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Abstract. Properties of the pulmonary artery play an essential role
in the diagnosis and treatment planning of diseases such as pulmonary
hypertension. Patient-specific simulation of hemodynamics can support
the planning of interventions. However, the variable complex branch-
ing structure of the pulmonary artery poses a challenge for image-based
generation of suitable geometries. State-of-the-art segmentation-based
approaches require an interactive 3D surface reconstruction to prepare
the simulation geometry. We propose a deep learning approach to gener-
ate a 3D surface mesh of the pulmonary artery from CT images suitable
for simulation. The proposed method is based on the Voxel2Mesh algo-
rithm and includes a voxel encoder and decoder as well as a mesh decoder
to deform a prototype mesh. An additional centerline coverage loss facil-
itates the reconstruction of the branching structure. Furthermore, vertex
classification allows for the definition of in- and outlets. Our model was
trained with 48 human cases and tested on 10 human cases annotated by
two observers. The differences in the anatomical parameters inferred from
the automatic surface generation correspond to the differences between
the observers’ annotations. The suitability of the generated mesh geome-
tries for numerical flow simulations is demonstrated.
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1 Introduction

The pulmonary artery (PA) originates from the right ventricle and delivers de-
oxygenated blood towards the lungs, where it is oxygenated before reaching the
left heart and thus the systemic circulation. The blood pressure within the PA
is an important biomarker for assessing the severity of heart failure. Modeling
and simulation are important tools for investigation of the complex hemodynam-
ics [5,16]. Numerical simulation of PA hemodynamics requires well-defined and
high-quality surface meshes enclosing the PA vessel lumen [11]. Pure voxel-based
segmentation of the underlying 3D image data [4,10,13,18] is not sufficient, as
these suffer from step artifacts depending on the voxel size [3]. When trans-
formed into a surface representation, the resulting meshes often show defects
such as bad-quality triangles [2,15]. Using image-based anatomical information
for flow simulation typically requires adjustments such as correcting segmenta-
tion masks, expanding inflow and outflow regions, or surface smoothing [2]. This
can result in time- and resource-intensive interaction.
Data-driven models show promise to unify this entire processing pipeline, allow-
ing to reduce or fully omit manual interaction, but also unnecessary steps, which
in turn might reduce the propagation of errors. Kong et al. [8] proposed such a
unified approach for mesh generation of the whole heart. However, the level of
detail of the mesh representation is limited and considered insufficient for com-
plex vascular structures.
In this study, we demonstrate an approach for the automatic generation of pul-
monary artery surface meshes, which can be used for numerical assessment of
intra-arterial hemodynamics. This requires the main (MPA), left (LPA) and right
(RPA) pulmonary artery up to two degrees of branching vessel. The inlet as well
as all outlets (for simplicity referred to as openings) are truncated for subsequent
specification of boundary conditions in the numerical setup. We combine different
techniques for accurate segmentation, mesh generation, and opening, compare
relevant anatomical parameters of automatically and manually obtained surface
meshes, and lastly, apply computational fluid dynamics to test the suitability of
our surface geometries for hemodynamic assessment.

2 Methods

We propose a deep learning approach based on the Voxel2Mesh algorithm [17]
for automatic pulmonary artery mesh generation from contrast-enhanced CT
images of the heart. Voxel2Mesh is a neural network architecture, that directly
produces 3-dimensional triangular surface meshes from volumetric image data.
The Voxel2Mesh algorithm combines information from a simultaneously trained
voxel-wise segmentation with a mesh decoder, that deforms a prototype mesh
to approximate the target mesh (see Fig. 1). Consequently, the prototype mesh
and the target mesh need to have the same topology. As the number of branches
of the pulmonary artery differs this cannot be achieved with open-ended surface
meshes. Hence, we train the Voxel2Mesh algorithm with closed meshes, using
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Fig. 1. An overview of the proposed architecture, including a voxel-encoder, a voxel-
decoder, and a mesh-decoder: Using a 3D CT image as input, the model successively
deforms a prototype mesh at increasing resolution to approximate the target mesh. For
this, the mesh-decoder samples features from the latent voxel-space.

a sphere as the prototype. Additionally, our algorithm contains a vertex clas-
sification to differentiate between the vessel wall and opening, allowing for the
removal of respective faces.

