this word. A language of automaton
A is the set L(A) of all words in Σω accepted by A. Automata A,B are equivalent
if L(A) = L(B).

A transition (p, a, q) ∈ δ is also denoted as p
a−→ q. In graphical representation,

accepting transitions are these marked with the blue dot . In the following,
word without any adjective refers to an infinite word. A path in A from a state
q0 to a state qn over a finite word r = r0r1 . . . rn−1 ∈ Σ∗ is a finite sequence
σ = (q0, r0, q1)(q1, r1, q2) . . . (qn−1, rn−1, qn) ∈ δn of consecutive transitions. We
refer to a first state q0 of a path as to initial state of the path. We naturally

          M. Jankola and J. Strejček236



extend the notation for transitions and write that the path σ has the form
q0

r−→ qn. If such a path exists, we say that qn is reachable from q0 over r. For
a word or a run u = u0u1 . . ., by ui.. we denote its suffix uiui+1 . . . and by ui,j ,
for i < j, we denote its subpart uiui+1 . . . uj−1.

The paper intensively works with lasso-shaped words and runs, which are
sequences of the form s.lω, where s is called a stem and l ̸= ε is called a loop.
Further, s is a minimal stem and l is a minimal loop of a lasso-shaped sequence
u = s.lω if for each s′, l′ satisfying u = s′.l′ω it holds |s|+ |l| ≤ |s′|+ |l′|.

Lemma 1. For each lasso-shaped sequence, there exist a unique minimal stem
and a unique minimal loop.

Proof. The existence of some minimal stem and loop for each lasso-shaped se-
quence u is obvious. We prove its uniqueness by contradiction. Assume that
there are two different pairs s, l and s′, l′ of minimal stem and loop, which
implies that u = s.lω = s′.l′ω and |s| + |l| = |s′| + |l′|. Without loss of gen-
erality, assume that |s| < |s′| and |l| > |l′|. As |s| + |l| = |s′| + |l′|, we get
lω = u|s|+|l|.. = u|s′|+|l′|.. = l′ω and thus s.lω = s.l′ω. However, this is a contra-
diction with the minimality of s, l and s′, l′ as |s|+ |l′| < |s|+ |l| = |s′|+ |l′|. ⊓⊔

The minimal stem and the minimal loop of a lasso-shaped sequence u is
denoted by minS (u) and minL(u), respectively. Moreover, we set |minSL(u)| =
|minS (u)|+ |minL(u)| and call it the size of u.

If ρ is a lasso-shaped run over a word u, then u is a lasso-shaped word such
that |minS (u)| ≤ |minS (ρ)| and |minL(u)| ≤ |minL(ρ)|.

A TBA A is tight [24] iff for each lasso-shaped word u ∈ L(A) there exists an
accepting lasso-shaped run ρ satisfying |minSL(u)| = |minSL(ρ)|. We call such
runs tight.

A state-based Büchi automaton (BA) is a tuple A = (Q,Σ, δ, I, F ), where
Q,Σ, δ, I have the same meaning as in a TBA and F ⊆ Q is a set of accepting
states. The definition of all terms is the same as for TBA with the exception of
accepting run. A run ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω is accepting if qi ∈ F
for infinitely many i. Note that BA can be seen as a special case of TBA as
each BA can be easily transformed into an equivalent TBA only by replacing
its accepting states F with the set of transitions δF leading to these states, i.e.,
δF = {(p, a, q) ∈ δ | q ∈ F}.

Finally, a (state-based) generalized Büchi automaton (GBA) is a tuple A =
(Q,Σ, δ, I,F), where Q,Σ, δ, I have the same meaning as in a TBA and F =
{F1, . . . , Fk} is a finite set of sets Fj ⊆ Q. The definition of all terms is the same
as for TBA, except for an accepting run. A run ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω

is accepting if for each Fj ∈ F there exist infinitely many i satisfying qi ∈ Fj .

3 Observations

First of all, we explain why our definition of TBA considers multiple initial
states. As every TBA can be transformed into an equivalent TBA with a single

                 Tighter Construction of Tight Büchi Automata 237



a b
a b a b

Fig. 1. TBA with a single initial state (left) and an equivalent tight TBA with two
initial states (right).

initial state, some definitions of TBA consider exactly one initial state. However,
a tight TBA with one initial state would have only a restricted expressive power.
Indeed, each TBA can be transformed to an equivalent tight TBA with multiple
initial states (as we show in the following section), but there exist TBA that
cannot be transformed into equivalent tight TBA with a single initial state.

Lemma 2. There exists a TBA such that there is no equivalent tight TBA with
a single initial state.

Proof. Let A be the TBA in Figure 1 (left). For the sake of contradiction, assume
that there is a tight TBA B with one initial state q0 and equivalent to A. Then
B must accept aω and bω. Furthermore, since |minSL(aω)| = |minSL(bω)| = 1
and B is tight, there must exist accepting self-loops over a and b in q0. However,
B then accepts for instance a.bω /∈ L(A), which is a contradiction. ⊓⊔

As the (un)tightness of an automaton depends purely on lasso-shaped words
accepted by the automaton and the corresponding accepting runs, we turn our
attention to these words. We start with the definition of significant positions in
a lasso-shaped word u as positions i where ui.. = minL(u)ω. Formally, we set

Sign (u) = {k, k + o, k + 2o, k + 3o, . . .}

where k = |minS (u)| and o = |minL(u)|. We first prove that for every lasso-
shaped word u accepted by a TBA, there exists a lasso-shaped accepting run
over u.

Lemma 3. Let A be a TBA. For each lasso-shaped word u ∈ L(A) there exists
a lasso-shaped accepting run over u of the form τ.πω, where

• τ is a path over minS (u).minL(u)i for some i ≥ 0 and
• π is a path over minL(u)k for some k > 0.

Proof. Let u ∈ L(A) be a lasso-shaped word and ρ = (q0, u0, q1)(q1, u1, q2) . . . be
an accepting run of A over this word. We focus on states of this run at significant
positions, i.e., states qk, qk+o, qk+2o, . . . where k = |minS (u)| and o = |minL(u)|.
The run and its states at significant positions are depicted in Figure 2. Since A
has finitely many states, there are positions p1, p2 ∈ Sign (u) such that p1 < p2,
qp1 = qp2 , and path ρp1,p2 contains an accepting transition. We set τ = ρ0,p1 and
π = ρp1,p2

. As p1, p2 are significant positions, τ is a path over minS (u).minL(u)i

for some i ≥ 0 and π is a path over minL(u)k for some k > 0. As qp1
= qp2

and
π contains an accepting transition, τ.πω is an accepting run over u. ⊓⊔

              M. Jankola and J. Strejček238



q0 q1 . . . qk . . . qk+o . . . qk+2o . . .
u0 u1 uk−1 uk uk+o−1 uk+o uk+2o−1 uk+2o

minS (u) minL(u) minL(u) minL(u)

states at significant positions

Fig. 2. A run over a lasso-shaped word u = u0u1 . . . with states at significant positions
typeset in red.

Once we know that each lasso-shaped word u ∈ L(A) has a lasso-shaped
accepting run, we also know that there exists at least one accepting lasso-shaped
run ρ over u with the minimal size |minSL(ρ)|. We call such runs minimal. For
example, consider the word b.(abc)ω accepted by the automaton in Figure 3.
The minimal run for this word is τ.πω with the following minimal stem τ and
minimal loop π.

τ = p0
b−→ p1

a−→ p2
b−→ p3

c−→ p4
a−→ r0

π = r0
b−→ r1

c−→ r2
a−→ r2

b−→ r3
c−→ r4

a−→ r5
b−→ r4

c−−→ r6
a−→ r0

Now we formulate and prove Lemma 4, which says that each minimal run
ρ has a specific property regarding repetition of states. The property considers
states of ρ at the positions at least |minS (u)| and less than |minSL(ρ)|. The
property says that there cannot be the same state twice on the considered posi-
tions from which the same suffix of u is read. It can be illustrated on the minimal
run τ.πω mentioned above. If we write the states of this run such that the states
reading the same suffix of u are vertically aligned (see Table 1), the considered
states in each column are pairwise different.

Lemma 4. Let A be a TBA and ρ = (q0, u0, q1)(q1, u1, q2) . . . be a minimal run
over a lasso-shaped word u ∈ L(A). For each |minS (u)| ≤ m < l < |minSL(ρ)|
satisfying um.. = ul.. it holds that the states qm and ql are different.

p0 p1 p2 p3 p4 r0

r1 r2

r3

r4 r5r6

b a b c a

b

c

b

a, b, c

c a

b
c

a

Fig. 3. An example of a TBA that is not tight.

                         Tighter Construction of Tight Büchi Automata 239



Table 1. Illustration of the property formulated in Lemma 4. Unconsidered states are
struck through and states at significant positions are typeset in red.

suffices of u : b.(abc)ω (abc)ω bc.(abc)ω c.(abc)ω

states of τ.πω: ✚✚p0 p1 p2 p3
p4 r0 r1
r2 r2 r3
r4 r5 r4
r6 ✚✚r0 ✚✚r1
✚✚r2 ✚✚r2 ✚✚r3
✚✚r4 . . .

Proof. Let A be a TBA and ρ = (q0, u0, q1)(q1, u1, q2) . . . be a minimal run over
a lasso-shaped word u ∈ L(A). For the sake of contradiction, assume that there
are positions |minS (u)| ≤ m < l < |minSL(ρ)| such that um.. = ul.. and qm = ql.
We will show that there exists another lasso-shaped accepting run ρ′ over u of
a smaller size than ρ. This will give us a contradiction with the minimality of ρ.

We start with the case that the path ρm,l from qm to ql contains an accepting
transition. The equation um.. = ul.. implies that um.. = ul.. = (um,l)

ω. Hence,
ρ′ = ρ0,m.(ρm,l)

ω is a lasso-shaped accepting run over u. Moreover, the size of
ρ′ is smaller than the size of ρ as |minSL(ρ′)| ≤ |ρ0,m|+ |ρm,l| = l < |minSL(ρ)|.

Now we solve the case when there is no accepting transition in the path
ρm,l. First, assume that ρm,l is completely included in the minimal stem of
ρ, i.e., m < l ≤ |minS (ρ)|. Then we simply exclude ρm,l from the stem and
get an accepting lasso-shaped run ρ′ over u, which has a shorter stem than
ρ. Second, assume that ρm,l is partly in the minimal stem and partly in the
minimal loop of ρ, i.e., m < |minS (ρ)| < l. Let ρ′ = ρ0,m.ρl.. be the run
ρ without the path ρm,l. Note that ρ′ is again an accepting run over u as
um.. = ul... As ρ is lasso-shaped, we know that ρl.. = (ρl,l+|minL(ρ)|)

ω. Hence,
ρ′ = ρ0,m.(ρl,l+|minL(ρ)|)

ω is also lasso-shaped. Moreover, the size of ρ′ is smaller
than the size of ρ as |minSL(ρ′)| ≤ m + |minL(ρ)| < |minS (ρ)| + |minL(ρ)| =
|minSL(ρ)|. Finally, assume that ρm,l is completely included in the minimal loop
of ρ, i.e., |minS (ρ)| ≤ m < l. Then we exclude ρm,l from the minimal loop of ρ
and get an accepting run ρ′ = ρ0,|minS(ρ)|.(ρ|minS(ρ)|,m.ρl,|minSL(ρ)|)

ω of a smaller
size than ρ. We need to show that ρ′ accepts u. The run ρ′ accepts the word
u′ = u0,|minS(ρ)|.(u|minS(ρ)|,m.ul,|minSL(ρ)|)

ω = u0,m.(ul,|minSL(ρ)|.u|minS(ρ)|,m)ω.
As u|minS(ρ)|,m = u|minSL(ρ)|,m+|minL(ρ)|, we get u

′ = u0,m.(ul,m+|minL(ρ)|)
ω. Fur-

ther, um.. = ul.. = um+|minL(ρ)|.. implies um.. = ul.. = (ul,m+|minL(ρ)|)
ω and thus

u′ = u0,m.um.. = u. ⊓⊔

The next lemma shows that each minimal run over u can be denoted as a
lasso-shaped structure build from one path over minS (u) and at most n paths
over minL(u), where n is the number of states in the automaton. For example,
the minimal run τ.πω over b.(abc)ω presented above can be also denoted as

               M. Jankola and J. Strejček240



π0π1π2.(π3π4π5)
ω, where the paths πi are defined as follows.

π0 = p0
b−→ p1 π3 = r2

a−→ r2
b−→ r3

c−→ r4

π1 = p1
a−→ p2

b−→ p3
c−→ p4 π4 = r4

a−→ r5
b−→ r4

c−−→ r6

π2 = p4
a−→ r0

b−→ r1
c−→ r2 π5 = r6

a−→ r0
b−→ r1

c−→ r2

Note that the stem π0π1π2 is not the minimal stem and π3π4π5 is not the minimal
loop of the minimal run τ.πω. Further, note that the paths π1, . . . , π5 start in
the considered states at significant positions, which are typeset in red and not
struck through in Table 1.

Lemma 5. Let A be a TBA with n states and ρ be a minimal run over a lasso-
shaped word u ∈ L(A). Then ρ can be denoted as π0π1 . . . πi.(πi+1πi+2 . . . πk)

ω,
where π0 is a path over minS (u), π1, π2, . . . , πk are paths over minL(u), and
0 ≤ i < k ≤ n. Moreover, |minSL(ρ)| ≤ |π0π1 . . . πk| < |minSL(ρ)| + |minL(u)|
and the last |π0π1 . . . πk| − |minSL(ρ)| transitions of πk and πi are identical.

Proof. Let A be a TBA with n states and ρ = (q0, u0, q1)(q1, u1, q2) . . . be a
minimal run over a lasso-shaped word u ∈ L(A). The lasso shape of ρ implies
that ρ|minS(ρ)|.. = ρ|minSL(ρ)|.. and thus also u|minS(ρ)|.. = u|minSL(ρ)|... This
means that |minL(ρ)| = j · |minL(u)| for some j > 0.

Let i ≥ 0 be the smallest number such that minS (u).minL(u)i is at least as
long as minS (ρ). As |minL(ρ)| = j · |minL(u)|, then k = i + j is the smallest
number such that minS (u).minL(u)k is at least as long as minS (ρ).minL(ρ). Let
p1, p2, . . . , pk, pk+1 be the first k+1 significant positions in u. We set π0 = ρ0,p1

to be the prefix of ρ over minS (u) and, for each 1 ≤ l ≤ k, we set πl = ρpl,pl+1

to be the l-th successive subpart of ρ over minL(u). The definition of k implies
that |minSL(ρ)| ≤ |π0π1 . . . πk| < |minSL(ρ)|+ |minL(u)|.

We have π0π1 . . . πk = minS (ρ).minL(ρ).π′, where π′ is a prefix of minL(ρ)
such that 0 ≤ |π′| = |π0π1 . . . πk| − |minSL(ρ)| < |πk|. As |πi+1πi+2 . . . πk| = j ·
|minL(u)| = |minL(ρ)|, we get that π0π1 . . . πi = minS (ρ).π′ and this means that
πk and πi have the same suffix π′ of the length |π′| = |π0π1 . . . πk| − |minSL(ρ)|.
Note that this holds also in the case when i = 0 because this situation implies
that π0 = minS (ρ) and thus π′ = ε.

