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ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérome Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wasowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also
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organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wasowski (Copenhagen), Thomas Noll (Aachen), Jan Kofron (Prague),
Barbara Konig (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Kietinsky (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luis Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hdhnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovacs (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

This volume contains the papers presented at the 27th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2024), which
was held during April 8-11, 2024 in Luxembourg City, Luxembourg. The conference
is dedicated to foundational research with a clear significance for software science and
brings together research on theories and methods to support the analysis, integration,
synthesis, transformation, and verification of programs and software systems.

In addition to an invited talk by Jérome Leroux (Laboratoire Bordelais de Recherche
en Informatique, France) on “Ackermannian Completion of Separators”, the program
consisted of 24 talks on contributed papers, selected from 79 submissions. Each sub-
mission was assessed by three or more Program Committee members, with the help of
external reviewers. The conference management system EasyChair was used to handle
the submissions, to conduct the electronic Program Committee discussions, and to
assist with the assembly of the proceedings.

We wish to thank all the authors who submitted papers for consideration, the
members of the Program Committee for their conscientious work, and all additional
reviewers who assisted the Program Committee in the evaluation process. We would
also like to thank Andrzej Murawski, the FoSSaCS Steering Committee Chair for
various pieces of advice, and the members of the ESOP/FASE/FoSSaCS joint Artifact
Evaluation Committee for the artifact evaluation. Finally, we would like to thank the
ETAPS organization for providing an excellent environment for FoSSaCS, the other
conferences and the workshops.

February 2024 Naoki Kobayashi
James Worrell



Organization

Program Committee Chairs

Naoki Kobayashi
James Worrell

Program Committee

Sandra Alves
Mauricio Ayala-Rincén
Stephanie Balzer
Udi Boker

James Brotherston
Corina Cirstea
Yuxin Deng

Claudia Faggian
Pierre Ganty

Ichiro Hasuo

Naoki Kobayashi
Robbert Krebbers
Antonin Kucera
Karoliina Lehtinen
Bas Luttik

Rasmus Ejlers Mogelberg
Luca Padovani
Catuscia Palamidessi
Paritosh Pandya
Elaine Pimentel
Damien Pous

Ana Sokolova

Lidia Tendera

Nikos Tzevelekos
Tarmo Uustalu
Franck van Breugel
James Worrell

The University of Tokyo, Japan
University of Oxford, UK

University of Porto, Portugal
Universidade de Brasilia, Brazil

CMU, USA

Reichman University, Israel

University College London, UK
University of Southampton, UK

East China Normal University, China
CNRS - Université Paris Cité, France
IMDEA Software Institute, Spain
National Institute of Informatics, Japan
The University of Tokyo, Japan
Radboud University, the Netherlands
Masaryk University, the Czech Republic
CNRS - Université Aix-Marseille, France
Eindhoven University of Technology, the Netherlands
IT University of Copenhagen, Denmark
Universita di Camerino, Italy

Inria, France

IIT Bombay, India

University College London, UK

CNRS - ENS Lyon, France

University of Salzburg, Austria
University of Opole, Poland

Queen Mary University of London, UK
Reykjavik University, Iceland

York University, Canada

University of Oxford, UK



X Organization

ESOP/FASE/FoSSaCS Joint Artifact Evaluation Committee

AEC Co-chairs
Tobias Kappé

Ryosuke Sato
Stefan Winter

AEC Members

Arwa Hameed Alsubhi
Levente Bajczi

James Baxter
Matthew Alan Le Brun
Laura Bussi
Gustavo Carvalho
Chanhee Cho

Ryan Doenges
Zainab Fatmi

Luke Geeson
Hans-Dieter Hiep
Philipp Joram

Ulf Kargén
Hiroyuki Katsura
Calvin Santiago Lee
Livia Lestingi

Nuno Macedo
Kristof Marussy

Ivan Nikitin
Hugo Pacheco
Lucas Sakizloglou

Michael Schroder
Michael Schwarz
Wenjia Ye

Open Universiteit and ILLC, University of Amsterdam,
The Netherlands

University of Tokyo, Japan

LMU Munich, Germany

University of Glasgow, UK

Budapest University of Technology and Economics,
Hungary

University of York, UK

University of Glasgow, UK

University of Pisa, Italy

Universidade Federal de Pernambuco, Brazil

Carnegie Mellon University, USA

Northeastern University, USA

University of Oxford, UK

University College London, UK

Leiden University, Belgium

Tallinn University of Technology, Estonia

Link6ping University, Sweden

University of Tokyo, Japan

Reykjavik University, Iceland

Politecnico di Milano, Italy

University of Porto and INESC TEC, Portugal

Budapest University of Technology and Economics,
Hungary

University of Glasgow, UK

University of Porto, Portugal

Brandenburgische Technische Universitéit Cottbus-
Senftenberg, Germany

TU Wien, Austria

TU Munich, Germany

University of Hong Kong, China



Additional Reviewers

Abraham, Erika
Ajdarow, Michal
An, Jie

Asada, Kazuyuki
Avanzini, Martin
Balasubramanian, A. R.
Barbosa, Jodo
Basold, Henning
Batz, Kevin

Beohar, Harsh
Bertrand, Nathalie
Beyersdorff, Olaf
Bohn, Ledn

Bonelli, Eduardo
Bonsangue, Marcello
Breuvart, Flavien
Bruyére, Véronique
Carette, Titouan
Chadha, Rohit
Clemente, Lorenzo
Cockett, Robin
Czerwinski, Wojciech
D’Osualdo, Emanuele
Dagnino, Francesco
De Moura, Flavio L. C.
De, Abhishek

Di Stasio, Antonio
Espirito Santo, José
Fahrenberg, Uli
Feng, Yuan
Fijalkow, Nathanaél
Filiot, Emmanuel
Fokkink, Wan
Frumin, Daniil
Galal, Zeinab

Geatti, Luca
Geuvers, Herman
van Glabbeek, Rob
van Gool, Sam

Goy, Alexandre
Guha, Shibashis
Guttenberg, Roland
Hague, Matthew

Organization

Hainry, Emmanuel
Harper, Robert
Hausmann, Daniel
Hedges, Jules
Hinrichsen, Jonas Kastberg
Ho, Hsi-Ming
Jaber, Guilhem
Jafarrahmani, Farzad
Jakl, Tomas

Jancar, Petr
Kanazawa, Makoto
Kaposi, Ambrus
Katsumata, Shin-Ya
Kavvos, Alex
Keiren, Jeroen J. A.
Kelmendi, Edon
Klaska, David
Klock Ii, Felix S.
Knight, Sophia
Koutavas, Vasileios
Krivine, Jean
Konig, Barbara
Laurent, Olivier
Leroux, Jérome
Lhote, Nathan

Li, Yong

Long, Huan

Lopez, Aliaume
Loreti, Michele
Maarand, Hendrik
Madnani, Khushraj
Mallik, Kaushik
Martens, Jan

Marti, Johannes
Mascle, Corto
Mazzocchi, Nicolas
McDermott, Dylan
Mellies, Paul-André
Mery, Daniel
Michaliszyn, Jakub
Michielini, Vincent
Miculan, Marino
Moot, Richard

xi



xii Organization

Morawska, Barbara
Mulder, Ike

Nguyén, Lé Thanh Diing

Novotny, Petr
Paquet, Hugo
Piedeleu, Robin
Pinto, Luis
Proenca, José
Pérez, Jorge A.
Rehak, Vojtech
Riba, Colin
Rivas, Exequiel
Rogalewicz, Adam
Rot, Jurriaan
Rowe, Reuben
Sakayori, Ken
Sarkis, Ralph
Schmid, Todd
Schmitz, Sylvain
Schroder, Lutz
Sin’Ya, Ryoma

Skrzypczak, Michat
Sobocinski, Pawet
Staton, Sam

Stein, Dario
Takagi, Tsubasa
Tini, Simone
Totzke, Patrick
Urbat, Henning
Valencia, Frank
Vandenhove, Pierre
Varacca, Daniele
Veltri, Niccolo
Ventura, Daniel
Waga, Masaki
Wagemaker, Jana
Wan, Cheng-Syuan

Weil-Kennedy, Chana

Winskel, Glynn
Witkowski, Piotr
Willmann, Thorsten
Wolter, Frank



Contents — Part 1

Invited Talk

Ackermannian Completion of Separators . .. ........................ 3
Jérome Leroux

Infinite Games

Fair w-Regular Games. . . .. ... ... 13
Daniel Hausmann, Nir Piterman, Irmak Saglam,
and Anne-Kathrin Schmuck

Stochastic Window Mean-Payoff Games . .. ........................ 34
Laurent Doyen, Pranshu Gaba, and Shibashis Guha

Symbolic Solution of Emerson-Lei Games for Reactive Synthesis. ... ...... 55
Daniel Hausmann, Mathieu Lehaut, and Nir Piterman

Parity Games on Temporal Graphs . .. ....... ... ... ... ... ... ...... 79
Pete Austin, Sougata Bose, and Patrick Totzke
Categorical Semantics

Drawing from an Urn is Isometric. . . ... ... .. .. .. .. ... 101
Bart Jacobs

Enriching Diagrams with Algebraic Operations. . . ... ................. 121
Alejandro Villoria, Henning Basold, and Alfons Laarman

Monoidal Extended Stone Duality. . .. ....... ... ... ... ... ... ...... 144
Fabian Birkmann, Henning Urbat, and Stefan Milius

Towards a Compositional Framework for Convex Analysis
(with Applications to Probability Theory). . ... ... ... ... ... ... ..... 166
Dario Stein and Richard Samuelson

Automata and Synthesis

Determinization of Integral Discounted-Sum Automata is Decidable . . ... ... 191
Shaull Almagor and Neta Dafni



X1v Contents — Part 1

Checking History-Determinism is NP-hard for Parity Automata . .......... 212
Aditya Prakash

Tighter Construction of Tight Biichi Automata . . .. ................... 234
Marek Jankola and Jan Strejcek

Synthesis with Privacy Against an Observer. . . ........ ... ... ... ..... 256
Orna Kupferman, Ofer Leshkowitz, and Naama Shamash Halevy

Author Index . . .. ... .. ... . . . e 279


http://dx.doi.org/10.1007/978-3-031-55598-5_15

Contents — Part 11

Types and Programming Languages

From Rewrite Rules to Axioms in the AIT-Calculus Modulo Theory .. ... ... 3
Valentin Blot, Gilles Dowek, Thomas Traversié,
and Théeo Winterhalter

Light Genericity . . . . .. ..o 24
Beniamino Accattoli and Adrienne Lancelot

Logical Predicates in Higher-Order Mathematical Operational Semantics . . . . . 47
Sergey Goncharov, Alessio Santamaria, Lutz Schroder, Stelios Tsampas,
and Henning Urbat

On Basic Feasible Functionals and the Interpretation Method . . .. ... ... ... 70
Patrick Baillot, Ugo Dal Lago, Cynthia Kop, and Deivid Vale

Logic and Proofs

Succinctness of Cosafety Fragments of LTL via Combinatorial
Proof Systems . . ... ... 95
Luca Geatti, Alessio Mansutti, and Angelo Montanari

A Resolution-Based Interactive Proof System for UNSAT .. ............. 116
Philipp Czerner, Javier Esparza, and Valentin Krasotin

Craig Interpolation for Decidable First-Order Fragments . ............... 137
Balder ten Cate and Jesse Comer

Clones, closed categories, and combinatory logic . .................... 160
Philip Saville

Infinite-State Systems

Reachability in Fixed VASS: Expressiveness and Lower Bounds . ... ... ... 185
Andrei Draghici, Christoph Haase, and Andrew Ryzhikov

From Innermost to Full Almost-Sure Termination of Probabilistic
Term Rewriting . . . ... .o 206
Jan-Christoph Kassing, Florian Frohn, and Jiirgen Giesl



Xvi Contents — Part II

Dimension-Minimality and Primality of Counter Nets . . ... ............. 229
Shaull Almagor, Guy Avni, Henry Sinclair-Banks, and Asaf Yeshurun

Parameterized Broadcast Networks with Registers: from NP to the Frontiers

of Decidability . . . ... ... .. 250
Lucie Guillou, Corto Mascle, and Nicolas Waldburger

Author Index . . .. ... .. ... . . ... e 271


http://dx.doi.org/10.1007/978-3-031-50524-9_12

Invited Talk



®

Check for
updates

Ackermannian Completion of Separators

Jérome Leroux(g)

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

jerome.leroux@labri.fr

Abstract. Vector addition systems (VAS for short), or equivalently vec-
tor addition systems with states, or Petri nets are a long established
model of concurrency with extensive applications in modeling and anal-
ysis of hardware, software and database systems, as well as chemical,
biological and business processes. The central algorithmic problem is
reachability: whether from a given initial configuration there exists a se-
quence of valid execution steps that reaches a given final configuration.
The complexity of the problem has remained unsettled since the 1960s,
and was recently proved to be Ackermannian-complete.

In 2009, we proved that the reachability problem can be decided with
a simple algorithm by observing that negative instances of the reacha-
bility problem can be witnessed by partitioning the set configurations
into semilinear sets called complete separators. Since we can decide in el-
ementary time if a pair of semilinear sets denotes a complete separator,
the size of such a witness is Ackermannian in the worst case.

In this paper, we show how recent results about the reachability problem
can be combined to derive a matching upper-bound, i.e. for every nega-
tive instance of the reachability problem, we can effectively compute in
Ackermannian time a complete separator witnessing that property.

1 Introduction

Vector addition systems [8] (VAS for short), or equivalently vector addition sys-
tems with states 7], or Petri nets are one of the most popular formal methods
for the representation and the analysis of parallel processes [3]. The central algo-
rithmic problem is reachability: whether from a given initial configuration there
exists a sequence of valid execution steps that reaches a given final configuration.
Many important computational problems in logic and complexity reduce or are
even equivalent to this problem [22,6].

After an incomplete proof by Sacerdote and Tenney [20], decidability of
the problem was established by Mayr [17,19], whose proof was then simpli-
fied by Kosaraju [9]. Building on the further refinements made by Lambert
in the 1990s [10], in 2015, a first complexity upper-bound of the reachability
problem was provided [12] more than thirty years after the presentation of the
algorithm introduced by Mayr [9,10]. The upper-bound given in that paper is
“cubic Ackermannian”, i.e. in F s (see [21]). This complexity bound was obtained
by analyzing the Mayr algorithm. With a refined algorithm and a new ranking
© The Author(s) 2024

N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14574, pp. 3-10, 2024.
https://doi.org/10.1007,/978-3-031-57228-9_1
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function for proving termination, an Ackermannian complexity upper-bound was
obtained in [15]. This means that the reachability problem can be solved in time
bounded by F,(p(n)) where p is a primitive recursive function and where F,, is
an Ackermann function. Very recently, this complexity bound was proved to be
optimal [14,2].

While the complexity of the reachability problem is settled, its parameterized
version, in fixed dimension d, is still open with a large complexity gap between the
lower-bound and the upper-bound. Some recent results provided ways to decrease
that gap (see for instance [1,11]) but the problem remains open. Since there
exists d-dimensional VAS with finite but very large reachability sets [18], any
reachability algorithm directly based on the Mayr algorithm will necessarily fail
in providing a better complexity upper-bound. In fact that algorithm enumerates
in some way each possible reachable configurations when the reachability set is
finite.

There is another algorithm for deciding the reachability problem indepen-
dent of the Mayr algorithm. In fact, in [13], we introduced a simple enumerating
algorithm for deciding the reachability problem by observing that negative in-
stances of the reachability problem can be witnessed by partitioning the set of
configurations into semilinear sets called complete separators. Since we can de-
cide in elementary time if a pair of semilinear sets denotes a complete separator,
and the reachability problem is Ackermannian-hard, the size of such a witness
is necessarily Ackermannian in the worst case.

In this paper, we take the opportunity to show how to combine papers [15]
and [13] to prove that from any negative instance of the reachability problem, we
can effectively compute in Ackermannian time a complete separator witnessing
that property. This result prove the optimality of algorithms based on complete
separators for deciding the general reachability problem. Since this paper is an
invited paper at FOSSACS’24, so without any reviewing process, no new proof
are given in this paper. If a proof is given, it just to be self-content. But in any
case, those proofs are copy-past from [15] and [13].

Even if our result does not provide a better understanding of the complexity
of the parameterized reachability problem, it shows that algorithms based on
complete separators are optimal in general dimension.

2 Basic Notions

In this section, we introduce basic notions and notation.

Notation for Vectors of Integers. By Z we denote the set of integers, and
by N the set {0,1,2,...} of non-negative integers. Given d € N, the elements
of Z% are called (d-dim) wvectors; they are denoted in bold face, and for x € Z%
we put x = (x(1),...,x(d)) so that we can refer to the vector components. In
this context, d is called the dimension of x. We use the component-wise sum
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x + y of vectors, and their component-wise order x < y. For ¢ € N, we put
c-x=(c-x(1),...,c-x(d)).

Linear and Semilinear Sets. A set L C N% is linear if there are d-dim vectors
b, the basis, and p1,..., Pk, the periods (for k € N), such that L = {x € N |
x = b+u(l)-p;+---+u(k) ps for some u € N¥}. In this case, by a presentation
of L we mean the tuple (b, p1,...,pk).

A set S C N? is semilinear if it is a finite union of linear sets, i.e. S =
L; U--- ULy where L; are linear sets for all j. In this case, by a presentation
of S we mean the sequence of presentations of Ly, ..., Lg. When we say that a
semilinear set S is given, we mean that we are given a presentation of S; when
we say that S is effectively constructible in some context, we mean that there is
an algorithm computing its presentation (in the respective context).

We recall that a set S C N? is semilinear if, and only if, it is expressible in
Presburger arithmetic [4]; the respective transformations between presentations
and formulas are effective and elementary. Hence if S C N¢ is semilinear, then
also its complement, denoted as S, is semilinear, and S is effectively constructible
when (a presentation of) S is given.

Fast Growing Functions. The Grzegorczyk hierarchy [5,16] is defined thanks
to a family (Fy)4en of functions Fy : N — N such that every primitive recursive
function is asymptotically bounded by some function Fy. This family is defined
by Fo(n) = n+ 1 and inductively by Fyy1(n) = F7T(n) for every n,d € N.
Observe that Fy(n) = 2n + 1, Fy(n) = 2" (n + 1) — 1, and F3(n) grows as a
tower of n exponentials. It follows that F3 is a non elementary function since
it eventually exceeds any fixed iteration of the exponential function. An Acker-
mannian function, denoted as F,, is defined thanks to the diagonal extraction
F,(n) < F,;1(n) for every n € N. This function is non primitive recursive.
Vector Addition Systems. A (d-dim) vector addition system (VAS for short)
is a finite set A of vectors in Z? called actions. Vectors x € N are called
configurations, and with an action a we associate the binary relation = on the
configurations in N¢ by putting x — y for all x,y € N¢ such that y — x = a.
The relations 2 are naturally extended to the relations 2 for finite sequences
o =aj...a; of actions by x 5 y if x =5 ... 2 y for all x,y € N%.

On the set N¢ of configurations we define the reachability relation A we
put x LN y if there is ¢ € A* such that x % y. For x € N and X C N¢

def

we put POST} (x) = {y € N? | x Ei v}, and POSTR (X) = [Jyex POSTR (X).

def

Symmetrically, for y € N and Y C N? we put PRE} (y) = {x € N¢ | x L v}

and PRE} (Y) = Uyey PREA (¥)- By X A% Y we denote that x 2 y for some
xeXandy€eY.
The semilinear reachability problem takes as input a triple (X, A,Y) where

X,Y are (presentations of) semi-linear sets of configurations of a VAS A, and

checks if X 27 Y hold. In the standard definition of the reachability problem the
sets X,Y are singletons; the problem is decidable [19], and it has been recently
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shown to be Ackermann-complete [15,14,2]. It is well-known (and easy to show)
that the above more general version (the semilinear reachability problem) is
tightly related to the standard version, and has thus the same complexity.

3 Separators

A separator is a negative instance of the semilinear reachability problem, i.e. a
triple (X, A,Y) where X,Y are semilinear sets of configurations of a VAS A

such that —=(X LN Y). The domain D of a separator (X, A,Y) is the semilinear
set X UY. Notice that X, D, and Y forms a partition of N¢. When the domain
is empty, the separator is said to be complete. Notice that a triple (X, A,Y) is
a complete separator if, and only if, (X,Y) is a partition of N? into semilinear
sets such that y — x # a for every x € X, y € Y, and a € A. In particular this
property is decidable in elementary time by encoding it as the satisfiabibility of
a Presburger formula. A separator (X’,Y’) is called a completion of a separator
(X,Y) if (X',Y’) is complete, X C X’ and Y CY".

In [15] we proved that every separator can be effectively completed. In this
paper, we show how this result can be extended with optimal complexity bounds.
More formally, we prove that any separator can be completed in Ackermannian
time. The Ackermannian lower-bound is immediate since the reachability prob-
lem for VAS is Ackermannian-complete and as already mentioned, we can check
in elementary time if a pair of semilinear sets is a completion of a separator. The
most difficult part of the result is the Ackermannian upper-bound.

4 Semi-Pseudo-Linear Sets

Given two semilinear sets X, Y of configurations of a VAS A, the sets POST? (X)N
Y and PRE} (Y) N X are not semilinear in general. However, we proved in [13]
that those sets are semi-pseudo-linear, a class of sets that can be tightly over-
approximated by semilinear sets called linearizations. Linearizations are obtained
by solving several instances of the semilinear reachability problem. Since in [14,2],
we provided an Ackermannian upper-bounds on that decision problem, we can
reasonably think that the completion of separators can be done in Ackermannian
time. To prove that result, in this section we provide complexity bounds on the
size of linearizations. Those linearizations will be used in the next section for
completing separators in Ackermannian time.

Let us recall some definitions. A monoid M is a set of configurations such
that 0 € M, and such that M + M C M. The monoid spanned by a set P C N¢
is the set of finite sums of vectors in P. It is denoted as YP. A vector a € N?
is called an interior vector of a monoid M, if for every m € M, there exists a
natural number n > 1 such that na € m + M.

A pseudo-linear set is a set X C N? such that there exists a linear set
L = b+ M where M is the monoid spanned by the periods of L, such that
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X C L and such that for every finite set R of interior vectors of M, there
exists x € X such that x + YR C X. In that case, the linear set L is called a
linearization of X. A semi-pseudo-linear set X is a finite union of pseudo-linear
sets X = X1 U...UXj. In that case a semilinear set of the form L, U ... U Ly
where L; is a linearization of X is a called a linearization of X.

By combining the proof of [13, Theorem 6.4] with [15], we deduce the fol-
lowing theorem where f; is a function of the form Fy13(Cn) for some constant
C' independent of d. In this theorem, the size in binary or in unary does not
change the result and there is a lot of freedom in the definition of the size of
presentations of semilinear sets and VAS.

Theorem 1. Given two semilinear sets X and Y of configurations of a d-dim
VAS A, the sets POSTR (X)NY and PRER (Y)NX are semi-pseudo-linear. More-
over, we can effectively compute in time fq(n) where n is the size of the input,
presentations of linearizations of those sets.

The tightness of linearization approximations can be emphasis by introducing
the notion of rank! given in [13]. Formally, the rank of a set X C N%, denoted as

rank X is the minimal r € {—00,0,...,d} such that there exists a semi-linear set
S that contains X of the form by + M; U...Ubg + My where My,..., M, are
monoids spanned by at most 7 vectors. In [13], we prove that rank(X) = —oo iff

X is empty, rank(X) < rank(Y) if X CY, and the following theorem.

Theorem 2 (Proposition 7.10 of [13]). Let S1,Sy be linearizations of two
non-empty semi-pseudo-linear sets X1, Xo with an empty intersection. We have:

rank(S; N'Sy) < rank(X; U Xy)

5 Ackermannian Completion

We show in this section who a separator (X, A,Y) can be completed in Acker-
mannian time. We follow the algorithm introduced in [13] by first proving that if
(X,A,Y) is not complete, i.e. if the domain D is non empty, we can effectively
compute a separator (X', A;Y’) with a domain D’ such that X C X', Y C Y/,
and such that rank(D’) < rank(D). It follows that by applying at most d times
this algorithm where d is the dimension of A, we get a complete separator.

Let n be the size of the separator (X, A,Y).

The set Y’ is obtained as follows. Since D is semilinear and effectively com-
putable in elementary time, it follows from Theorem 1 that we can compute in
time fy(F(n)) where F is some fixed elementary function a linearization U of
the semi-pseudo-linear set PosT? (X) N D. We introduce Y’ & Y U (D \ U).

Let us prove that (X, A,;Y’) is a separator. By contradiction, assume that

X A5 Y. Since ~(X 25 Y), and Y/ = Y U (D \ U), we deduce that X 2

! In [13] this notion is called dimension but in our context, the dimension word is
already used for the number of components of a vector.
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(D \ U). However, since POST} (X) "D C U we get a contradiction. Hence
(X, A,Y’) is a separator and its domain is equal to DN U.