2.1 Data

We used retrospective CT image data of 58 aortic stenosis patients, weighing
76.8 ± 18.2 kg, with an age of 81 ± 7.6 years and a female percentage of 60% for
the construction of human pulmonary artery surface meshes. CT data sets of the
entire heart were acquired as part of transcatheter aortic valve implantation plan-
ning at our clinical center, with wide area-detector volume CT scanners: Aquil-
ion One Vision (Canon Medical Systems, Tochigi, Japan) or Revolution CT (GE
Healthcare, Chicago, IL, USA) with 100 kV tube voltage, (0.390–0.648 mm) ×
(0.390–0.648 mm) in-plane resolution and (0.5–1.0 mm) slice thickness. The insti-
tutional review board (Ethikkommission Charité - Universitätsmedizin Berlin,
approval number EA2/004/21) approved the use of retrospective data for this
study and waived individual informed consent. Figure 2 shows a sample of the
reconstruction pipeline from voxel-wise CT segmentation to open-ended surface
mesh. We used 40 cases for training the neural network and 8 for validation.
A thorough evaluation of anatomical parameters and simulation properties was
done on the remaining 10 cases. Two observers generated meshes for each of these
10 cases and we compare deviations from our automatically generated meshes to
inter-observer variability. We resampled all CT images to an isotropic resolution
of 1.7 mm for neural network training, due to memory constraints. We close all
mesh openings, ensuring that the normals are consistently pointing outwards.
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Fig. 2. Illustration of the pipeline for manual reconstruction of the PA surface mesh
from CT image data: The region of interest is segmented manually within the image
data and a rough initial surface geometry is reconstructed from the 3D voxel mask.
This surface is subsequently smoothed and all vessel endings are truncated. SVC =
superior vena cava; PV = pulmonary vein.

2.2 Voxel2Mesh-Based Surface Mesh Generation

Voxel2Mesh uses several loss functions and regularization terms [17]. The cross-
entropy loss

LCE = − 1
N

N∑

n=1

1∑

c=0

log
exp(xn,c)∑1
i=0 exp(xn,i)

yn,c (1)

for training the voxel encoder, where x is the prediction, y is the ground-truth, c
is the class (0 for background, 1 for the pulmonary artery) and N is the number of
samples within the batch. For training the mesh decoder, the Chamfer distance

LCD =
∑

vp∈Sp

min
vg∈Sg

||�xp − �xg|| +
∑

vg∈Sg

min
vp∈Sp

||�xp − �xg|| (2)

is applied, where Sp and Sg denote the predicted and ground-truth surfaces,
with vp and vg being the respective vertices sampled from those surfaces, and �xp

and �xg the corresponding 3D coordinates. This notation also applies hereafter.
The regularization terms are: the normal consistency loss

LNC =
1

|NF |
∑

(f0,f1)∈NF

1 − �n0 · �n1

||�n0|| · ||�n1|| , (3)

where f0 and f1 denote the neighbouring faces in NF , the set of neighbouring
faces of the mesh and �n0 and �n1 the normal vectors of the respective neighboring
faces; the Laplacian smoothing constraint

γL =
1

|Sp|
∑

v∈Sp

‖ 1
|N(v)|

∑

v′∈N(v)

(�x − �x′) ‖, (4)

where N(v) is the set of neighboring vertices of vertex v; and the edge length
loss

LE =
1

|E|
∑

(v0,v1)∈E

(||�x0 − �x1||2 − Lt)2, (5)
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where E denotes the set of edges of a mesh. v0 and v1 are the vertices composing
the edge, and Lt is a constant target length, in our case 0 to ensure edges of
similar length.

We introduced an additional centerline coverage loss LCC to enforce the desired
branching based on the ground-truth centerlines computed with morphMan [7]:

LCC =
∑

e∈Eo

de, (6)

We penalize centerline endpoints located outside of the generated mesh. Eo is
the set of centerline endpoints outside of the mesh and de is the distance between
the endpoint e and the corresponding closest point on the mesh [12].
Thus, our Voxel2Mesh implementation balances between a smooth mesh and the
formation of branches. Furthermore, we use a cross-entropy loss LV C (analog to
equation (1)) for the vertex class prediction. The final loss function L is a linear
combination of all loss terms L weighted with their respective hyperparameters
λ at different resolutions.