As π0π1 . . . πi = minS (ρ).π′ and π0π1 . . . πk = minS (ρ).minL(ρ).π′, we get
that there exists π′′ such that minL(ρ) = π′.π′′. Then

π0π1 . . . πi.(πi+1πi+2 . . . πk)
ω = minS (ρ).π′.(π′′.π′)ω = minS (ρ).(π′.π′′)ω = ρ.

It remains to show that k ≤ n. For each significant position pl such that
1 ≤ l ≤ k, it holds that |minS (u)| ≤ pl < |minSL(ρ)| and upl.. = minL(u)ω.
Lemma 4 says that states of the run ρ at positions p1, p2, . . . , pk are pairwise
different. Hence, k ≤ n. ⊓⊔

                Tighter Construction of Tight Büchi Automata 241



4 Tightening construction and upper bound

Our tightening construction extends a given automaton A with new states and
transitions to make it tight. Let n be the number of states in A. Lemmata 3–5
imply that for each lasso-shaped word u ∈ L(A), there exists an accepting run
ρ = π0π1 . . . πi.(πi+1πi+2 . . . πk)

ω over u where 0 ≤ i < k ≤ n, π0 is a path
over minS (u) and π1, π2, . . . , πk are paths over minL(u). Moreover, the states
at an arbitrary but fixed position in π1, π2, . . . , πk are pairwise different with
the exception of the last x states of πk for some 0 < x ≤ |minL(u)|, which are
identical to the corresponding states in πi.

To accept a lasso-shaped word u ∈ L(A) by a tight run, the extended au-
tomaton nondeterministically guesses the moment when minS (u) is read and the
path π0 terminates. In this moment, it nondeterministically guesses the num-
bers i, k and the initial states of π2, . . . , πk and sets the initial state of π1 to the
current state of the original automaton. When reading minL(u), it simultane-
ously tracks these paths and if there are more than one possible successors in
a path, it chooses one nondeterministically. The extended automaton closes a
cycle over minL(u) via an accepting transition if the tracked paths π1, π2, . . . , πk

form together a path π1π2 . . . πk leading to the first state of πi+1 and such that
πi+1πi+2 . . . πk contains at least one accepting transition.

Note that our tightening construction considers only the cases when k ≥ 2.
If k = 1, then ρ can be denoted as π0.π

ω
1 where π0 is a path over minS (u) and

π1 is a path over minL(u). This means that the run ρ of A is tight and we do
not have to extend the automaton because of the corresponding word u.

Let A be a TBA with n states. The tightening construction adds to A so-
called macrostates. Each macrostate s1...si[si+1...sk]

⋆
j represents

• the current states s1, s2, . . . , sk of paths π1, π2, . . . , πk where 2 ≤ k ≤ n,
• the number 0 ≤ i < k marking the beginning of the loop πi+1πi+2 . . . πk,
• the number i < j ≤ k such that πj is the leftmost path in this loop containing
an accepting transition, and

• the information ⋆ ∈ {◦, •} whether the accepting transition of πj has been
already passed (•) or not (◦).

As the paths π1, π2, . . . , πk are tracked in a parallel and synchronous way, the
states s1, s2, . . . , sk of a macrostate have to be pairwise different with a possible
exception of states si = sk. Formally, we define the set of macrostates built from
the set of states Q as

MQ = {s1...si[si+1...sk]
⋆
j | 2 ≤ k ≤ |Q|, 0 ≤ i < j ≤ k, ⋆ ∈ {◦, •},

s1, . . . , sk ∈ Q where sm = sl implies m = l or m, l ∈ {i, k}}.

Now we are ready to define a tight automaton A† equivalent to A.

Definition 1. Let A = (Q,Σ, δ, I, δF ) be a TBA. We define the TBA A† as
A† = (Q ∪MQ, Σ, δ ∪ δ′, I ∪ I ′, δF ∪ δ′F ), where

           M. Jankola and J. Strejček242



• δ′ = δ1 ∪ δ2 ∪ δ3 consists of three kinds of transitions,
• I ′ = {s1...si[si+1...sk]

◦
j ∈ MQ | s1 ∈ I, si ̸= sk}, and

• δ′F = δ3.

The transitions in δ1 ∪ δ2 ∪ δ3 involve macrostates. They are defined as follows.

δ1 = {q a−→ s1...si[si+1...sk]
◦
j | q a−→ s1 ∈ δ, si ̸= sk}

These transitions are used to nondeterministically choose the numbers i, j, k and
the initial states of π2, π3, . . . , πk when reading the last symbol of minS (u). If
minS (u) = ε, the nondeterministic choice is done by starting the computation
in a macrostate of I ′.

δ2 = {s1...si[si+1...sk]
∗
j

a−→ r1...ri[ri+1...rk]
⋆
j | ∗, ⋆ ∈ {◦, •},

∀ 1 ≤ l ≤ k . if i < l < j then sl
a−→ rl ∈ δ ∖ δF else sl

a−→ rl ∈ δ,

si = sk implies ri = rk, if sj
a−→ rj ∈ δF then ⋆ = • else ⋆ = ∗}

These transitions simultaneously track the progress on the paths π1, π2, . . . , πk

including the information whether πj has already passed an accepting transition

or not. The condition sl
a−→ rl ̸∈ δF for i < l < j enforces that πj is the leftmost

path on the loop π1π2 . . . πk containing an accepting transition.

δ3 = {s1...si[si+1...sk]
⋆
j

a−→ r1...ri[ri+1...rk]
◦
j | ⋆ ∈ {◦, •}, sk

a−→ ri+1 ∈ δ,

∀ 1 ≤ l < k . if i < l < j then sl
a−→ rl+1 ∈ δ ∖ δF else sl

a−→ rl+1 ∈ δ,

ri ̸= rk, ⋆ = • or (j <k ∧ sj
a−→ rj+1 ∈ δF ) or (j= k ∧ sk

a−→ ri+1 ∈ δF )}

These accepting transitions can enclose a cycle on macrostates if the last state of
πl matches the first state of πl+1 for each 1 ≤ l < k, the last state of πk matches
the first state of πi+1, and πj has passed an accepting transition in the past or
during this step.

Theorem 1. Let A = (Q,Σ, δ, I, δF ) be a TBA. Then L(A) = L(A†).

Proof. The inclusion L(A) ⊆ L(A†) is trivial as each accepting run of A is also
an accepting run of A†.

We show that L(A†) ⊆ L(A). Let σ be an accepting run of A† that in-
volves some macrostates. Note that all macrostates in the run have to use the
same numbers i, j, k. We construct an accepting run ρ of A over the same word
as σ. Intuitively, ρ will consistently use the transitions of some element of the
macrostates in σ, starting with the first element. Each time σ uses a transition
of δ3, ρ will switch to the next element and after the k-th element, it will switch
back to the (i+ 1)-st element.

First we define an auxiliary function g that determines for each l ≥ 0 the
element of the macrostate in σ that will be followed by the transition ρl.

g(0) = 1 g(l + 1) =


g(l) if σl ̸∈ δ3

g(l) + 1 if σl ∈ δ3 and g(l) < k

i+ 1 if σl ∈ δ3 and g(l) = k

                Tighter Construction of Tight Büchi Automata 243



Now we construct ρ as follows.

ρl =


σl if σl ∈ δ

q
a−→ s1 if σl = q

a−→ s1...si[si+1...sk]
◦
j ∈ δ1

sg(l)
a−→ rg(l+1) if σl = s1...si[si+1...sk]

∗
j

a−→ r1...ri[ri+1...rk]
⋆
j ∈ δ2 ∪ δ3

One can easily check that ρ is a run of A over the same word as σ. Further,
because σ is accepting, it contains infinitely many transitions of δ3. Hence, there
are infinitely many pairs m, l such that 0 < m < l and

g(m− 1) ̸= j = g(m) = g(m+ 1) = . . . = g(l − 1) ̸= g(l).

The definition of g implies that σm−1,l ∈ δ3.δ
∗
2 .δ3, which means that the j-th

element of some macrostate in σm,l takes an accepting transition in δF . The
construction of ρ guarantees that ρm,l contains the same transition in δF . Hence,
ρ contains infinitely many accepting transitions and it is therefore accepting. ⊓⊔

Theorem 2. Let A = (Q,Σ, δ, I, δF ) be a TBA. Then A† is tight.

Proof. Lemma 3 implies that for each lasso-shaped word u ∈ L(A), there exists
a minimal run of A over u. The validity of the statement then follows directly
from the properties of minimal runs proven in Lemmata 4 and 5 and from the
design of the tightening construction. ⊓⊔

4.1 State-based tight automata

While our tightening construction produces automata with transition-based ac-
ceptance, the previous tightening constructions [13, 23, 24] produce automata
with state-based acceptance. Some applications [27] also work with tight state-
based automata on the input. Therefore, we present a transformation of a tight
TBA to an equivalent BA preserving tightness.

Let A = (Q,Σ, δ, I, δF ) be a tight TBA. An equivalent tight BA B can be
constructed as follows. We define the set of accepting states as duplicates of
states q ∈ Q that have some accepting transition starting in q, i.e., F = {q |
q

a−→ p ∈ δF }. We extend the initial states and the transition relation in such a
way that whenever the original automaton can use an accepting transition from
a state q, the resulting state-based automaton can reach the corresponding state
q and use an analogous transition from it. Formally, the tight BA B equivalent
to A is constructed as B = (Q ∪ F,Σ, δ ∪ δ′, I ∪ I ′, F ), where

• I ′ = {q | q ∈ I} ∩ F and

• δ′ = {p a−→ q | p a−→ q ∈ δ, q ∈ F} ∪ {p a−→ q | p a−→ q ∈ δF , p, q ∈ F} ∪
∪ {p a−→ q | p a−→ q ∈ δF , p ∈ F}.

Each accepting run σ of B can be transformed to an accepting run ρ of A
over the same word simply by replacing each state q ∈ F by the corresponding
state q. Thus we get L(B) ⊆ L(A).

          M. Jankola and J. Strejček244



Further, each accepting run ρ of A can be transformed into an accepting
run σ of B over the same word simply by replacing each state q from which
an accepting transition is taken with the corresponding state q. This implies
L(A) ⊆ L(B). Moreover, when we apply this transformation to a tight run ρ of
A, we obtain a tight run σ of B. To sum up, the automata A and B are equivalent
and if A is tight, then B is also tight.

4.2 Upper bound for tightening

Lemma 6. Let A be a TBA with n states. The number of states in A† is at
most

n + 2 ·
n∑

k=2

n! · k · (k + 1)

(n− k)!
∈ O(n! · n3).

Proof. Let Q be the set of states of A. First we bound the number of macrostates
of the form s1...si[si+1...sk]

⋆
j ∈ MQ for a fixed i, j, k. There are n!

(n−k)! · 2 cases

where all states s1, s2, . . . , sk are pairwise different and n!
(n−(k−1))! ·2 cases where

s1, s2, . . . , sk−1 are pairwise different and sk = si. The factor 2 comes from
⋆ ∈ {◦, •}. Altogether, MQ contains at most 4 · n!

(n−k)! macrostates for fixed

i, j, k. Further, for a fixed k ≥ 2, there are k·(k+1)
2 possible pairs of values of

i, j satisfying 0 ≤ i < j ≤ k. Altogether, the number of macrostates in MQ can

be bounded by
∑n

k=2 4 ·
n!

(n−k)! ·
k·(k+1)

2 = 2 ·
∑n

k=2
n!·k·(k+1)
(n−k)! . When we add the

number n = |Q| of the original states, we get the statement. ⊓⊔

Recall that each BA can be seen as a special case of a TBA. Further, note
that the transformation of tight TBA to tight BA presented in Section 4.1 only
doubles the state space in the worst case. Hence, we also proved that each BA or
TBA with n states can be transformed into an equivalent tight BA with at most
O(n! ·n3) states. This upper bound is tighter (i.e., asymptotically smaller) than

the upper bound 2O(n2) by Ehlers [13] and than the upper bound O((
√
2n)2n)

derived from the Schuppan’s construction [23] as

lim
n→∞

n! · n3

2n2 = lim
n→∞

n! · n3

(
√
2n)2n

= 0.

5 Lower bound for tightening

We present a lower bounds for any transformation of a TBA or a BA to an
equivalent tight TBA or BA.

Lemma 7. For each n > 0, there is a TBA A with n+1 states and an equivalent
BA A′ with 2n+1 states such that for every equivalent tight TBA B with the set
of states Q it holds that

|Q| ≥
n∑

k=1

n!

(n− k)!
.

                         Tighter Construction of Tight Büchi Automata 245



q0 s1

s2

··
·

sk

a

b b

bb

Fig. 4. The construction of the transitions for a given [s1...sk].

q0

r

s

a1, a2

b3b1

b2

a0, a3

b1 b3

b0

Fig. 5. The automaton A for n = 2. The construction considers 4 sequences and each
sequence induced transitions that accept the following words: [s] relates to the word
a0.b

ω
0 , [rs] to a1.b

ω
1 , [r] to a2.b

ω
2 , and [sr] to a3.b

ω
3 .

Proof. Let us fix some n > 0. We construct the TBAA with n+1 states gradually
as follows. The automaton uses states {q0} ∪ Q′ where q0 is the only initial
state and Q′ contains another n states. The construction works with nonempty
sequences [s1...sk] of pairwise different states from Q′. For each [s1...sk], we add
fresh symbols a, b to the alphabet of A and the transitions depicted in Figure 4 to
the transition relation of A. The automaton accepts a.bω with these transitions.
The constructed automaton for n = 2 is in Figure 5. The equivalent BA A′ is
constructed from A by the transformation given in Section 4.1.

Now we assume that B = (Q,Σ, δ, I, δF ) is a tight TBA equivalent to A.
Each [s1...sk] induces the acceptance of a new word a.bω ∈ L(A) = L(B). As

B is tight and |minSL(a.bω)| = 2, there have to be transitions p
a−→ q ∈ δ and

q
b−→ q ∈ δF for some states p ∈ I and q ∈ Q. We prove by contradiction that the

state q has to be different for each [s1...sk].

Let us assume that [s1...sk] and [r1...rk′ ] are different sequences inducing
the acceptance of a.bω and a′.b′ω, respectively, and B accepts these two words

using transitions p
a−→ q, p′

a′

−→ q ∈ δ and q
b−→ q, q

b′−→ q ∈ δF . The situation is
depicted in Figure 6. We distinguish two cases.

1. {s1, . . . , sk} ̸= {r1, . . . , rk′}: Without loss of generality, we assume that
rj ̸∈ {s1, . . . , sk}. As B accepts all words in {a′}.{b, b′}ω, it also accepts the
word a′.b′j−1.bω. However, this word is not in L(A) as A is deterministic and
after reading a′.b′j−1 it gets to state rj which has no transition over b since

        M. Jankola and J. Strejček246



p q p′
a a′

b′b

Fig. 6. Illustration of the assumption. States p and p′ does not have to be different.

since rj ̸∈ {s1, . . . , sk}. Hence, L(B) ̸= L(A) and this is a contradiction with
our assumptions.