The set X’ is obtained symmetrically. Since D N U is semilinear and effec-
tively computable in elementary time, it follows from Theorem 1 that we can
compute in time fy(E'(fq(E(n)))) where E’ is some fixed elementary function a
linearization V of the semi-pseudo-linear set PRE} (Y’) N D N U. We introduce
X' ZEXU((DNU)\V).

Symmetrically, we deduce that (X', A,Y’) is a separator and its domain D’
isequal toDNUNV.

Since (X, A,Y’) is a separator, it follows that POST} (X) and PRE} (Y’) have
an empty intersection. In particular the semi-pseudo-linear sets PoOsT} (X) N D
and PRE} (Y') NDNU have an empty intersection. If one of those semi-pseudo-
linear sets is empty then D’ is empty and in particular rank(D’) < rank(D).
Otherwise, from Theorem 2 we deduce that the rank of UNV is strictly bounded
by the rank of the union of POST} (X)ND and PRE} (Y')NDNU. Since this set is
included in D, and D’ is included in UNV, we deduce that rank(D’) < rank(D).

By replacing E and E’ by E + E’, we can assume without loss of generality
that £ = E’. By iterating the previous construction at most d times, we deduce
that from any separator (X, A,Y) of size n, we can compute in time (fg0E)2%(n)
a completion of it. We deduce the main theorem of that paper.

Theorem 3. Separators can be completed in Ackermannian time.

6 Conclusion

In this paper, we have shown that separators can be completed in Ackermannian
time. Our computation is based on a generic algorithm given in Section 5. This
algorithm can be implemented as soon as we have an oracle computing semilin-
ear sets over-approximating the sets POST?} (X) N D and PRE} (Y) N D. If those
approximations are not linearizations, the termination of the algorithm is no
longer true in general. However, since its correctness is maintained, it should be
interesting to benchmark such an algorithm when using heuristics for implement-
ing oracles computing reachability set over-approximations (based on abstract
interpretation, acceleration techniques, parameterized invariant, and so on).
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Abstract. We consider two-player games over finite graphs in which
both players are restricted by fairness constraints on their moves. Given
a two player game graph G = (V| E) and a set of fair moves Ey C F a
player is said to play fair in G if they choose an edge e € Ey infinitely
often whenever the source node of e is visited infinitely often. Otherwise,
they play unfair. We equip such games with two w-regular winning con-
ditions v and B deciding the winner of mutually fair and mutually unfair
plays, respectively. Whenever one player plays fair and the other plays
unfair, the fairly playing player wins the game. The resulting games are
called fair a/B games.

We formalize fair /8 games and show that they are determined. For
fair parity/parity games, i.e., fair a/8 games where o and (3 are given
each by a parity condition over GG, we provide a polynomial reduction
to (normal) parity games via a gadget construction inspired by the re-
duction of stochastic parity games to parity games. We further give a
direct symbolic fixpoint algorithm to solve fair parity/parity games. On a
conceptual level, we illustrate the translation between the gadget-based
reduction and the direct symbolic algorithm which uncovers the underly-
ing similarities of solution algorithms for fair and stochastic parity games,
as well as for the recently considered class of fair games in which only
one player is restricted by fair moves.

Keywords: games on graphs, fairness, two-player games, parity games

1 Introduction

Omega-regular games are a popular abstract modelling formalism for many core
computational problems in the context of correct-by-construction synthesis of
reactive software or hardware. This abstract view was initiated by the seminal
work of Church [8] and its independent solutions by Biichi and Landweber and
Rabin [18,5]. Since then these ideas have been refined and extended for solving
the reactive synthesis problems [17,20,14].
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However, before using any such synthesis technique, the reactive software de-
sign problem at hand needs to be abstractly modelled as a two-player game. In
order for the subsequently synthesized software to be ‘correct-by-construction’
this game graph needs to reflect all possible interactions between involved com-
ponents in an abstract manner. Building such a game graph with the ‘right’
level of abstraction is a known severe challenge, in particular, if the synthesized
software is interacting with existing components that already possess certain be-
havior. Here, part of the modelling challenge amounts to finding the ‘right’ power
of both players in the resulting abstract game to ensure that winning strategies
do not fail to exist due to an unnecessarily conservative overapproximation of
modeling uncertainty (or the dual problem due to underapproximation).

In this context, fairness has been adopted as a notion to abstractly model
known characteristics of the involved components in a very concise manner. Fair-
ness assumptions have been used in model checking [1] and scheduler synthesis
for the classical AMBA arbiter [16] or shared resource management [6]. Notably,
fairness assumptions have also gained attention in cyber-physical system design
[21,15,11] and robot motion planning [9,2]. In all these applications, fairness is
used as an assumption that the synthesized (or verified) component can rely
on. In particular, if these assumptions are modelled by transition fairness over
a two-player game arena® (Vi, V3, E) — i.e., by a set of fair environment moves
E; C E (i.e., with Vi as their domain) that need to be taken infinitely often
if the source node is seen infinitely often along a play — the resulting synthesis
games can be solved efficiently [4,19].

While most existing work has only looked at fairness as an assumption to
weaken the opponent in the synthesis game, all mentioned applications also
naturally allow for scenarios where multiple components with intrinsically fair
behavior are interacting with each other in a non-trivial manner. For example,
the ability of a concurrent process to eventually free a shared resource might
depend on how fair re-allocation is implemented in other threads. On an abstract
level, the formal reasoning about such scenarios requires to understand how the
interactive decision making of two dependent processes is influenced by intrinsic
fairness constraints imposed on their decisions. Algorithmically, these synthesis
questions require fairness restrictions on both players in a game, i.e., do not
restrict the domain of fair moves Ey to one player only. We refer to such games
simply as fair games.

Motivating Example. In order to better illustrate the challenges arising from
solving such fair games, consider two robots in a shared workspace with narrow
passages between adjacent regions that only one robot can pass at a time. One
robot (say the green one) has an w-regular objective « that specifies desired
sequences of visited regions in the workspace. The other (red) robot tries to
prevent the green robot from achieving this sequence. In order to rule out trivial
spoiling strategies of the red robot, both robots need to implement a tie-breaking

3 Whenever we interpret players in a one-sided manner as environment and system,
we choose the environment player as the V-player, as we need to take all possible
environment moves into account. Similarly, the system is the 3-player in this scenario.
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mechanism for obstacle avoidance, i.e., they must eventually move left or right
if an obstacle blocks their way.

Now consider the scenario where both robots are facing each other at a gate,
as depicted in Fig. 1. While both robots block the gate from one side, neither
of them can move forward, but if the green robots moves left or the red robot
moves right, the other robot can take the gate to reach region A. With the
mentioned requirement for tie-breaking, none of the robots is allowed to block
the gate forever and both eventually have to move to the side.

Fig. 1: Deadlock caused by fairness constraints of two robots facing a door.

Now let us assume that region A is important for both robots, hence, both
robots have an incentive to enter region A first, to then move the game to an
area preferable to them. However, the robot who breaks the tie first, (i.e., fulfills
its fairness condition first) allows the other robot to enter region A first, which
gives both robots the incentive to behave unfair. While it is very intuitive to
make a player lose when she plays unfair and the other player plays fair, it is
unclear who wins the game if both players play unfair.

To resolve this issue, we can make the objectives of the robots completely
adversarial by assigning one of the players (say, green) the winner in a play where
both players play unfair. In the above example, this would give the red robot the
incentive to break the tie first. While this makes it harder for the red robot to
spoil the objective of the green one, we might be interested in a more symmetric
game which does not favor the green robot in all non-determined states of the
graph. We therefore consider a second w-regular objective 8 that determines the
winner of (mutually) unfair plays. This results in fair games G = (A, «, ) which
are determined (as shown in Sec. 3).

Contribution. Motivated by the above mentioned examples where interactive
decision making of two dependent processes is influenced by intrinsic fairness con-
straints imposed on their decisions, this paper studies fair games G = (4, a, 5)
as their abstraction. In particular, we give solution algorithms for these games
when both o and g are parity conditions induced by two different priority func-
tions over the node set. We call such games fair parity/parity games.
Obviously, the previously discussed one-sided version of fair games, which
we call V-fair games (as only the V-player (i.e., the environment) is restricted
by strong transition fairness), is a special case of fair games. Both enumerative
[19] and symbolic solution algorithms [4] have recently been proposed for V-
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fair games, showing that strong transition fairness can be handled efficiently
in both types of algorithms. This observation is closely related to a result for
stochastic games, i.e., two-player games with an additional ‘half’ player that
takes all its moves uniformly at random. For the purpose of qualitative analysis,
such stochastic parity games have been shown in [7] to be reducible to (standard)
parity games by the use of “gadgets” that turn stochastic nodes into a small
sequence of V- and 3-player nodes. While it is known that stochastic games can
be reduced to V-fair games (and hence, fair games), it was not investigated how
the different solution approaches compare. The main conceptual contribution of
this paper is a unified understanding of all these solution approaches for the
general class of fair games.

Concretely, our contribution is three-fold:
(1) We formalize fair games as a generalization of V-fair games and stochastic
games such that they are determined.
(2) We show a reduction of fair parity /parity games to (standard) parity games,
inspired by the gadget-based reduction of stochastic parity games to parity games
in [7]. This reduction enables the use of parity game solvers over the reduced
game (in particular enumerative ones such as Zielonka’s algorithm [24]) and gives
a gadget-based reduction of V-fair parity games to parity games as a corollary.
(3) We then show how our gadget construction can be used to define a symbolic
fizpoint algorithm to solve fair parity/parity games directly (without the need
for a reduction). We show the direct symbolic algorithm for V-fair parity games
in [4] coinciding with our algorithm for this particular subclass of fair games.

With this, we believe that this paper uncovers the underlying similarities
of solution algorithms for fair, V-fair and stochastic parity games. Further, we
show how these conceptual similarities can be used to build both enumerative
and direct symbolic algorithms. This is of interest as both are known to have
complementary strengths, depending on how the synthesis instance is provided,
and this connection was, to the best of our knowledge, not known before.

All omitted proofs are available in the extended version of this paper [10].

2 Preliminaries

We introduce infinite-duration w-regular two-player games over finite graphs
with additional strong transition fairness conditions on both players. For read-
ability, we call the considered games (and their respective notions) simply fair.

Infinite Sequences. We denote the set of infinite sequences over a set U by
U¥. We often view sequences 7 = ujus ... € U¥ as functions 7 : N — U, writing
7(i) = u;. Furthermore, we let Inf(7) := {u € U | Vi.3j > i.7(j) = u} denote the
set of elements of U that occur infinitely often in 7. Given a function f : U — W,
we denote by f(7) € W¥ the pointwise application of f to 7. Given a natural
number n, we write [n] := {1,...,n}.

Fair Game Arenas. A fair game arena A = (V5,Vy, E, Ey) consists of a set
of nodes V- = V53U V4 that is partitioned into the sets of existential nodes V3 and
universal nodes Vi, together with a set £ C V x V of moves that is partitioned
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into the set Ey C E of fair moves and the set E\ Ey of normal moves. If Ey = (),
then we sometimes omit this component for brevity. Given a node v € V' and a
binary relation R C V x V', we write R(v) to denote the set {w € V | (v,w) € R}.
We assume that F is right-total, that is, E(v) # () for all v € V. We call a node
v fair, if it is the source node of a fair edge, i.e., Ef(v) # 0 and collect all fair
nodes in the set V2 = {v € V | E;(v) # 0} and define V" = V' \ V" to be the
set of nodes that are not fair (‘normal nodes’). We denote V4" = V®ir 013 and
Véair — Vfair N VV~

Plays. A play T = vpv; ... on A is an infinite sequence of nodes s.t. v;11 € E(v;)
for all ¢ > 0. Given a play 7 = wvgv; ..., we define the associated sequence of
moves Ty, = (vg, v1)(v1,v2) . ... Additionally, if 7 is a player in {3,V}, we denote
the other player by 1 —i. We let plays(A) denote the set of all plays on A.

For a player i € {3,V}, a play 7 is i-fair if for all nodes v € V; N Inf(7) holds
that Ef|, C Inf(7,), where Ef|, = {(v,v") € Ey | v" € V} denotes the set of
fair edges that start at v € V. Given a play 7, we write fair;(7) to indicate that
7 is i-fair. We call a play mutually fair if it is both 3- and V-fair and mutually
unfair if it is neither 3- nor V-fair.

Strategies. A strategy for player i € {3,V} (or, an i-strategy) is a function
p: V*-V; = V where for each v -v € V* -V} it holds that p(u-v) € E(v). A
strategy p is called positional if p(u - v) = p(w - v) for all u,w € V* and v € V.

A strategy p for player 7 is said to admit a play 7 = vgvy ... if for all k € N,
vg € V; implies p(vg . .. vg) = vg+1. Alternatively, 7 is said to be compliant with
p. We write X for the set of 3-strategies and II for the set of V-strategies. Starting
from a node v € V, any two strategies s € X and t € II induce a unique play
play,(s,t) in the game arena. If we do not care about the initial node of the play,
we simply write play(s,t).

A strategy for player ¢ € {3,V} is an i-fair strategy if every play it admits is
i-fair. We write X" (resp. IT") for the set of 3-fair (resp. V-fair) strategies.

Omega-regular Winning Conditions. We consider winning conditions given
by an w-regular [22,13] language ¢ C V¥ over the node set V. In particular, we
write ¢ = 1L and ¢ = T to denote the trivial winning conditions () and V¢,
respectively. In particular, we focus our attention to parity winning conditions.
For a priority function A : V' — [k] that maps nodes of a game arena to the
natural numbers bounded by k for some k € N, the Parity(A) condition is given
via ¢ = {7 € V¥ | max(Inf(A(7))) is even}.

Omega-regular Games. An w-regular game is traditionally defined via a
tuple G = (4, a) where A is a game arena without fair edges, i.e. Ey = () and
a C V¥ an w-regular winning condition. An J-strategy s € ' is said to be
winning (for 3) from a node v € V, if for all ¢t € II, play,(s,t) € «a. Dually,
a V-strategy ¢t € II is said to be winning (for V) from a node v € V| if for all
s € X, play,(s,t) € a. In w-regular games, every node v € V is won by one and
only one of the players [12,13]. This property of a game is called determinacy,
and w-regular games are determined. We denote the nodes from which 3 (resp.
V) has a winning strategy in G by Wing(G) (resp. Winy(G)). When G is clear
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from the context, we drop the parenthesis and write Wing and Winy instead.
Determinacy then amounts to Wing UWiny = V' and Wing N Winy = ().

Node Conventions for Figures. Throughout this paper, in all figures, the
rectangular nodes represent V-player nodes and the nodes with round corners
represent 3-player nodes.

3 Fair Games

As already outlined in the motivating example in Sec. 1, the interpretation of
winning conditions over fair games influences the characteristics of resulting
winning strategies. To formalize this intuition, we will first recall a particular
subclass of fair games, namely those where only one player is restricted by an
additional fairness condition, in Subsec. 3.1. We will then use these games to
motivate winning semantics for the general class of fair games.

3.1 Determinacy of V-Fair Games

A V-fair game is a tuple G = (A, a) where A is a game arena with VI C 14
(called a V-fair game arena), and « is an w-regular winning condition.

In V-fair games, fairness constraints typically model known behavior of exist-
ing components that the 3-player (i.e., the to be synthesized system) can rely on.
This is formalized by defining that the 3-player wins a V-fair game with winning
condition « from node v if

Js € X.Vt € II™" play, (s, 1) € o (1a)

That is, 3-player (or shortly, 3) wins if they have a strategy that can win against
all V-fair V-strategies.

Our intuition tells us that this can be converted to reasoning about general
strategies for V-player (or shortly, V) by allowing 3 to win whenever V plays
unfairly. In order to see this, we can look at the complement of Eq. (1a), i.e.,
the description of when V wins; namely, Vs € X.3t € ™" play,(s,t) ¢ a.
We can replace the quantification over fair strategies with a quantification over
all strategies but require that, in addition to refuting «, the resulting play be
fair: Vs € X.3t € Il fairy(play,(s,t)) A play,(s,t) ¢ «. Indeed, as we show in
the extended version of this paper [10, App. A - Lem. 2], if strategy t € IT
satisfies fairy(play,(s,t)) then we can find a fair strategy ¢’ € ™" with which
play, (s,t) is compliant. This V-fair strategy would also stop s from winning. Due
to determinacy of w-regular games, we know that the last condition is equivalent
to 3t € II.Vs € X.fairy(play,(s,t)) A play,(s,t) ¢ «. In particular, this implies
that ¢ is fair. We conclude that the complement of Eq. (1) is the following
equation:

3t € 11" Vs € 5. play, (s, t) & o (1b)

This statement is equivalent to the determinacy of V-fair games: either 3-player
has a winning strategy or V-player has a winning V-fair strategy, and the two
cannot be true simultaneously.
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3.2 From V-Fair Games to Defining Determined Fair Games

Given a fair game arena A and an w-regular objective a, a natural attempt to
define winning regions in fair games would be to generalize Eq. (1) to

v € Wing if 3s € Z™" vt € 117" play, (s,t) € a, and (2a)
v € Winy if 3t € IT™". Vs € X" play, (s,1) & a. (2b)

However, in this case, Wing U Winy # V. Indeed, equations (2a) and (2b)
are not complements of each other, that is,

Js € X vt e 17" play(s,t) € a < Vt € II™". 35 € XM play(s, t) € o

This observation makes a fair game in which winning regions are defined via Eq. (2)
undetermined. The undetermined nodes O C V — nodes from which none of the
players has a fair winning strategy — form a separate partition of nodes, i.e.,
V = Wing U Winy U O. To see this, consider the following example.

Ezxample 1. Consider the fair game arena depicted in Fig. 2 where fair edges are
shown by dashed lines, o = Parity(\) and each node is labeled by its priority
assigned by A. We observe that the existential player cannot enforce reaching
the even node with a 3-fair strategy from the two middle nodes. Every 3-fair
J-strategy s has a counter V-fair V-strategy: choose the fair edge outgoing from
the square node after s chooses the fair edge outgoing from the node with round
corners. On the other hand, the universal player cannot prevent the play from
reaching the even node with a V-fair strategy from these nodes for exactly the
same reason. Hence, the middle two nodes are neither in Wing nor in Winy. That
is, these two nodes are undetermined; therefore they form O.

~ ~
Winv O Wing
Fig. 2: A simple fair game arena discussed in Ex. 1.

In order to better understand the distinction between Equations 2a and 2b,
we rely again on translation to w-regular games. Consider the following refor-
mulation of Eq. (2a):

Jds € XVt € Il faira(play,(s,t)) A (fairy(play, (s, t)) = play,(s,t) € ). (3a)
Similarly, the following is a reformulation of Eq. (2b):

It € I1.Vs € X fairy(play,(s,t)) A (fairs(play, (s, t)) = play,(s,t) € «). (3b*)
From determinacy of w-regular games, the negation of the latter is:

Jds € XVt € Il fairy(play,(s,t)) = (fairg(play,(s,t)) A play,(s,t) € ). (3b)
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We formally prove the equivalences of Egs. (2a) and (3a) and Egs. (2b) and (3b)
in [10]. It is not hard to see that the difference between Eq. (3a) and Eq. (3b)
is in the way fairness is handled. Namely, in Eq. (3a) 3 loses whenever she plays
unfairly regardless of how V plays. Dually, in Eq. (3b) 3 wins immediately when
V plays unfairly regardless of how 3 plays. It follows that determinacy can be
regained by deciding the winner of the four different combinations of fairness
with an w-regular winning condition each, as summarized in the following table.

fairg(7)|—fairg(7)
fairgy(T)| T€Q | TEY
—fairy(7)| T€0 | TEP

With this generalization, we obtain (3a) if § =y = L and 6 = T, and (3b) if
y=land f=6=T.

We note that the discussion of determinacy has crucial importance to the
analysis of games and the decision of how to model particular scenarios. For ex-
ample, if fairness of V-player arises from physical constraints (as, e.g., in [4]) then
it might make sense to consider Eq. (2b), which corresponds to 8 = T. Dually, if
fairness of 3-player must be adhered to, then it makes sense to consider Eq. (2a),
which corresponds to § = L. Our formulation allows to further fine tune what
happens when both act unfairly by adjusting 5.

Given the intuition that fairness constraints are actually additional obliga-
tions for both players, the choice of v = L and § = T assumed in Equations (2)-
(3) is very natural. However, allowing mutually unfair plays to be decided by a
different w-regular winning condition [, allows games with more symmetric win-
ning semantics e.g., by setting 5 = «. We therefore restrict our attention in this
paper to fair games with two winning conditions « and 8 while if i-player plays
fairly but (1 — 4)-player plays unfairly, i-player wins, i.e., v := L and § := T.
This is formalized next.

Definition 1 (Fair Games). A fair game G = (A, «, ) consists of a fair
game arena A together with two (w-regular) winning conditions «, B C plays(A)
where a and B determine the winner of mutually fair and mutually unfair plays,
respectively. In fair games, a play that is i-fair and (1—1)-unfair is won by player
i. Formally, in the fair game G = (A, «, 8), v € Wing if and only if,

ds € XVt € II.fairg(play, (s, t)) A (fairy(play,(s,t)) = play,(s,t) € «)
V(—fairz(play,(s,t)) A =fairy(play, (s, t)) A play,(s,t) € 8) (4)
The determinacy of fair games follows trivially from the formulation. It follows
that the complement of Eq. (4) is the V winning region, defined symmetrically
by v € Winy if and only if
Jt € I1.Vs € X fairy(play,(s,t)) A (faira(play,(s,t)) = play,(s,t) & «)
V(—fairy(play, (s,t)) A =faira(play,(s,t)) A play,(s,t) € 5)

Notation. We call a fair game G = (A, a, ) a fair /8 game. Further, if « or
B are given by mentioned winning conditions(e.g. o = Parity(\), 8 = L), with
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slight abuse of notation, we refer to the game with the name of the objectives
(e.g. fair parity/ L game).

Remark 1. Stochastic games allow for an additional set V; of stochastic game
nodes that belong to neither 3 nor V, and for which the stochasticity is resolved
uniformly at random. It is known that for purposes of qualitive analysis (i.e., the
computation of almost-sure winning strategies), stochastic games can be seen as
the special case of V-fair games in which E(v) C Ey holds for all stochastic nodes
v e Vs, and Ef N E(v) = 0 for all non-stochastic nodes v € V3 U V4, that is, all
stochastic edges are fair edges, but no non-stochastic edges are fair edges. This
encoding treats stochastic branching as adversarial for the system (3-player).

3.3 Mutually Fair Strategies in Fair Parity Games

In Subsec. 3.2 and in particular in Ex. 1 we have discussed the mutually unfair
plays and strategies that take such plays into account in fair o/ games. In this
section, we start restricting our attention to fair parity/S games (as this will be
our focus for the rest of the paper) and discuss the particularities of mutually
fair strategies in such games. We will do this with the help of the games G1 — G4
depicted in Fig. 3. No mutually unfair plays exist in any of these games. This is
because on all given arenas the unfair behaviour of one player makes the play
trivially fair for the other. Therefore, the winning regions are independent of f3.

In game G, both nodes are won by 3. V-player loses node 3 since taking the
self loop on 3 makes the play visit 3 infinitely often, however, it forces V to play
fairly, implying that they must take the edge to 4 infinitely often. Therefore, any
V-fair play is won by 3 since the priority 4 is seen infinitely often. Also note that
if V-player decides not to play fairly, they immediately lose since all plays are
trivially 3-fair. The trivial winning 3-strategy is depicted by red edges.

To get to game G5, we append node 1 to the left of G;. Here, all the nodes
are won by V. This is because V-player wins node 3 by eventually taking the
outgoing edge to 1 and then staying in 1 forever with the self-loop. By doing so
V evades his obligation to take the fair edges by forcing each play to see node 3
a finite number of times. One winning V-strategy is depicted by blue edges.

To get to game G3, we append node 5 to the right of game G;. Again, all
the nodes are won by V even though this time he cannot evade taking his fair
edges. In this game V wins due to the obligation of 3 to play fairly. In a play
starting from 3, V must eventually take the outgoing edge to 4. From there on,
the play will visit node 4 infinitely often, forcing 3 to take his outgoing edge to 5
infinitely often. As a consequence, in every mutually fair play 5 is seen infinitely
often. Therefore, the game is won by V. A winning V-strategy is depicted by
blue edges on the figure, with the interpretation that blue edges from node 3 are
taken alternatingly (in every sequence).

Finally, to get to game G4, we append two nodes to game G3. This time, all
the nodes are won by 3. 3-player still needs to take their fair outgoing edges to 5
(and this time, also to the new node 1) infinitely often. But this time she can also
take the outgoing edge to 6 infinitely often and thereby win the game. A winning
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J-strategy is depicted by red edges on the figure, again with the interpretation
that red edges from node 4 are taken alternatingly (in every sequence).