L = λCELCE +λCDLCD+λNCLNC +λLLL+λELE +λCCLCC +λV CLV C (7)

Based on a grid search with 5-fold cross-validation, the loss hyperparameters
were uniformly weighted across all resolutions with: λCE = 5, λCD = 15,
λNC = 0.1, λL = 0.1, λE = 0.1, λCC = 100 and λV C = 5.
We rely on a uniform upsampling strategy instead of the adaptive upsampling
suggested in the original Voxel2Mesh architecture [17], as too many vertices were
discarded due to the close adjacency of the branches.
We performed random augmentation during training: affine (rotation -10 to
10◦C, scaling 0.9 to 1.1, translation up to 5 mm), blur (standard deviation of
the Gaussian Kernel up to 2 mm), and Gaussian noise (mean of 0 and standard
deviation up to 0.25 mm).

2.3 Postprocessing

Due to the topology restrictions of Voxel2Mesh, we obtain closed surface meshes,
which we need to open for simulation. We approach this by additionally predict-
ing a class for each vertex, defining whether it belongs to an opening or not.
We then remove all faces containing opening vertices. The resulting boundary
vertices for each opening are then adjusted to lie on the same average plane by
least square approximation. At this point, few openings are not detected. Hence,
we manually open the remaining closed ends for the subsequent steps.

2.4 Centerline-Based Analysis

For comparison of the anatomical features, we automatically obtained length
and diameters for different segments of the PA, as well as the tortuosity of LPA
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Fig. 3. Anatomical measurements from centerline-based analysis: The centerline (red)
is subdivided into several edges, connected by nodes (blue), marking a bifurcation.
Diameters for each edge are obtained at the midpoint (blue star) between start and
end node of an edge or at start node + 0.8 * (end node - start node) for branch tips
(blue triangle). The bifurcation angle between LPA and RPA is the angle between the
vectors connecting the endpoint of the MPA to the endpoint of the first edge of LPA
and RPA, respectively. (Color figure online)

and RPA and their bifurcation angle from a centerline-based analysis of the
open-ended surfaces. The analysis was done using MeVisLab software (MeVis
Medical Solutions AG, Germany).
Edges until the first bifurcation were considered to be the MPA. The LPA and
RPA were defined depending on the orientation within the scanner, respectively
as the longest possible path. All other edges were considered side branches.
For each edge, we evaluate the length as well as the minimal diameter of the sur-
rounding surface. For the MPA and internal edges, the diameters were obtained
at the midpoint of each edge, for branch tips closer to the endpoints (see Fig. 3).
We accumulated the measurements to calculate the overall length and length-
weighted diameters of the MPA, LPA and RPA, respectively. Edges with a length
below 10 mm were disregarded on the length-weighted diameter calculation, as
side branches will likely distort the diameter measurements. The tortuosity was
calculated from the distance of the start and end nodes divided by the overall
length of the considered segment. Lastly, the bifurcation angle between LPA and
RPA was determined, by calculating the angle between the vectors connecting
the endpoint of the MPA to the endpoint of the first edges of LPA and RPA,
respectively, with an overall length of at least 10 mm.

2.5 Hemodynamic Simulation

To assess whether the automatically generated surface geometries can be used for
the calculation of the pulmonary artery hemodynamics, a steady-state simula-
tion of the peak-systolic state was conducted, as previously described by Brüning
et al. [1], using a finite volume solver (STAR-CCM+, v. 17.06, Siemens PLM).
Initially, the surface repair functionality of STAR-CCM+ was used to repair any
persisting topology errors in the surface geometries, such as non-manifold edges



146 N. Krüger et al.

or piercing surface elements. Open edges of the surface mesh were identified
automatically and closed off subsequently for boundary condition specification.
For all outlets, a zero-pressure boundary condition was specified, whereas a con-
stant mass flow of 350 ml/s, which equaled the average peak-systolic flow rate
observed in our sample, was specified as the inlet at the right ventricular outflow
tract. A volume mesh was generated using a mesh size of 0.5 mm and a boundary
layer consisting of five layers, with an overall thickness of 50 percent of the base
size. Simulations were deemed converged when residuals of momentum and mass
were below 1e−5.