2. {s1, . . . , sk} = {r1, . . . , rk′}: As states in each sequence are not repeating,
we get k = k′. We use the fact that the only accepting transitions over b and
b′ in A are those from s1 and r1, respectively. We distinguish two subcases:

(a) s1 = r1: Let j be the smallest number such that sj ̸= rj . As the sets
of states are equal, there exist j < m,m′ ≤ k, such that sm = rj and
rm′ = sj . Consider the run τ.πω of A, where

τ = q0
a−→ s1

b−−→ s2
b−→ . . .

b−→ sj and

π = sj
b−→ sj+1 . . .

b−→ (sm = rj)
b′−→ rj+1

b′−→ . . .
b′−→ (rm′ = sj).

As π contains no accepting transition, the run is not accepting. Since A
is deterministic, it is the only run of A over a.bj−1.(bm−jb′m

′−j)ω. As
the word is accepted by B, we get a contradiction with L(A) = L(B).

(b) s1 ̸= r1: Since the sequences contain the same states, there are some

1 ≤ m, l ≤ k such that s1
b′m−−→ r1 and r1

bl−→ s1. Consider the run τ.πω

of A, where

τ = q0
a−→ s1 and π = s1

b′m−−→ r1
bl−→ s1.

The run is not accepting as the only accepting transitions over b or b′

starting in s1 and r1, respectively, are never taken. Since A is determin-
istic, it is the only run of A over a.(b′mbl)ω. As the word is accepted by
B, we get a contradiction with L(A) = L(B).

To sum up, we proved that every tight TBA B satisfying L(B) = L(A) must have
at least one state for every nonempty sequence [s1...sk]. This directly implies
that the number of its states is at least

∑n
k=1

n!
(n−k)! . ⊓⊔

The previous lemma says that for each n ≥ 2, there exists a TBA with n
states such that the smallest equivalent tight TBA (and thus also the smallest

equivalent tight BA) has at least
∑n−1

k=1
(n−1)!

(n−1−k)! states. This function is clearly

in Ω((n− 1)!) as

lim
n→∞

∑n−1
k=1

(n−1)!
(n−1−k)!

(n− 1)!
= lim

n→∞

n−1∑
k=1

1

(n− 1− k)!
=

∞∑
k=0

1

k!
= e.

                         Tighter Construction of Tight Büchi Automata 247



Note that the difference between the upper bound O(n! · n3) = O((n− 1)! · n4)
given in Lemma 6 and the lower bound Ω((n− 1)!) is only the factor n4.

Analogous arguments lead to the statement that for each odd n ≥ 3 there
exists a BA with n states such that the smallest equivalent tight TBA (and thus
also the smallest equivalent tight BA) has at least Ω(n−1

2 !) states. This lower

bound is above the previously known lower bound 2Ω(n) as for each c it holds

lim
n→∞

2cn

n−1
2 !

= 0.

6 Postprocessing of tight automata

This section shows that a standard automata reduction technique called quoti-
enting [8] preserves tightness. Hence, it can be applied to reduce tight automata
before they are further processed.

Consider an automaton with the set of states Q. A preorder ⊑ ⊆ Q×Q is a
reflexive and transitive relation. Every preorder defines an induced equivalence
≈ = ⊑ ∩ ⊒. Given a state q, we denote by [q] the equivalence class of q with
respect to a fixed equivalence ≈. Furthermore, for every P ⊆ Q, by [P ] we denote
the set [P ] = {[q] | q ∈ P} of all equivalence classes of states in P .

Given a TBA A = (Q,Σ, δ, I, δF ) and a preorder ⊑ on Q with its induced
equivalence ≈, the quotient of A is the TBA A/⊑ = ([Q], Σ, δ′, [I], δ′F ), where

δ′ = {[q] a−→ [p] | q a−→ p ∈ δ} and δ′F = {[q] a−→ [p] | q a−→ p ∈ δF }.
A preorder ⊑ is good for quotienting (GFQ) [8] if L(A) = L(A/⊑) for each

TBA A. There exist many preorders that are GFQ, for example various kinds of
forward or backward simulation or trace inclusion. For their definition and more
information about automata reduction techniques we refer to the comprehensive
paper by Clemente and Mayr [8].

Lemma 8. Let A be a tight TBA and let ⊑ be a GFQ preorder. The automaton
A/⊑ is tight and L(A) = L(A/⊑).

Proof. The language equivalence trivially follows from the definition of GFQ.
Let us consider an arbitrary lasso-shaped word u ∈ L(A). As A is tight, it has an

accepting run ρ = τ.πω where τ has the form q0
minS(u)−−−−−→ l and π has the form

l
minL(u)−−−−−→ l. The definition of quotient implies that for each accepting run of

A there exists an accepting run over the same word through the corresponding
equivalence classes in A/⊑. Hence, A/⊑ has an accepting run ρ′ = τ ′.π′ω where

τ ′ has the form [q0]
minS(u)−−−−−→ [l] and π′ has the form [l]

minL(u)−−−−−→ [l]. It is easy to
see that |minSL(ρ′)| ≤ |minSL(ρ)| and thus ρ′ is tight. Therefore, the automaton
A/⊑ is tight. ⊓⊔

7 Implementation

We have implemented our tightening construction in a tool called Tightener.
The tool is written in Python 3.8.15 and it is built upon the library for LTL and

        M. Jankola and J. Strejček248



ω-automata called Spot [10] in version 2.11.4. Spot provides state-of-the-art LTL
to automata translations, efficient transformations of arbitrary automata in the
HOA format [2] to equivalent TBA, and some automata reduction techniques,
in particular direct simulation [8] that is good for quotienting.

Tightener can take as an input either an LTL formula or an automaton in the
HOA format. The input is internally translated into an equivalent TBA using
the functionality provided by the Spot library. The TBA is then transformed
into a tight TBA or tight state-based BA using the construction presented in
this paper. The tight automaton is then optionally reduced using Spot’s func-
tion reduce direct sim which performs quotienting by direct simulation. The
resulting tight automaton is encoded in DOT or in the HOA format.

Tightener is available in an artifact at Zenodo3 and at the project repository4

under the GNU Public License, version 3 [1]. The tool can be run in the direc-
tory Tightener project using the command python Tightener.py [flags]

"input". The tool supports the following flags.

-h or --help describes the basic usage of the tool.
-f or --formula says that the "input" is an LTL formula (e.g., "Fp1 | Fp2")

on the command line. Tightener uses the same syntax for LTL formulas as
Spot, see https://spot.lre.epita.fr/ioltl.html.

-F or --file says that the "input" is a path to a text file containing an LTL
formula in the format mentioned above.

-a or --HOA says that the "input" is a path to a file containing an automaton
in the HOA format.

-s or --sbacc asks to produce a state-based tight automaton. The tool pro-
duces tight TBA by default.

-r or --reduces applies reductions preserving tightness before the tight au-
tomaton is returned. These reductions are not applied by default.

-o or --outputHOA outputs the tight automaton in the HOA format. By default,
the tool returns a tight automaton in DOT format, which can be easily vi-
sualized, for example at https://dreampuf.github.io/GraphvizOnline/.
Note that the DOT format does not support multiple initial states. Hence, if
the returned automaton has multiple initial states, one of them is marked as
initial and the others are identified by an auxiliary incoming edge labeled
with init.

8 Experimental results

We compare Tightener against the translation of LTL to state-based generalized
Büchi automata introduced by Clarke, Grumberg, and Hamaguchi [6] and called
CGH. Schuppan and Biere [24] proved that the automata produced by CGH
are tight. As far as we know, this is the only existing implementation besides
Tightener that produces tight automata. Still, the comparison is not entirely

3 https://zenodo.org/records/10512677
4 https://gitlab.com/mjankola/tightener/-/tree/main?ref_type=heads

             Tighter Construction of Tight Büchi Automata 249

https://spot.lre.epita.fr/ioltl.html
https://dreampuf.github.io/GraphvizOnline/
https://zenodo.org/records/10512677
https://gitlab.com/mjankola/tightener/-/tree/main?ref_type=heads


Table 2. We compare the tight TBA and BA produced by Tightener against the
GBA constructed by CGH. For both datasets, the table shows the number [#] and the
percentage [%] of cases where the corresponding tool provided a tight automaton with
fewer states than the other tool. Columns avg. size represent the average number of
states of the automata constructed by the corresponding tool. Columns TO indicate
the number of timeouts. Cases where Tightener timed out are counted in the CGH
winning columns, but these cases are excluded from the computation of average size.

642 random formulas 219 formulas from literature

tool [#] [%] avg. size TO [#] [%] avg. size TO

Tightener (TBA) 482 75.1% 20.03 44 179 81.7% 37.00 28
CGH (GBA) 149 23.2% 73.9 0 39 17.8% 161.51 0

Tightener (BA) 381 59.3% 32.54 44 141 64.4% 60.44 28
CGH (GBA) 243 37.8% 73.9 0 72 32.8% 161.51 0

fair as Tightener and CGH have different input and different output: Tightener
can transform any LTL formula or automaton in the HOA format to tight TBA
or BA, CGH accepts only an LTL formula and produces a tight GBA. BA can
be seen as a special case of both TBA and GBA, but the opposite does not
hold. We provided a transformation of tight TBA into equivalent tight BA in
Section 4.1. Each GBA can be transformed into an equivalent BA (this so-
called degeneralization process has been recently significantly improved [3]), but
the transformation increases the number of states and it does not guarantee to
preserve tightness. We therefore compare the size of tight GBA produced by
CGH against the size of tight TBA and tight BA produced by Tightener.

Since CGH produces tight GBA in symbolic representation, we implemented
a process that enumerates automata states from this symbolic representation and
uses the SMT solver Z3 [9] to prune unreachable and contradictory states. In the
end, we count the number of reachable states. This implementation can be also
found in our repository in script Tightener project/CGH implementation.py.

We compare CGH and Tightener on two sets of LTL formulas. The first
dataset contains 642 formulas produced by random formulas generator rand ltl

of Spot’s. These formulas are stored in file ltlDataSet random.txt in our
repository. The second dataset consists of 219 formulas taken from literature
[4,11,14,16–18,21,25,26]. We obtained these formulas from the tool gen ltl of
Spot and they are stored in file ltlDataSet pattern.txt in our repository.

We ran the experiments on a machine with an AMD Ryzen 7 PRO 4750U
processor and 32 GB of RAM. We set 15 minutes timeout limit per task with
no explicit memory limit.

Each formula has been translated by Tightener to a tight TBA and to a tight
BA with reduction switched on in both cases, and by CGH to a tight GBA.
Table 2 summarizes the cummulative results for the two datasets. One can see
that Tightener constructs smaller automata in substantially more cases than

         M. Jankola and J. Strejček250



Fig. 7. The comparison of the number of states of the tight automata produced by
Tightener and CGH for individual LTL formulas of each dataset. In the top row,
Tightener produces tight TBA. In the bottom row, it produces tight BA. CGH always
produces GBA. The red crosses display the cases where Tightener reaches a time limit.

CGH in both considered datasets and with both settings. However, Tightener
run out of time in some cases.

The scatter plots in Figure 7 compare the number of states of the tight au-
tomata constructed by CGH and Tightener for individual LTL formulas in each
dataset. Since some of the produced automata are rather large, we use logarith-
mic scale in all of the scatter plots. The graphs clearly show that Tightener often
produces dramatically smaller tight automata than CGH.

8.1 Experiments on formulas for robot action planning

Tumova et al. [27] introduced a technique that generates control strategies for
a robot planning problem. They represent the strategies as lasso-shaped words,
where alphabet is a set of locations and possible actions in the respective location.
Their approach takes advantage of tight BA to obtain the strategies with the
shortest length of the stem and the loop.

The paper contains three LTL formulas representing meaningful properties.
Table 3 compares the sizes of tight BA obtained from Tightener and tight GBA

                        Tighter Construction of Tight Büchi Automata 251



Table 3. Sizes of tight automata constructed from LTL formulas taken from the study
of Tumova et al. [27]. TO indicates a timeout.

number of states

Tightener CGH
formula (BA) (GBA)

GF(R4 ∧ grab ∧ F(R2 ∧ drop)) ∧ GFlight up 38 224

GF(((R4 ∧ grab) ∨ (R5 ∧ grab)) ∧ F(R2 ∧ drop)) ∧ GFlight up 43 317

G(R1 →
∧

i ̸=1 ¬Ri U R2 ∧ (
∧

i ̸=2 ¬Ri U R3 ∧
2 TO(

∧
i ̸=3 ¬Ri U (R6 ∧ drop) ∧

∧
i ̸=6 ¬Ri U R5 ∧

(
∧

i ̸=5 ¬Ri U (R4 ∧ drop) ∧ (
∧

i ̸=4 ¬Ri U R1))))) ∧ GFlight up

from CGH on these formulas. For two of the formulas, Tightener constructed
dramatically smaller automaton than CGH. On the third formula, Tightener
produced a tight BA with 2 states while CGH ran out of time.

9 Conclusions

In this paper, we presented a new approach for converting TBA or BA to tight
TBA or BA. We proved that the asymptotical rise of the state space is O(n! ·n3),
which is the smallest upper bound so far reached. Further, we proved the highest
lower bounds on the rise of the state-space of tight automata so far reached,
making the theoretical construction of tight automata significantly tighter. We
also showed that the good-for-quotienting simulations can be used to reduce
automata while preserving tightness.

Our tool Tightener opens new ways to construct tight automata as it is
the first tool that can create tight automata from arbitrary automata in the
HOA format or from LTL formulas. We compared Tightener against the LTL to
tight automata translation CGH on two datasets of LTL formulas. Experiments
show that Tightener constructs smaller tight automata in substantially more
cases. Moreover, we compared the two tools on three formulas for which a tight
automaton was explicitly desired before. In all three cases, Tightener provided
a dramatically better result.

Funding Statement. Until June 2023, M. Jankola was supported by the Euro-
pean Union’s Horizon Europe program under the grant agreement No. 101087529
and since July 2023 by the Deutsche Forschungsgemeinschaft (DFG) – 378803395
(ConVeY). J. Strejček was supported by the Czech Science Foundation grant
GA23-06506S.

           M. Jankola and J. Strejček252

https://gepris.dfg.de/gepris/projekt/378803395


References

1. GNU general public license, version 3. http://www.gnu.org/licenses/gpl.html,
June 2007. Last retrieved 2020-01-01.

2. Tomáš Babiak, Frantǐsek Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan
Křet́ınský, David Müller, David Parker, and Jan Strejček. The Hanoi omega-
automata format. In Daniel Kroening and Corina S. Pasareanu, editors, Com-
puter Aided Verification - 27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lec-
ture Notes in Computer Science, pages 479–486. Springer, 2015. See also http:

//adl.github.io/hoaf/.
3. Antonio Casares, Alexandre Duret-Lutz, Klara J. Meyer, Florian Renkin, and Sa-

lomon Sickert. Practical applications of the alternating cycle decomposition. In
Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II, volume
13244 of Lecture Notes in Computer Science, pages 99–117. Springer, 2022.

4. Jacek Cichoń, Adam Czubak, and Andrzej Jasiński. Minimal Büchi automata
for certain classes of LTL formulas. In Proceedings of the Fourth International
Conference on Dependability of Computer Systems (DEPCOS’09), pages 17–24.
IEEE Computer Society, 2009.