G G G g@j

Ga: AOWRG
o

Fig. 3: Four fair parity/8 games: dashed lines represent fair edges. Games G1 and G4
are won by I-player and G2 and G3 are won by V-player. In each case, a respective
winning strategy is shown by colored edges. A set of colored edges represents a strategy
that takes only the colored edges in the game, and whenever a source node is visited
all its colored outgoing edges are taken alternatingly.

4 Reduction to Parity Games

In this section, we show how fair parity games can be reduced to parity games
without fairness constraints. We show that there is a linear reduction to parity
games in the case that « is a parity objective and § =T or g = L; for the case
that § is a non-trivial parity objective, we show that there still is a quadratic
reduction. Our reductions work by replacing each fair node in the fair game with
a 3-step parity gadget. This construction is inspired by the work of Chatterjee
et al. [7] where the qualitative analysis of stochastic parity games is reduced to
solving parity games.

We give the formal reduction for fair parity/ L games in Subsec. 4.1 and ex-
tend it to fair parity/parity games in Subsec. 4.2. The extended version contains
a discussion of the reduction for a restricted case of fair parity/L games (fair
Biichi/ L games), which can serve as a hand-holding introduction to the section.

4.1 Reduction of Fair Parity/l Games

Let G = (A, Parity()), L) where A = (V3,V4, E, Ef) is a fair game arena, V =
Vau Vg and A : V — [2k] is the priority function.

The reduction to parity games replaces fair nodes v € VR in G with the
gadgets given in Fig. 4. Nodes v € VHfair in G are replaced with one of the
gadgets on the top (i.e. the incoming edges to v are redirected to v in the root,
and the outgoing edges on the third level lead to E(v) and Ef(v), which are the
outgoing edges and outgoing fair edges of v in G, resp.) and nodes v € V2" in G
are replaced with one of the gadgets at the bottom. The gadgets on the left are
called existential gadgets and the ones on the right are called universal gadgets,
referring to the player picking the first move. Nodes in V" are not altered.

Even though the proof works for all combinations of the gadgets (i.e. one can
replace each v € VA" (v € V") with any of the gadgets on the top (bottom)),
due to space constraints we give the intuition only for the existential gadgets.
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Imagine all v € V" are replaced with their existential gadgets. Within a
subgame that starts at a fair node v € V" the two players intuitively interact
as follows. The 3-player gets to pick a number ¢, indicating the priorities (2¢ — 1
or 27) they intend to visit infinitely often in any play that visits v infinitely often.
In turn, V-player gets to either pick an outgoing edge at v (for this, he pays the
price of seeing the even priority 2i), or allow 3 to pick an outgoing edge (in
which case he is rewarded with a visit to the odd priority 2i — 1). Depending
on the owner of v, the edge picked by V (if v € Vafa"), or the edge picked by 3
(ifv e vaair) is required to be contained in Ey. Thus V can insist on exploring
fair edges at VE‘Cair nodes, but has to pay a price for it; dually, V eventually has
to allow 3 to explore the fair edges at V" nodes to win.

In the full reduced game defined formally in the proof of Thm. 1 below, the
owner of a fair node v can fairly win from v by either avoiding v from some
point on forever, or eventually allowing the opponent player to explore all fair
edges leading out of that node. The owner wins by playing unfairly if and only
if the opponent also plays unfairly and the owner is the V-player.

Fig. 4: Existential (left) and universal (right) gadgets for v € V4" (top) and v € V"
(bottom) in fair parity/L games. For i € [1,k + 1], priorities of nodes v; and v} are
given below them, priorities of nodes v; are ignored, and the priority of v is unaltered.

Theorem 1. Let G = (A, Parity(\), L) where A = (V5,V4,E, Ey) is a fair
game arena, V. =V3 UV and X : V — [2k] is the priority function. Then there
exists a parity game G’ on the node set V' with V. C V' and |V'| < n(3k + 3)
over 2k + 1 priorities such that for i € {3,V}, Win;(G) = Win;(G')NV.

Proof (Sketch). Let G' = (V3, VI, E', 2 : V! — [2k + 1]) be the parity game
obtained by replacing the fair nodes in G with an arbitrary combination of
their corresponding existential and universal gadgets in Fig. 4. Let V/ = V3 U
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Vo=Vu V&8 where V represent the nodes coming from G and V&9 represent
the nodes coming from the gadgets. Note that the maximum priority in G’ is
max,qq = 2k 4+ 1 which comes only from the gadget nodes V&9, The maximum
even priority in G’ is maXeyen = 2k which can come from both Ved and V. It is
easy to see that |V’| < n(3k + 3) and G’ uses priorities [2k + 1]. To prove the
correctness, we recall that the winning regions for fair parity/ L games are given
via Eq. (3a), i.e. v € Win3(G) if and only if

Jds € XVt € Il faira(play,(s,t)) A (fairy(play, (s, t)) = play,(s,t) € ). (3a)

(=) We will first show, v € Wing(G') NV = v € Win3(G). To do so, we
will take a (positional) winning 3-strategy s’ in G’ and construct an 3-strategy
s in G such that s is F-winning in G i.e., s realizes Eq. (3a). That is, for a play
p in G that starts from v and compliant with s Eq. (3a-s) holds.

fairg (p) A (fairy(p) = p € @) (3a-s)

For this we will show the two parts of the conjunction separately. We will

show (i) fairs(p), i.e. s € LR (i) fairy(p) = p € a, ie. every V-fair play
compliant with s is 3-winning w.r.t. the parity condition.
Construction of the s’-subgame G/,: Let s’ be a positional 3-strategy win-
ning every play from v in G'. We will denote the subgame of G’ where 3 nodes
have only the outgoing edges u — s'(u) by G7,, and call it the s'-subgame. Recall
that all plays that start from v in G, are 3-winning.

Notation of n, and succ(u): For the existential gadgets for both Va‘cair and vaai',
we call the index of the unique successor of u in G%,, n,. That is, s'(u) = up,,.
For the same gadgets, we will denote s'(u; ) with succ(u). For the universal
gadgets for both V2" and V2", we will let n,, denote the index of the rightmost
child of w that is sent to its right child by s’. That is, n,, is the largest index i

such that s'(u;) = u3. For the same gadgets, we will denote s’ (u> ) with succ(u).

Ny
Construction of s: We define s : V* - V3 — V as follows. For u € Vafai': 1. If
ny = k+ 1, we set s(u) = succ(u). 2. Otherwise, s(u) cycles through the set
{suce(u), Ey(u)} starting from succ(u). For u € V3 '\ VA", we set s(u) = s'(u).
Constraining G/, with n,: Here we will constrain G, to its subgame by
limiting the choices of V-player from a u replaced by the universal gadget. For
every universal gadget encountered in G’,, we limit the choices of u € VJ" to
only u — uy,,, and u — u,,, 41 (if it exists). So, we remove all the other branches
of u out of G%,. We call the remaining game LG, standing for limited G’,. Note
that as LG’ is a subgame of G, , it is still 3-winning.

F-extension: Let p be some play in G compliant with s. We define a play p’
that is called the 3-extension of p = u'u?... as follows: p’ is the play on LG’,
that follows p while ‘prioritising existential nodes on succ(u)’. What is meant
by this is, for a u’ € V" if 4+ = succ(u?), then p’ takes the unique branch in
LG, that leads to u'™! while passing through an existential node (ul)J3 That
is, regardless of which gadget u’ is replaced by, p’ takes the branch

ut =l = (ul)3

n, = succ(u') = u't (branch 1)
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On the other hand if ut! # succ(u®), then p’ takes the only other branch in
LG, that is (branch 2) is taken as

1. If u* € VI is replaced by an 3-gadget, then u’ — u?, L (u’)z L= ut

2. Ifu* € VR is replaced by a V-gadget, then u* — u;ui_H — (ui)Z“H_1 — it

Note that these branches do not leave out any possible transition in p. That’s
because 1. all the successors of a vaa" node are covered by one of the branches

since (branch 2) leads the universal node (ul)z . or (ul)z 1
any successor of u’. 2. all the successors of a VI2" node are covered by one of
the branches, since by construction of s, all the successors of u* in p are in the
set {succ(u’)} U E¢(u'), where (branch 1) covers the succ(u') successors, and

(branch 2) covers the Ey(u") successors since in this case the universal node

which can pick

(u’)\: or (u’)z 41 can pick any fair successor of u’.
For u® # Vir o/ just takes u* — u't1.
So p' is well defined, and is a play in LG, that starts from v. Thus, p’ is

J-winning. Observe that if we remove the gadget nodes from p’, we get p. That
is, the restriction of p’ to V', p' |y = p.

(i) fairg(p): Observe that for any p in G compliant with s, by construction of s,
the only nodes u € V43" that p may not be fair on, are those for which n, = k+1.
So we only need to show that such nodes are seen only finitely often in p. Since
plvy = p/, that is equivalent to showing such a u cannot be seen infinitely often
in its F-extension, p’. If it is seen infinitely often in p’, then regardless of the
gadget u is replaced with, the branch v — ugpy+; — u% 41 is evoked infinitely
often, signalling the largest priority 2k + 1. Therefore, p’ is won by V-player,
giving a contradiction. Therefore, we conclude p is I-fair.

(ii) fairy(p) = p € a: Let p be V-fair. Look at the J-extension p’ of p. Let m be
the largest (even) priority in Inf(p’). Due to p’ |y = p, all we need to show is the
existence of a u € Inf(p’ |/) that has priority m. Then it automatically implies
that the maximum priority in Inf(p) is m, and thus p is 3-winning.

We will proceed with proof by contradiction and assume that the priority m
appears only in V840 Inf(p’). Now let F' be the subgame of LG, that consists of
nodes and edges taken infinitely often in p’. Then, priority m appears in V&N F.
These gadget nodes must exist in F' due to nodes

— u € V™I replaced by existential gadgets, and with n, = m\2 (which corre-
sponds to (branch 2)-1), or

— u € V™" replaced by universal gadgets, and with n, = m\2 — 1 (which
corresponds to (branch 2)-2)

Note that for all such nodes u, (branch 1) of w is also in F'. This is because
u — succ(u) is taken infinitely often in p. For u € VA3 this is due to the
construction of s, for u € V", this is due to p being V-fair (remember, in this

case succ(u) € Ey(u)).
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Next, we will remove from F' all priority m gadget nodes (and everything
reachable only from those nodes). That is, we will prune out (branch 2) of all
the nodes that bring in m priority gadget nodes to F. Due to the remaining
(branch 1)s, this pruning does not cause any dead-ends. Let’s call this pruned
subgame of F', H. Observe once more that all plays in H are 3-winning. However,
the maximum priority in H is m — 1. This is due to the remaining (branch 1)s of
the pruned nodes having this priority. This implies that all infinite plays starting
in H get trapped in a subgame H' of H that doesn’t have nodes with priority
m — 1. Since non of the nodes in V"N H’ cause a gadget node with priority m,
non of their branches get pruned. That is, all nodes in H’ have the same outgoing
edges in H' and in F. Then any play that start in H' in F, does not leave H’,
making H' exactly the set of nodes seen infinitely often in p’, i.e. H' = F. This
contradicts our initial assumption that maximum priority seen infinitely often
in p’ being m; therefore proving p is 3-winning.

The proof of direction (<) is similar to the proof of (=), and can be found
in detail in the extended version [10].

Remark 2 (Reduction of parity/T games). In the gadgets from Fig. 4, in order
to play unfairly from a v € Vafai', J-player has to take its rightmost branch
and signal priority maxeqq, whereas to play unfairly from v € vaair7 V-player
has to take the rightmost branch and signal maxeyen. Since maxedq > MaXeven,
this dynamic ensures mutually unfair plays are V-winning. The gadgets for a fair
parity/T game with A : V' — [2k] can be constructed as follows with the addition
of priority 2k +2: Take the gadgets from Fig. 4. In the existential gadget for szai'
add another branch — v} 41 — Ef(v) to vpy1 and in the universal gadget for
Vi add a rightmost branch — vj12 — vf,, — Ef(v). In the existential gadget
for V" add a rightmost branch — vgy1 — v, — E(v) and in the universal
gadget for V" add another branch — 1)2+1 — E¢(v) to vgq1.

All the newly added gadget nodes have priority 2k+2 and therefore maxeyen =
2k+2 > maxedq = 2k+1, which ensures that mutually unfair plays are 3-winning.
The correctness of the construction follows as a corollary of the reduction of fair
parity/parity games given in the next section.

4.2 Reduction of Fair Parity /Parity Games

In this section, we present a quadratic reduction from fair parity/parity to parity
games. So let G = (A, Parity(\), Parity(I")) where A = (V5, V4, E, Ey) is a fair
game arena with V = V3 U V4 and priority functions A : V — [2k], [ : V — [d].

The reduction is based on ideas from the previous section, in particular adapt-
ing the basic structure of the introduced gadgets. However, in order to correctly
treat mutually unfair plays according to the additional parity objective I, we
annotate game nodes v € V with two memory values p € [d] and b € {3,V}.
The former is used to store the maximal priority according to I" that the play
has recently seen; this value is signalled (and reset after signalling) from time
to time in the reduced game. The value b is used to decide (at certain nodes)
whether the memory value is signalled, or not.
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E(v,p,b) Ey(v,p,b) E(v,p,b) Ef(v,p,b) E(v,p/1,3)

Fig. 5: Gadget for v € VA" in fair parity/parity games; u abbreviates (v,p,b).

It indicates the player that has last taken the rightmost branch in the gadget
for one of its fair nodes. If this bit keeps flipping between 3 and V forever, then
both players intuitively insist on keeping control in one of their respective fair
nodes, enabling a mutually unfair play; in the reduced game, the memory content
p is signalled (and then reset to 1) whenever the value flips from V to 3.

v

Ef(U,p,b) E(’U,p,b) Ef(’l),p,b) E(Uapvb) Ef(v7pab) E(vaav)
Fig. 6: Gadget for v € V" in fair parity/parity games; u abbreviates (v,p,b).

Formally, the reduction is as follows. The game is based on the set V' x [d] x [1]
of base nodes, where we use [1] to denote {3, V}; intuitively, a node (v, p,b) from
this set corresponds to v € V, annotated with memory values p and b as described
above. In order to succinctly refer to the combination of taking a move in G and
updating the memory components, we overload notation and put

E(v,p,b) ={(w,p’,b) € V x [d] x [1] | w € E(v) and p" = max(p, I'(v))}
Ep(v,p,b) = {(w,p",b) € V- x [d] x [1] | w € Ef(v) and p" = max(p, I'(v))}
for (v,p,b) € V x[d] x [1]. Thus a triple (w,p’, b) is contained in E(v,p,b) if there

is a move (v,w) € E and p’ is the maximum of the previous memory value p
and the current priority I'(v) at v; in E¢(v,p,b), we require (v, w) € Ey instead.
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In both functions, the argument b is used to explicitly set this component of the
memory to either 3 or V. The reduced game consists of subgames that start at
annotated nodes u = (v,p,b) € V x [d] x [1]. In case that v € V", the game
just proceeds according to E(v,p,b), with ownership of (v,p,b) determined by
whether v € V3 or v € Vi; this corresponds to taking a move at a normal node
in G, but updating the memory component p, and keeping the component b
without modifying it. For fair nodes v € V™, the subgame consists of three
levels, and after these three steps leads back to a node from V x [d] x [1]. Fig. 5
and 6 show the subgames that start at (v,b,p) € V x [d] x [1] such that v € VZair
and v € V2", respectively, adapting the existential gadget for v € V43" and the
universal one for v € V2"

The rightmost branches in these gadgets overwrite the last component b with
3 and V, respectively. The colored values in the right-most branch in the Fig. 5
gadget depend on the value of b. If b = V (corresponding to V-player being the
one that last has taken the right-most branch), then the priority 2k + 2 + p
is signalled and the memory value p is reset to 1; if b = 3 (corresponding to
3-player having taken the right-most branch last), then the priority 2k + 1 is
signalled and the memory value p does not change.

Theorem 2. Let G = (A, Parity()), Parity(I")) where A = (V3,Vy, E, Ey) is a
fair game arena, V.=V3 U Vg and A : V. — [2k] and I" : V' — [d] are priority
functions. Then there exists a parity game G’ with 6nd(k+2) nodes and 2k+2+d
priorities with set V' x [d] x [1] of base nodes such that for all v € V, I-player
wins v in G if and only if I-player wins (v,1,3) in G'.

Proof (Sketch). We construct the parity game G’ following the above descrip-
tion, using the gadgets from Fig. 5 and 6 to treat fair nodes. The detailed con-
struction and the correctness proof can be found in the extended version [10].

We obtain the following bound on strategy sizes for fair parity /parity games.

Lemma 1. Let G be a fair parity/parity game on n nodes. Then for both players
the memory requirement of winning strategies in G is at most n?-n". Furthermore,
for each player a family of fair parity/L games (G, )nen exists such that for all
n, every winning strategy for the respective player requires memory at least 2™.

Proof (Sketch). For the upper bound, we note that in a winning i-strategy for
a fair parity/parity game, as constructed in the proof of Thm. 2, the nodes in
V; \ VI have strategies with quadratic memory, but the nodes in V2" may
have to traverse all their fair successors, and possibly one more successor. In the
worst case, this requires an additional local memory of |E¢(v)| + 1 < n for each
v E Vifai', and causes an exponential blowup in the overall memory required.
For the lower bound, we consider the case for 3-player; the result for V-player
is obtained by switching the player’s roles. Define the family (G,,)nen of games
by letting G, (for n € N) have exactly n+1 nodes, one node z owned by V-player
and n nodes y; owned by 3-player; let there be an edge from z to any node y; and
two fair edges from any node y; back to x. Let all nodes have priority 0. Then
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any winning F-strategy in G, necessarily is 3-fair. There is a fair I-strategy s
that uses one bit as local memory for each node y; € Vafai', and therefore uses
memory of overall size 2™. The claim follows since there is no 3-fair strategy that
uses less memory than s, which is shown by induction on n. O

5 Fixpoint Characterization of Winning Regions

In this section, we will characterize the winning regions in fair games with
parity conditions by means of fixpoint expressions. Thereby we provide an al-
ternative, symbolic route to solve such games, rather than by reducing to parity
games. We start by briefly recalling details on Boolean fixpoint expressions.

Fixpoint expressions and fixpoint games. Let U be a finite set, let o be a
fixed number and let f : P(U)° — P(U) be a monotone function, that is, assume
that whenever we have sets X;,Y; C U such that X; C Y} forall 1 <j <o, then
f(X1,...,X,) C f(Y1,...,Y,). Then f and o induce the fizpoint expression

€ = noXo- 7]0_1X0_1. RN .VXQ. /.LXl f(Xl, ce ,Xo) (5)

where n; = v if i is even and n; = p if ¢ is odd. We define the semantics
of fixpoint expressions using parity games. Given a fixpoint expression e, the
associated fizpoint game G, = (W3, Wy, E, Parity(x)) for the priority function
Kk : W3 UWy — [o] is the following parity game. We put W3 = U x {1,...,0},
Wy = P(U)°. Moves and priorities are defined by

E(,i)={Z e Wy |ve f(Z)} k(v,i) =1
E(Z)={(v,i)|v e Z} k(Z)=0

for (v,i) € W3 and Z = (Z1,...,Z,) € Wy. Then we say that v € U is contained
in e (denoted v € e) if and only if 3-player wins the node (v, 1) in Ge.

Remark 3. The above game semantics for fixpoint expressions has been shown to
be equivalent to the more traditional Knaster-Tarski semantics [3]; the cited work
takes place in a more general setting and therefore uses slightly more verbose
parity games.

Next we present a fixpoint characterization of the winning regions in fair
games of the form G = (A,Parity(\), L) where A = (V3,V4, E,Ey) is a fair
game arena, V = V3 U Vg and A : V — [2k] a priority function. To be able
to write fixpoint expressions over such games we define monotone operators on
subsets of V' by putting

OX ={veV|E@w)NX #0} OX ={veV|E(@) C X}
<>fX={UEV|Ef(’U)ﬂX7é®} DfX:{veV\Ef(v)QX}
for X C V and also put Cpre(X) = (V3N OX)U (Vo NOX). Then Cpre(X) is the

set of nodes from which 3-player can force the game to reach a node from X in
one step. Also, we define C; = {v € V | A(v) =i} for 1 <i < 2k.
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Using this notation, we define a function parity : P(V)?* — P(V) by putting

parity(X1, ..., Xox) := (C1 N Cpre(X1)) U... U (Cx N Cpre(Xax))

for (Xi,...,Xax) C P(V)?*. This function is monotone and it is well-known
(see e.g [23]) that the fixpoint induced by parity characterizes the winning region
in parity games with priorities 1 through 2k. This formula will still apply to
‘normal’ nodes V" in the fixpoint characterization of fair parity games.

We follow the gadget constructions from Fig. 4 (using their existential ver-
sions) to define the following additional functions. For 1 <14 < k, put

Aprea(Xi, Xi+1) = <>Xz n Din_._l Aprev(Xi, Xi+l) = <>le n DXi+1>

encoding nodes (v7,2i) for v € V& and v € VI respectively (here, Apre
stands for alternative predecessor function, as it encodes the additional V-choice
of whether a fair edge is to be taken). Then, we let I, = {i | i odd,p < i < 2k}
denote the set of odd priorities that lie between p and 2k, and put

fair __ Uier, Apres(Xi, Xit1) U O Xopia p is odd
r Uier, Apres( ) U O Xopp1 U X, pis even,
( )
( )

fair — Uier, Aprey(Xi, Xita
" Uier, Aprey(Xi, Xip1) UO X, pis even

Xi, Xit1

p is odd

Using this notation, the winning region for the existential player in fair
parity/ L games with priorities 1 through 2k can be characterized by the fix-
point expression induced by 2k + 1 and the function y that is defined to map
(Xl, R ,X2k+1) S P(V)2k+1 — P(V) to the set

X(X1, ..., Xogs1) =(V" N parity) U

(Vafair N U C N ¢fa|r)
€[2k+1]

(VJair N U C N ¢fa|r>

€2k+1]

The function x therefore treats normal nodes from V" in the same way as nodes
in standard parity games are treated, but for fair nodes with priority 4, the
functions (bfa" and qi)fa'r are used to encode the respective gadget construction.
The full ﬁxpomt expression then is

e = MX2k+1- Vng. MX21€—1 e UXQ. /LXl. X(Xh e ,X2k+1) (6)

The first result of this section is that the fixpoint expression (6) characterizes
the winning region of 3-player in fair parity/ L games.

Theorem 3. Let G = (A, Parity(\), L) where A = (V5,V4, E, Ey) is a fair
game arena, V.= V3 U Vg and \ : V — [2k] is the priority function. Then the
fizpoint expression given in (6) characterizes Wing(G).
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Proof (Sketch). The proof is by mutual transformation of winning strategies in
G and in the semantic game G, for (6). The full proof can be found in [10].

We note that for V-fair parity games (V43" = )), Eq. (6) instantiates to the
fixpoint characterization given in [4]; it follows that the parity game reductions
from Sec. 4 apply to the one-sided fair parity games considered in [4] as well.

For fair parity/parity games, we obtain a similar fixpoint characterization,
encoding the reduction to parity games presented in Subsec. 4.2 along the lines
of Figures 5 and 6. Here, all involved functions work over (subsets of) the set V' x
[d] x [1] of base nodes, consisting of game nodes that are annotated with memory
values. The definition of the fixpoint expression for fair parity/parity games
is straight-forward but somewhat technical since the updating and resetting
mechanisms for the memory values have to be accommodated. For brevity, we
refrain from elaborating the required notation and the full fixpoint expression
here, and state just the main result that yields a symbolic fixpoint algorithm for
fair parity/parity games; full details can be found in the extended version [10].

Theorem 4. Let G = (A, Parity(\), Parity(I")) where A = (V3,Vy, E, Ey) is
a fair game arena, V.=V3U Vg and X\ : V — [2k], I" : V. — [d] are priority
functions. Then there is a fizpoint expression over V x [d] x [1] with alternation
depth 2(k + 1) + d that characterizes Wing(G).

Proof (Sketch). Again the proof is by mutual transformation of winning strate-
gies in GG and in the semantic game G, for the fixpoint expression. The full proof
can be found in the extended version [10].