3 Results

We validated our neural network on 8 cases and evaluated the resulting surface
meshes on 10 further cases, which were each processed by two observers.

3.1 Voxel2Mesh - Comparison to Baselines

Training and inference was performed on Dell PowerEdge R7525 compute nodes
with 64 AMD Epyc cores, 512 GB RAM and NVIDIA A100 40G or 80G GPU.
We used Python 3.9.12 with PyTorch 1.11.0+cu113 and PyTorch3D 0.6.1. As
a baseline, we use the state-of-the-art nnU-Net [6], followed by marching cubes
(MC) [9] for surface generation. As the vertex class is not directly transferable,
we disregard it. Furthermore, we conduct an ablation study, by evaluating the
effect of our centerline coverage loss in comparison to a standard Voxel2Mesh.

Figure 4 demonstrates the effect of the centerline coverage loss, which facil-
itates the formation of the proper branching structure and alleviates the effect
of smoothing.

Table 1. Comparative results against baselines on the validation data set of 8 patients
using the Intersection over Union (IoU) and mean distance (md), as well as the F1
score for the vertex class predicted by Voxel2Mesh. Our method, Voxel2Mesh + LCC ,
combines the standard Voxel2Mesh loss functions with an additional centerline coverage
loss.

IoU md [mm] vertex class F1

nnU-Net + MC 0.93 ± 0.01 2.9 ± 1.1 N/A

Voxel2Mesh 0.64 ± 0.08 7.3 ± 0.9 0.45 ± 0.28

Voxel2Mesh + LCC 0.87 ± 0.06 2.3 ± 0.6 0.58 ± 0.11
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Fig. 4. Example of a surface mesh before (left) and after (middle) introduction of the
centerline coverage loss. The target mesh (right) is shown for reference. The centerline
coverage loss facilitates the proper branching structure.

3.2 Centerline-Based Analysis of Anatomical Measurements

We performed an inter-observer variability analysis for the 10 CT images anno-
tated by two observers. For this, we manually revised the openings resulting
from our Voxel2Mesh algorithm. In the 10 cases, we had to open on average
three (23%) additional outlets, that were not detected automatically.
For several measurements, we calculate the mean differences from our recon-
structed surface mesh to the average measurements from the two observer recon-
structed meshes. We contrast this with the inter-observer difference in Table 2.
With a two-tailed paired t-test with a significance level of 0.05, we don’t have
any significant differences in the shape of the LPA and RPA and the length of the
MPA. Differences in the diameter of the MPA (p ≈ 0.023) and the bifurcation
are significant. (p ≈ 0.037).

Table 2. Centerline-based analysis of anatomical features: We report the mean differ-
ence for our automatically generated mesh to the target meshes by the two observers,
as well as the inter-observer difference, averaged over all 10 cases.

Measurement Mean Difference to Target Inter-observer Difference

MPA Length [mm] 2.66 ± 1.56 1.89 ± 2.83

Diameter [mm] 1.17 ± 0.58 0.62 ± 0.56

LPA Length [mm] 6.69 ± 4.02 8.14 ± 7.18

Diameter [mm] 1.26 ± 0.66 1.19 ± 0.93

Tortuosity 0.04 ± 0.03 0.06 ± 0.06

RPA Length [mm] 5.25 ± 3.49 6.12 ± 4.52

Diameter [mm] 1.06 ± 0.83 1.23 ± 1.14

Tortuosity 0.06 ± 0.05 0.07 ± 0.08

Bifurcation [◦] 2.38 ± 0.98 1.24 ± 0.65
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3.3 Simulation

Simulation of the patient-specific hemodynamics using the automatically gener-
ated surface meshes was feasible in an automated manner. Isolated topological
errors could be fixed with the automated surface remeshing algorithm used in the
numerical pipeline in all instances. No subsequent manual interaction was neces-
sary to process the surface meshes for the numerical simulation. The visualization
of resulting intravascular hemodynamics showed a good agreement between flow
fields calculated using manually and Voxel2Mesh generated meshes (Fig. 5).