5. Alessandro Cimatti, Edmund Clarke, Enrico Giunchuglia, Fausto Giunchiglia,
Marco Pistore, Macro Roveri, Roberto Sebastiani, and Armando Tacchella.
Nusmv 2: An opensource tool for symbolic model checking. In E. Brinksma and
K. Guldstrand Larsen, editors, Proceedings of the 14th International Conference on
Computer Aided Verification (CAV’02), volume 2404 of Lecture Notes in Computer
Science, pages 359–364, Copenhagen, Denmark, July 2002. Springer-Verlag.

6. Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another look at
LTL model checking. In David L. Dill, editor, Computer Aided Verification, 6th
International Conference, CAV ’94, Stanford, California, USA, June 21-23, 1994,
Proceedings, volume 818 of Lecture Notes in Computer Science, pages 415–427.
Springer, 1994.

7. Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan, and Xudong Zhao.
Efficient generation of counterexamples and witness in symbolic model checking.
In Proceedings of the 32nd ACM/IEEE Design Automation Conference (DAC’95),
pages 427–432, San Francisco, California, USA, June 1995. ACM Press.

8. Lorenzo Clemente and Richard Mayr. Efficient reduction of nondeterministic au-
tomata with application to language inclusion testing. Log. Methods Comput. Sci.,
15(1), 2019.

9. Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer,
2008.

10. Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin,
Alexandre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine
Martin, Jérôme Dubois, Clément Gillard, and Henrich Lauko. From Spot 2.0 to

                Tighter Construction of Tight Büchi Automata 253

http://www.gnu.org/licenses/gpl.html
http://adl.github.io/hoaf/
http://adl.github.io/hoaf/


Spot 2.10: What’s new? In Sharon Shoham and Yakir Vizel, editors, Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, Au-
gust 7-10, 2022, Proceedings, Part II, volume 13372 of Lecture Notes in Computer
Science, pages 174–187. Springer, 2022.

11. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property spec-
ification patterns for finite-state verification. In Mark Ardis, editor, Proceedings
of the 2nd Workshop on Formal Methods in Software Practice (FMSP’98), pages
7–15, New York, March 1998. ACM Press.

12. Rüdiger Ehlers. Short witnesses and accepting lassos in ω-automata. In Adrian-
Horia Dediu, Henning Fernau, and Carlos Mart́ın-Vide, editors, Language and Au-
tomata Theory and Applications, 4th International Conference, LATA 2010, Trier,
Germany, May 24-28, 2010. Proceedings, volume 6031 of Lecture Notes in Com-
puter Science, pages 261–272. Springer, 2010.

13. Rüdiger Ehlers. How hard is finding shortest counter-example lassos in model
checking? In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, ed-
itors, Formal Methods - The Next 30 Years - Third World Congress, FM 2019,
Porto, Portugal, October 7-11, 2019, Proceedings, volume 11800 of Lecture Notes
in Computer Science, pages 245–261. Springer, 2019.

14. Kousha Etessami and Gerard J. Holzmann. Optimizing Büchi automata. In
C. Palamidessi, editor, Proceedings of the 11th International Conference on Con-
currency Theory (Concur’00), volume 1877 of Lecture Notes in Computer Science,
pages 153–167, Pennsylvania, USA, 2000. Springer-Verlag.

15. Paul Gastin, Pierre Moro, and Marc Zeitoun. Minimization of counterexamples in
SPIN. In S. Graf and L. Mounier, editors, Proceedings of the 11th International
SPIN Workshop on Model Checking of Software (SPIN’04), volume 2989 of Lecture
Notes in Computer Science, pages 92–108, April 2004.

16. Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In
G. Berry, H. Comon, and A. Finkel, editors, Proceedings of the 13th International
Conference on Computer Aided Verification (CAV’01), volume 2102 of Lecture
Notes in Computer Science, pages 53–65, Paris, France, 2001. Springer-Verlag.

17. Jaco Geldenhuys and Henri Hansen. Larger automata and less work for LTL model
checking. In Proceedings of the 13th International SPIN Workshop (SPIN’06),
volume 3925 of Lecture Notes in Computer Science, pages 53–70. Springer, 2006.

18. Jan Holeček, Tomáš Kratochv́ıla, Vojtěch Řehák, David Šafránek, and Pavel
Šimeček. Verification results in Liberouter project. Technical Report 03/2004,
CESNET Technical Report, 2004.

19. Orna Kupferman and Sarai Sheinvald-Faragy. Finding shortest witnesses to the
nonemptiness of automata on infinite words. In Christel Baier and Holger Her-
manns, editors, CONCUR 2006 - Concurrency Theory, 17th International Confer-
ence, CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings, volume
4137 of Lecture Notes in Computer Science, pages 492–508. Springer, 2006.

20. Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. In
N. Halbwachs and D. Peled, editors, Proceedinfs of the 11th International Confer-
ence on Computer Aided Verification (CAV’99), volume 1633 of Lecture Notes in
Computer Science, pages 172–183. Springer-Verlag, 1999.

21. Radek Pelánek. BEEM: benchmarks for explicit model checkers. In Proceedings of
the 14th international SPIN conference on Model checking software, Lecture Notes
in Computer Science, pages 263–267. Springer-Verlag, 2007.

22. Kavita Ravi, Roderick Bloem, and Fabio Somenzi. A comparative study of sym-
bolic algorithms for the computation of fair cycles. In J. W. O’Leary M. D. Aa-
gaard, editor, Proceedings of the 4th International Conference on Formal Methods

           M. Jankola and J. Strejček254



in Computer Aided Design (FMCAD’00), volume 2517 of Lecture Notes in Com-
puter Science, pages 143–160. Springer-Verlag, 2000.

23. Viktor Schuppan. Liveness checking as safety checking to find shortest counterex-
amples to linear time properties. PhD thesis, ETH Zurich, 2006.

24. Viktor Schuppan and Armin Biere. Shortest counterexamples for symbolic model
checking of LTL with past. In Nicolas Halbwachs and Lenore D. Zuck, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 11th International
Conference, TACAS 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005,
Proceedings, volume 3440 of Lecture Notes in Computer Science, pages 493–509.
Springer, 2005.

25. Fabio Somenzi and Roderick Bloem. Efficient Büchi automata for LTL formulæ. In
Proceedings of the 12th International Conference on Computer Aided Verification
(CAV’00), volume 1855 of Lecture Notes in Computer Science, pages 247–263,
Chicago, Illinois, USA, 2000. Springer-Verlag.

26. Deian Tabakov and Moshe Y. Vardi. Optimized temporal monitors for SystemC. In
Proceedings of the 1st International Conference on Runtime Verification (RV’10),
volume 6418 of Lecture Notes in Computer Science, pages 436–451. Springer,
November 2010.

27. Jana Tumova, Alejandro Marzinotto, Dimos V. Dimarogonas, and Danica Kragic.
Maximally satisfying LTL action planning. In 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Chicago, IL, USA, September 14-18,
2014, pages 1503–1510. IEEE, 2014.

                         Tighter Construction of Tight Büchi Automata

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

255

http://creativecommons.org/licenses/by/4.0/


Synthesis with Privacy Against an Observer⋆

Abstract. We study automatic synthesis of systems that interact with
their environment and maintain privacy against an observer to the inter-
action. The system and the environment interact via sets I and O of input
and output signals. The input to the synthesis problem contains, in ad-
dition to a specification, also a list of secrets, a function cost : I∪O → N,
which maps each signal to the cost of hiding it, and a bound b ∈ N on
the budget that the system may use for hiding of signals. The desired
output is an (I/O)-transducer T and a set H ⊆ I ∪ O of signals that
respects the bound on the budget, thus

∑
s∈H cost(s) ≤ b, such that for

every possible interaction of T , the generated computation satisfies the
specification, yet an observer from which the signals in H are hidden,
cannot evaluate the secrets.
We first show that the complexity of the problem is 2EXPTIME-complete
for specifications and secrets in LTL, thus it is not harder than synthesis
with no privacy requirements. We then analyze the complexity of the
problem more carefully, isolating the two aspects that do not exist in
traditional synthesis, namely the need to hide the value of the secrets
and the need to choose the set H. We do this by studying settings in
which traditional synthesis can be solved in polynomial time – when the
specification formalism is deterministic automata and when the system
is closed, and show that each of the two aspects involves an exponential
blow-up in the complexity. We continue and study bounded synthesis with
privacy, where the input also includes a bound on the size of the synthe-
sized transducer, as well as a variant of the problem in which the observer
has knowledge about the specification, which can be helpful in evaluating
the secrets. We study the effect of both variants on the different aspects
of the problem and provide algorithms with a tight complexity.

1 Introduction

Synthesis is the automated construction of correct systems from their specifica-
tions [2]. While synthesized systems are correct, there is no guarantee about their
quality. Since designers will be willing to give up manual design only after being
convinced that the automatic process replacing it generates systems of compa-
rable quality, it is extremely important to develop and study quality measures
for automatically-synthesized systems. An important quality measure is privacy:

⋆ This research is supported by the Israel Science Foundation, Grant 2357/19, and the
European Research Council, Advanced Grant ADVANSYNT.

Orna Kupferman , Ofer Leshkowitz ,
and Naama Shamash Halevy

(B)

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 25

9

–277, 2024.
https://doi.org/10.1007/978-3-031-57228-9_13

School of Computer Science and Engineering, The Hebrew University, Jerusalem,
Israel

ofer.leshkowitz@mail.huji.ac.il

(B)

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57228-9_13&domain=pdf
http://orcid.org/0000-0003-4699-6117
http://orcid.org/0000-0001-9225-2325
http://orcid.org/0009-0009-4736-6708


making sure that the system and its environment do not reveal information they
prefer to keep private. Privacy is a vivid research area in Theoretical Computer
Science. There, the notion of differential privacy is used for formalizing when an
algorithm maintains privacy. Essentially, an algorithm is differentially private if
by observing its output, one cannot tell if a particular individual’s information
is used in the computation [9,11]. Another related notion is obfuscation in sys-
tem development, where we aim to develop systems whose internal operation is
hidden [1,15]. Obfuscation has been mainly studied in the context of software,
where it has exciting connections with cryptography [1,15].

In the setting of automated synthesis in formal methods, a very basic notion
of privacy has been studied by means of synthesis with incomplete information
[27,21,7]. There, the system should satisfy its specification eventhough it only has
a partial view of the environment. Lifting differential privacy to formal methods,
researchers have introduced the temporal logic HyperLTL, which extends LTL
with explicit trace quantification [8]. Such a quantification can relate computa-
tions that differ only in non-observable elements, and can be used for specifying
that computations with the same observable input have the same observable
output. The synthesis problem of HyperLTL is undecidable, yet is decidable for
the fragment with a single existential quantifier, which can specify interesting
properties [13]. In [18], the authors suggested a general framework for automated
synthesis of privacy-preserving reactive systems. In their framework, the input
to the synthesis problem includes, in addition to the specification, also secrets.
During its interaction with the environment, the system may keep private some
of the assignments to the output signals, and it directs the environment which
assignments to the input signals it should keep private. Consequently, the satis-
faction value of the specification and secrets may become unknown. The goal is
to synthesize a system that satisfies the specification yet keeps the value of the
secrets unknown. Finally, lifting obfuscation to formal methods, researchers have
studied the synthesis of obfuscation policies for temporal specifications. In [32],
an obfuscation mechanism is based on edit functions that alter the output of the
system, aiming to make it impossible for an observer to distinguish between se-
cret and non-secret behaviors. In [10], the goal is to synthesize a control function
that directs the user which actions to disable, so that the observed sequence of
actions would not disclose a secret behavior.

In this paper we continue to study privacy-preserving reactive synthesis. As
in [18], our setting is based on augmenting the specification with secrets whose
satisfaction value should remain unknown. Unlike [18], the system and the en-
vironment have complete information about the assignments to the input and
output signals, and the goal is to hide the secrets from a third party, and to do
so by hiding the assignment to some of the signals throughout the interaction.
As an example, consider a system that directs a robot patrolling a warehouse
storage. Typical specifications for the system require it to direct the robot so
that it eventually reaches the shelves of requested items, it never runs out of
energy, etc. An observer to the interaction between the system and the robot
may infer properties we may want to keep private, like dependencies between

Synthesis with Privacy Against an Observer 257



customers and shelves visited, locations of battery docking stations, etc. If we
want to prevent the observer from inferring these properties (a.k.a,. the secrets),
we have to hide the interaction from it. Different effort should be made in order
to hide different components of the interaction (alarm sound, content of shelves,
etc.). Our framework synthesizes a system that realizes the specification without
the secrets being revealed, subject to restrictions on hiding of signals. As another
example, consider a scheduler that should grant access to a joint resource. The
scheduler should maintain mutual exclusion (grants are not given to different
users simultaneously) and non-starvation (all requests are granted), while hid-
ing details like waiting time or priority to specific users. In Examples 1 and 2,
we describe in detail the application of our framework for the synthesis of such a
scheduler, as well as its application in the synthesis of a robot that paints parts
of manufactured pieces. The robot should satisfy some requirements about the
generated pattern of colors while hiding other features of the pattern.

Formally, we consider a reactive system that interacts with its environments
via sets I and O of input and output signals. At each moment in time, the
system reads a truth assignment, generated by the environment, to the signals
in I, and it generates a truth assignment to the signals in O. The interaction
between the system and its environment generates a computation. The system
realizes a specification φ if all its computations satisfy φ [25]. We introduce
and study the problem of synthesis with privacy in the presence of an observer.
Given a specification φ, and secrets ψ1, . . . , ψk over I ∪O, our goal is to return,
in addition to a system that realizes the specification φ, also a set H ⊆ I ∪ O
of hidden signals, such that the satisfaction value of the secrets ψ1, . . . , ψk is
unknown to an observer that does not know the truth values of the signals in
H. Thus, secrets are evaluated according to a three-valued semantics. The use of
secrets enables us to hide behaviors, rather than just signals. 1 Obviously, hiding
all signals guarantees that the satisfaction value of every secret is unknown.
Hiding of signals, however, is not always possible or involves some cost. We
formalize this by adding to the setting a function cost : I ∪O → N, which maps
each signal to the cost of hiding its value, and a bound b ∈ N on the budget
that the system may use for hiding of signals. The set H of hidden signals has
to respect the bound, thus

∑
s∈H cost(s) ≤ b.

In some cases, it is desirable to hide the truth value of a secret only when
some condition holds. For example, we may require to hide the content of selves
only in some sections of the warehouse. We extend our framework to conditional
secrets: pairs of the form ⟨θ, ψ⟩, where the satisfaction value of the secret ψ
should be hidden from the observer only when the trigger θ holds. In particular,
when θ = ψ, we require to hide the secret only when it holds. For example, we
may require to hide an unfair scheduling policy only when it is applied. Note
that a conditional secret ⟨θ, ψ⟩ is not equivalent to a secret θ → ψ or θ → ¬ψ,
and that the synthesized system may violate the trigger, circumventing the need

1 Hiding of signals is a special case of our framework. Specifically, hiding of a signal p
can be done with the secrets Fp and F¬p.

258 O. Kupferman et al.



to hide the secret. For example, by synthesizing a fair scheduler, the designer
circumvents the need to hide an unfair policy.