6 Conclusion

We introduce two-player games with local transition-fairness constraints for both
players, allowing two objectives o and S to decide the winner of plays in which
both players play fair and both players play unfair, respectively. We show the de-
terminacy of this class of games in the case that a and § are w-regular objectives.
In the special case that both a and S are parity conditions, there is a reduction
to standard parity games with blow-up quadratic in the number of priorities
used by v and 8; if 5 = T or 8 = L, the reduction becomes even linear. We
present both enumerative and symbolic methods to realize this reduction; in the
process, we also obtain an exponential tight bound on the memory required by
winning strategies in fair parity /parity games. We expect that the central idea
behind the reduction generalizes from parity objectives to more general settings
such as fair games in which « and g are Rabin, Streett, or even Emerson-Lei
conditions, but leave this issue for future work.
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Abstract. Stochastic two-player games model systems with an environ-
ment that is both adversarial and stochastic. The environment is modeled
by a player (Player 2) who tries to prevent the system (Player 1) from
achieving its objective. We consider finitary versions of the traditional
mean-payoff objective, replacing the long-run average of the payoffs by
payoff average computed over a finite sliding window. Two variants have
been considered: in one variant, the maximum window length is fixed and
given, while in the other, it is not fixed but is required to be bounded. For
both variants, we present complexity bounds and algorithmic solutions for
computing strategies for Player 1 to ensure that the objective is satisfied
with positive probability, with probability 1, or with probability at least p,
regardless of the strategy of Player 2. The solution crucially relies on a
reduction to the special case of non-stochastic two-player games. We give
a general characterization of prefix-independent objectives for which this
reduction holds. The memory requirement for both players in stochastic
games is also the same as in non-stochastic games by our reduction.
Moreover, for non-stochastic games, we improve upon the upper bound
for the memory requirement of Player 1 and upon the lower bound for
the memory requirement of Player 2.

Keywords: Stochastic games - Finitary objectives - Mean-payoff - Reac-
tive synthesis

1 Introduction

We consider two-player turn-based stochastic games played on graphs. Games are
a central model in computer science, in particular for the verification and synthesis
of reactive systems [18,11,17]. A stochastic game is played by two players on
a graph with stochastic transitions, where the players represent the system
and the adversarial environment, while the objective represents the functional
requirement that the synthesized system aims to satisfy with a probability p
as large as possible. The vertices of the graph are partitioned into system,
environment, and probabilistic vertices. A stochastic game is played in infinitely
many rounds, starting by initially placing a token on some vertex. In every round,
if the token is on a system or an environment vertex, then the owner of the vertex
chooses a successor vertex; if the token is on a probabilistic vertex, then the
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successor vertex is chosen according to a given probability distribution. The token
moves to the successor vertex, from where the next round starts. The outcome
is an infinite sequence of vertices, which is winning for the system if it satisfies
the given objective. The associated quantitative satisfaction problem is to decide,
given a threshold p, whether the system can win with probability at least p. The
almost-sure problem is the special case where p = 1, and the positive problem is
to decide whether the system can win with positive probability. The almost-sure
and the positive problems are referred to as the qualitative satisfaction problems.
When the answer to these decision problems is Yes, it is useful to construct a
winning strategy for the system that can be used as a model for an implementation
that ensures the objective be satisfied with the given probability.

Traditional objectives in stochastic games are w-regular such as reachability,
safety, and parity objectives [11], or quantitative such as mean-payoff objec-
tives [16,27]. For example, a parity objective may specify that every request of
the environment is eventually granted by the system, and a mean-payoff objective
may specify the long-run average power consumption of the system. A well-
known drawback of parity and mean-payoff objectives is that only the long-run
behaviour of the system may be specified [1,9, 21], allowing weird transient be-
haviour: for example, a system may grant all its requests but with an unbounded
response time; or a system with long-run average power consumption below
some threshold may exhibit arbitrarily long (but finite) sequences with average
power consumption above the threshold. This limitation has led to considering
finitary versions of those objectives [9, 23, 8], where the sequences of undesired
transient behaviours must be of fixed or bounded length. Window mean-payoff
objectives [8] are quantitative finitary objectives that strengthen the traditional
mean-payoff objective: the satisfaction of a window mean-payoff objective implies
the satisfaction of the standard mean-payoff objective. Given a length ¢ > 1, the
fixed window mean-payoff objective (FWMP(¥)) is satisfied if except for a finite
prefix, from every point in the play, there exists a window of length at most ¢
starting from that point such that the mean payoff of the window is at least a
given threshold. In the bounded window mean-payoff objective (BWMP), it is
sufficient that there exists some length ¢ for which the FWMP(¢) objective is
satisfied.

Contributions. We present algorithmic solutions for stochastic games with
window mean-payoff objectives, and show that the positive and almost-sure
problems are solvable in polynomial time for FWMP(¢) (Theorem 5), and are in
NP N coNP for BWMP (Theorem 6). The complexity result for the almost-sure
problem entails that the quantitative satisfaction problem is in NPNcoNP (for both
the fixed and bounded version), using standard techniques for solving stochastic
games with prefix-independent objectives [13]. Note that the NP N coNP bound
for the quantitative satisfaction problem matches the special case of reachability
objectives in simple stochastic games [14], and thus would require a major
breakthrough to be improved.

As a consequence, using the FWMP(¢) objective instead of the standard mean-
payoff objective provides a stronger guarantee on the system, and even with a
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polynomial complexity for the positive and the almost-sure problems (which is
not known for mean-payoff objectives), and at no additional computational cost
for the quantitative satisfaction problem. The solution relies on a reduction to
non-stochastic two-player games (stochastic games without probabilistic vertices).
The key result is to show that in order to win positively from some vertex of the
game graph, it is necessary to win from some vertex of the non-stochastic game
obtained by transforming all probabilistic vertices into adversarial vertices. While
this condition, that we call the sure-almost-sure (SAS) property (Definition 1),
was used to solve finitary Streett objectives [13], we follow a similar approach and
generalize it to arbitrary prefix-independent objectives (Theorem 4). The bounds
on the memory requirement of optimal strategies of Player 1 can also be derived
from the key result, and are the same as optimal bounds for non-stochastic games.
For the FWMP(¢) and BWMP objectives in particular, we show that the memory
requirement of Player 2 is also no more than the optimal memory required by
winning strategies in non-stochastic games.

As solving a stochastic game with a prefix-independent objective ¢ reduces
to solving non-stochastic games with objective ¢ and showing that ¢ satisfies
the SAS property, we show that the FWMP(£) and BWMP objectives satisty the
SAS property (Lemma 4, Lemma 5) and rely on the solution of non-stochastic
games with these objectives [8] to complete the reduction.

We improve the memory bounds for optimal strategies of both players in
non-stochastic games. It is stated in [8] that |V|- ¢ memory suffices for both
players, where |V| and ¢ are the number of vertices and the window length
respectively. In [6, Theorem 2] and [19, Theorem 6.4], the bound is loosened
t0 O(Wmax - £2) and O(wmayx - £? - |V]) for Player 1 and Player 2 respectively,
where wpax 18 the maximum absolute payoff in the graph, as the original tighter
bounds [8] were stated without proof. Since the payoffs are given in binary, this
is exponential in the size of the input. In contrast, we tighten the bounds stated
in [8]. We show that for Player 1, memory ¢ suffices (Theorem 1), and improve
the bound on memory of Player 2 strategies as follows. We compute the set W of
vertices from which Player 2 can ensure that the mean payoff remains negative
for ¢ steps, as well as the vertices from which Player 2 can ensure that the game
reaches W. These vertices are identified recursively on successive subgames of the
original input game. If k is the number of recursive calls, then we show that k- ¢
memory suffices for Player 2 to play optimally (Theorem 2). Note that k < |V|.
We also provide a lower bound on the memory size for Player 2. Given ¢ > 2, for
every k > 1, we construct a graph with a set V' of vertices such that Player 2
requires at least k + 1 = 1(|V| — £+ 3) memory to play optimally (Theorem 3).
This is an improvement over the result in [8] which showed that memoryless
strategies do not suffice for Player 2. Our result is quite counterintuitive since
given an open window (a window in which every prefix has a total payoff less
than 0) that needs to be kept open for another j < ¢ steps from a vertex v, one
would conjecture that it is sufficient for a Player 2 winning strategy to choose an
edge from v that leads to the minimum payoff over paths of length j. Thus for
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every j, Player 2 should choose a fixed edge and hence memory of size ¢ should
suffice. However, we show that this is not the case.

To the best of our knowledge, this work leads to the first study of stochastic
games with finitary quantitative objectives.

Related work. Window mean-payoff objectives were first introduced in [8] for
non-stochastic games, where solving FWMP(¢) was shown to be in PTIME and
BWMP in NPNcoNP. These have also been studied for Markov decision processes
(MDPs) in [4,3]. In [4], a threshold probability problem has been studied, while
in [3], the authors studied the problem of maximising the expected value of
the window mean-payoff. Positive, almost-sure, and quantitative satisfaction of
BWMP in MDPs are in NP N coNP [4], the same as in non-stochastic games.

Parity objectives can be viewed as a special case of mean-payoff objectives [22].
A bounded window parity objective has been studied in [9, 20, 12] where a play
satisfies the objective if from some point on, there exists a bound ¢ such that from
every state with an odd priority, a smaller even priority occurs within at most ¢
steps. Non-stochastic games with bounded window parity objectives can be solved
in PTIME [20, 12]. Stochastic games with bounded window parity objectives have
been studied in [13] where the positive and almost-sure problems are in PTIME
while the quantitative satisfaction problem is in NP N coNP. A fixed version of
the window parity objective has been studied for two-player games and shown
to be PSPACE-complete [26]. Another window parity objective has been studied
in [5] for which both the fixed and the bounded variants have been shown to be
in PTIME for non-stochastic games. The threshold problem for this objective has
also been studied in the context of MDPs, and both fixed and bounded variants
are in PTIME [4]. Finally, synthesis for bounded eventuality properties in LTL is
2-EXPTIME-complete [23].

Due to lack of space, some of the proofs have been omitted. A full version of
the paper can be found in [15].

2 Preliminaries

Stochastic games. We consider two-player turn-based zero-sum stochastic
games (or simply, stochastic games in the sequel). The two players are referred
to as Player 1 and Player 2. A stochastic game is a weighted directed graph
Gg=(V,E),(V1,V2,V5),P,w), where:

— (V, E) is a directed graph with a finite set V' of vertices and a set E CV xV
of directed edges such that for all vertices v € V, the set E(v) = {v' € V|
(v,v") € E} of out-neighbours of v is nonempty, i.e., E(v) # @ (no deadlocks);

— (W1, V4, Vo) is a partition of V. The vertices in V7 belong to Player 1, the
vertices in Vo belong to Player 2, and the vertices in V;, are called probabilistic
vertices (in figures, Player 1 vertices are shown as circles, Player 2 vertices as
boxes, and probabilistic vertices as diamonds, and we use pronouns “she/her”
for Player 1 and “he/him” for Player 2);
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— P: Vo — D(V), where D(V) is the set of probability distributions over
V, is a transition function that maps probabilistic vertices v € Vi, to a
probability distribution P(v) over the set E(v) of out-neighbours of v such
that P(v)(v') > 0 for all v' € E(v) (i.e., all out-neighbours have nonzero
probability); for the algorithmic and complexity results, we assume that
probabilities are given as rational numbers.

— w: FE— Qis a payoff function assigning a rational payoff to every edge in
the game.

Stochastic games are played in rounds. The game starts by initially placing
a token on some vertex. At the beginning of a round, if the token is on a
vertex v, and v € V; for ¢« € {1,2}, then Player i chooses an out-neighbour
v’ € E(v); otherwise v € V5, and an out-neighbour v € E(v) is chosen with
probability P(v)(v'). Player 1 receives from Player 2 the amount w(v,v’) given by
the payoff function, and the token moves to v’ for the next round. This continues
ad infinitum, resulting in an infinite sequence ™ = vgvive --- € V¥ such that
(vi,vi41) € E for all i > 0, called a play. For ¢ < j, we denote by (i, 7) the
infix v;vi41 - v; of m. Its length is |w(¢, )| = j — 4, the number of edges. We
denote by m(0, ) the finite prefiz vovy ---v; of m, and by 7(i,00) the infinite
suffix viviyr ... of m. We denote by Playsg and Prefsg the set of all plays and
the set of all prefixes in G respectively; the symbol G is omitted when it can
easily be derived from the context. We denote by First(p) and Last(p) the first
vertex and the last vertex of a prefix p € Prefsg respectively. We denote by Prefsig
(i € {1,2}) the set of all prefixes p such that Last(p) € V;.

Objectives. An objective ¢ is a Borel-measurable subset of Playsg [2]. A play
7 € Playsg satisfies an objective ¢ if 7 € ¢. In a (zero-sum) stochastic game G
with objective ¢, the objective of Player 1 is ¢, and the objective of Player 2
is the complement set o = Playsg \ ¢. Common examples of objectives are
qualitative objectives such as reachability, safety, Biichi, and coBiichi.

An objective ¢ is closed under suffizes if for all plays 7 satisfying ¢, all
suffixes of 7 also satisfy ¢, that is, 7(j,00) € ¢ for all j > 0. An objective ¢ is
closed under prefizes if for all plays 7 satisfying ¢, for all prefixes p such that the
concatenation p - 7 is a play in G, i.e., p- 7 € Playsg, we have that p-7 € ¢. An
objective ¢ is prefiz-independent if it is closed under both prefixes and suffixes.
An objective ¢ is closed under suffixes if and only if the complement objective @
is closed under prefixes. Thus, an objective ¢ is prefix-independent if and only if
its complement @ is prefix-independent.

Strategies. A (deterministic) strategy for Player i € {1,2} in a game G is a
function o; : Prefsz; — V that maps prefixes ending in a vertex v € V; to a
successor of v. The set of all strategies of Player i € {1,2} in the game G is
denoted by A;. Strategies can be realised as the output of a (possibly infinite-
state) Mealy machine. A Mealy machine is a deterministic transition system with
transitions labelled by an input/output pair. Formally, a Mealy machine M is
a tuple (Q, qo, Xy, X0, A, 8) where @ is the set of states of M (the memory of
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the induced strategy), qo € @ is the initial state, X; is the input alphabet, X,
is the output alphabet, A: Q x X; — @ is a transition function that reads the
current state of M and an input letter and returns the next state of M, and
0: Q x X; — X, is an output function that reads the current state of M and
an input letter and returns an output letter. We point the reader to [15] for a
description of how a strategy is defined by a Mealy machine.

The memory size of a strategy o; is the smallest number of states a Mealy
machine defining o; can have. A strategy o; is memoryless if o;(p) only depends
on the last element of the prefix p, that is for all prefixes p,p’ € Prefsé if
Last(p) = Last(p’), then o;(p) = 0;(p"). Memoryless strategies can be defined by
Mealy machines with only one state.

A play m = vguy -+ is consistent with a strategy o; € A; (i € {1,2}) if
vj+1 = o3(m(0,4)) for all j > 0 such that v; € V;. A play = is an outcome of
o1 and o9 if it is consistent with both oy and o,. We denote by Prg;’f’2 (p) the
probability that an outcome of o1 and o9 in G with initial vertex v satisfies ¢.

Non-stochastic two-player games. A stochastic game without probabilistic
vertices (that is, with Vi, = @) is called a non-stochastic two-player game (or
simply, non-stochastic game in the sequel). In a non-stochastic game G with
objective ¢, a strategy o; is winning from a vertex v € V for Player i (i € {1,2})
if every play in G with initial vertex v that is consistent with o; satisfies the
objective . A vertex v € V is winning for Player i in G if Player ¢ has a winning
strategy in G from v. The set of vertices in V' that are winning for Player ¢ in G
is the winning region of Player i in G, denoted ((i))(¢). If a vertex v belongs to
the winning region of Player ¢ (i € {1,2}), then Player ¢ is said to play optimally
from v if she follows a winning strategy.

Subgames. Given a stochastic game G = ((V, E), (V1, V2, V), P, w), a subset
V' C V of vertices induces a subgame if (i) every vertex v’ € V' has an out-
neighbour in V', that is E(v') NV’ # &, and (i7) every probabilistic vertex
v' € Vo NV’ has all out-neighbours in V', that is E(v') C V’. The induced
subgame is (V', E"), VinV', VanV' Vo NV'), P’ w'), where E' = EN(V' x V'),
and P’ and w’ are restrictions of P and w respectively to (V’, E’). We denote
this subgame by G | V’. Let ¢ be an objective in the stochastic game G. We
define the restriction of ¢ to a subgame G’ of G to be the set of all plays in G’
satisfying ¢, that is, the set Playsg, N .

Satisfaction probability. A strategy oy of Player 1 is winning with probability p
from an initial vertex v in G for objective ¢ if Prgf;‘” (¢) > p for all strategies
o9 of Player 2. A strategy o1 of Player 1 is positive winning (resp., almost-sure
winning) from v for Player 1 in G with objective ¢ if Prg"*(¢) > 0 (resp.,
Prgt72(p) = 1) for all strategies o of Player 2. We refer to positive and almost-
sure winning as qualitative satisfaction of ¢, while for arbitrary p € [0, 1], we call
it quantitative satisfaction. We denote by (1)5°(¢) (resp., by (1)8°(¢)) the
positive (resp., almost-sure) winning region of Player 1, i.e., the set of all vertices
in G from which Player 1 has a positive (resp., almost-sure) winning strategy
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for G with objective p. If a vertex v belongs to the positive (resp., almost-sure)
winning region of Player 1, then Player 1 is said to play optimally from v if
she follows a positive (resp., almost-sure) winning strategy from v. We omit
analogous definitions for Player 2.

Positive attractors and traps. The Player i positive attractor (i € {1,2}) to
T C V, denoted PosAttr;(T'), is the set of vertices in V' from which Player i can
ensure that the token reaches a vertex in T" with positive probability. It is possible
to compute the positive attractor in O(|E|) time [10]. In non-stochastic games, a
positive attractor to a set T is the same as an attractor to the set T', which we
denote by Attr;(T). Computation of PosAttr;(T) gives a memoryless strategy for
Player 7 that ensures that the token reaches T with positive probability. We call
such a strategy a positive-attractor strateqy of Player i.

A trap for Player 1 is a set T C V such that for every vertex v € T, if
v € V1 UV, then E(v) C T, and if v € Vo, then E(v) NT # @. In other words,
from every vertex v € T, Player 2 can ensure (with probability 1) that the token
never leaves T', moreover using a memoryless strategy. A trap for Player 2 can
be defined analogously.

Remark 1. Let G be a non-stochastic game with objective ¢ for Player 1. If ¢ is
closed under suffixes, then the winning region of Player 1 is a trap for Player 2.
As a corollary, if ¢ is prefix-independent, then the winning region of Player 1 is
a trap for Player 2 and the winning region of Player 2 is a trap for Player 1.

3 Window mean payoff

We consider two types of window mean-payoff objectives, introduced in [8]: (7)
fized window mean-payoff objective (FWMP(¢)) in which a window length ¢ > 1
is given, and (i4) bounded window mean-payoff objective (BWMP) in which for
every play, we need a bound on window lengths. We define these objectives below.

For a play 7 in a stochastic game G, the total payoff of an infix 7w (i,i +n) =
ViVit1 Vit is defined as TP(w(i,i + n)) = ;j:z*l w(vg, vky1). The mean
payoff of an infix 7(i,i + n) is defined as MP(w(i,i 4+ n)) = 2TP(x(i,i + n)).
Observe that the mean payoff of an infix is nonnegative if and only if the total
payoff of the infix is nonnegative. The mean payoff of a play 7 is defined as
MP(7) = liln;iorolf MP(7(0,n)). Given a window length £ > 1, a play m = vgvy - -
in G satisfies the fized window mean-payoff objective FWMPg(¢) if from every

position after some point, it is possible to start an infix of length at most ¢ with
a nonnegative mean payoff. Formally,

FWMPg(¢) = {r € Playsg | 3k > 0-¥i > k-3j € {1,...,£} : MP(n(i,i+j)) > 0}.

We omit the subscript G when it is clear from the context. Note that when £ =1,
the FWMP(1) and FWMP(1) (i.e., the complement of FWMP(1)) objectives
reduce to coBiichi and Biichi objectives respectively. The following properties
of FWMP(¢) have been observed in [8]. For all window lengths £ > 1, if a play
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7 satisfies FWMP({), then MP(7) > 0. In all plays satisfying FWMP(¢), there
exists a suffix that can be decomposed into infixes of length at most £, each with
a nonnegative mean payoff. Such a desirable robust property is not guaranteed
by the classical mean-payoff objective, where infixes of unbounded lengths may
have negative mean payoff.

As defined in [8], given a play m = vov; -+ - and 0 < i < j, we say that the
window 7 (i, 7) is open if the total-payoff of 7 (i, k) is negative for all i < k < j.
Otherwise, the window is closed. Given j > 0, we say a window is open at j
if there exists an open window (i, j) for some ¢ < j. The window starting
at position i closes at position j if j is the first position after ¢ such that the
total-payoff of 7 (4, ) is nonnegative. If the window starting at ¢ closes at j, then
for all i < k < j, the windows 7 (k,j) are closed. This property is called the
inductive property of windows.

We also have the bounded window mean-payoff objective BWMP. A play 7
satisfies the BWMP objective if there exists a window length ¢ > 1 for which 7
satisfies FWMP(¢), i.e.,

BWMPg = {r € Playsg | 3¢ > 1: 7 € FWMP(¢)}

Equivalently, a play m does not satisfy BWMP if for every suffix of «, for all £ > 1,
the suffix contains an open window of length ¢. Note that both FWMP(¢) for all
£ > 1 and BWMP are prefix-independent objectives.

Decision problems. Given a game G, an initial vertex v € V, a rational
threshold p € [0,1], and an objective ¢ (that is either FWMP(¢) for a given
window length ¢ > 1, or BWMP), consider the problem of deciding;:

— Positive satisfaction of ¢: whether Player 1 positively wins ¢ from v, i.e.,
whether v € ((1)5°5(¢).

— Almost-sure satisfaction of p: whether Player 1 almost-surely wins ¢ from v,
i.e., whether v € ((1)8°(¢).

— Quantitative satisfaction of ¢ (also known as quantitative value problem [13]):
whether Player 1 wins ¢ from v with probability at least p, i.e., whether
SUP,, e 4, iNfoen, Prgh’?(0) > p.

Note that these three problems coincide for non-stochastic games. As considered
in previous works [8, 3, 4], the window length ¢ is usually small (typically ¢ < |V]),
and therefore we assume that ¢ is given in unary (while the payoff on the edges
is given in binary). From determinacy of Blackwell games [24], stochastic games
with window mean-payoff objectives as defined above are determined, i.e., the
largest probability with which Player 1 is winning and the largest probability
with which Player 2 is winning add up to 1.

Algorithms for non-stochastic window mean-payoff games. To compute
the positive and almost-sure winning regions for Player 1 for FWMP(¢), we recall
intermediate objectives defined in [8]. The good window objective GWg(£) consists
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Algorithm 1 NonStocFWMP(G, ¢) Algorithm 2 NonStocDirFWMP(G, ¢)
In: 6= ((V,E), V1,Vo,9),w) and £ >1 In: G = ((V,E),(V1,V2,9),w) and £ > 1

Out: (1))g(FWMP(?)) Out: (1))g(DirFWMP(?))

1: W4 < NonStocDirFWMP(G, £) 1: Wy + GoodWin(G, ¢)

2: if Wy = @ then 2: if Wy =V or Wy, = @ then

3: ‘ return g 3: ‘ return Wy,

4: else 4: else

5: A+ Attr (Wy) 5 A+ Attra(V \ Wyw)

6: return AUNonStocFWMP(G | (V\ 6: return NonStocDirFWMP(G |

A),0) (Wow \ A), 0).

of all plays 7 in G such that the window opened at the first position in the play
closes in at most ¢ steps:

GWg(¢) = {r € Playsg | 3j € {1,...,£} : MP(x(0,5)) > 0}

The direct fized window mean-payoff objective DirFWMPg(¢) consists of all
plays 7 in G such that from every position in 7, the window closes in at most ¢
steps:

DirFWMPg (¢) = {7 € Playsg | Vi > 0 : 7(i,00) € GWg(/)}

The FWMPg(£) objective can be expressed in terms of DirFWMPg(¢):
FWMPg(¢) = {r € Playsg | 3k > 0 : 7(k, 00) € DirFWMPg ()}

We refer to Algorithms 1, 2, and 3 from [8] shown here with the same numbering.
They compute the winning regions for Player 1 for the FWMP(¢), DirFWMP (),
and GW(¢) objectives in non-stochastic games respectively. The original algo-
rithms in [8] contain subtle errors for which the fixes are known [6,19]. For
completeness, we refer the reader to [15] for counterexamples for the algorithms
in [8] along with brief explanations of correctness for the modified versions.

Algorithm 3 uses dynamic programming to compute, for all v € V' and all
lengths i € {1,...,/¢}, the largest payoff C;(v) that Player 1 can ensure from v
within at most ¢ steps. The winning region for GW(¢) for Player 1 consists of all
vertices v such that Cy(v) > 0.