Fig. 5. Exemplary comparison of the simulation of the patient-specific hemodynamics,
using the manually and the automatically generated surface mesh, illustrated with
velocity-colored streamlines.

Table 3 shows a summary of simulated velocities for the meshes generated
by Voxel2Mesh and our two observers. The correlations between our generated
meshes and the two observers are comparable.

4 Discussion

We extended the Voxel2Mesh algorithm with a centerline coverage loss to pro-
mote pulmonary artery branching and a vertex class prediction for subsequent
opening. Derived anatomical measurements from our resulting surface meshes
are in accordance with results from two observers. We only see significant differ-
ences for the main pulmonary artery and the bifurcation angle. A minor change
in the cut-off length of the MPA leads to a change in the measurement posi-
tion for the diameter and likely also the angle, hence resulting in a significantly
different diameter, while the overall shape remains the same. The differences
between the bifurcation angles are in the range of 1 to 3◦C, so even minor devi-
ations lead to statistically significant differences. However, we do not expect any
impact on the hemodynamic simulations from the detected differences in the
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Table 3. Velocity measurements from simulations using the mesh from Voxel2Mesh
(V2M) and two observers (O1 & O2): We report the mean and standard deviation (Std)
for the mean and maximum velocity in meters per second. The correlation between
Voxel2Mesh and the observers as well as the inter-observer correlation is shown.

Mean Velocity [m/s] Max Velocity [m/s]

V2M O1 O2 V2M O1 O2

Mean 0.265 0.295 0.312 0.744 0.787 0.844

Std 0.046 0.058 0.070 0.143 0.171 0.232

V2M/O1 V2M/02 O1/O2 V2M/O1 V2M/02 O1/O2

Correlation 0.981 0.966 0.955 0.882 0.875 0.846

anatomy and the comparison showed a good agreement (Table 3). We expe-
rienced self-folding surface meshes, a known issue in surface mesh generation
[14], obstructing the hemodynamic simulations. For avoiding such foldings, well-
defined training meshes are of utter importance - they need to be watertight,
with consistently oriented normals, and also very thin branches should be trun-
cated, to prevent topological errors. Pretraining the segmentation without mesh
deformation, reducing the learning rate as well as initially increasing the smooth-
ing factors and slowly reducing them during the training, reduced the chance of
self-foldings.

4.1 Time Investment - Manual Vs Automatic Mesh Generation

The manual mesh generation requires four steps: Image-based segmentation of a
voxel mask containing the pulmonary artery lumen, generation of an initial sur-
face mesh that is subsequently smoothed, correction of errors in surface topology,
and finally truncation of vessel endings. The majority of time necessary for the
procedure was spent on the initial segmentation step. Depending on the quality
of the image data, this step took between 30 and 180 min per case. Substan-
tial manual effort was required to eradicate fused branches and other artifacts,
leading to errors in the deduced meshes (see Table 1). Similarly, smoothing and
correction of topological errors of the surface depended strongly on the image
quality and thus the quality of the initial surface mesh. This step took between 1
and 10 min. Finally, the truncation of vessel endings took approximately 3 min.

The automated procedure takes approximately 2 s per case for surface recon-
struction, with an additional 1 to 3 min of manual interaction for possible error
correction, including truncation of remaining vessel endings.

5 Conclusion

We have presented a deep learning-based approach for automatic pulmonary
artery mesh generation from CT images with subsequent in- and outlet opening
for numerical flow simulation. Apart from the last step of quality assessment and
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possible error correction, the procedure is fully automated and does not require
any human interaction. Therefore, the method enables cost reduction and better
reproducibility by minimizing operator-dependent influences. For future work,
we consider directly penalizing self-foldings in our loss function or including
the automatic removal in our processing pipeline. The nnU-Net demonstrated
superior segmentation performance compared to our Voxel2Mesh segmentation
pipeline. Thus, directly incorporating the nnU-Net into the Voxel2Mesh archi-
tecture might further improve results in the future. Apart from that, an increase
in training sample size likely improves the robustness and overall quality of the
proposed method. Future work will also focus on enhancing fully automatic out-
let opening.
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