We show that synthesis with privacy is 2EXPTIME-complete for specifica-
tions and secrets in LTL. Essentially, once the set H of hidden signals is deter-
mined, we can compose an automaton for the specification with automata that
verify, for each secret, that the assignments to the signals in (I ∪ O) \ H can
be completed both in a way that satisfies the secret and in a way that does not
satisfy it. A similar algorithm works for conditional secrets.

While the complexity of our algorithm is not higher than that of LTL synthe-
sis with no privacy, it would be misleading to conclude that handling of privacy
involves no increase in the complexity. The 2EXPTIME complexity follows from
the need to translate LTL specifications to deterministic automata on infinite
words. Such a translation involves a doubly-exponential blow-up [22,20], which
possibly dominates other computational tasks of the algorithm. In particular,
two aspects of synthesis with privacy that do not exist in usual synthesis are a
need to go over all possible choices of signals to hide, and a need to go over all
assignments to the hidden signals.

Our main technical contribution is a finer complexity analysis of the prob-
lem, which reveals that each of the two aspects above involves an exponential
complexity: the first in the number of signals and the second in the size of the
secret. We start with the need to go over all assignments of hidden signals and
show that even when the specification is T, the set H of hidden signals is given,
and there is only one secret, given by a deterministic Büchi automaton, synthesis
with privacy is EXPTIME-complete. This is exponentially higher than synthesis
of deterministic Büchi automata, which can be solved in polynomial time. We
continue to the need to go over all possible choices of H. For that, we focus on
the closed setting, namely when I = ∅, and the case the specification and secrets
are given by deterministic automata. We show that while synthesis with privacy
can be then solved in polynomial time for a given set H, it is NP-complete when
H is not given, even when the function cost is uniform.

We continue and study two variants of the problem: bounded synthesis and
knowledgeable observer. One way for coping with the 2EXPTIME complexity of
LTL synthesis, which is carried over to a doubly-exponential lower bound on
the size of the generated system [28], is bounded synthesis. There, the input
to the problem includes also a bound on the size of the system [30,12,19]. In
a setting with no privacy, the bound reduces the complexity of LTL synthesis
to PSPACE, as one can go over all candidate systems. We study bounded syn-
thesis with privacy and show that privacy makes the problem much harder: it
is EXPSPACE-complete when the specification and secrets are given by LTL
formulas, and is PSPACE-complete when they are given by deterministic parity
(or Büchi) automata.

Finally, recall that a system keeps a secret ψ private if an observer cannot
reveal the truth value of ψ: every observable computation can be completed both
to a computation that satisfies ψ and to a computation that does not satisfy ψ.
We study a setting in which the observer knows the specification φ of the system.

Synthesis with Privacy Against an Observer 259



Consequently, the observer knows that only completions that satisfy φ should
be taken into account. If, for example, φ → ψ, then ψ cannot be kept private.
We describe an algorithm for this variant of the problem and analyze the way
knowledge of the specification influences the complexity. In particular, we show
that the problem becomes EXPTIME-complete even when the specification is
given by a deterministic Büchi automaton and the secrets are of a fixed size.

Due to the lack of space, some examples and proofs are omitted and can be
found in the full version, in the authors’ URLs.

2 Preliminaries

2.1 Synthesis

For a finite nonempty alphabet Σ, an infinite word w = σ0 · σ1 · . . . ∈ Σω is an
infinite sequence of letters from Σ. A language L ⊆ Σω is a set of infinite words.

Let I and O be disjoint finite sets of input and output signals, respectively.
We consider the alphabet 2I∪O of truth assignments to the signals in I ∪ O.
Then, a languages L ⊆ (2I∪O)ω can be viewed as a specification, and the truth
value of L in a computation w ∈ (2I∪O)ω is T if w ∈ L, and is F otherwise.

An (I/O)-transducer is a tuple T = ⟨I,O, S, s0, η, τ⟩, where S is a finite set
of states, s0 ∈ S is an initial state, η : S × 2I → S is a transition function, and
τ : S → 2O is a labeling function. We extend the transition function η to words
in (2I)∗ in the expected way, thus η∗ : S × (2I)∗ → S is such that for all s ∈ S,
xI ∈ (2I)∗, and i ∈ 2I , we have that η∗(s, ϵ) = s, and η∗(s, xI ·i) = η(η∗(s, xI), i).
For a word wI = i0 · i1 · i2 · . . . ∈ (2I)ω, we define the computation of T on wI
to be the word T (wI) = (i0 ∪ o0) · (i1 ∪ o1) · . . . ∈ (2I∪O)ω, where for all j ≥ 0,
we have that oj = τ(η∗(s0, i0 · · · ij)). The language of T , denoted L(T ), is the
set of computations of T , that is L(T ) = {T (wI) : wI ∈ (2I)ω}.

We say that T realizes a language L ⊆ (2I∪O)ω if L(T ) ⊆ L. We say that a
language L ⊆ (2I∪O)ω is realizable if there is an (I/O)-transducer that realizes
it. In the synthesis problem, we are given a specification language L ⊆ (2I∪O)ω

and we have to return an (I/O)-transducer that realizes L or decide that L is
not realizable. The language L is given by an automaton over the alphabet 2I∪O

or a temporal logic formula over I ∪O (see definitions in Section 2.4).

2.2 Synthesis with privacy

In the synthesis with privacy problem, we are given, in addition to the specifica-
tion language Lφ ⊆ (2I∪O)ω, also a secret Lψ ⊆ (2I∪O)ω, which defines a behav-
ior that we want to hide from an observer2. Thus, we seek an (I/O)-transducer
that realizes Lφ without revealing the truth value of Lψ in the generated com-
putations. Keeping the truth value of Lψ secret is done by hiding the truth value
of some signals in I ∪ O. Before we define synthesis with privacy formally, we
first need some notations.

2 See Remark 2.3 for an extension of the setting to multiple and conditional secrets.

260 O. Kupferman et al.



Consider a set H ⊆ I ∪O of hidden signals. Let V = (I ∪O) \ H denote
the set of visible signals. For an assignment σ ∈ 2I∪O, let hideH(σ) ∈ 2V be
the restriction of σ to the visible signals. That is, hideH(σ)(v) = σ(v) for all
v ∈ V . Also, let noiseH(σ) ⊆ 2I∪O be the set of assignments that differ from
σ in assignments to the signals in H. Thus, noiseH(σ) = {σ′ ∈ 2I∪O : σ ∩
V = σ′ ∩ V}. Then, for an infinite computation w = σ0 · σ1 · · · ∈ (2I∪O)ω,
we have that hideH(w) = hideH(σ0) · hideH(σ1) · · · ∈ (2V)ω and noiseH(w) is
the set of all computations that differ from w in assignments to the signals
in H. Formally, σ′

0 · σ′
1 · · · ∈ noiseH(w) iff σ′

i ∈ noiseH(σi) for all i ≥ 0. Note
that for all w,w′ ∈ (2I∪O)ω, it holds that w′ ∈ noiseH(w) iff w ∈ noiseH(w′)
iff hideH(w′) = hideH(w), and that w ∈ noiseH(w) for all w ∈ (2I∪O)ω and
H ⊆ I ∪O. Intuitively, when the signals in H are hidden, then an observer of a
computation w ∈ (2I∪O)ω only knows that the computation is in noiseH(w).

Consider a specification Lφ ⊆ (2I∪O)ω and a secret Lψ ⊆ (2I∪O)ω. For a set
H ⊆ I ∪O of hidden signals, we say that an (I/O)-transducer T H-hides Lψ if
for all words wI ∈ (2I)ω, the truth value of the secret Lψ in the computation
T (wI) cannot be deduced from hideH(T (wI)). Formally, for every wI ∈ (2I)ω,
there exist two computations w+, w− ∈ noiseH(T (wI)), such that w+ ∈ Lψ and
w− /∈ Lψ. We say that T realizes ⟨Lφ, Lψ,H⟩ with privacy if T realizes Lφ and
H-hides Lψ. We say that ⟨Lφ, Lψ,H⟩ is realizable with privacy if there exists an
(I/O)-transducer that realizes ⟨Lφ, Lψ,H⟩ with privacy.

Clearly, hiding is monotone with respect to H, in the sense that the larger
H is, the more likely it is for an (I/O)-transducer T to H-hide Lψ. Indeed, if T
H-hides Lψ, then T H′-hides Lψ for all H′ with H ⊆ H′. In particular, taking
H = I ∪ O, we can hide all non-trivial secrets. Hiding of signals, however, is
not always possible, and may sometimes involve a cost. Formally, we consider
a hiding cost function cost : I ∪ O → N, which maps each signal to the cost of
hiding it, and a hiding budget b ∈ N, which bounds the cost that the system may
use for hiding of signals. The cost of hiding a set H ⊆ I ∪ O of signals is then
cost(H) =

∑
p∈H cost(p), and we say that H respects b if cost(H) ≤ b. Note that

if cost(p) > b, for p ∈ I ∪O, then p cannot be hidden. Also, when cost(p) = 1 for
all p ∈ I ∪O, we say that cost is uniform. Note that then, b bounds the number
of signals we may hide.

Now, we say that ⟨Lφ, Lψ, cost, b⟩ is realizable with privacy if there exists a
set H ⊆ I ∪O such that H respects b and ⟨Lφ, Lψ,H⟩ is realizable with privacy.
Finally, in the synthesis with privacy problem, we are given Lφ, Lψ, cost, and b,
and we have to return a set H ⊆ I∪O that H respects b and an (I/O)-transducer
T that realizes ⟨Lφ, Lψ,H⟩ with privacy, or determine that ⟨Lφ, Lψ, cost, b⟩ is
not realizable with privacy.

2.3 Multiple and conditional secrets

In this section we discuss two natural extensions of our setting. First, often we
need to hide form the observer more than one secret. We extend the definition of
synthesis with privacy to a set of secrets S = {Lψ1 , Lψ2 , . . . , Lψk} in the natural

Synthesis with Privacy Against an Observer 261



way. Thus, an (I/O)-transducer T realizes ⟨φ, S,H⟩ with privacy if it realizes φ
and H-hides Lψi , for all i ∈ [k]. Note that

Then, a conditional secret is a pair ⟨Lθ, Lψ⟩, consisting of a trigger and a
secret. The truth value of the secret should be unknown only in computations
that satisfy the trigger. Formally, for a set H ⊆ I ∪O of hidden signals, we say
that an (I/O)-transducer T H-hides ⟨Lθ, Lψ⟩ if for all input sequences wI ∈
(2I)ω such that noiseH(T (wI)) ⊆ Lθ, the truth value of Lψ in the computation
T (wI) cannot be deduced from hideH(T (wI)), thus there exist two computations
w+, w− ∈ noiseH(T (wI)), such that w+ ∈ Lψ and w− /∈ Lψ. A useful special
case of conditional secrets is when the trigger and the secret coincide, and so we
have to hide the truth value of the secret only if there are computations where
the value of secret is T. Formally, T H-hides ⟨Lψ, Lψ⟩ if for all input sequences
wI ∈ (2I)ω, there exists a computation w− ∈ noiseH(T (wI)) such that w− /∈ Lψ.

Note that unlike a collection of specifications, which can be conjuncted, hid-
ing a set of secrets is not equivalent to hiding their conjunction. Likewise, hiding
a conditional secret is not equivalent to hiding the implication of the secret by the
trigger. Thus, the two variants require an extension of the solution for the case
of a single or unconditional secret. In Remark 2, we describe such an extension.

2.4 Automata and LTL

An automaton on infinite words is A = ⟨Σ,Q, q0, δ, α⟩, where Σ is an alphabet,
Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → 2Q is a
transition function, and α is an acceptance condition, to be defined below. For
states q, s ∈ Q and a letter σ ∈ Σ, we say that s is a σ-successor of q if s ∈ δ(q, σ).
Note that we do not require the transition function to be total. That is, we allow
that δ(q, σ) = ∅. If |δ(q, σ)| ≤ 1 for every state q ∈ Q and letter σ ∈ Σ, then
A is deterministic. For a deterministic automaton A we view δ as a function
δ : Q×Σ → Q∪{⊥}, where ⊥ is a distinguished symbol, and instead of writing
δ(q, σ) = {q} and δ(q, σ) = ∅, we write δ(q, σ) = q and δ(q, σ) = ⊥, respectively.

A run of A on w = σ0 ·σ1 · · · ∈ Σω is an infinite sequence of states r = r0 ·r1 ·
r2 · . . . ∈ Qω, such that r0 = q0, and for all i ≥ 0, we have that ri+1 ∈ δ(ri, σi).
The acceptance condition α determines which runs are “good”. We consider
here the Büchi, co-Büchi, generalized Büchi and parity acceptance conditions.
All conditions refer to the set inf (r) ⊆ Q of states that r traverses infinitely
often. Formally, inf (r) = {q ∈ Q : q = ri for infinitely many i’s}. In generalized
Büchi the acceptance condition is of the form α = {α1, α2, . . . , αk}, for k ≥ 1
and sets αi ⊆ Q. In a generalized Büchi automaton, a run r is accepting if for
all 1 ≤ i ≤ k, we have that inf (r) ∩ αi ̸= ∅. Thus, r visits each of the sets
in α infinitely often. Büchi automata is a special case of its generalized form
with k = 1. That is, a run r is accepting with respect to the Büchi condition
α ⊆ Q, if inf (r) ∩ α ̸= ∅. Dually, in co-Büchi automata, a run r is accepting
if inf (r) ∩ α = ∅. Finally, in a parity automaton, the acceptance condition
α : Q→ {1, ..., k}, for some k ≥ 1, maps states to ranks, and a run r is accepting
if the maximal rank of a state in inf (r) is even. Formally, maxq∈inf (r){α(q)} is
even. A run that is not accepting is rejecting. We refer to the number k in α as

262 O. Kupferman et al.



the index of the automaton. A word w is accepted by A if there is an accepting
run of A on w. The language of A, denoted L(A), is the set of words that A
accepts. Two automata are equivalent if their languages are equivalent.

We denote the different classes of automata by three-letter acronyms in
{D,N} × {B,C,GB,P} × {W}. The first letter stands for the branching mode
of the automaton (deterministic, nondeterministic); the second for the accep-
tance condition type (Büchi, co-Büchi, generalized Büchi, or parity); and the
third indicates we consider automata on words. For example, NBWs are nonde-
terministic Büchi word automata.

LTL is a linear temporal logic used for specifying on-going behaviors of reac-
tive systems [24]. Specifying the behavior of (I/O)-transducers, formulas of LTL
are defined over the set I ∪ O of signals using the usual Boolean operators and
the temporal operators G (“always”) and F (“eventually”), X (“next time”)
and U (“until”). The semantics of LTL is defined with respect to infinite com-
putations in (2I∪O)ω. Thus, each LTL formula φ over I ∪O induces a language
Lφ ⊆ (2I∪O)ω of all computations that satisfy φ.

Recall that the input to the synthesis with privacy problem includes lan-
guages Lφ and Lψ. We sometimes replace Lφ and Lψ in the different notations
with automata or LTL formulas that describe them, thus talk about realizabil-
ity with privacy of ⟨Aφ,Aψ,H⟩ or ⟨φ,ψ,H⟩, for automata Aφ and Aψ, or LTL
formulas φ and ψ.