4 Memory requirement for non-stochastic window
mean-payoff games

The memory requirement for winning strategies of Player 1 in non-stochastic
games with objective FWMP(¢) is claimed to be O(|V] - £) without proof [8,
Lemma 7], and further “correctly stated” as O(wmax - £2), where wpax is the
maximum absolute payoff in the graph [6, Theorem 2]. We improve upon these
bounds and show that memory of size ¢ suffices for a winning strategy of Player 1.
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Algorithm 3 GoodWin(G, /)

In: G = ((V,E),(V1,Va,d),w) the non-stochastic game, and ¢ > 1, the window length
Out: The set of vertices from which Player 1 wins GW({) in G

1: for allv € V do

2: Co(v) <0
for all i€ {1,...,4} do
., Ci(v) < —o0
for alli e {1,...,4} do
for all v € V; do
E‘ Ci(v) ¢ max(y oyep{max{w(v,v"), w(v,v") + Ci_1(v')}}
or all v € V, do

9: | L Ci(v) « min(, vyep{max{w(v,v"), w(v,v") + Ci_1(v')}}
10: Wy < {v € V | Cy(v) > 0}
11: return Wy,

We also present a family of games with arbitrarily many vertices where Player 2 is
winning and all his winning strategies require at least (|V|—¢)+3 memory, while
it was only known that memoryless strategies are not sufficient for Player 2 [8].

4.1 Memory requirement for Player 1 for FWMP objective

Upper bound on memory requirement for Player 1. We show that memory
of size ¢ suffices for winning strategies of Player 1 for the DirFWMP(¢) objective
(Lemma 1), which in turn shows that the same memory also works for the
FWMP(¢) objective (Theorem 1).

Lemma 1. If Player 1 wins in a non-stochastic game with objective DirFWMP(¢),
then Player 1 has a winning strategy with memory of size £.

Proof (Sketch). Given a non-stochastic game G, let Wy be the winning region
of Player 1 in G for objective DirFWMP({). By definition, every vertex in Wy is
also winning for Player 1 for the GW(¢) objective.

A winning strategy o4 of Player 1 in W, satisfies the objective GW({) by
closing a window within at most £ steps and then restarts with the same strategy,
playing for GW(¢) and so on. Using memory space @ = {1,...,¢}, we may store
the number of steps remaining before the window must close. However, the
window may close any time within £ steps, and the difficulty lies in detecting this
independently of the history. For memory state ¢ = ¢ and the next visited vertex
being v, intuitively, the memory should be updated to ¢ =i — 1 if the window
did not close yet upon reaching v, and to ¢ = £ if it did, but that depends on
which path was followed to reach v (not just on v), which is not stored in the
memory space.

The crux is to show that it is not always necessary for Player 1 to be able
to infer when the window closes. Given the current memory state ¢ = i, and
the next visited vertex v, the memory update is as follows: if C;(v) > 0 (that
is, Player 1 can ensure the window from v will close within ¢ steps), then we
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update to ¢ = i — 1 (decrement) although the window may or may not have
closed upon reaching v; otherwise C;(v) < 0 and we update to ¢ = ¢ — 1 (reset to
¢ and decrement) and we show that in this case the window did close. Intuitively,
updating to ¢ = i — 1 is safe even if the window did close, because the strategy
of Player 1 will anyway ensure the (upcoming) window is closed within ¢ — 1 < ¢
steps. A formal description of a Mealy machine with ¢ states defining a winning
strategy of Player 1 for the DirFWMP(¢) objective is given in [15]. O

Theorem 1. If Player 1 wins in a non-stochastic game G with objective FWMP(£),
then Player 1 has a winning strategy with memory of size £.

Proof (Sketch). Since FWMP(¢) is a prefix-independent objective, we have that
the winning region ((1));(FWMP({)) of Player 1 is a trap for Player 2 (Re-
mark 1), and induces a subgame, say Go. Let there be k + 1 calls to the
subroutine NonStocDirFWMP from Algorithm 1 where k& < |V|. We denote
by (Wi)ieq1,...,ky the nonempty Wy returned by the i*? call to the subroutine,
and let A; = Attri(W;). The A,’s are pairwise disjoint, and their union is
UL, Ai = (1)g(FWMP(#)). For i € {1,...,k}, inductively define G; to be the
subgame induced by the complement of A; in G;_;. Since DirFWMP(?) is closed
under suffixes, for all ¢ € {1,... k}, we have that W; is a trap for Player 2 in G;
(Remark 1).

We construct a strategy olNS that follows the (memoryless) attractor strategy
in {J;(Ai \ W;), and follows the winning strategy o4 for DirFWMP(¢) objective
(defined in the proof of Lemma 1) in |J, W;. The reader is pointed to [15] for
a formal description of a Mealy machine defining the strategy oN°. For the
correctness of the construction, the crux is to show that one of the sets W;
(i € {1,...,k}) is never left from some point on. Intuitively, given the token is
in A; for some i € {1,...,k} (thus in G;), following oNS, the token will either
remain in A;, or leave the subgame G; and enter A; for a smaller index j < 1.
The result follows since this can be done at most k times. ad

Lower bound on memory requirement for Player 1. In [8], the authors
show a game with £ = 4 where Player 1 requires memory at least 3. This can be
generalized to arbitrary ¢ to show that memory of size £ — 1 may be necessary
(See [15] for details).

4.2 Memory requirement for Player 2 for FWMP objective

Upper bound on memory requirement for Player 2. Now we show that

for the FWMP(¢) objective, Player 2 has a winning strategy that uses memory
of size at most |V| - £. This has been loosely stated in [8] without a formal proof.

Theorem 2. Let G be a non-stochastic game with objective FWMP () for Player 2.
Then, Player 2 has a winning strategy with memory size at most |V| - L.

Proof (Sketch). Since FWMP(?) is a prefix-independent objective, so is FWMP(¢).

We have that ((2))g(FWMP(£)) is a trap for Player 1 (Remark 1) and induces a
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subgame, say Ho, of G. Let there be k + 1 calls to the subroutine GoodWin from
Algorithm 2 (where k < |V|), and let H; be the subgame corresponding to the i'h
call of the subroutine. We denote by (W;);cq1,... x} the complement of W, in H;,
where Wy, is returned by the i*® call to the subroutine, and let A; = Attro (W;).
The A;’s are pairwise disjoint, and their union is Ule Ai = ((2))g(FWMP(£)).
We describe a winning strategy for the FWMP(¢) objective with memory
k - £, which is at most |V| - £. The strategy is always in either attractor mode
or window-open mode. When the game begins, it is in attractor mode. If the
strategy is in attractor mode and the token is on a vertex v € A4; \ W; for some
i € {1,...,k}, then the attractor strategy is to eventually reach W;. If the token
reaches W;, then the strategy switches to window-open mode. Since all vertices
in W; are winning for Player 2 for the GW(¢) objective, he can keep the window
open for ¢ more steps, provided that Player 1 does not move the token out of
the subgame H;. If, at some point, Player 1 moves the token out of the subgame
H; to A; for a smaller index j < ¢, then the strategy switches back to attractor
mode, this time trying to reach W; in the bigger subgame #;. Otherwise, if
Player 2 keeps the window open for ¢ steps, then the strategy switches back to
attractor mode until the token reaches a vertex in Ule W;. This strategy can
be defined by a Mealy machine M)S with states {1,...,k} x {1,...,¢}, where
the first component tracks the smallest subgame H; in which the window started
to remain open, and the second component indicates how many more steps the
window needs to be kept open for. A formal description of M}° can be found
in [15]. O

Lower bound on memory requirement for Player 2. In [8], it was shown
that memoryless strategies do not suffice for Player 2. We improve upon this
lower bound. Given a window length ¢ > 2, for every k > 1, we construct a game
Gr.e with 2k + ¢ — 1 vertices such that every winning strategy of Player 2 in Gy, ¢
requires at least k + 1 memory.

Theorem 3. There exists a family of non-stochastic games {Gy, ¢} k>1.0>2 with
objective FWMP(£) for Player 1 and edge weights in {—1,0,+1} such that every
winning strategy of Player 2 requires at least 5(|V| — €+ 1) + 1 memory, where
V| =2k+{—-1.

Proof (Sketch). Let A ={as,...,ar}, B={b1,...,b;}, and C = {c1,...,co—1}
be pairwise disjoint sets. The vertices of Gy o are AUBUC with V; = AUC and
Vo = B. Figure 1 shows the game G4 3. A more formal description of Gj, ¢ can be
found in [15].

Observe that the only open windows of length ¢ in the game Gy, ¢ are sequences
of the form apb,ce—1 -+ ¢y for all p < r. Also note that Player 2 has a winning
strategy that wins starting from every vertex in the game, as Player 2 can force
the token to eventually take a red edge followed by two black edges.

When the token reaches a vertex b, € B, Player 2 can either move the token
to a, € A or to ¢y—1 € C. Depending on which vertex the token was on before
reaching b,., one of the two choices is good for Player 2. If the token reaches b,
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Figure 1: Game G4,3 with parameter k = 4 and window length ¢ = 3. Red edges (from
ap to b, for p < r) have payoff —1, black edges (from b, to ¢2) have payoff 0, and blue
edges (the remaining edges) have payoff +1.

Table 1: Good choices x(u,b,) for all u € AU{c1} and b, € B in the game Ga 3
aiby — colazby — a1
a1b2 — C2 azbz — C2 a3b2 — as
a1bs — calazbs — c2|aszbs — ¢ laabs — as
a1b4 — C2 a2b4 — C2 a3b4 — C2 a4b4 — C2 C1b4 — a4

from a, for p <r, then it is good for Player 2 to move the token to c,—1 € C so
that the window starting at a, remains open for £ steps. Otherwise, if the token
reaches b, from a,1, then it is good for Player 2 to move the token to a, so that
an edge with negative payoff may eventually be taken. For all u € AU {¢; }, for
all b, € B such that (u,b,) is an edge in Gy ¢, we denote by x(u,b,) the vertex
ay or cg—1 that is good for Player 2. We list the good choices in the game G4 3 in
Table 1. The columns are indexed by v € AU {c;} and the rows are indexed by
b. € B.

We show that for each column in the table, there exists a distinct memory
state in every Mealy machine defining a winning strategy of Player 2. This gives
a lower bound of k£ + 1 on the number of states of such a Mealy machine. Since
Gk, has 2k 4 £ — 1 vertices, the memory requirement of a winning strategy of
Player 2 is at least (|V|— ¢+ 1)+ 1. O

Given a winning strategy oh° of Player 2 for the FWMP(¢) objective, the
following lemma gives an upper bound on the number of steps between consecutive
open windows of length ¢ in any play consistent with o)°. This lemma is used in
Section 6, where we construct an almost-sure winning strategy of Player 2 for

the FWMP(¥) objective.

Lemma 2. Let G be a non-stochastic game such that {(2))g(FWMP({)) = V. Let
oS be a finite-memory strategy of Player 2 of memory size M that is winning

for FWMP(£) from all vertices in G. Then, for every play © of G consistent with

oS, every infix of m of length M - |V'| - £ contains an open window of length .

The proof is based on the pigeonhole principle and appears in [15].
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.5.5

Figure 2: Biichi objective does not satisfy the SAS property in this game.

5 Reducing stochastic games to non-stochastic games

For a stochastic game G, let Gns = ((V, E), (Vi, ValUViy, &), w) be the (adversarial)
non-stochastic game corresponding to G, obtained by changing all probabilistic
vertices in G to Player 2 vertices. In [13], a property of finitary Streett objective
was used to solve stochastic games by reducing them to non-stochastic games
with the same objective. In this section, we generalize this property for arbitrary
prefix-independent objectives.

Definition 1 (Sure-almost-sure (SAS) property). A prefiz-independent ob-
jective ¢ in a game G satisfies the SAS property if (2))g, (@) = V implies
((2»35 (@) =V, that is, if Player 2 wins the objective @ from every vertex in Gys,
then Player 2 almost-surely wins the same objective @ from every vertex in G.

Every prefix-independent objective satisfies the converse of the SAS property
since if Player 2 even wins positively from all vertices in G, then since he controls
all probabilistic vertices in Gns, he wins from all vertices in Gns by choosing
optimal successors of probabilistic vertices. We show in Section 6 that for all
stochastic games G, the objectives FWMP(¢) and BWMP satisfy the SAS property,
while in Example 1, we show that there exists a stochastic game in which Biichi
objective does not satisfy the SAS property.

Example 1. Consider the game G in Figure 2. The objective ¢ in this game is
a Biichi objective: a play 7 satisfies the Biichi objective if 7 visits vertex v,
infinitely often. Although from every vertex, with positive probability (in fact,
with probability 1), a play visits v infinitely often, from none of the vertices,
Player 1 can ensure the Biichi objective in the non-stochastic game Gys.

Theorem 4 gives complexity bounds for solving stochastic games with ob-
jectives satisfying the SAS property in terms of the complexity of solving non-
stochastic games with the same objective.

Theorem 4. Given G and p, suppose in every subgame G' of G, the objective
restricted to G' satisfies the SAS property. Let NonStocWin,, (Gns) be an algorithm
computing (1))g,.(¢) in Gns in time C. Then, the positive and almost-sure
satisfaction of @ can be decided in time O(|V|-(C+ |E|)) and O(|V|?- (C +|E|))
respectively.

Moreover, for positive and almost-sure satisfaction of ¢, the memory require-
ment for Player 1 to play optimally in stochastic games is no more than that for
non-stochastic games.
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Algorithm 4 PosWin, (G) Algorithm 5 ASWin, (G)
In: G = ((V:E)7(V17V27VQ)7P7U)) and ¢ In: G = ((V7E)7(V17‘/27V<>)7P7w) and ¢
Out: (1)F(¢) Out: (1)2(¢)

1: Wy < NonStocWin,, (Gns) 1: Wa <= V' \ PosWin,, (G)

2: if W, = @ then 2: if Wy = @ then

3: ‘ return & 3: return V

4: else 4: else

5: A; < PosAttry (W) 5: Ay < PosAttra (W5)

6: L return A; UPosWin, (G [ (V\4,)) 6: L return ASWin, (G | (V' \ A43))

Theorem 4 does not give bounds on the memory requirement for winning strategies
of Player 2 for objective ¢ in the stochastic game, but we provide such bounds
specifically for FWMP(¢) and BWMP in Section 6. We give a sketch of the proof
of Theorem 4 below. The complete proof appears in [15].

The algorithms to compute the positive and almost-sure winning regions
in G, and their proofs of correctness are the same as in the case of finitary
Streett objectives described in [13]. The PosWin, algorithm (Algorithm 4) uses
NonStocWin,, as a subroutine to compute {(1))g°(¢). The fact that ¢ satisfies
the SAS property is used to show the correctness of this algorithm. The depth
of recursive calls of this algorithm is bounded above by |V|, which gives the
complexity bound. The ASWin,, algorithm (Algorithm 5) in turn uses PosWin,,
as a subroutine to compute the (1)§°(¢). The depth of recursive calls of this
algorithm is also bounded above by |V, which gives the complexity bound. The
following lemma, which is a special case of Theorem 1 in [7], is used to show the
correctness of this algorithm.

Lemma 3. [7, Theorem 1] For a stochastic game G with prefiz-independent
objective ¢, if (2)g(0) =V, then (2)g°(v) = V.

For both positive and almost-sure winning, Player 1 does not require any
additional memory in the stochastic game compared to the non-stochastic game.
We describe a strategy ot of Player 1 that is positive winning from all vertices
in (1)£°5(¢). In each recursive call to PosWin,, algorithm, from every vertex in
W), the strategy o}° mimics a winning strategy of Player 1 in Gys, while for
vertices in A; \ Wy, it follows a memoryless attractor strategy to reach W;. The
same strategy is almost-sure winning for Player 1 from all vertices in (1)8°(¢).

Finally, we look at the quantitative decision problem. The quantitative sat-
isfaction for ¢ can be decided in NP? ([13, Theorem 6]), where B is an oracle
deciding positive and almost-sure satisfaction problems for ¢. It is not difficult
to see that the quantitative satisfaction for ¢ can be decided in NPZ N coNPE.
Moreover, from the proof of [13, Theorem 6], it follows that the memory require-
ment of winning strategies for both players for the quantitative decision problem
is no greater than that for the qualitative decision problem.
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Corollary 1. Given G and ¢ as described in Theorem 4, let B be an oracle
deciding the qualitative satisfaction of ¢. Then, the quantitative satisfaction of ¢
is in NPP N coNPB. Moreover, the memory requirement of optimal strategies for
both players is no greater than that for the positive and almost-sure satisfaction

of .

6 Reducing stochastic window mean-payoff games: A
special case

In this section, we show that for all stochastic games G and for all ¢ > 1, the
objectives FWMPg(¢) and BWMPg, which are prefix-independent, satisfy the
SAS property of Definition 1. Thus, by Theorem 4, we obtain bounds on the
complexity and memory requirements of Player 1 for the positive and almost-sure
satisfaction of these objectives. We also show that for both these objectives, the
memory requirements of Player 2 to play optimally for positive and almost-sure
winning in stochastic games is no more than that of the non-stochastic games. The
algorithms to compute the positive and almost-sure winning regions of Player 1
for both FWMP(£) and BWMP objectives are obtained by instantiating ¢ equal
to FWMP(¢) and BWMP in Algorithms 4 and 5. Thus, we obtain the algorithms
POSWiI’lFW[\/“:)(g)7 ASWinFWMp(g), PosWinBWMp, and ASWinBWMp.

6.1 Fixed window mean-payoff objective
We first discuss the SAS property for the FWMP(¢) objective.

Lemma 4. In stochastic games, for all £ > 1, the FWMP(¢) objective satisfies
the SAS property.

Proof (Sketch). We show that for all stochastic games G, if <<2>>QNS(FWMP(€)) =
V, then (2)5°(FWMP(¢)) = V. If {(2) g, (FWMP(£)) = V, then from Theorem 2,
there exists a finite-memory strategy O‘S‘S (say, with memory M) of Player 2
that is winning for objective FWMP({) from every vertex in Gys. Given such a
strategy, we construct below a strategy 5> of Player 2 in the stochastic game G
that is almost-sure winning for FWMP () from every vertex in G.

In Gns, Player 2 controls vertices in Vo U V4, while in G, Player 2 only controls
vertices in V5 and the probability function P determines the successors of vertices
in V. While the strategy o)° is winning for FWMP(¢) from all vertices in Gys,
it may not be almost-sure winning for FWMP(¢) in G. This is because each time
the token is on a probabilistic vertex, a deviation occurs with positive probability,
i.e., the successor chosen by the distribution is not consistent with o}°, resulting
in a potentially worse outcome for Player 2. For example, in Figure 3, we see
a stochastic game G and a Mealy machine MYS defining a strategy o)° that
is winning for Player 2 from all vertices in the non-stochastic game Gys. In all
outcomes in Gys that are consistent with 05‘5, the token never moves from wvg
to vy. However, in G, a deviation may lead the token to move along (vg, v7). This
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Us/w

v4/ve, s/ Vs

ve Vs, U7/Vs

va/€,v3/€

va /€, v3 /€ v4/v6, Us/V6

U2/6, U3/€

vs/ve, V5 /Vg ve /€, v7/Vs8

Figure 3: (top) Stochastic game G with objective FWMP(3) for Player 2. All unlabelled
edges have payoff 0. (middle) Mealy machine MAS defining a strategy ob° that is
winning from all vertices in Gns for FWMP(3). (bottom) Part of the Mealy machine
M5 defining a reset strategy that is almost-sure winning from all vertices in G.

results in a losing outcome for Player 2 as the token gets trapped in vg, and
subsequently no window remains open for ¢ steps. Such harmful deviations can
be detected, and starting with the strategy o>, we construct a strategy o5°> that
mimics 05‘5 as long as harmful deviations do not occur, and resets otherwise, i.e.,
the strategy forgets the prefix of the play before the deviation. For instance, when
the token moves from vg to v7 in G, the strategy resets and the play continues as
if the game began from v;. We call 05> a reset strategy. Figure 3 shows a part
of a Mealy machine M4 defining a reset strategy for the game G. The figure
contains all the reset transitions out of ¢4, but the reset transitions out of g1,
g2, and g3 have been omitted for space. More details on how to obtain a Mealy
machine that defines 05° from a Mealy machine that defines o)> without adding
any new states can be found in [15].
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Now, we argue that the reset strategy is almost-sure winning for Player 2 from
all vertices in G. If a play in G continues for M - |V| - £ steps without deviating,
then by Lemma 2, it contains an open window of length ¢. From any point in
the play, the probability that ¢5°> successfully copies o) for i steps (that is, no
deviations occur) is at least p’, where p is the minimum probability over all the
edges in G. It follows that from every point in the play, the probability that an
open window of length ¢ occurs in the next M - |V| - £ steps is at least pM VI,
Therefore, from every position in the play, the probability that an open window of
length ¢ occurs eventually is at least >, (1 —p" V1) pMIVI£ = 1. Thus, with
probability 1, infinitely many open windows of length ¢ occur in the outcome, and
the outcome satisfies FWMP({). Thus, all vertices in G are almost-sure winning

for Player 2 for FWMP(¢). For all stochastic games G, the objective FWMP(?)
satisfies the SAS property. ad

We now construct a strategy o5° of Player 2 that is positive winning from

all vertices in ((2))g°(FWMP(()). Let W3 and A} denote the sets W, and A,
computed in the i*" recursive call of the ASWingwmp sy algorithm respectively. If
the token is in J; W4, then ¢5° mimics 04°; if the token is in |J; A4 \ W4, then
ob°s is a positive-attractor strategy to Wi which is memoryless. Then, o5 is
a positive winning strategy for Player 2 from all vertices in ((2))5°S(FWMP(¢)).

Using Theorem 4, Corollary 1, and Lemma 4, we have the following.

Theorem 5. Given a stochastic game G, a window length £ > 1, and a threshold
p € [0,1], for FWMPg(¥), the positive and almost-sure satisfaction for Player 1
are in PTIME, and the quantitative satisfaction is in NP N coNP. Moreover for
optimal strategies, memory of size £ is sufficient for Player 1 and memory of size
|V| - € is sufficient for Player 2.

6.2 Bounded window mean-payoff objective

We show that the SAS property holds for the BWMP objective for all stochastic
games G.

Lemma 5. In stochastic games, the BWMP objective satisfies the SAS property.
Proof (Sketch). We show that for all stochastic games G, if (2))g, . (BWMP) =V,

NS

then ((2))5°>(BWMP) = V. Since every play that satisfies BWMP also satisfies

FWMP(¢) for all £ > 1, if (2))¢, . (BWMP) =V, then (2))g,  (FWMP({)) = V. It
follows that for each £ > 1, Player 2 has a finite-memory strategy (say, with
memory My), that is winning for the FWMP(£) objective from all vertices in Gys.
For every such strategy, we construct a reset strategy ag of memory size at most
M, as described in the proof of Lemma 4 that is almost-sure winning for the
FWMP({) objective from all vertices. We use these strategies to construct an
infinite-memory strategy o4° of Player 2 that is almost-sure winning for BWMP
from all vertices in the stochastic game G.

Let p be the minimum probability over all edges in the game, and for all £ > 1,

let ¢(¢) denote pMe'IVI". We partition a play of the game into phases 1,2, ... such
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that for all £ > 1, the length of phase £ is equal to Mg - [V'|-£-[1/q(£)]. We define
the strategy 04° as follows: if the game is in phase £, then 04° is o, the reset
strategy that is almost-sure winning for FWMP(¢) in G.

We show that 04 is almost-sure winning for Player 2 for BWMP in G. Let E,
denote the event that phase ¢ contains an open window of length ¢. Given a play
if By occurs in 7 for infinitely many £ > 1, then for every suffix of 7 and for all
£ > 1, the suffix contains an open window of length ¢, and 7 satisfies BWMP. For
all £ > 1, we compute the probability that £, occurs in the outcome. For all £ > 1,
we can divide phase £ into [1/¢(¢)] blocks of length M- |V|- £ each. If at least one
of these blocks contains an open window of length ¢, then the event F; occurs. It
follows from the proof of Lemma 4 that if Player 2 follows o%, then the probability
that there exists an open window of length ¢ in the next My - |V| - £ steps is at
least ¢(£). Hence, the probability that none of the blocks in the phase contains
an open window of length £ is at most (1 — ¢(£))[*/9(91, Thus, the probability
that Ey occurs in phase £ is at least 1 — (1 — g(¢))/*/4®01 > 1 -1 ~0.63 > 0. It
follows that with probability 1, for infinitely many values of £ > 1, the event E,
occurs in 7. a

Note that solving a non-stochastic game with the BWMP objective is in
NP N coNP [8]. Thus by Corollary 1, quantitative satisfaction for BWMP is in
NPNPRceNP A coNPNPIONP “which is the same as NP N coNP [25].