Example 1. Consider a scheduler that serves two users and grant them with
access to a joint resource. The scheduler can be viewed as an open system with
I = {req1, req2}, with reqi (i ∈ {1, 2}) standing for a request form User i, and
O = {grant1, grant2}, with granti standing for a grant to User i. The system
should satisfy mutual exclusion and non-starvation. Formally, the specification
for the system is φ1∧φ2∧φ3, for φ1 = G((¬grant1)∨(¬grant2)), φ2 = G(req1 →
Fgrant1), and φ3 = G(req2 → Fgrant2).

We may want to hide from an observer of the interaction the exact policy
scheduling of the system. For example,3 the secret ψ1 = ((¬grant1)W req1) ∧
G(grant1 → X((¬grant1)W req1)) reveals whether the system gives User 1 grants
only after requests that have not been granted yet. Indeed, ψ1 specifies that
once a grant to User 1 is given, no more grants are given to her, unless a new
request from her arrives. A similar secret can be specified for User 2. Note
that in order to hide ψ1, it is sufficient to hide only one of the signals req1
or grant1. In fact, this is true even when the observer knows the specification
for the system. Then, the secret ψ2 = G((req1 → grant1 ∨ Xgrant1) ∧ (req2 →
grant2∨Xgrant2)) reveals whether delays in grants are limited to one cycle. Here,
unlike with ψ2, it is not sufficient hiding only a single request or even both.
Indeed, some policies disclose the satisfaction value of ψ2 even when requests
are hidden. For example, a system that simply alternates between grants, thus
outputs {grant1}, {grant2}, {grant1}, {grant2}, . . ., satisfies the specification and
clearly satisfies ψ2 regardless of the users’ requests.

3 The LTL operator W is “weak Until”, thus p1Wp2 = (p1Up2) ∨Gp1.

Synthesis with Privacy Against an Observer 263



Consider now the secret ψ3 = FG(req1 → grant1), which asserts that even-
tually, the requests of User 1 are always granted immediately. A system that
satisfies ψ3 is unfair to User 2. Aiming to hide this unfair behavior, we can use
the conditional secret ⟨ψ3, ψ3⟩, which requires a system that satisfies ψ3 to hide
its satisfaction.

Some computations that satisfy ψ3, however, may still be fair to User 2.
For example, if ψ3 is satisfied vacuously or if only finitely many requests are
sent from User 2, then the behavior specified in ψ3 is fair, and we need not
hide it. Accordingly, we can strengthen the trigger ψ3 and restrict further the
computations in which the satisfaction value of ψ3 should be hidden. Formally,
we replace the trigger ψ3 by a trigger ψ3∧θ, for a behavior θ in which a scheduling
policy that satisfies ψ3 is not fair (and hence, need to be hidden).

Let us consider possible behaviors θ for the conditional secret ⟨ψ3∧θ, ψ3⟩. As
discussed above, behaviors that make ψ3 unfair are GF req1, implying that ψ3

is not satisfied vacuously, and GF req2, implying that the immediate grants to
User 1 are not due to no requests from User 2. Taking θ = (GF req1)∧ (GF req2)
results in a more precise conditional secret.

The trigger θ can be made more precise: taking θ = GF (req1 ∧ req2) still
guarantees no vacuous satisfaction and also asserts that immediate grants to
User 1 are given even when the requests of User 1 arrive together with those
of User 2. In fact, θ = GF (req2 ∧ (¬grant2)U req1)) is even more precise, as
it excludes the possibility that the requests of User 1 arrive before those of
User 2. Note that the secret can be made less restrictive too, for example with
ψ′
3 = FG(req1 → ((¬grant2)Ugrant1)), which specifies that eventually, grants to

User 1 are always given before grants to User 2. ⊓⊔
Example 2. As a different example, consider a paint robot that paints parts of
manufactured pieces. The set O includes 3 signals c0, c1, c2 that encode 8 colors.
The encoding corresponds to the composition of the color from paint in three
different containers. For example, color 101 stands for the robot mixing paints
from containers 0 and 2. The observer does not see the generated pattern, but,
unless we hide it, may see the arm of the robot when it reaches a container.
Accordingly, hiding of signals in O involve different costs.

The user instructs the robot whether to stay with the current color or change
it, thus I = {change}. We seek a system that directs the robot which color to
chose, in a way that satisfies requirements about the generated pattern. For
example, in addition to the requirement to respect the changing instructions
(ξrespect ), the specification φ may require the pattern to start with color 000,
and if there are infinitely many changes, then all colors are used (ξall), yet color
000 repeats between each two colors (ξrepeat ). Formally,

– ξrespect = G((X¬change) ↔ ((c0 ↔ Xc0) ∧ (c1 ↔ Xc1) ∧ (c2 ↔ Xc2))),
– ξall = GF (c̄0 ∧ c̄1 ∧ c̄2) ∧GF (c̄0 ∧ c̄1 ∧ c2) ∧ · · · ∧GF (c0 ∧ c1 ∧ c2),
– ξrepeat = G((c0 ∨ c1 ∨ c2) → X(change → (c̄0 ∧ c̄1 ∧ c̄2))), and
– φ = (c̄0 ∧ c̄1 ∧ c̄2) ∧ ξrespect ∧ ((GF change) → (ξall ∧ ξrepeat )).

We may want to hide from an observer certain patterns that the robot may
produce. For example, the fact color 111 is used only after color 110 (with color

264 O. Kupferman et al.



000 between them), the fact there are colors other than 000 that repeat without
a color different from 000 between them, and more. Note that not all the signals
in O need to be hidden, and that the choice of signals to hide depends on the
secrets as well as the cost of hiding. ⊓⊔

3 Solving Synthesis with Privacy

In this section we describe a solution to the problem of synthesis with privacy
for LTL specifications and show that it is 2EXPTIME-complete, thus not harder
than LTL synthesis. The solution is based on replacing the specification by one
that guarantees the hiding of the secret. For this, we need the following two
constructions.

Lemma 1. Consider a nondeterministic automaton A = ⟨2I∪O, Q, q0, δ, α⟩. Given
a set H ⊆ I ∪ O, there is a transition function δH : Q × 2I∪O → 2Q such
that the nondeterministic automaton AH = ⟨2I∪O, Q, q0, δH, α⟩ is such that
L(AH) = noiseH(L(A)).

Proof. Intuitively, the transition function δH increases the nondeterminism of δ
by guessing an assignment to the signals in H. Formally, for q ∈ Q and σ ∈ 2I∪O,
we define δH(q, σ) =

⋃
σ′∈noiseH(σ) δ(q, σ

′). It is easy to see that a word w′ is

accepted by AH iff there is a word w accepted by A such that w′ ∈ noiseH(w).
⊓⊔

Note that while AH maintains the state space and acceptance condition of
A, it does not preserve determinism. Indeed, unless H = ∅, we have that AH is
nondeterministic even when A is deterministic. Next, in Lemma 2 we construct
automata that accept computations that satisfy the specification and hide the
secret when a given set of signals is hidden.

Lemma 2. Consider two disjoint finite sets I and O, a subset H ⊆ I ∪O, and
ω-regular languages Lφ and Lψ over the alphabet 2I∪O. There exists a DPW
DH
φ,ψ with alphabet 2I∪O that accepts a computation w ∈ (2I∪O)ω iff w ∈ Lφ and

there exist w+, w− ∈ noiseH(w) such that w+ ∈ Lψ and w− ̸∈ Lψ.

1. If Lφ and Lψ are given by LTL formulas φ and ψ, then DH
φ,ψ has 22

O(|φ|+|ψ|)

states and index 2O(|φ|+|ψ|).
2. If Lφ and Lψ are given by DPWs Dφ and Dψ with nφ and nψ states, and

of indices kφ and kψ, then DH
φ,ψ has 2O(nφ·kφ·(nψ·kψ)2 log(nφ·kφ·nψ·kψ)) states

and index O(nφ · kφ · (nψ · kψ)2).

Proof. We start with the case Lφ and Lψ are given by LTL formulas φ and ψ.
Let Aφ, Aψ and A¬ψ be NGBWs for Lφ, Lψ, and L¬ψ. By [31], such NGBWs
exist, and are of size exponential in the corresponding LTL formulas. Let AH

ψ

and AH
¬ψ be the NGBWs for noiseH(L(Aψ)) and noiseH(L(A¬ψ)), respectively,

constructed as in Lemma 1.

Synthesis with Privacy Against an Observer 265



Now, let NH
φ,ψ be an NGBW for the intersection of the three automata Aφ,

AH
ψ , and AH

¬ψ. The NGBW N can be easily defined on top of the product of the

three automata, and hence is of size 2O(|φ|+|ψ|) and index O(|φ|+ |ψ|). Observe
that indeed, a word w ∈ (2I∪O)ω is accepted by NH

φ,ψ iff w |= φ and there exist

w+, w− ∈ noiseH(w) such that w+ |= ψ and w− ̸|= ψ. By [29,23], determinizing

NH
φ,ψ results in a DPW DH

φ,ψ with 22
O(|φ|+|ψ|)

states and index 2O(|φ|+|ψ|), and
we are done.

We continue with the case Lφ and Lψ are given by DPWs Dφ and Dψ. We
first obtain from Dψ two NBWs, Aψ and A¬ψ for Lψ and L¬ψ = (2I∪O)ω \ Lψ
respectively, and also we translate Dφ into an equivalent NBW Aφ. Note that
the NBWs Aψ and A¬ψ can be defined with O(nψ · kψ) states, and that Aφ can
be defined with O(nφ · kφ) states. We then obtain the NBWs AH

ψ and AH
¬ψ by

applying the construction in Lemma 1 on Aψ and A¬ψ, respectively. We then
define an NBW of size O(nφ · kφ · (nψ · kψ)2) for the intersection of the three
NBWs Aφ, AH

ψ , and AH
¬ψ, and finally determinize it into a DPW DH

φ,ψ with

2O(nφ·kφ·(nψkψ)2 log(nφ·kφ·nψkψ)) states and index O(nφ · kφ · (nψkψ)2). ⊓⊔

Remark 1. [The size of DH
φ,ψ for specifications and secrets given by

DBWs] The exponential dependency of DH
φ,ψ in the DPW Dφ in the construc-

tion in Lemma 2 follows from the exponential blow up in DPW intersection [4].
When Lφ is given by a DBW Dφ, we can first construct a DPW for the intersec-
tion of AH

ψ and AH
¬ψ, and only then take its intersection with Dφ. This results

in a DPW DH
φ,ψ of size exponential in Dψ, but only polynomial in Dφ. ⊓⊔

We can now solve synthesis with privacy for LTL formulas.

Theorem 1. [Synthesis with privacy, LTL] Given two disjoint finite sets I
and O, LTL formulas φ and ψ over I ∪ O, a cost function cost : I ∪ O → N,
and a budget b ∈ N, deciding whether ⟨φ,ψ, cost, b⟩ is realizable with privacy is
2EXPTIME-complete.

Proof. We start with the upper bound. Given φ, ψ, cost, and b, we go over all
H ⊆ I ∪O such that cost(H) ≤ b, construct the DPW DH

φ,ψ defined in Lemma 2,

and check whether L(DH
φ,ψ) is realizable. Since realizability of a DPW with n

states and index k can be solved in time at most O(nk) [5], the 2EXPTIME

upper bound follows from DH
φ,ψ having 22

O(|φ|+|ψ|)
states and index 2O(|φ|+|ψ|).

For the lower bound, we describe a reduction from LTL synthesis with no
privacy. Note that adding to a specification φ a secret T or F does not work,
as an observer knows its satisfaction value. It is easy, however, to add a secret
that is independent of the specification. Specifically, given a specification φ over
I ∪ O, let O′ = O ∪ {p}, where p is a fresh signal not in I ∪ O. Consider the
secret ψ = p and a cost function with cost(p) = 0. Clearly, an (I/O)-transducer
T realizes φ iff the (I/O′)-transducer T ′ that agrees with T and always assigns
F to p, realizes φ and {p}-hides ψ. Conversely, for an I/O′-transducer T ′, let
T be the (I/O)-transducer obtained from T by ignoring the assignments to p.

266 O. Kupferman et al.



Clearly, T ′ {p}-hides ψ. In addition, as φ does not refer to p, we have that T ′

realizes φ iff T realizes φ. Thus, φ is realizable iff ⟨φ,ψ, cost, 0⟩ is realizable with
privacy. ⊓⊔

Remark 2. [Solving privacy with multiple and conditional secrets] Recall
that for a set of secrets S = {ψ1, ψ2, . . . , ψk}, an (I/O)-transducer T realizes
⟨φ, S,H⟩ with privacy if it realizes φ and H-hides ψi, for all i ∈ [k]. It is easy
to extend Theorem 1 to the setting of multiple secrets by replacing the DPW
DH
φ,ψ by a DPW obtained by determinizing the product of Aφ with automata

AH
ψi

and AH
¬ψi , for all 1 ≤ i ≤ k.

As for conditional secrets, recall that a computation should satisfy the speci-
fication, and from the point of view of an observer, either the trigger is not trig-
gered, thus π ∈ L(AH

¬θ), or the secret is hidden, thus π ∈ L(AH
ψ ) ∩L(AH

¬ψ). Ac-

cordingly, we need to construct a deterministic automaton for L(Aφ)∩(L(AH
¬θ)∪

L(AH
ψ ) ∪ L(AH

¬ψ)). This can done by determinizing an NBW that is defined on

top of the product of Aφ,AH
¬θ,AH

ψ , and AH
¬ψ. ⊓⊔

While the complexity of our algorithm is not higher than that of LTL syn-
thesis with no privacy, it would be misleading to state that handling of privacy
involves no increase in the complexity. Indeed, the algorithm involved two com-
ponents whose complexity may have been dominated by the doubly exponential
translation of the LTL formulas to deterministic automata:

1. A need to go over all candidate sets H ⊆ I ∪O.
2. A need to check that the generated transducer H-hides the secret.

In the next two sections, we isolate these two components of synthesis with
privacy and show that each of them involves an exponential complexity: the first
in the number of signals and the second in the size of the secret.

3.1 Hiding secrets is hard

The synthesis problem for DBWs can be solved in polynomial time. Indeed, the
problem can be reduced to solving a Büchi game played on top of the specification
automaton. In this section we show that synthesis with privacy is EXPTIME
hard even for a given set H of hidden signals (in fact, even a singleton set H ⊆ I),
a trivial specification, and a secret given by a DBW.

We start by showing that H-hiding is hard even for secrets given by DBWs.

Theorem 2. Given two disjoint finite sets I and O, a DBW Dψ over 2I∪O,
and a set H ⊆ I ∪ O of hidden signals, deciding whether there exists an (I/O)-
transducer that H-hides Dψ is EXPTIME-hard. The problem is EXPTIME-hard
already when H ⊆ I.

Proof. We describe a polynomial-time reduction from NBW realizability, which
is EXPTIME-hard [26,17]. Given an NBW A over 2I∪O, we define a set of signals
H and a DBW Dψ over 2I∪O∪H, such that L(A) is realizable iff there exists an
((I ∪H)/O)-transducer that H-hides L(Dψ).

Synthesis with Privacy Against an Observer 267



LetA = ⟨2I∪O, Q, q0, δ, α⟩. W.l.o.g, we assume that A has a single initial state
and that every word in (2I∪O)ω has at least one rejecting run in A. The latter
can be achieved, for example, by adding a nondeterministic transition from the
initial state to a rejecting sink upon any assignment i∪o ∈ 2I∪O. LetH be a set of
signals that encode Q. Thus, each assignment s ∈ 2H is associated with a single
state in Q. We refer to a letter in 2I∪O∪H as a pair ⟨σ, q⟩ ∈ 2I∪O×Q, and we view
a word in (2I∪O∪H)ω as the combination w ⊕ r, of a word w ∈ (2I∪O)ω with a
word r ∈ Qω. Formally, for w = σ0 ·σ1 · · · ∈ (2I∪O)ω and r = r1 · r2 · · · ∈ Qω, let
w⊕ r = ⟨σ0, r1⟩ · ⟨σ1, r2⟩ · · · ∈ (2I∪O∪H)ω. Then, we define Dψ so that L(Dψ) =
{w ⊕ r ∈ (2I∪O∪H)ω : the sequence q0 · r is an accepting run of A on w}. Note
that since every word in (2I∪O)ω has at least one rejecting run in A, then every
word w ∈ L(A) has at least one word r+ ∈ Qω such that w ⊕ r+ ∈ L(Dψ) and
at least one word r− ∈ Qω such that w ⊕ r− ̸∈ L(Dψ).

Formally, Dψ = ⟨2I∪O∪H, Q, q0, δ
′, α⟩ has the same state space and accep-

tance condition as A, and it uses the Q-component of each letter in order
to resolve the nondeterministic choices in A. Thus, the transitions function
δ′ : Q × 2I∪O∪H → Q is defined as follows. For every state q ∈ Q and letter
⟨σ, s⟩ ∈ 2I∪O∪H, we have that δ′(q, ⟨σ, s⟩) = s if s ∈ δ(q, σ), and otherwise
δ′(q, ⟨σ, s⟩) = ⊥. We prove that indeed L(Dψ) accepts exactly all words w ⊕ r
such that q0 · r is an accepting run of A on w. By definition of δ′, it holds that
r′ is a run of Dψ over w⊕ r iff r′ = q0 · r, and q0 · r is a run of A over w. Hence,
a run r′ = q0 · r of Dψ over w ⊕ r is accepting, iff inf (r′) ∩ α ̸= ∅, iff r′ = q0 · r
is an accepting run of A over w, and we are done. ⊓⊔

Note that in the proof of Theorem 2, we could have defined H so that it
resolves the nondeterminism in A in a more concise way. In particular, if we
assume that the nondeterminism degree in A is at most 2, then a set H of size
1 can resolve the nondeterminizm of δ. Hence, as NBW synthesis is EXPTIME-
hard already for NBWs with branching degree 2 (this follows from the fact
that a bigger branching degree can be decomposed along several transitions),
EXPTIME hardness holds already when hiding a single input signal.

Theorem 3. [Synthesis with privacy, DPWs] Given two disjoint finite sets
I and O, DPWs Dφ and Dψ over 2I∪O, and a set H ⊆ I ∪O of hidden signals,
deciding whether ⟨Dφ,Dψ,H⟩ is realizable with privacy is EXPTIME-complete.
Moreover, hardness holds already when the specification is trivial and the secret
is given by a DBW.

Proof. For the upper bound, we solve the synthesis problem for the DPW DH
φ,ψ

defined in Lemma 2. As specified there, the size of DH
φ,ψ is exponential in the size

and index of both Dφ and Dψ, and its index is polynomial in the size and index
of Dφ and Dψ. Membership in EXPTIME then follows from the complexity of
the synthesis problem for DPWs [2].

For the lower bound, fix a DBW DT such that L(DT) = (2I∪O)ω. Then, it
is easy to see that ⟨DT,Dψ,H⟩ is realizable with privacy iff there is an (I/O)-
transducer that H-hides Dψ. Thus, hardness in EXPTIME follows from Theo-
rem 2. ⊓⊔

268 O. Kupferman et al.



3.2 Searching for a set of signals to hide is hard

Another component in the algorithm that is dominated by the doubly-exponential
translation of LTL to DPWs is the need to go over all subsets of I∪O in a search
for the set H of signals to hide. Trying to isolate the influence of this search, it
is not enough to consider specifications and secrets that are given by DBWs, as
the synthesis with privacy problem is EXPTIME-hard already for a given set
H, and so again, the complexity of the search is dominated by the complexity
of the synthesis problem. Fixing the size of the secret, which is the source of the
exponential complexity, does not not work either, as it also fixes the number of
signals that we may need to hide. We address this challenge by moving to an
even simpler setting for the problem, namely synthesis with privacy of a closed
system. We are going to show that in this setting, the search for H is the only
non-polynomial component in the algorithm.

In the closed setting, all signals are controlled by the system, namely I =
∅. Consequently, each transducer has a single computation, and realizability
coincides with satisfiability. In particular, for I = ∅, we have that ⟨Lφ, Lψ,H⟩
is realizable with privacy iff there exists a word w ∈ Lφ, for which there exist
two words w+, w− ∈ noiseH(w) such that w+ ∈ Lψ and w− /∈ Lψ. We show that
while synthesis with privacy in the closed setting can be solved in polynomial
time for a given set H of hidden signals, it is NP-complete when H is not given,
even when the function cost is uniform.

We start with the case H is given.

Theorem 4. Given a finite set O of output signals, a set H ⊆ O of hidden sig-
nals, and DPWs Dφ and Dψ over 2O, deciding whether ⟨Dφ,Dψ,H⟩ is realizable
with privacy can be done in polynomial time.

Proof. First, we complement Dψ, which results in a DPW D¬ψ of the same
size, and of index k + 1, where k is the index of Dψ. Then, we translate Dφ,
Dψ and D¬ψ into equivalent NBWs Aφ, Aψ and A¬ψ, respectively. All three
NBWs can be defined in size that is polynomial in their deterministic DPW
counterpart. Let AH

ψ and AH
¬ψ be NBWs obtained by applying the construction

in Lemma 1 on Aψ and A¬ψ, respectively. By Lemma 1, the NBWs AH
ψ and

AH
¬ψ have the same number of states as Aψ and A¬ψ respectively. Let N be

an NBW for the intersection L(Aφ) ∩ L(AH
ψ ) ∩ L(AH

¬ψ). Note that N can be

defined with size that is polynomial in Aφ, AH
ψ and AH

¬ψ. Moreover, N accepts a

word w iff w ∈ L(Aφ), and there exist two words w+, w− ∈ noiseH(w) such that
w+ ∈ L(Aψ) and w

− /∈ L(Aψ). Thus, realizability with privacy of ⟨Aφ,Aψ,H⟩
can be reduced to the nonemptiness of N , which can be decided in polynomial
time. ⊓⊔

We continue to the case H should be searched.

Theorem 5. Given a finite set of output signals O, DPWs Aφ and Aψ over
2O, a hiding cost function cost : O → N, and a budget b ∈ N, deciding whether
⟨Aφ,Aψ, cost, b⟩ is realizable with privacy is NP-complete. Moreover, hardness
holds already when the specification and secret are given by DBWs.

Synthesis with Privacy Against an Observer 269



Proof. For the upper bound, a nondeterministic Turing machine can guess a set
H ⊆ O, check whether cost(H) ≤ b, and, by Theorem 4, check in polynomial
time whether ⟨Aφ,Aψ,H⟩ is realizable with privacy.

For the lower bound, we describe a polynomial-time reduction from the
vertex-cover problem. In this problem, we are given an undirected graph G =
⟨V,E⟩ and k ≥ 1, and have to decide whether there is a set S ⊆ V such that
|S| ≤ k and for every edge {v, u} ∈ E, we have that E ∩ S ̸= ∅. Given an
undirected graph G = ⟨V,E⟩, with E = {e1, e2, . . . , em}, we consider a closed
setting with O = V and construct DBWs Aφ and Aψ over the alphabet 2V

such that for all H ⊆ V , it holds that ⟨Aφ,Aψ,H⟩ is realizable with privacy
iff H is a vertex cover of G. Accordingly, there is a vertex cover of size k in G
iff ⟨Aφ,Aψ, cost, k⟩ is realizable with privacy for the uniform cost function that
assigns 1 to all signals in O.

We define Aφ and Aψ over the alphabet 2V as follows. The DBW Aφ is a
2-state DBW that accepts the single word ∅ω. The DBW Aψ = ⟨2V , Q, q1, δ, α⟩
for the secret is defined as follows. The set of states is Q = {q1, q2, . . . , qm+1},
the set of accepting states is α = {qm+1} and the transition function δ is defined
for all S ⊆ O and i ≤ m by, δ(qi, S) = qi+1 if S ∩ ei ̸= ∅, and δ(qi, S) = ⊥
otherwise. Finally, δ(qm+1, S) = qm+1 for all S ⊆ V . That is, words in L(Aψ)
encode vertex covers of G. Indeed, if w = S1 · S2 · S2 · . . . ∈ L(Aψ), then for all
i ≤ m we have that Si ∩ ei ̸= ∅. Thus, if for all i ≤ m we set vi ∈ V to be some
vertex in Si ∩ ei, then we get that {vi, . . . , vm} is a vertex cover of G.

In the full version, we prove that ⟨Aφ,Aψ,H⟩ is realizable with privacy iff H
is a vertex cover of G. ⊓⊔

4 Bounded Synthesis with Privacy

In the general synthesis problem, there is no bound on the size of the generated
system. It is not hard to see that if a system that realizes the specification
exists, then there is also one whose size is bounded by the size of a deterministic
automaton for the specification. For the case of LTL specifications, this gives
a doubly-exponential bound on the size of the generated transducer, which is
known to be tight [28]. In [30], the authors suggested to study bounded synthesis,
where the input to the problem includes also a bound on the size of the system.
The bound not only guarantees the generation of a small system, if it exists,
but also reduces the complexity of the synthesis problem and gives rise to a
symbolic implementation and further extensions [12,19]. In particular, for LTL,
it is easy to see that bounded synthesis can be solved in PSPACE, as one can
go over and model-check all candidate systems. For specifications in DPW, the
bound actually increases the complexity, as going over all candidates results in
an algorithm in NP.

In this section we study bounded synthesis with privacy. As in traditional
synthesis, the hope is to both reduce the complexity of the problem and to end
up with smaller systems. In addition to a specification Lφ, a secret Lψ, and a
set H ⊆ I ∪ O of hidden signals, we are given a bound n ∈ N, represented in

270 O. Kupferman et al.



unary, and we are asked to construct an (I/O)-transducer with at most n states
that realizes ⟨Lφ, Lψ,H⟩ with privacy, or to determine that no such transducer
exists. As in the unbounded case, we can define the problem also with respect
to a hiding cost function and a budget.

4.1 Hiding secrets by a bounded system is hard

We first show that hiding secrets in a bounded setting is hard. In fact, the
complexity of hiding goes beyond the complexity of bounded synthesis with
no privacy already in the case the specification and secrets are given by LTL
formulas. In the case of DBWs and DPWs, hiding is also more complex than
bounded synthesis without privacy, but the difference is not significant.

The key idea in both results is similar to the one in the proof of Theorem 2.
There, we reduce realizability of NBWs to hiding of secrets given by DBWs.
Essentially, we use the hidden signals to imitate nondeterminism. Here, with
a bound on the size of the system, we cannot reduce from realizability, as the
problem has the flavor of model checking many candidates. Accordingly, we
reduce from universality, either in the form of LTL formulas with universally-
quantified atomic propositions, or in the form of language-universality for NBWs.

Theorem 6. Given two disjoint finite sets I and O, an LTL formula ψ over
2I∪O, a set H ⊆ I ∪ O of hidden signals, and a bound n ≥ 1, given in unary,
deciding whether there exists an (I/O)-transducer of size at most n that H-hides
ψ is EXPSPACE-hard. The problem is EXPSPACE-hard already when n = 1.

Theorem 7. Given two disjoint finite sets I and O, a DBW Dψ over 2I∪O,
a set H ⊆ I ∪ O of hidden signals, and a bound n ≥ 1, represented in unary,
deciding whether there exists an (I/O)-transducer of size at most n that H-hides
Dψ is PSPACE-hard. The problem is PSPACE-hard already when n = 1.

4.2 Solving bounded synthesis with privacy

We can now present the tight complexity for bounded synthesis with privacy
for both types of specification formalisms. For the upper bounds, we construct
an NGBW NH

φ,ψ that accepts exactly all words that satisfy φ and hide ψ, and
search for an (I/O)-transducer of size n whose language is contained in that of
NH
φ,ψ.

Theorem 8. [Bounded synthesis with privacy] Given two disjoint finite
sets I and O, specification Lφ and secret Lψ over I∪O, a set H ⊆ I∪O of hidden
signals, and a bound n ∈ N, represented in unary, deciding whether there is an
(I/O)-transducer with at most n states that realizes ⟨Lφ, Lψ,H⟩ with privacy is
PSPACE-complete for Lφ and Lψ given by DPWs, and is EXPSPACE-complete
for Lφ and Lψ given by LTL formulas. Hardness in PSPACE holds already for
DBWs.

Synthesis with Privacy Against an Observer 271



5 When the Observer Knows the Specification

In this section we study a setting in which the observer knows the specification
φ of the system. Technically, it means that when the observer tries to evaluate
the secret, she knows that only computations that satisfy φ should be taken into
account. If, for example, φ → ψ, then ψ cannot be kept private in a setting in
which the observer knows φ. Indeed, the fact φ is realized by the system reveals
that ψ is satisfied. Formally, we say that T realizes ⟨φ,ψ,H⟩ with privacy under
the knowledge of the specification if T realizes φ, and for every wI ∈ (2I)ω, there
exist w+, w− ∈ noiseH(T (wI)) ∩ Lφ such that w+ |= ψ and w− ̸|= ψ. Thus, the
satisfaction of the secret ψ in a computation T (wI) cannot be deduced from the
observable computation hideH(T (wI)) even when the observer knows that φ is
satisfied in T (wI). The adjustment for the definition of the problem with respect
to a hiding cost function and a budget is similar.

We start by showing the analogue of Lemma 2 for the setting in which the
observer knows the specification. The construction is similar to that of Lemma 2,
except that now, the construction of the DPW DH

ψ|φ involves an existential pro-
jection on H also in the automaton for the specification. Accordingly, the size
of the DPW is exponential in both the specification and the secret even in the
case they are given by DBWs.

Lemma 3. Consider two disjoint finite sets I and O, a subset H ⊆ I ∪O, and
regular languages Lφ and Lψ over the alphabet 2I∪O. There exists a DPW DH

ψ|φ
with alphabet 2I∪O that accepts a computation w ∈ (2I∪O)ω iff w ∈ Lφ and there
exist w+, w− ∈ noiseH(w) such that w+ ∈ Lφ ∩ Lψ and w− ∈ Lφ \ Lψ.

1. If Lφ and Lψ are given by LTL formulas φ and ψ, then DH
ψ|φ has 22

O(|φ|+|ψ|)

states and index 2O(|φ|+|ψ|).

2. If Lφ and Lψ are given by DPWs Dφ and Dψ with nφ and nψ states, and of

indices kφ and kψ, then DH
ψ|φ has 2O((nφ·kφ)3·(nψ·kψ)2 log(nφ·kφ·nψ·kψ)) states

and index O((nφ · kφ)3 · (nψ · kψ)2).