Moreover, from [8], Player 1 has a memoryless strategy and Player 2 needs
infinite memory to play optimally in non-stochastic games with the BWMP
objective. From the proof of Lemma 5, by using the strategy o4°, Player 2
almost-surely wins BWMP from all vertices in ((2))45(BWMP). We can construct

a positive winning strategy o5°° for Player 2 from all vertices in ((2))5°5(BWMP)

in a similar manner as done for the positive winning strategy for FWMP({) in
Section 6.1. We summarize the results in the following theorem:

Theorem 6. Given a stochastic game G and a threshold p € [0, 1], for BWMPg,
the positive, almost-sure, and quantitative satisfaction for Player 1 are in NP N
coNP. Moreover, a memoryless strategy suffices for Player 1, while Player 2
requires an infinite memory strategy to play optimally.
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Abstract. Emerson-Lei conditions have recently attracted attention due
to both their succinctness and their favorable closure properties. In the
current work, we show how infinite-duration games with Emerson-Lei
objectives can be analyzed in two different ways. First, we show that the
Zielonka tree of the Emerson-Lei condition naturally gives rise to a new
reduction to parity games. This reduction, however, does not result in
optimal analysis. Second, we show based on the first reduction (and the
Zielonka tree) how to provide a direct fixpoint-based characterization of
the winning region. The fixpoint-based characterization allows for sym-
bolic analysis. It generalizes the solutions of games with known winning
conditions such as Biichi, GR[1], parity, Streett, Rabin and Muller ob-
jectives, and in the case of these conditions reproduces previously known
symbolic algorithms and complexity results.

We also show how the capabilities of the proposed algorithm can be
exploited in reactive synthesis, suggesting a new expressive fragment of
LTL that can be handled symbolically. Our fragment combines a safety
specification and a liveness part. The safety part is unrestricted and
the liveness part allows to define Emerson-Lei conditions on occurrences
of letters. The symbolic treatment is enabled due to the simplicity of
determinization in the case of safety languages and by using our new
algorithm for game solving. This approach maximizes the number of
steps solved symbolically in order to maximize the potential for efficient
symbolic implementations.

1 Introduction

Infinite-duration two-player games are a strong tool that has been used, notably,
for reactive synthesis from temporal specifications [38]. Many different winning
conditions are considered in the literature.

Emerson-Lei (EL) conditions [21] were initially suggested in the context of au-
tomata but are among the most general (regular) winning conditions considered
for such games. They succinctly express general liveness properties by encod-
ing Boolean combinations of events that should occur infinitely or finitely often.
Automata and games in which acceptance or winning is defined by Emerson-Lei
conditions have garnered attention in recent years [35,40,27,25], in particular
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because of their succinctness and good compositionality properties (Emerson-
Lei objectives are closed under conjunction, disjunction, and negation). In this
work, we show how infinite-duration two-player games with Emerson-Lei winning
conditions can be solved symbolically.

It has been established that solving Emerson-Lei games is PSPACE-complete
and that an exponential amount of memory may be required by winning strate-
gies [25]. Zielonka trees are succinct tree-representations of Muller objectives [47].
They have been used to obtain tight bounds on the amount of memory needed
for winning in Muller games [18], and can also be applied to analyze Emerson-
Lei objectives and games. One indirect way to solve Emerson-Lei games is by
transformation to equivalent parity games using later-appearance-records [25],
and then solving the resulting parity games. Another, more recent, indirect ap-
proach goes through Rabin games by first extracting history-deterministic Rabin
automata from Zielonka trees and then solving the resulting Rabin games [12].
Both these indirect solution methods are enumerative by nature. Here, we give
a direct symbolic algorithmic solution for Emerson-Lei games. We show how the
Zielonka tree allows to directly encode the game as a parity game. Furthermore,
building on this reduction, we show how to construct a fixpoint equation sys-
tem that captures winning in the game. As usual, fixpoint equation systems are
recipes for game solving algorithms that manipulate sets of states symbolically.
To the best of our knowledge, we thereby give the first description of a fully
symbolic algorithm for the solution of Emerson-Lei games.

The algorithm that we obtain in this way is adaptive in the sense that the
nesting structure of recursive calls is obtained directly from the Zielonka tree
of the given winning objective. As the Zielonka tree is specific to the objective,
this means that the algorithm performs just the fixpoint computations that are
required for that specific objective. In particular, our algorithm instantiates to
previously known fixpoint iteration algorithms in the case that the objective is
a (generalized) Biichi, GR[1], parity, Streett, Rabin or Muller condition, repro-
ducing previously known algorithms and complexity results. As we use fixpoint
iteration, the instantiation of our algorithm to parity game solving is not di-
rectly a quasipolynomial algorithm. In the general setting, the algorithm solves
unrestricted Emerson-Lei games with £ colors, m edges and n nodes in time
O(K! - m - n*) and yields winning strategies with memory O(k!).

We apply our symbolic solution of Emerson-Lei games to the automated
construction of safe systems. The ideas of synthesis of reactive systems from
temporal specifications go back to the early days of computer science [14]. These
concepts were modernized and connected to linear temporal logic (LTL) and
finite-state automata by Pnueli and Rosner [38]. In recent years, practical ap-
plications in robotics are using this form of synthesis as part of a framework
producing correct-by-design controllers [28,6,44,32,34].

A prominent way to extend the capacity of reasoning about state spaces is by
reasoning symbolically about sets of states/paths. In order to apply this approach
to reactive synthesis, different fragments of LTL that allow symbolic game anal-
ysis have been considered. Notably, the GR[1] fragment has been widely used for
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the applications in robotics mentioned above [37,7]. But also larger fragments
are being considered and experimented with [20,19,41]. Recently, De Giacomo
and Vardi suggested that similar advantages can be had by changing the usual
semantics of LTL from considering infinite models to finite models (LTLy) [22].
The complexity of the problem remains doubly-exponential, however, symbolic
techniques can be applied. As models are finite, it is possible to use the classical
subset construction (in contrast to Biichi determinization), which can be rea-
soned about symbolically. Furthermore, the resulting games have simple reach-
ability objectives. This approach with finite models is used for applications in
planning [11,10] and robotics [6].

Here, we harness our symbolic solution to Emerson-Lei games to suggest a
large fragment of LTL that can be reasoned about symbolically. We introduce the
Safety and Emerson-Lei fragment whose formulas are conjunctions @satety A @EL
between an (unrestricted) safety condition and an (unrestricted) Emerson-Lei
condition defined in terms of game states. This fragment generalizes GR[1] and
the previously mentioned works in [20,19,41]. We approach safety and Emerson-
Lei LTL synthesis in two steps: first, consider only the safety part and convert it
to a symbolic safety automaton; second, reason symbolically on this automaton
by solving Emerson-Lei games using our novel symbolic algorithm.

Psafety A YEL ——> DWsafety e SyntheSIS game G‘Psafety/\‘PEL

\S—Ylﬂbolic SHV
@YEL

(Emerson-Lei objective)

We show that realizability of a safety and Emerson-Lei formula @gasety A @EL can
be checked in time 20 1ogm2") where n = |psafety| and m = |pgr,|. The overall
procedure therefore is doubly-exponential in the size of the safety part but only
single-exponential in the size of the liveness part; notably, both the automaton
determinization and game solving parts can be implemented symbolically.

We begin by recalling Emerson-Lei games and Zielonka trees in Section 2,
and also prove an upper bound on the size of Zielonka trees. Next we show how
to solve Emerson-Lei games by fixpoint computation in Section 3. In Section 4
we formally introduce the safety and Emerson-Lei fragment of LTL and show
how to construct symbolic games with Emerson-Lei objectives that characterize
realizability and that can be solved using the algorithm proposed in Section 3.
Omitted proofs and further details can be found in the full version of this pa-
per [23].

2 Emerson-Lei Games and Zielonka Trees

We recall the basics of Emerson-Lei games [25] and Zielonka trees [47], and also
show an apparently novel bound on the size of Zielonka trees; previously, the
main interest was on the size of winning strategies induced by Zielonka trees,
which is smaller [18].
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Emerson-Lei games. We consider two-player games played between the exis-
tential player 3 and its opponent, the universal player V. A game arena A =
(V, V3,4, E) consists of a set V = V3 W V4 of nodes, partitioned into sets of
existential nodes V3 and universal nodes Vi, and a set E C V x V of mowves;
we put E(v) = {v' € V| (v,v') € E} for v € V. A play m = vgvy ... then is a
sequence of nodes such that for all ¢ > 0, (v;,v;41) € E; we denote the set of
plays in A by plays(A4). A game G = (A, «) consists of a game arena A together
with an objective o C plays(A4).

A strategy for the existential player is a function ¢ : V* - V3 — V such
that for all # € V* and v € V5 we have (v,o(nv)) € E. A play vov; ... is said
to be compliant with strategy f if for all ¢ > 0 such that v; € V3 we have
Vi1 = o(vg...v;). Strategy o is winning for the existential player from node
v € V if all plays starting in v that are compliant with o are contained in «;
then we say that the existential player wins v. We denote by W3 the winning
region for the existential player (that is, the set of nodes that the existential
player wins).

In Emerson-Lei games, each node is colored by a set of colors, and the ob-
jective «v is induced by a formula that specifies combinations of colors that have
to be visited infinitely often, or are allowed to be visited only finitely often.
Formally, we fix a set C of colors and use Emerson-Lei formulas, that is, finite
positive Boolean formulas ¢ € B ({Inf ¢, Finc}.cc) over atoms of the shape Inf ¢
or Finc, to define sets of plays. The satisfaction relation = for a set D C C of
colors and an Emerson-Lei formula ¢ (written D |= ) is defined in the usual
inductive way; D will represent the set of colors that are visited infinitely often
by plays. E.g. the clauses for atoms Inf ¢ and Finc are

DEInfcsceD DEFincec¢ D

Consider a game arena A = (V, V3,4, E). An Emerson-Lei condition is given
by an Emerson-Lei formula ¢ together with a coloring function v : V — 2¢ that
assigns a (possibly empty) set «(v) of colors to each node v € V. The formula ¢
and the coloring function v together specify the objective

Ay = {vovl ...€plays(A)|{ce C|Vi.Tj>i.cey(v))} = <p}

Thus a play 7 = vgv . .. is winning for the existential player (formally: 7 € o ;)
if and only if the set of colors that are visited infinitely often by 7 satisfies .
Below, we will also make use of parity games, denoted by (V, V3, Vi, E, 2) where
Q:V = {l,...,2k} (for k € N) is a priority function, assigning priorities to
game nodes. The objective of the existential player then is that the maximal
priority that is visited infinitely often is an even number. Parity games are an
instance of Emerson-Lei games, obtained with set C' = {p1,...,pa} of colors, a
coloring function that assigns exactly one color to each node and with objective

Parity(p1, ... 02k) = V; oven (Infpi A /\i<j§2k Finpj> .

Similarly, Emerson-Lei objectives directly encode (combinations of) other stan-
dard objectives, such as Biichi, Rabin, Streett or Muller conditions:
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—Inff Biichi(f)
— Vi<i<k(Infe; AFin f;) Rabin(ey, f1,..., ek, fx)
— Ai<i<i(Finr; Vinf g;) Streett(r1, g1, .-, Tk, Gk)
— \/DEZ/{(/\cEDlnfCA/\dEC\D Fin d) Muller( C 29)

Zielonka Trees. We introduce a succinct encoding of the algorithmic essence of
Emerson-Lei objectives in the form of so-called Zielonka trees [47,18].

Definition 1. The Zielonka tree for an Emerson-Lei formula ¢ over set C' of
colors is a tuple Z, = (T, R,1) where (T, R C T xT) is a tree and | : T — 2° is
a labeling function that assigns sets I(t) of colors to vertices t € T. We denote
the root of (T, R) by r. Then Z,, is defined to be the unique tree (up to reordering
of child vertices) that satisfies the following constraints.

— The root vertex is labeled with C, that is, l(r) = C.
— FEach vertex t has exactly one child vertex tp (labeled with l(tp) = D) for
each set D of colors that is maximal in {D' CI(t) | D' = ¢ < 1(t) = ¢}

For s,t € T such that s is an ancestor of t, we write s < t. Given a vertex s € T,
we denote its set of direct successors by R(s) = {t € T'| (s,t) € R} and the set
of leafs below it by L(s) ={t € T | s <t and R(t) = 0}; we write L for the set
of all leafs. We assume some fized total order < on T that respects <; this order
induces a numbering of T. A vertex t in the Zielonka tree is said to be winning
if l(t) = ¢, and losing otherwise. We let T and Ty denote the sets of winning
and losing vertices in Z,, respectively. Finally, we assign a level lev(t) to each
vertex t € T so that lev(r) = |C|, and lev(s") = lev(s) — 1 for all (s,s’) € R.

Ezample 2. As mentioned above, Emerson-Lei games and Zielonka trees instanti-
ate naturally to games with, e.g., Biichi, generalized Biichi, GR[1], parity, Rabin,
Streett and Muller objectives; for brevity, we illustrate this for selected examples
here (more instances can be found in [23]).

1. Generalized Biichi condition: Given k colors f1, ..., fi, the winning objective
© = Nj<i<i Inf fi expresses that all colors are visited infinitely often (not
necessarily simultaneously); the induced Zielonka tree is depicted below with
boxes and circles representing winning and losing vertices, respectively.

2. Streett condition: The vertices in the Zielonka tree for Streett condition given
by ¢ = Aj<;< (Finr; Vinf g;) are identified by duplicate-free lists L of
colors (each entry being 7; or g; for some 1 < i < k) that encode the vertex
position in the tree. Vertex L has label I(L) = C'\ L and is winning if and
only if |L| is even. Winning vertices L have one child vertex L : g; for each
g; € C'\ L resulting in |C'\ L|/2 many child vertices. Losing vertices L have
the single child vertex L : r; where the last entry last(L) in L is g;. All leafs
are winning and are labeled with (). The tree has height 2k and 2(k!) vertices.
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3. To obtain a Zielonka tree that has branching at both winning and losing
vertices, we consider the objective gz = (Fin a V Inf b) A ((Fin a V Fin d) A
Inf ¢). This property can be seen as the conjunction of a Streett pair (a,b)
with two disjunctive Rabin pairs (¢, a) and (¢, d), altogether stating that ¢
occurs infinitely often and a occurs finitely often or b occurs infinitely often
and d occurs finitely often. Below we depict the induced Zielonka tree.

Lemma 3. The height and the branching width of Z, are bounded by |C| and
20C1 respectively; the number of vertices in Z, is bounded by e|C|! (where e is
Euler’s number).

3 Solving Emerson-Lei Games

We now show how to extract from the Zielonka tree of an Emerson-Lei objective
a fixpoint characterization of the winning regions of an Emerson-Lei game. Solv-
ing the game then reduces to computing the fixpoint, yielding a game solving
algorithm that works by fixpoint iteration and hence is directly open to sym-
bolic implementation. The algorithm is adaptive in the sense that the structure
of its recursive calls is extracted from the Zielonka tree and hence tailored to the
objective. As a stepping stone towards obtaining our fixpoint characterization,
we first show how Zielonka trees can be used to reduce Emerson-Lei games to
parity games that are structured into tree-like subgames.

Recall that G = (V,V5,V, E,ay,,) is an Emerson-Lei game and that the
associated Zielonka tree is Z, = (T, R,[) with set L of leaves, sets T and T
of winning and losing vertices, respectively, and with root r. Following [18], we
define the anchor vertex of v € V and t € T by

anchor(v,t) =max<{s € T | s <t Av(v) Cl(s)};
it is the lower-most ancestor of ¢ that contains (v) in its label.

A novel reduction to parity games. Intuitively, our reduction annotates nodes in
G with leaves of Z, that act as a memory, holding information about the order
in which colors have been visited. In the reduced game, the memory value t € L
is updated according to a move from v to w in G by playing a subgame along
the Zielonka tree. This subgame starts at the anchor vertex of v and ¢ and the
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players in turn pick child vertices, with the existential player choosing the branch
that is taken at vertices from T\~ and the universal player choosing at vertices
from ThH.! Once this subgame reaches a leaf t' € L, the memory value is updated
to t’ and another step of G is played. Due to the tree structure of Z, every play
in the reduced game (walking through the Zielonka tree in the described way,
repeatedly jumping from a leaf to an anchor vertex and then descending to a
leaf again) has a unique topmost vertex from 7' that it visits infinitely often;
by the definition of anchor vertices, the label of this vertex corresponds to the
set of colors that is visited infinitely often by the according play of G. A parity
condition can be used to decide whether this vertex is winning or losing.

Formally, we define the parity game Pg = (V', V4, VI, E', £2), played over
V=V x T, as follows. Nodes (v,t) € V' are owned by the existential player if
either ¢ is not a leaf, and it is not a winning vertex (¢t ¢ L and t € Ty), or if ¢
is a leaf and, in G, v is owned by the existential player (¢ € L and v € V3); all
other nodes are owned by the universal player. Moves and priorities are defined
by

/ _ vl < R(?) t¢g L 2 lev(t) teTh
E'wt) = {E(v) x {anchor(v,t)} t€L 2(v,1) = {2 lev(t)+1 teTp

for (v,t) € V'. Thus from (v,t) such that ¢ is a leaf (¢ € L), the owner of v
picks a move (v,w) € E and the game continues with (w,anchor(v,t)). From
(v,t) such that ¢ is not a leaf (¢ ¢ L), the owner of ¢ picks a child ¢’ € R(t) of ¢
in the Zielonka tree and the game continues with (v,t’), leaving the game node
component v unchanged. Therefore, plays in Pg correspond to plays from G
that are annotated with memory values ¢ € T that are updated according to the
colors that are visited (by moving to the anchor vertex); in addition to that, the
owners of vertices in the Zielonka Tree are allowed to decide (by selecting one of
the child vertices) with which colors they intend to satisfy the sub-objectives that
are encoded by vertex labels. The priority function {2 then is used to identify the
top-most anchor vertex s that is visited infinitely often in a play of Pg, deciding
a play to be winning if and only if s is a winning vertex (¢ € T). We note that
V| =|V]|-|T| < |V]-e|C|! by Lemma 3.

Theorem 4. For all v € V, the existential player wins v in the Emerson-Lei
game G if and only if the existential player wins (v,r) in the parity game Pg.

This reduction yields a novel indirect method to solve Emerson-Lei games
with n nodes and k colors by solving parity games with n - ek! nodes and 2k
priorities; by itself, this reduction does not improve upon using later appearance
records [25]. However, the game Pg consists of subgames of particular tree-like
shapes. The remainder of this section is dedicated to showing how the special
structure of Py allows for direct symbolic solution by solving equivalent systems
of fixpoint equations over V' (rather than over the exponential-sized set V).

! Players choose from vertices where they lose, which explains the notation 7H and
To.
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Fizpoint equation systems. Recall (from e.g. [4]) that a hierarchical system of
fixpoint equations is given by equations

Xi =n; fi(Xla v 7Xk)

for 1 <4 < k, where n; € {GFP,LFP} and the f; : P(V)* — P(V) are monotone
functions, that is, fi(Ai,...,Ax) C fi(B1,...,Bx) whenever A; C B; for all
1 < j <k. As we aim to use fixpoint equation systems to characterize winning
regions of games, it is convenient to define the semantics of equation systems also
in terms of games, as proposed in [4]. For a system S of k fixpoint equations,
the fizpoint game Gg = (V,V3,Vy, E, 2) is a parity game with sets of nodes
Va=Vx{l,...,k}and Vi = P(V)*. The set of edges E and the priority function
2:V —{0,...,2k — 1} are defined, for (v,i) € V3 and A = (Ay,..., A;) € V&,
by

E(v,i) ={A €WV |ve fi(Ad)} E(A) ={(v,i) € V5 |v € A;}

and by 2(v,i) = 2(k —i) +¢; and 2(A) = 0, where ¢; = 1 if p; = LFP and ¢; = 0
if n; = GFP. We say that v is contained in the solution of variable X; (denoted
by v € [X;]) if and only if the existential player wins the node (v,?) in Gs.
In order to show containment of a node v in the solution of X, the existential
player thus has to provide a solution (4, ..., A;) € V& for all variables such that
v € fi(A1,..., Ag); the universal player in turn can challenge a claimed solution
(Aq,...,Ar) by picking some 1 < i < k and v € A; and moving to (v,7). The
game objective checks whether the dominating equation in a play (that is, the
equation with minimal index among the equations that are evaluated infinitely
often in the play) is a least or a greatest fixpoint equation.

Baldan et al. have shown in [4] that this game characterization is equivalent to
the more traditional Knaster-Tarski-style definition of the semantics of fixpoint
equation systems in terms of nested fixpoints of the involved functions f;.

To give a flavor of the close connection between fixpoint equation systems
and winning regions in games, we recall that for a given set V of nodes, the
controllable predecessor function CPre: 2V — 2V is defined, for X C V, by

CPre(X)={ve V3| Ew)NX #£0}U{veVy | E(W) C X}

Ezample 5. Given a Biichi game (V, V3, V4, E,Inf f) with coloring function ~ :
V — 2/} the winning region of the existential player is the solution of the
equation system

X1 =crp Xo Xo =LFp (f n CPre(Xl)) U (?ﬁ CPI’G(XQ))

where f ={v eV |y(v) ={f}} and f =V \ f.

Our upcoming fixpoint characterization of winning regions in Emerson-Lei
games uses the following notation that relates game nodes with anchor vertices
in the Zielonka tree.
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Definition 6. For a set D C C of colors, and <1 € {C, Z} we put v, = {v €
V | v(v) >t D}. For s,t € T such that s < t (that is, s is an ancestor of t in
Z,), we define

-1 -1
anc; = Yeiis) N Vgi(s,)
where sy is the child vertex of s that leads to t; we also put anci = ’ygll(t).

Note that for fixed t € T and v € V, there is a unique s € T such that s <t
and v € anc] (possibly, s = ¢); this s is the anchor vertex of ¢ at v.

Next, we present our fixpoint characterization of winning in Emerson-Lei
games, noting that it closely follows the definition of Pg.

Definition 7 (Emerson-Lei equation system). We define the system S, of
fizpoint equations for the objective v by putting

UtGR(s) Xt R(S) 75 @, S € TO
X =n. § Nicres) Xt R(s) #0,s € T
U <s (ancg’ n CPre(XS/)) R(s) = 0

for s € T. For every t € T, we use Xy to refer to the variable X; where i is the
index of t according to = and similarly for n;. Furthermore, ns = GFP if s € T
and ns = LFP if s € T>.

Ezxample 8. Instantiating Definition 7 to the Biichi objective ¢ = Inf f yields
exactly the equation system given in Example 5. Revisiting the objectives from
Example 2, we obtain the following fixpoint characterizations (further examples
can be found in [23]).

1. Generalized Biichi condition:

XSU =GFP mlgigk Xs,v, Xsi =LFpP (anci? n CPre(XSO)) U (anczj N CPI’E(XSi))

where anc3? = fyéé ﬂyié\{fi} ={veV|fiey()} and ancy’ = 7;(1]\%_}.
2. Streett condition:

Ny, ¢L XLig, [L| even, |L| < 2k
XL =n XL:rj ||_‘ odd, Iast(L) =g;
(ancl[_] N CPre(X})) U... U (ancf NCPre(Xy)) |L| =2k

where . = GFP if |L| is even and . = LFP if |L| is odd. Here, ancf =
VEé\K N VSZ}J\I for K # L and I = K, and anck = q/gql), both for L such that
IL| = 2k.

3. The equation system associated to the Zielonka tree for the complex objective

pgr from Example 2.3 is as follows, where we use a formula over the colors
to denote the set of vertices whose label satisfies the formula. For example,
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b N\ —d corresponds to vertices whose set of colors contains b but does not
contain d.

X1 =1rp X2 U X3 X2 =crp X4 N X5 X3 =crp Xo X5 =1rp X7 X7 =crp Xs

X4 =1rp (mc A —d N Cpre(X4)) U (c A —dnN Cpre(X2)) U (dN Cpre(X1))

X6 =Lrp (ma A —e N Cpre(Xe)) U (ma A cn Cpre(X3)) U (an Cpre(X1))

Xg =irp (ma A =b A —eA—dNCpre(Xg)) U (—aA-bAcA-dNCpre(X7))U
(aN=bA—=dn Cpre(Xs5)) U (b A —=dnN Cpre(X2)) U (dN Cpre(X1)),

Theorem 9. Referring to the equation system from Definition 7 and recalling
that v is the root of the Zielonka tree Z,, the solution of the variable X, is the
winning region of the existential player in the Emerson-Lei game G.

By Theorem 4, it suffices to mutually transform winning strategies in Pg and
the fixpoint game Gg, for the equation system S, from Definition 7.

Given the fixpoint characterization of winning regions in Emerson-Lei games
with objective ¢ in Definition 7, we obtain a fixpoint iteration algorithm that
computes the solution of Emerson-Lei games. The algorithm is by nature open
to symbolic implementation. The main function is recursive, taking as input one
vertex s € T of the Zielonka tree Z, and a list I of subsets of the set V' of nodes,
and returns a subset of V' as result. For calls SOLVE(s, ls), we require that the
argument list Is contains exactly one subset X, of V for each ancestor s’ of s
in the Zielonka tree (with s’ < s).

Algorithm 1 SOLVE(s, ls)

if s €T then X, + 0 else X, + V > Initialize variable X for 1fp/gfp
W+ V\ X,
while X, # W do > Compute fixpoint
W+ X,
if R(s) # 0 then > Case: s is not a leaf in Z,
for t € R(s) do
U <+ SOLVE(t,ls: W) > Recursively solve for ¢

if s € T then X, < X, UU
else X; + X;NU
end for
else > Case: s is a leaf in Z,
Y + 0
for t < s do
U « anct N CPre((Is : W)(t)) > Compute one-step attraction w.r.t. s
Y+~ YUuU
end for
Xs Y
end if
end while
return X > Return stabilized set X, as result
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Lemma 10. For allv € V, we have v € [X,] if and only if v € SOLVE(r, []).

Proof (Sketch). The algorithm computes the solution of the equation system by
standard Kleene-approximation for nested least and greatest fixpoints.

Lemma 11. Given an Emerson-Lei game (V,V5,Vy, E, oy ) with set of colors
C and induced Zielonka tree Z,, the solution [X,] of the equation system S,
from Definition 7 can be computed in time O(|Z,| - |E| - |V|¥F), where k < |C|
denotes the height of Z,.

Combining Theorem 9 with Lemmas 3, 10 and 11 we obtain

Corollary 12. Solving Emerson-Lei games with n nodes, m edges and k colors
can be implemented symbolically to run in time O(k! - m - nk); the resulting
strategies require memory at most e - kl.

Remark 13. Strategy extraction works as follows. The algorithm computes a set
[X¢] for each Zielonka tree vertex ¢t € Z,. Furthermore it yields, for each non-
leaf vertex s € Ty and each v € [X,], a single child vertex choice(v, s) € R(s)
of s such that v € [Xcnoice(w,s)]- The algorithm also yields, for each leaf vertex ¢
and each v € V3N[X,], a single game move move(v, t). All these choices together
constitute a winning strategy for existential player in the parity game Pgz. We
define a strategy for the Emerson-Lei game that uses leaves of the Zielonka
tree as memory values, following the ideas used in the construction of Pg; the
strategy moves, from a node v € V3 and having memory content m, to the
node move(v,m). As initial memory value we pick some leaf of Z, that choice
associates with the initial node in G. To update memory value m according to
visiting game node v, we first take the anchor vertex s of m and v. Then we pick
the next memory value m to be some leaf below s that can be reached by talking
the choices choice(v, s") for every vertex s’ € T passed along the way from s
to the leaf; if s € T, then we additionally require the following: let ¢ = |R(s)],
let 0 be the number such that m is a leaf below the o-th child of s, and put
j=o0+1 mod q; then we require that m’ is a leaf below the j-th child of s. By
the correctness of the algorithm, the constructed strategy is a winning strategy.

Dziembowski et al. have shown that winning strategies can be extracted by
using a walk through the Zielonka tree that requires memory only for the branch-
ing at winning vertices [18]. This yields, for instance, memoryless strategies for
games with Rabin objectives, for which branching in the associated Zielonka
trees takes place at losing vertices. Adapting the strategy extraction in our set-
ting to this more economic method is straight-forward but notation-heavy, so we
omit a more precise analysis of strategy size here.

Our algorithm hence can be implemented to run in time 2°(*1°87) for games

with n nodes and k& < n colors, improving upon the bound 20(n*) stated in [25],
where the authors only consider the case that every game node has a distinct
color, implying n = k. We note that the later appearance record construction
used in [25] is known to be hard to represent symbolically. Our fixpoint charac-
terization generalizes previously known algorithms for e.g. parity games [8], and



66 D. Hausmann et al.

Streett and Rabin games [36], recovering previously known bounds on worst-case
running time of fixpoint iteration algorithms for these types of games.

While it has recently been shown that parity games can be solved in quasipoly-
nomial time [9], we note that in the case of parity objectives, our algorithm is not
immediately quasipolynomial. However, there are quasipolynomial methods for
solving nested fixpoints [24,2] (with the latter being open to symbolic implemen-
tation); in the case of parity objectives, these more involved algorithms can be
used in place of fixpoint iteration to solve our equation system and recover the
quasipolynomial bound. The precise complexity of using quasipolynomial meth-
ods for solving fixpoint equation systems beyond parity conditions is subject to
ongoing research.

4 Synthesis for Safety and Emerson-Lei LTL

In this section we present an application of the results from Section 3. We in-
troduce the safety and Emerson-Lei fragment of LTL and show that synthesis
for this fragment can be reasoned about symbolically. The idea for safety and
Emerson-Lei LTL synthesis is twofold: first, consider only the safety part and
create a symbolic arena capturing its satisfaction. Second, play a game on this
arena by adding the Emerson-Lei part as a winning condition. Finally we use
the results from the previous sections to solve the game symbolically.

4.1 Safety LTL and Symbolic Safety Automata

We start by defining safety LTL, symbolic safety automata, and recalling known
results about those.

Definition 14 (LTL and Safety LTL [45]). Given a non-empty set AP of
atomic propositions, the general syntax for LTL formulas is as follows:

e=T|L|pl-@leiAp2| o1V | Xp|piUps p € AP.

Standard abbreviations are defined as follows: p1 Rps := —(—p1U—ps), Fp :=
TUy, and Gy := —=F—p. We define the satisfaction relation |= for a formula ¢
and its language L(p) as usual.

An LTL formula is said to be a safety formula if it is in negative normal form
(i.e. all negations are pushed to atomic propositions) and only uses X, R,G as
temporal operators (i.e. no U or F are allowed).

It is a safety formula in the sense that every word that does not satisfy the
formula has a finite prefix that already falsifies the formula. In other words, such
a formula is satisfied as long as “bad states” are avoided forever.

Definition 15 (Symbolic Safety Automata). A symbolic safety automaton
is a tuple A = (2AP V,T,0) where V is a set of variables, T(V,V' AP) is the

transition assertion, and 0y(V') is the initialization assertion. A run of A on
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the word w € (2AP)% is a sequence p = s9s1 ... where the s; € 2V are variable
assignments such that 1. so = 6y, and 2. for all i > 0, (s, siy1,w(i)) = T.
A word w is in L(A) if and only if there is an infinite run of A on w. A is
deterministic if for all words w € (2AP)% there is at most one run of A on w.

Kupferman and Vardi show how to convert a safety LTL formula into an
equivalent deterministic symbolic safety automaton [30].

Lemma 16. A safety LTL formula ¢ can be translated to a deterministic sym-
bolic safety automaton Dsymp accepting the same language, with |Deymb| = 2lel,

The idea is to first convert ¢ to a (non-symbolic) non-deterministic safety
automaton N, which is of size exponential of the size of the formula, and then
symbolically determinize N, by a standard subset construction to obtain Dsymb.
Note that while the size of Dsymp is only exponential in the size of the formula,
its state space would be double exponential when fully expanded.

Ezample 17. Let o = G(bV ¢) AG(a — bV X Xb) be a safety LTL formula over
AP = {a, b, c}. An execution satisfying ¢ must have at least one of b or ¢ at every
step, moreover every a sees a b present at the same step or two steps afterwards.

As an intermediate step towards building the equivalent Dsymb, we first
present below a corresponding non-deterministic safety automaton N,.

—aVb b

start 1

aAb

For the sake of presentation, we use Boolean combinations of AP in transitions
instead of labeling them with elements of 2AF, with the intended meaning that

s Los = {s RSN | C € 2P, C = ¢}. We also omit the G(bV ¢) part of
the formula in the construction. One can simply append --- A (b V ¢) to every
transition of NV, to get back the original formula. Intuitively state 1 correspond
to not seeing an a, state 2 means that a b must be seen at the next step, state
3 means that there must be a b now, and state 4 that b is needed now and next
as well.

Then the symbolic safety automaton is Deymp = (247, V, T, 6) with:

— V = {v1,v2,v3,v4} are the variables corresponding to the four states of N,
— 0y = v1 A —wg A —w3 A —wyg asserts that only the state vy is initial,
— The transition assertion is T = (v} +> (v1 A (ma Vb))V (v3 A b)) A

(vh <> (v Aa)V (vs A (aAb))) AW < (vaA(ma Vb))V (vg Ab)) A

(v) <> (v2aAa)V (vaA(aADb))) A(vr Ve VugVoy).

Determinizing N, enumeratively would give an automaton with 9 states (see
Example 23).
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Remark 18. Restricting attention to safety LTL enables the two advantages men-
tioned above with respect to determinization. First, subset construction suffices
(as observed also in [46]), avoiding the more complex Biichi determinization.
Second, this construction, due to its simplicity, can be implemented symboli-
cally. Interestingly, recent implementations of the synthesis from LTL, [46] or
from safety LTL [45] have used indirect approaches for obtaining deterministic
automata. For example, by translating LTL to first order logic and applying the
tool MONA to the results [45,46], or by concentrating on minimization of de-
terministic automata [42]. The direct construction is similar to approaches used
for checking universality of nondeterministic finite automata [42] or SAT-based
bounded model checking [1]. We are not aware of uses of this direct implementa-
tion of the subset construction in reactive synthesis. The worst case complexity
of this part is doubly-exponential, which, just like for LTL and LTL, cannot be
avoided [43,3].

4.2 Symbolic Games

We use symbolic game structures to represent a certain class of games. Formally,
a symbolic game structure G = (V, X, Y, 63, p3, ) consists of:

e V={v,...,v,}: A finite set of typed variables over finite domains. Without

loss of generality, we assume they are all Boolean. A node s is an valuation
of V, assigning to each variable v; € V a value s[v;] € {0,1}. Let X be the
set of nodes.
We extend the evaluation function s[-] to Boolean expressions over V in the
usual way. An assertion is a Boolean formula over V. A node s satisfies an
assertion ¢ denoted s | ¢, if s[p] = true. We say that s is a ¢-node if
s E .

e X C Vis a set of input variables. These are variables controlled by the
universal player. Let Y » denote the possible valuations to variables in X.

e YV =V\ X is aset of output variables. These are variables controlled by the
existential player. Let Xy denote the possible valuations to variables in V.

e 03(X,)) is an assertion characterizing the initial condition.

e p3(V, X', Y’) is the transition relation. This is an assertion relating a node
s € X and an input value sy € Xy to an output value sy € Xy by referring
to primed and unprimed copies of V. The transition relation pg identifies
a valuation sy € Xy as a possible output in node s reading input sy if
(s,(sx,8y)) E p3, where s is the assignment to variables in V and sy and
sy are the assignment to variables in V' induced by (sx,sy) € X.

e ¢ is the winning condition, given by an LTL formula.

For two nodes s and s’ of G, s’ is a successor of s if (s,s') = pa.
A symbolic game structure G defines an arena Ag, where V4 = X, V3 =
X x Xy, and F is defined as follows:

E={(s,(s,sx)) | s € ¥ and sx € Yx}U{((s,5x), (sx,59)) | (s, (sx,5¥)) | pa}-
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When reasoning about symbolic game structures we ignore the intermediate
visits to V3. Indeed, they add no information as they can be deduced from the
nodes in V4 preceding and following them. Thus, a play m = sgsy ... is winning
for the existential player if o is infinite and satisfies . Otherwise, o is winning
for the universal player.

The notion of strategy and winning region is trivially generalized from games
to symbolic game structures. When needed, we treat W3 (the set of nodes win-
ning for the existential player) as an assertion. We define winning in the entire
game structure by incorporating the initial assertion: a game structure G is said
to be won by the existential player, if for all sy € Xy there exists sy € X'y such
that (sy,sy) | 03 A Wa.

4.3 Realizability and Synthesis

Let ¢ be an LTL formula over input and output variables I and O, controlled by
the environment and the system, respectively (the universal and the existential
player, respectively).

The reactive synthesis problem asks whether there is a strategy for the system
of the form o : (27)* — 29 such that for all sequences zoz; - - - € (2/)* we have:

(xoUo(xg))(x1 Ua(zoz1))... =

If there is such a strategy we say that ¢ is realizable [38].
Equivalently, ¢ is realizable if the system is winning in the symbolic game
G, ={(IU0,1,0,T,T,p) with I for input variables X and O for output ).

Theorem 19. [38] Given an LTL formula ¢, the realizability of ¢ can be de-
termined in doubly exponential time. The problem is 2EXPTIME-complete.

The game G, above uses neither the initial condition nor the system transi-
tion. Conversely, consider a symbolic game G = (V, X, Y, 03, p3, ¢):

Theorem 20. [7] The system wins in G iff p, = 63 A Gp3 A ¢ is realizable.?

4.4 Safety and Emerson-Lei Synthesis

We now define the class of LTL formulas that are supported by our technique and
show how to construct appropriate games capturing their realizability problem.

For v € B(AP), let Inf¢ := GFv and Finy := FG— = —lInfe. The
Emerson-Lei fragment of LTL consists of all formulas that are positive Boolean
combinations of Inf and Fin for all Boolean formulas ¢ over atomic proposi-
tions. The satisfaction of such formulas depends only on the set of letters (truth
assignments to propositions) appearing infinitely often in a word.

2 Technically, p3 contains primed variables and is not an LTL formula. This can be
easily handled by using the next operator X. We thus ignore this issue.

3 We note that Bloem et al. consider more general games, where the environment also
has an initial assertion and a transition relation. Our games are obtained from theirs
by setting the initial assertion and the transition relation of the environment to true.
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Remark 21. The Emerson-Lei fragment easily accommodates various liveness
properties that cannot be encoded in smaller fragments such as GR[1]. One
prominent example for this is the property of stability (as encoded by LTL
formulas of the shape FG p), which appears frequently as a guarantee in us-
age of synthesis for robotics and control (see, e.g., the work of Ehlers [19] and
Ozay [32]), and commonly is approximated in GR[1] but, as a guarantee or as
part of a specification, cannot be captured exactly in the game context. Another
important example is strong fairness (as encoded by LTL formulas of the shape
N;(GF r; = GF g;)) which allows to capture the exact relation between cause
and effect. Particularly, in GR[1] only if all “resources” are available infinitely
often there is an obligation on the system to supply all its “guarantees”. In
contrast, strong fairness allows to connect particular resources to particular sup-
plied guarantees. Ongoing studies on fairness assumptions that arise from the
abstraction of continuous state spaces to discrete state spaces [32,33] provide
further examples of fairness assumptions that can be expressed in EL but not in
GR[1]. Emerson-Lei liveness allows free combination of all properties mentioned
above and more.

Definition 22. The Safety and Emerson-Lei fragment is the set of formulas of
the form ¢ = Ygatety N PEL, Where Yeatety 15 @ safety formula and gy is in the
Emerson-Lei fragment.

We assume a partition AP = I W O where [ is a set of input propositions
and O a set of output propositions, both non-empty. Let ¢ = @gatety N @EL be
a safety and Emerson-Lei formula over AP, and let Dgymp = (227, V, T, 6) be
the symbolic deterministic safety automaton associated to @gafety. We construct
G, =(VWAP, 1,04V, 00,T, L), thus ¥ =T and Y =0 V.

Ezxample 23. Let @gatety = G(bV ¢) A G(a — bV XXb), our running safety
example from Example 17 with its associated symbolic deterministic automaton.
Partition AP into I = {a} and O = {b,c}. We depict the arena of the game G,
(independent of the formula @g, that is yet to be defined) in Figure 1.

To keep the illustration readable and keep it from getting too large, a few
modifications to the formal arena definition have been made. First, ¢ labels on
edges have been omitted: every transition labeled with b represent two transitions
with sets {b} and {b,c}, while transitions labeled with —b stand for a single
transition with set {c} (due to the G(bV ¢) requirement forbidding ). Similarly,
existential nodes have been omitted when all choices for the existential player
lead to the same destination. Instead, the universal and existential moves have
been combined in one transition: a; * for an a followed by some existential move,
and a; b for when an a requires the existential player to play b (with or without
¢, as above). Finally, states are only labeled with variables from V' and not AP,
the latter is used to label edges instead. For a fully state-based labeling arena,
states would have to store the last move, leading to various duplicate states.

Note that this game arena is given only for illustration purposes, as we want
to solve the symbolic game without explicitly enumerating all its states and
transitions like here.
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Fig. 1. Game arena for G,

Lemma 24. The system wins G, if and only if ¢ is realizable.

Next we detail how to solve the symbolic game G, by using the results from
Section 3.

Lemma 25. Given a symbolic game G = (V, X, Y, 03, p3,p) such that ¢ is an
Emerson-Lei formula with set of colors

C ={yY € B(AP) | ¢ is a subformula of v},

the winning region W3 of G is characterized by the equation system from Defi-
nition 7, using the assertion

CPre(S) =Vsy € Yx.3sy € Xy. 5" A (v, sx,5y) E pa.

The proof of this lemma is by straightforward adaptation of the proof of
Theorem 9 to the symbolic setting, following the relation between symbolic game
structures and game arenas described above.

Finally, this gives us a procedure to solve the synthesis problem for safety
and Emerson-Lei LTL.

Theorem 26. The realizability of a formula ¢ = @safery A @rL of the Safety
and Emerson-Lei fragment of LTL can be checked in time 2°(m108™m2") yyhere
n = |Psafety| and m = |@gr|. Realizable formulas can be realized by systems of
size at most 22" - e - ml.

Proof. Using the construction described in this section,we obtain the symbolic
game G, of size ¢ = 22" with winning condition g, using at most m colors; by
Theorem 24, this game characterizes realizibility of the formula. Using the results
from the previous section, G, can be solved in time O(m!- q?-q™) € O(2mlosm.
2(m+2)2") ¢ 9O(mlogm-2") "regylting in winning strategies with memory at most
e-ml.
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Both the automata determinization and the game solving can be implemented
symbolically.

Ezxample 27. To illustrate the overall synthesis method, we consider the game
that is obtained by combining the game arena G, from Example 23 with the
winning objective ¢z, = (Fin a VInf b) A (Fin aV Find) AInf ¢ from Example 2.3,
where we instantiate the label d to nodes satisfying b A ¢ thus creating a game-
specific dependency between the colors. Solving this game amounts to solving
the equation system shown in Example 8.3. However, with the interpretation
of d = b A ¢, some of the conditions become simpler. For example, —a A =b A
—c A —d becomes —a A =b A —c and b A =d becomes b A —c. It turns out that the
system player wins the node v;. Intuitively, the system can play {c} whenever
possible and thereby guarantee satisfaction of ¢pr. We extract this strategy
from the computed solution of the equation system in Example 2.3 as described
in Remark 13. E.g. for partial runs 7 that end in v; and for which the last
leaf vertex in the induced walk p,. through Z, is the vertex 8, the system can
react by playing {b}, {c}, or even {b, ¢} whenever the environment plays (). The
move {b} continues the induced walk p, through vertex 2 to the leaf vertex 5;
similarly, the move {b, ¢} continues p, through the vertex 1 to the leaf vertex 6.
The strategy construction gives precedence to the choice that leads through the
lowest vertex in the Zielonka tree, which in this case means picking the move
{c} that continues p, through the vertex 7 to the leaf 8. Proceeding similarly
for all other combinations of game nodes and vertices in the Zielonka tree, one
obtains a strategy o for the system that always outputs singleton letters, giving
precedence to {c} whenever possible. To see that o is a winning strategy, let «
be a play that is compatible with o. If 7 eventually loops at v, forever, then s, is
the existential vertex 7 and the existential player wins the play since it satisfies
both Fin a and Inf ¢. Any other play 7 satisfies Inf a, Inf b and Inf ¢ since all
cycles that are compatible with o (excluding the loop at v1) contain at least one
a-edge, at least one b-edge and also at least one c-edge that is prescribed by the
strategy o. For these plays, p, eventually reaches the vertex 2. Since the system
always plays singleton letters (so that 7 in particular satisfies Fin(b A ¢)), the
vertex 1 is not visited again by p,, once vertex 2 has been reached. Hence the
dominating vertex for such plays is s, = 2, an existential vertex.

4.5 Synthesis Extensions and Optimizations

We have chosen to use safety-LTL as the safety part of the Safety-EL fragment
to showcase the options opened by having symbolic algorithms for the analysis
of very expressive liveness conditions. The crucial feature of the safety fragment
is the ability to convert that part of the specification to a symbolic deterministic
automaton. It is important to note that every fragment of LTL (or w-regular
in general) that can be easily converted to a symbolic deterministic automaton
can be incorporated and handled with the same machinery. For example, it was
suggested to extend the expressiveness of GR[1] by including deterministic au-
tomata in the safety part of the game and referring to their states in the liveness
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part [7]. Past LTL [31] can be handled in the same way in that it is incorporated
for GR[1] [7]. An extreme example is GR-EBR, where safety parts are allowed to
use bounded future and pure past, which still allows the symbolic treatment [15].
All of these alternatives can be incorporated in the safety part with no changes
to our overall methodology. Unlike previous cases, if there is an easy translation
to deterministic symbolic automata with a non-trivial winning condition, these
can be incorporated as well with the EL part extended to handle their winning
condition as well. We could consider also extensions to the liveness parts. For
example, by using past LTL or reference to states of additional symbolic de-
terministic automata. The Boolean state formulas appearing as part of the EL
condition can be replaced by formulas allowing one usage of the next operator, as
in [39,19]. The generalization to handle transition-based EL games, which would
be required in that case, rather than state-based EL games is straight-forward.

As the formulas we consider are conjunctions, optimizations can be applied
to both conjuncts independently. This subsumes, for example, analyzing the win-
ning region in a safety game prior to the full analysis [29,7,5], reductions in the
size of nondeterministic automata [17], or symbolic minimization of deterministic
automata [16].4

5 Conclusions and Future Work

We provide a symbolic algorithm to solve games with Emerson-Lei winning con-
ditions. Our solution is based on an encoding of the Zielonka tree of the winning
condition in a system of fixpoint equations. In case of known winning conditions,
our algorithm recovers known algorithms and complexity results. As an appli-
cation of this algorithm, we suggest an expressive fragment of LTL for which
realizability can be reasoned about symbolically. Formulas in our fragment are
conjunctions between an LTL safety formula and an Emerson-Lei liveness con-
dition. This fragment is more general than, e.g., GRI[1].

In the future, we believe that analysis of the Emerson-Lei part can reduce the
size of Zielonka trees (and thus the symbolic algorithm). This can be done either
through analysis and simplification of the LTL formula, e.g., [26], by means of
alternating-cycle decomposition [12,13], or by analyzing the semantic meaning of
colors. We would also like to implement the proposed overall synthesis method.
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Abstract. Temporal graphs are a popular modelling mechanism for dy-
namic complex systems that extend ordinary graphs with discrete time.
Simply put, time progresses one unit per step and the availability of
edges can change with time.

We consider the complexity of solving w-regular games played on tem-
poral graphs where the edge availability is ultimately periodic and fixed
a priori.

We show that solving parity games on temporal graphs is decidable in
PSPACE, only assuming the edge predicate itself is in PSPACE. A match-
ing lower bound already holds for what we call punctual reachability
games on static graphs, where one player wants to reach the target at a
given, binary encoded, point in time. We further study syntactic restric-
tions that imply more efficient procedures. In particular, if the edge pred-
icate is in P and is monotonically increasing for one player and decreasing
for the other, then the complexity of solving games is only polynomially
increased compared to static graphs.

Keywords: Temporal graphs - Reachability Games - Complexity - Timed
automata

1 Introduction

Temporal graphs are graphs where the edge relation changes over time. They
are often presented as a sequence Gy, G1,... of graphs over the same set of
vertices. We find it convenient to define them as pairs G = (V, E) consisting
of a set V of vertices and associated edge availability predicate E : V2 — 2N
that determines at which integral times a directed edge can be traversed. This
model has been used to analyse dynamic networks and distributed systems in dy-
namic topologies, such as gossiping and information dissemination [36,24]. There
is also a large body of work that considers temporal generalisations of various
graph-theoretic notions and properties [32,14,10]. Related algorithmic questions
include graph colouring [30], exploration [12], travelling salesman [33], maxi-
mum matching [29], and vertex-cover [2]. The edge relation is often deliberately
left unspecified and sometimes only assumed to satisfy some weak assumptions
about connectedness, frequency, or fairness to study the worst or average cases
in uncontrollable environments. Depending on the application, one distinguishes
between “online” questions, where the edge availability is revealed stepwise, as
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opposed to the “offline” variant where all is given in advance. We refer to [17,31]
for overviews of temporal graph theory and its applications.

Two player zero-sum verification games on directed graphs play a central role
in formal verification, specifically the reactive synthesis approach [34]. Here, a
controllable system and an antagonistic environment are modeled as a game in
which two opposing players jointly move a token through a graph. States are
either owned by Player 1 (the system) or Player 2 (the environment), and the
owner of the current state picks a valid successor. Such a play is won by Player 1
if, and only if, the constructed path satisfies a predetermined winning condition
that models the desired correctness specification. The winning condition is of-
ten given either in a temporal logic such as Linear Temporal Logic (LTL) [35],
or directly as w-automaton whose language is the set of infinite paths consid-
ered winning for Player 1. The core algorithmic problem is solving games: to
determine which player has a strategy to force a win, and if so, how.