Lemma 3 implies that all the asymptotic upper bounds described in Section 3
are valid also in a setting with an observer that knows the specification. Also,
as the lower bounds in Theorems 1 and 3 involve secrets that are independent
of the specification, they are valid for this setting too. Two issues require a
consideration:

1. The need to search for H: the NP-hardness proof in Theorem 5 is no longer
valid, as there, φ→ ¬ψ, and so the satisfaction value of the secret is revealed
in a setting with an observer that knows the specification.

2. The construction in Lemma 3 results in an algorithm that is exponential
also in the specification, even when given by a DBW. On the other hand,
the EXPTIME-hardness proof in Theorem 2 does not imply an exponential
lower bound in the specification.

272 O. Kupferman et al.



Below we address the two issues, providing lower bounds for a setting in which
the observer knows the specification. Matching upper bounds follow the same
considerations in Theorems 3 and 5, where DH

ψ|φ replaces DH
φ,ψ. We start with a

variant of Theorem 5, showing NP-hardness also in the setting of a knowledgeable
observer. As mentioned above, the lower bound in the proof of Theorem 5 does
not work when the observer knows the specification, yet, can easily be modified
to work for the case of a knowledgeable observer.

Theorem 9. Given a set O of output signals, a cost function cost : O → N, a
hiding budget b ∈ N, and DBWs Aφ and Aψ over 2O, deciding whether there is
H ⊆ O, with cost(H) ≤ b, such that ⟨Aφ,Aψ,H⟩ is realizable with privacy under
knowledge of the specification is NP-hard. Moreover, hardness holds already when
cost is uniform.

We continue to the second issue, proving that synthesis with privacy under
knowledge of the specification is EXPTIME-hard even for specifications in DBWs
and secrets of a fixed size. Note that synthesis with privacy (without knowledge
of the specification) can be solved in PTIME in this case (see Remark 1). The
proof is similar to that of Theorem 2, except that here the lower bound needs the
secret to be a of a fixed size, making the specification more complex. It follows
that the exponential blow-up in Dφ, which exists in Lemma 3 cannot be avoided
even when it is a DBW and Dψ is of a fixed size.

Theorem 10. Given two disjoint finite sets I and O, DBWs Dφ and Dψ over
2I∪O, and a set H ⊆ I ∪ O of hidden signals, deciding whether ⟨Dφ,Dψ,H⟩ is
realizable with privacy under knowledge of the specification is EXPTIME-hard
already when Dψ is of fixed size.

Remark 3. Recall that an observer that knows the specification can restrict the
search for computations on which she evaluates the secret to ones that satisfy
the specification. In fact, the observer can do better, and restricts the search
to computations that are generated by an (I/O)-transducer that realizes the
specification.

In order to see the difference between the two definitions, consider the case
where I = H = {p1, p2}, O = {q}, φ = (q ↔ p1)∨Gp2, and ψ = p1. An observer
that knows φ does not know which of its two disjuncts is satisfied, and thus,
even though she observes q, the value of p1 stays secret. Formally, a transducer
that realizes q ↔ p1 H-hides ψ from the observer, even if the observer knows
that φ is satisfied. Indeed, for every observable computation κ ∈ 2{q}, there
is a computation w+ ∈ noiseH(κ) that satisfies p1 ∧ Gp2 and a computation
w− ∈ noiseH(κ) that satisfies (¬p1) ∧ Gp2. Hence, ⟨φ,ψ,H⟩ is realizable with
privacy even when the observer knows the specification.

On the other hand, a clever observer, especially one that has read [16,14],
knows that a transducer T realizes φ iff T realizes q ↔ p1. Indeed, if T does not
satisfy q ↔ p1, then φ is not satisfied in computations that do not satisfy Gp2,
which is the case for almost all the computations of T . Accordingly, a clever
observer that knows φ can learn the secret p1 by observing the value of q.

Synthesis with Privacy Against an Observer 273



Using the terminology of [16,14], the specification φ and q ↔ p1 are open
equivalent: for every transducer T , we have that T realizes φ iff T realizes q ↔ p1.
Note that open equivalence is weaker than equivalence. Once we can simplify a
specification to an open-equivalent specification that does not include inherent
vacuity, the two definitions coincide. Such a simplification, however, requires
further study. Also, as an unrealizable specification is open-equivalent to F, such
a simplification is at least as complex as the realizability problem (which is also
good news, as it means that an observer needs to solve a 2EXPTIME problem
in order to benefit from the difference between the definitions). ⊓⊔

6 Directions for Future Research

We suggested a framework for the synthesis of systems that satisfy their spec-
ifications while keeping some behaviors secret. Behaviors are kept secret from
an observer by hiding the truth value of some input and output signals, subject
to budget restrictions: each signal has a hiding cost, and there is a bound on
the total hiding cost. Our framework captures settings in which the choice and
cost of hiding are fixed throughout the computation. For example, settings with
signals that cannot be hidden (e.g., alarm sound, or the temperature outside),
signals that can be hidden throughout the computation with some effort (e.g.,
hand movement of a robot), or signals that are anyway hidden (e.g., values of
internal control variables). Our main technical contribution are lower bounds for
the complexity of the different aspects of privacy: the need to choose the hidden
signals, and the need to hide the secret behaviors. We show that both aspects
involve an exponential blow up in the complexity of synthesis without privacy.

The exponential lower bounds apply already in the relatively simple cost
mechanism we study. Below we discuss possible extensions of this mechanism.
In settings with a dynamic hiding of signals, we do not fix a set H ⊆ I ∪
O of hidden signals. Instead, the output of the synthesis algorithm contains a
transducer that describes not only the assignments to the output signals but
also the choice of input and output signals that are hidden in the next cycle of
the interaction. Thus, signals may be hidden only in segments of the interaction
– segments that depend on the history of the interaction so far. For example, we
may hide information about a string that is being typed only after a request for
a password. In addition, the cost function need not be fixed and may depend on
the history of the interaction too. For example, hiding the location of a robot may
be cheap in certain sections of the warehouse and expensive in others. Solving
synthesis with privacy in a setting with such dynamic hiding and pricing of
signals involves automata over the alphabet 3I∪O, reflecting the ability of signals
to get an “unknown” truth value in parts of the computation. Moreover, as the
cost is not known in advance (even when the cost of hiding signals is fixed),
several mechanisms for bounding the budget are possible (energy, mean-payoff,
etc. [3,6]).

274 O. Kupferman et al.



References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48,
2012.

2. R. Bloem, K. Chatterjee, and B. Jobstmann. Graph games and reactive synthesis.
In Handbook of Model Checking., pages 921–962. Springer, 2018.

3. A. Bohy, V. Bruyère, E. Filiot, and J-F. Raskin. Synthesis from LTL specifications
with mean-payoff objectives. In Proc. 19th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, volume 7795 of Lecture Notes in
Computer Science, pages 169–184. Springer, 2013.

4. U. Boker. Why these automata types? In Proc. 22nd Int. Conf. on Logic for
Programming Artificial Intelligence and Reasoning, volume 57 of EPiC Series in
Computing, pages 143–163, 2018.

5. C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity
games in quasipolynomial time. In Proc. 49th ACM Symp. on Theory of Comput-
ing, pages 252–263, 2017.

6. K. Chatterjee and L. Doyen. Energy parity games. In Proc. 37th Int. Colloq. on
Automata, Languages, and Programming, pages 599–610, 2010.

7. K. Chatterjee, L. Doyen, T. A. Henzinger, and J-F. Raskin. Algorithms for ω-
regular games with imperfect information. In Proc. 15th Annual Conf. of the
European Association for Computer Science Logic, volume 4207 of Lecture Notes
in Computer Science, pages 287–302, 2006.

8. M.R. Clarkson, B. Finkbeiner, M. Koleini, K.K. Micinski, M.N. Rabe, and
C. Sánchez. Temporal logics for hyperproperties. In 3rd International Conference
on Principles of Security and Trust, volume 8414 of Lecture Notes in Computer
Science, pages 265–284. Springer, 2014.

9. I. Dinur and K. Nissim. Revealing information while preserving privacy. In Pro-
ceedings of the 22nd ACM Symposium on Principles of Database Systems, pages
202–210. ACM, 2003.

10. J. Dubreil, Ph. Darondeau, and H. Marchand. Supervisory control for opacity.
IEEE Transactions on Automatic Control, 55(5):1089–1100, 2010.

11. C. Dwork, F. McSherry, K. Nissim, and A.D. Smith. Calibrating noise to sensitivity
in private data analysis. J. Priv. Confidentiality, 7(3):17–51, 2016.

12. R. Ehlers. Symbolic bounded synthesis. In Proc. 22nd Int. Conf. on Computer
Aided Verification, volume 6174 of Lecture Notes in Computer Science, pages 365–
379. Springer, 2010.

13. B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, and L. Tentrup. Synthesis from
hyperproperties. Acta Informatica, 57(1-2):137–163, 2020.

14. D. Fisman, O. Kupferman, S. Sheinvald, and M.Y. Vardi. A framework for inherent
vacuity. In 4th International Haifa Verification Conference, volume 5394 of Lecture
Notes in Computer Science, pages 7–22. Springer, 2008.

15. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
J. Comput., 45(3):882–929, 2016.

16. K. Greimel, R. Bloem, B. Jobstmann, and M. Vardi. Open implication. In Proc.
35th Int. Colloq. on Automata, Languages, and Programming, volume 5126 of Lec-
ture Notes in Computer Science, pages 361–372. Springer, 2008.

17. T.A. Henzinger, S.C. Krishnan, O. Kupferman, and F.Y.C. Mang. Synthesis of
uninitialized systems. In Proc. 29th Int. Colloq. on Automata, Languages, and

Synthesis with Privacy Against an Observer 275



Programming, volume 2380 of Lecture Notes in Computer Science, pages 644–656.
Springer, 2002.

18. O. Kupferman and O. Leshkowitz. Synthesis of privacy-preserving systems. In
Proc. 42nd Conf. on Foundations of Software Technology and Theoretical Computer
Science, volume 250 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 42:1–42:23, 2022.

19. O. Kupferman, Y. Lustig, M.Y. Vardi, and M. Yannakakis. Temporal synthesis for
bounded systems and environments. In Proc. 28th Symp. on Theoretical Aspects
of Computer Science, pages 615–626, 2011.

20. O. Kupferman and A. Rosenberg. The blow-up in translating LTL to deterministic
automata. In Proc. 6th Workshop on Model Checking and Artificial Intelligence,
volume 6572 of Lecture Notes in Artificial Intelligence, pages 85–94. Springer, 2010.

21. O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Ad-
vances in Temporal Logic, pages 109–127. Kluwer Academic Publishers, 2000.

22. O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM Trans-
actions on Computational Logic, 6(2):273–294, 2005.

23. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages
255–264. IEEE press, 2006.

24. A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45–60, 1981.

25. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. on Principles of Programming Languages, pages 179–190, 1989.

26. M.O. Rabin. Automata on infinite objects and Church’s problem. Amer. Mathe-
matical Society, 1972.

27. J.H. Reif. The complexity of two-player games of incomplete information. Journal
of Computer and Systems Science, 29:274–301, 1984.

28. R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute
of Science, 1992.

29. S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foun-
dations of Computer Science, pages 319–327, 1988.

30. S. Schewe and B. Finkbeiner. Bounded synthesis. In 5th Int. Symp. on Auto-
mated Technology for Verification and Analysis, volume 4762 of Lecture Notes in
Computer Science, pages 474–488. Springer, 2007.

31. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, 1994.

32. Y. Wu, V. Raman, B.C. Rawlings, S. Lafortune, and S.A. Seshia. Synthesis of
obfuscation policies to ensure privacy and utility. Journal of Automated Reasoning,
60(1):107–131, 2018.

⊓⊔

276 O. Kupferman et al.



Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Synthesis with Privacy Against an Observer 277

http://creativecommons.org/licenses/by/4.0/


Author Index

A
Accattoli, Beniamino II-24
Almagor, Shaull I-191, II-229
Austin, Pete I-79
Avni, Guy II-229

B
Baillot, Patrick II-70
Basold, Henning I-121
Birkmann, Fabian I-144
Blot, Valentin II-3
Bose, Sougata I-79

C
Comer, Jesse II-137
Czerner, Philipp II-116

D
Dafni, Neta I-191
Dal Lago, Ugo II-70
Dowek, Gilles II-3
Doyen, Laurent I-34
Draghici, Andrei II-185

E
Esparza, Javier II-116

F
Frohn, Florian II-206

G
Gaba, Pranshu I-34
Geatti, Luca II-95
Giesl, Jürgen II-206
Goncharov, Sergey II-47
Guha, Shibashis I-34
Guillou, Lucie II-250

H
Haase, Christoph II-185
Hausmann, Daniel I-13, I-55

J
Jacobs, Bart I-101
Jankola, Marek I-234

K
Kassing, Jan-Christoph II-206
Kop, Cynthia II-70
Krasotin, Valentin II-116
Kupferman, Orna I-256

L
Laarman, Alfons I-121
Lancelot, Adrienne II-24
Lehaut, Mathieu I-55
Leroux, Jérôme I-3
Leshkowitz, Ofer I-256

M
Mansutti, Alessio II-95
Mascle, Corto II-250
Milius, Stefan I-144
Montanari, Angelo II-95

P
Piterman, Nir I-13, I-55
Prakash, Aditya I-212

R
Ryzhikov, Andrew II-185

S
Sağlam, Irmak I-13
Samuelson, Richard I-166
Santamaria, Alessio II-47
Saville, Philip II-160
Schmuck, Anne-Kathrin I-13
Schröder, Lutz II-47
Shamash Halevy, Naama I-256
Sinclair-Banks, Henry II-229
Stein, Dario I-166
Strejček, Jan I-234

© The Editor(s) (if applicable) and The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 279–280, 2024.
https://doi.org/10.1007/978-3-031-57228-9

https://doi.org/10.1007/978-3-031-57228-9


280 Author Index

T
ten Cate, Balder II-137
Totzke, Patrick I-79
Traversié, Thomas II-3
Tsampas, Stelios II-47

U
Urbat, Henning I-144, II-47

V
Vale, Deivid II-70
Villoria, Alejandro I-121

W
Waldburger, Nicolas II-250
Winterhalter, Théo II-3

Y
Yeshurun, Asaf II-229


	ETAPS Foreword
	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Invited Talk
	Ackermannian Completion of Separators 
	Infinite Games
	Fair ω-Regular Games
	Stochastic Window Mean-Payoff Games
	Symbolic Solution of Emerson-Lei Games for Reactive Synthesis
	Parity Games on Temporal Graphs
	Categorical Semantics
	Drawing from an Urn is Isometric
	Enriching Diagrams with Algebraic Operations
	Monoidal Extended Stone Duality
	Towards a Compositional Framework for Convex Analysis (with Applications to Probability Theory)
	Automata and Synthesis
	Determinization of Integral Discounted-Sum Automata is Decidable
	Checking History-Determinism is NP-hard for Parity Automata
	Tighter Construction of Tight Büchi Automata
	Synthesis with Privacy Against an Observer
	AuthorIndex