Determining the complexity of solving games on static graphs has a long
history and continues to be an active area of research. We refer to [1,13] for
introductions on the topic and recall here only that solving reachability games,
where Player 1 aims to eventually reach a designated target state, is complete
for polynomial time. The precise complexity of solving parity games is a long-
standing open question. It is known to be in UPNcoUP [22], and so in particular in
NP and coNP, and recent advances have led to quasi-polynomial time algorithms
[6,23,26,9,25].

Related Work. Periodic temporal graphs were first studied by Floccchini, Mans,
and Santoro in [14], where they show polynomial bounds on the length of ex-
plorations (paths covering all vertices). Recently, De Carufel, Flocchini, Santoro,
and Simard [10] study Cops & Robber games on periodic temporal graphs. They
provide an algorithm for solving one-cop games that is only quadratic in the
number of vertices and linear in the period.

Games on temporal graphs with maximal age, or period of some absolute
value K given in binary are games on exponentially succinctly presented arenas.
Unfolding them up to time K yields an ordinary game on the exponential sized
graph which allows to transfer upper bounds, that are not necessarily optimal.
In a similar vein, Avni, Ghorpade, and Guha [4] have recently introduced types
of games on exponentially succinct arenas called pawn games. Similar to our
results, their findings provide improved PSPACE upper bounds for reachability
games.

Parity games on temporal graphs are closely related to timed-parity games,
which are played on the configuration graphs of timed automata [3]. However, the
time in temporal graphs is discrete as opposed to the continuous time semantics
in timed automata. Solving timed parity games is complete for EXP[28,8] and
the lower bound already holds for reachability games on timed automata with
only two clocks [21]. Unfortunately, a direct translation of (games on) temporal
graphs to equivalent timed automata games requires at least two clocks: one to
hold the global time used to check the edge predicate and one to ensure that
time progresses one unit per step.
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Contributions. We study the complexity of solving parity games on temporal
graphs. As a central variant of independent interest are what we call punctual
reachability games, that are played on a static graph and player wants to reach a
target vertex at a given binary encoded time. We show that solving such games
is already hard for PSPACE, which provides a lower bound for all temporal graph
games we consider.

As our second, and main result, we show how to solve parity games on (ul-
timately) periodic temporal graphs. The difficulty to overcome here is that the
period may be exponential in the number of vertices and thus a naively solv-
ing the game on the unfolding only yields algorithms in exponential space. Our
approach relies on the existence of polynomially sized summaries that can be
verified in PSPACE using punctual reachability games.

We then provide a sufficient syntactic restriction that avoids an increased
complexity for game solving. In particular, if the edge predicate is in polynomial
time and is monotonically increasing for one player and decreasing for the other,
then the cost of solving reachability or parity games on temporal graphs increases
only polynomially in the number of vertices compared to the cost of solving these
games on static graphs.

None of our upper bounds rely on any particular representation of the edge
predicate. Instead, we only require that the representation ensures that checking
membership (if an edge is traversable at a given time) has suitably low com-
plexity. That is, our approach to solve parity games only requires that the edge
predicate is in PSPACE, and polynomial-time verifiable edge predicates suffice
to derive P-time upper bounds for monotone reachability games. These condi-
tions are met for example if the edge predicate is defined as semilinear set given
as an explicit union of linear sets (NP in general and in P for singleton sets of
periods), or by restricted Presburger formulae: the quantifier-free fragment is in
P, the existential fragment is in NP but remains in P if the number of variables
is bounded [37]. See for instance [15] and contained references.

The rest of the paper is structured as follows. We recall the necessary no-
tations in Section 2 and then discuss reachability games in Section 3. Section 4
presents the main construction for solving parity games and finally, in Section 5,
we discuss improved upper bounds for monotone temporal graphs.

2 Preliminaries

Definition 1 (Temporal Graphs). A temporal graph G = (V, E) is a directed
graph where V are vertices and E : V2 — 2N is the edge availability relation that
maps each pair of vertices to the set of times at which the respective directed edge

can be traversed. If i € F(s,t) we call t an i-successor of s and write s — t.

The horizon of a temporal graph is h(G) = supg,cy (E(s,t)), the largest
finite time at which any edge is available, or oo if no such finite time exists.
A temporal graph is finite if h(G) € N i.e., every edge eventually disappears
forever. A temporal graph is periodic with period K € N if for all nodes s,t € V
it holds that E(s,t) = E(s,t) + K - N. We call G static if it has period 1.
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Naturally, one can unfold a temporal graph into its expansion up to some
time T € NU{oo}, which is the graph with nodes V' x {0,1,...,T} and directed
edges (s,i) — (t,i+ 1) iff i € E(s,t).

In order for algorithmic questions to be interesting, we assume that temporal
graphs are given in a format that is more succinct than the expansion up to their
horizon or period. We only require that the representation ensures that checking
if an edge is traversable at a given time can be done reasonably efficiently.

We will henceforth use formulae in the existential fragment of Presburger
arithmetic, the first-order theory over natural numbers with equality and addi-
tion. That is, the IPA formula &, ;(x) with one free variable x represents the set
of times at which an edge from s to ¢ is available as E(s,t) = {n | §,(n) = true}.
We use common syntactic sugar including inequality and multiplication with (bi-
nary encoded) constants. For instance, @S,t(x) s <z Az <10 means the edge
is available at times {5,6,7,8,9,10}; and &, (z) = Jy.(x =y - 7) A =(x < 100)
means multiples of 7 greater than 100.

Definition 2 (Parity Games). A parity game is a zero-sum game played by
two opposing players on a directed graph. Formally, the game is given by a game
graph G = (V, E), a partitioning V = Vi WV, of vertices into those owned by
Player 1 and Player 2 respectively, and a colouring col : V- — C' of vertices into
a finite set C' C N of colours.

The game starts with a token on an initial vertex so € V and proceeds in turns
where in round i, the owner of the vertex occupied by the token mowves it to some
successor. This way both players jointly agree on an infinite path p = sgsi ...
called a play. A play is winning for Player 1 if max{c | Vidj. col(s;) = c}, the
mazimum colour seen infinitely often, is even.

A strategy for Player i is a recipe for how to move. Formally, it is a function
o;: V*V; = V from finite paths ending in a vertex s in V; to some successor. We
call o positional if o(ms) = o(n's) for any two prefives m,n' € V*. A strategy
is winning from vertex s if Player i wins every play that starts in vertex s and
during which all decisions are made according to o.

We call a vertex s winning for Player i if there exists a winning strategy from
s, and call the subset of all such vertices the winning region for that player.
Parity games enjoy the following property (See [13, Theorem 15| for details).

Proposition 1. Parity games are uniformly positionally determined: For every
game (V=V1WVs, E, col) there is a pair 01,09 of positional strategies so that o;
18 winning for Player i from every vertex in the winning region of Player i.

A temporal parity game is a parity game played on the infinite expansion of
a temporal graph G = (V, E), where the ownership and colouring of vertices are
given with respect to the underlying directed graph V=V;0V5 and col : V — C.
The ownership and colouring are lifted to the expansion so that vertices in V; x N
are owned by Player ¢ and vertex (s,n) has colour col(s).
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Fig.1: An example of a temporal parity game. Player 1 controls the diamond
vertices V3 = {s,v} and Player 2 controls square vertices Vo = {r,¢,u,w}. Edge
labels are Presburger formulae constraints denoting when an edge is available;
edges without constraints are always available. The grey label next to each node
denotes its colour. E.g., col(s) =1 € C = {1,2,3,4}.

Example 1. Consider the temporal parity game shown in Fig. 1. We will draw
Player 1 states as diamond and those controlled by Player 2 as squares and
sometimes write modulo expressions to define the edge availability. For example,
the constraint on the edge from u to v can be written as the FPA-formula as
Jy.(x = 3y) V (x = 3y + 1) and so this edge is available at times 0,1,3,4,6,....
The temporal graph underlying this game has period 15.

Player 1 has a winning strategy starting from (s,¢) in the expansion by
staying in state s until time ¢’ > ¢ with i/ = 0 mod 5 and then following the
edge to (¢,4' +1). If Player 2 ever chooses to move to r, he is trapped in an even-
coloured cycle; if he stays in ¢ forever, then the resulting game sees only colour
2 and is losing for him. Otherwise, if the game continues at (s, i’ + 2), Player 1
repeats as above (and wins plays that see both states s and t. The example
shows that Player 1 s strategies depend on the time and are not positional in
the vertices alone, even if the winning set has period 1. Indeed, the only possible
vertex-positional strategy (cycle in s) is losing.

The vertices {s,t} shaded in blue represent the vertex from which Player 1
can win starting at any time, following the strategy described above. From the
vertices shaded in red, Player 2 can win starting at certain times. For exam-
ple, Player 2 has a winning strategy from (u,i) if, and only if, ¢ = 0 mod 3
or i =1 mod 3 by moving to (v,i + 1). Notice that this edge is not available,
and thus Player 2 is forced to move to ¢ at times x = 2 mod 3. In partic-
ular therefore, Player 1 wins from (v,0). The winning region for Player 1 is
{(s, k), (t, k), (r, k), (u, 3k + 2), (v, 3k), (w,3k + 1) | ke N}.

The algorithmic question we consider is determining the set of vertices from
which Player 1 wins starting at time 0.
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3 Reachability Games

We discuss a variant of temporal games that turns out to be central both for
upper and lower bounds for solving games on temporal graphs.

We call these punctual reachability games, which are played on a static graph
and Player 1 aims to reach the target precisely at a target time.

Definition 3. A punctual reachability game G = (V, E, s, F) is a game played
on a static graph with vertices V.= Vi W Vs, edges E C V2, an initial state sg
and set of target vertices F' C V. An additional parameter is a target time T' € N
given in binary. Player 1 wins a play if and only if a vertex in F is reached at
time T

Punctual reachability games are really just a reformulation of the membership
problem for alternating finite automata (AFA) [7] over a unary input alphabet.
Player 1 wins the punctual reachability game with target T if, and only if, the
word a’ is accepted by the AFA described by the game graph. Checking if a
given unary word a” is accepted by an AFA is complete for polynomial time if
T is given in unary [20]. We first observe that it is PSPACE-hard if T is given in
binary. We write in the terminology of punctual reachability games but the main
argument is by reduction from the emptiness problem for unary AFA, which is
PSPACE-compete [18,19]. We rely on the fact that the shortest word accepted
by an AFA is at most exponential in the number of states.

Lemma 1. Let G = (V,E, s, F) be a reachability game on a static graph. If
there exist T € N so that Player 1 wins the punctual reachability game at target
time T', then there exists some such T < 2IVI,

Proof. Assume towards contradiction that 7" > 2!Vl is the smallest number such
that Player 1 wins the punctual reachability game and consider some winning
strategy o. For any time k < T we can consider the set S C V of vertices
occupied on any branch of length k on o. By the pigeonhole principle, we observe
k < k' < T with S, = Sy, which allows to create a strategy o’ that follows o
until time &, then continues (and wins) according to ¢ as if it had just seen
a length &’ history leading to the same vertex. This shows that there exists a
winning strategy for target time T'— (k — k'), which contradicts the assumption.

O

A lower bound for solving punctual reachability games is now immediate.

Lemma 2. Solving punctual reachability games with target time T encoded in

binary is PSPACE-hard.

Proof. We reduce the non-emptiness problem of AFA over unary alphabets. In
our terminology this is the decision problem if, for a given a reachability game
G = (V, E, sq, F) there exists some T € N so that Player 1 wins the punctual
reachability game at target time T'. This problem is PSPACE-complete [18].
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By Lemma 1, positive instances can be witnessed by a small target T < 2!V

and so we know that it is PSPACE-hard to determine the existence of such a
small target time that allows Player 1 to win.

Consider now the punctual reachability game G’ that extends G by a new
initial vertex sj, that is owned by Player 1 and which has a self-loop as well as an
edge to the original initial vertex so with target time 77 = 2/V1 In G’, Player 1
selects some number T' < T by waiting in the initial vertex for 7" — T steps and
then starts the game G with the target time T'. Therefore, Player 1 wins in G’
for target T" if, and only if, she wins for some 7 < 2Vl in G. a

Corollary 1. Solving reachability games on finite temporal graphs is PSPACE-
hard.

Proof. We reduce the punctual reachability game with target T to an ordinary
reachability game on a finite temporal graph. This can be done by introducing
a new vertex u as the only target vertex, so that it is only reachable via edges
from vertices in F' at time exactly 7. That is E(s,u) = {T} and E(s,t) = [0, T]
for all s,t € V\ {u}. Now Player 1 wins the reachability game for target w if, and
only if, she wins the punctual reachability game with target F' at time 7' ad

A matching PSPACE upper bound for solving punctual reachability games, as
well as reachability games on finite temporal graphs can be achieved by comput-
ing the winning region backwards as follows.! For any game graph with vertices
V=V1uVy, set S CV and i € {1,2}, let Pre;(S) CV denote the set of vertices
from which Player i can force to reach S in one step.

Prei(S) = {v e V| 3(v,v) € Ex' € S}U{ve Vi |V(v,0) € Ex' € S}

A straightforward induction on the duration 7" shows that Player i wins the
punctual reachability game with target time T from vertex s if, and only if
s € Pre! (F), the T-fold iteration of Pre; applied to the target set F.

Notice that knowledge of Pre;(S) is sufficient to compute Pref*1(S). By
iteratively unfolding the definition of Pref, we can compute Pre{(F ) from
Prel(F) = F in polynomial space?. Together with Lemma 2 we conclude the

following.

Theorem 1. Solving punctual reachability games with target time T encoded in
binary is PSPACE-complete.

! For readers familiar with reachability games, the notion Pre; (S) above is very similar
to, but not the same as the k-step attractor of S: The former contains states from
which Player 1 can force to see the target in exactly k steps, whereas the latter
contains those where the target is reachable in k or fewer steps.

2 To be precise, naively unfolding the definition requires O(T +|V|?) time, exponential
in (the binary encoded input) T, and O(|V|+log(T')) space to memorise the current
set Prer C V as well as the time k£ < T in binary.
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The same approach works for reachability games on finite temporal graphs if
applied to the expansion up to horizon h(G), leading to the same time and space
complexity upper bounds. The only difference is that computing Pre’f (Fx{T})
requires to check edge availability at time T — k.

Theorem 2. Solving reachability games on finite temporal graphs is PSPACE-
complete.

Proof. Consider a temporal game with vertices V=V,wVs, edges F : V? — 2N
target vertices F' C V and where T' = h(G) is the latest time an edge is available.
We want to check if starting in an initial state so at time 0, Player 1 can force
to reach F' at time T'. In other words, for the game played on the expansion up
to time T we want to decide if (sg,0) is contained in Prel (F x {T}).

By definition of the expansion, we have Pre;(S x {n}) CV x {n — 1} for all
S CV and n < T. Since we can check the availability of an edge at time n in
polynomial space, we can iteratively compute Pre} (F x{T'}) backwards, starting
with Prel(Fx{T}) = Fx{T}, and only memorising the current iteration n < T
and a set W,, C V representing Pre] (F x {T}) = W, x {T — n}. O

4 Parity Games

We consider Parity games played on periodic temporal graphs. As input we take
a temporal graph G = (V, E) with period K, a partitioning V=V,WV5 of the
vertices, as well as a colouring col : V' — C that associates a colour out of a
finite set C' C N of colours to every state.

It will be convenient to write col(7) = max{col(s;) | 0 < i < k} for the max-
imal colour of any vertex visited along a finite path © = (sg,0)(s1,1) ... (sg, k).
The following relations R capture the guarantees provided by a strategy o if
followed for one full period from vertex s.

Definition 4. For a strategy o and verter s € V define RZ C V x C be the
relation containing (t,c) € RY if, and only if, there exists a finite play m =
(s,0)...(t, K) consistent with o, that starts in s at time 0, ends in t at time K,
and the maximum colour seen on the way is col(n) = c¢. We call R? the summary
of s with respect to strategy o.

A relation B C'V x C is s-realisable if there is a strategy o with B = RY.

Ezample 2. Consider the game in Fig. 2 where vertex u € V5 has colour 2 and
all other vertices have colour 1. The graph has period K = 2. The relations
{(t,1)} and {(¢, 2), (¥, 2)} are s-realisable, as witnessed by the strategies o(s) =t
and o(s) = u), respectively. However, {(¢,2)} is not s-realisable as no Player 1
strategy guarantees to visit s then u then ¢t.

Lemma 3. Checking s-realisability is in PSPACE. That is, one can verify in
polynomial space for a given temporal Parity game, state s € V' and relation
B CV x C whether B is s-realisable.
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Fig.2: The game from Example 2. Labels on vertices and edges denote colours
and available times, respectively. The graph has period 2. In two rounds, Player 1
can force to end in ¢ having seen colour 1, or in either ¢ or ¢’ but having seen a
better colour 2.

Proof. We reduce checking realisability to solving a reachability game on a
temporal graph that is only polynomially larger. More precisely, given a game
G = (V, E, col) consider the game G’ = (V', E’, col’) over vertices V' Ty xC
that keep track of the maximum colour seen so far. That is, the ownership
of vertices and colours are lifted directly as (s,c) € V/ <= s € V; and
col' (s, ¢) S col(s), and for any ¢ € N, s,t,50 € V, ¢,d € C, we let (¢,d)
be an i-successor of (s,c) if, and only if, both ¢ is an i-successor of s and
d = max{c, col(t)}.

Consider some relation B C V x C. We have that B is s-realisable if, and only
if, Player 1 wins the punctual reachability game on G’ from vertex (s, col(s)) at
time 0, towards target vertices B C V' at target time K. Indeed, any winning
Player 1 strategy in this game witnesses that B is s-realisable and vice versa. By
Theorem 2, the existence of such a winning strategy can be verified in polynomial
space by backwards-computing the winning region. a

The following defines a small, and PSPACE-verifiable certificate for Player 1
to win the parity game on a periodic temporal graph.

Definition 5 (Certificates). Given temporal parity game (V, E, col) with pe-
riod K, a certificate for Player 1 winning the game from initial vertex s € V' is
a multigraph where the vertex set V' C V contains sg, and edges E' C V' xCx V'
are labelled by colours, such that

def

1. For every s € V', the set Post(s) = {(t,c) | (s,c,t) € E'} is s-realisable.
2. The mazimal colour on every cycle reachable from sq is even.

Notice that condition 1 implies that no vertex in a certificate is a deadlock.
A certificate intuitively allows to derive Player 1 strategies based on those wit-
nessing the realisability condition.

Ezxample 3. Consider the game from Example 1 played on the temporal graph
with period 15. A certificate for Player 1 winning from state v at time 0 is
depicted in Fig. 3. Indeed, the Player 1 strategy mentioned in Example 1 (aim
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Fig.3: A certificate that Player 1 wins the game in Example 1 from state v at
time 0.

to alternate between s and t) witnesses that Post(v) = {(s,3), (¢,3),(r,4)} is
v-realisable because it allows Player 1 to enforce that after K = 15 steps from
v, the game ends up in one of those states via paths whose colour is dominated
by col(v) = 3 or col(r) = 4.

Lemma 4. Player 1 wins the parity game on G from vertex sg if, and only if,
there exists a certificate.

Proof. For the backward implication we argue that a certificate C allows to
derive a winning strategy for Player 1 in the parity game G. By the realisability
assumption (1), for each vertex s € V' there must exist a Player 1 strategy o
with RJ® = Post(s) that tells her how to play in G for K rounds if the starting
time is a multiple of K. Moreover, suppose she plays according to o5 for K
rounds and let ¢t and ¢ be the vertex reached and maximal colour seen on the
way. Then by definition of the summaries, (¢,¢) € R7* = Post(s) and so in the
certificate C' there must be some edge s — t.

Suppose Player 1 continues to play in G like this forever: From time i - K to
(i+1) - K she plays according to some strategy o5, determined by the vertex s;
reached at time i- K. Any consistent infinite play p in GG, chosen by her opponent,
describes an infinite walk p’ in C' such that the colour seen in any step i € N
of p’ is precisely the dominant colour on p between rounds K and (i + 1)K.
Therefore the dominant colours seen infinitely often on p and p’ are the same
and, by certificate condition (2) on the colouring of cycles, even. We conclude
that the constructed strategy for Player 1 is winning.

For the forward implication, assume that Player 1 wins the game on G from
vertex s at time 0. Since the game G is played on a temporal graph with period
K, its expansion up to time K — 1 is an ordinary parity game on a static graph
with vertices V' x{0, 1, ..., K —1} where the second component indicates the time
modulo K. Therefore, by positional determinacy of parity games (Proposition 1),
we can assume that Player 1 wins in G using a strategy o that is itself periodic.
That is, o(hv) = o(h'v) for any two histories h, h’ of lengths |h| = |h'| mod K.
Moreover, we can safely assume that o is uniform, meaning that it is winning
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from any vertex (s, 0) for which a winning strategy exists. Such a strategy induces
a multigraph C = (V, E’) where the edge relation is defined by (s, ¢, t) € B/ <=
(t,c) € RZ. It remains to show the second condition for C' to be a certificate,
namely that any cycle in C, reachable from the initial vertex sg, has an even
maximal colour. Suppose otherwise, that C' contains a reachable cycle whose
maximal colour is odd. Then there must be play in G that is consistent with o
and which sees the same (odd) colour infinitely often. But this contradicts the
assumption that o was winning in G in the first place. a

Our main theorem is now an easy consequence of the existence of small
certificates.

Theorem 3. Solving parity games on periodic temporal graphs is PSPACE-
complete.

Proof. Hardness already holds for reachability games Lemma 2. For the up-
per bound we show membership in NPSPACE and use Savitch’s theorem. By
Lemma 4 it suffices to guess and verify a candidate certificate C'. These are by
definition polynomial in the number of vertices and colours in the given temporal
parity game. Verifying the cycle condition (2) is trivial in polynomial time and
verifying the realisability condition (1) is in PSPACE by Lemma 3. O

Remark 1. The PSPACE upper bound in Theorem 3 can easily be extended to
games on temporal graphs that are ultimately periodic, meaning that there exist

T,K € N so that for all n > T, s —t implies s" ¢ Such games can be
solved by first considering the periodic suffix according to Theorem 3 thereby
computing the winning region for Player 1 at time exactly 7', and then solving
the temporal reachability game with horizon T

5 Monotonicity

In this section, we consider the effects of monotonicity assumptions on the edge
relation with respect to time on the complexity of solving reachability games. We
first show that reachability games remain PSPACE-hard even if the edge relation
is decreasing (or increasing) with time. We then give a fragment for which the
problem becomes solvable in polynomial time.

Increasing and Decreasing temporal graphs: Let the edge between vertices

u,v € V of a temporal graph be referred to as decreasing if uth oy implies
u— v for all i € N, i.e. edges can only disappear over time. Similarly, call the
edge increasing if for all i € N we have that u — v implies u ant v; i.e. an edge
available at current time continues to be available in the future. A temporal
graph is decreasing (increasing) if all its edges are. We assume that the times
at which edge availability changes are given in binary. More specifically, every
edge is given as inequality constraint of the form &, ,(x) Er<n (respectively
x > n) for some n € N.
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Fig. 4: Reduction from a punctual reachability game to a reachability game on a
temporal graph that is finite and decreasing, see Theorem 4. Components added
are shown in red.
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Although both restrictions imply that the graph is ultimately static, we ob-
serve that solving reachability games on such monotonically increasing or de-
creasing temporal graphs remains PSPACE-complete.

Theorem 4. Solving reachability and Parity games on decreasing (respectively
increasing) temporal graphs is PSPACE-complete.

Proof. The upper bound holds for parity games as the description of the tempo-
ral graph explicitly includes a maximal time 7' from which the graph becomes
static. One can therefore solve the Parity game for the static suffix graph (in
NP) and then apply the PSPACE procedure (Theorem 2) to solve for temporal
reachability towards the winning region at time 7'. Alternatively, the same upper
bound also follows from Theorem 3 and Remark 1.

For the lower bound we reduce from punctual reachability games which are
PSPACE-hard by Lemma 2. Consider a (static) graph G and a target time T € N
given in binary. Without loss of generality, assume that the target vertex v has no
outgoing edges. We convert G into a temporal graph G’ with V' = VU{w, T, L},
Vi = (Vi\{v})U{w}, V5 = V'\V{ and new target T. The vertex L is a sink state
and the original target vertex v is now controlled by Player 2. Edge availabilities
arev— life <T-1,v->wifs <T+1,w——>Tifz <T+1, and all
other edges disappear after time T + 1. The constructed temporal graph is finite
and decreasing. See Fig. 4. The construction ensures that the only way to reach
T is to rea