
An Empirical Study About the Instability
and Uncertainty of Non-functional

Requirements

Luiz Viviani1 , Eduardo Guerra2 , Jorge Melegati2(B) ,
and Xiaofeng Wang2

1 Institute for Technological Research, São Paulo, Brazil
2 Free University of Bozen-Bolzano, Bolzano, Italy

{eduardo.guerra,jorge.melegati,xiaofeng.wang}@unibz.it

Abstract. Managing non-functional requirements (NFRs) has been a
challenge in software development for many years. These requirements
are typically used to make important architectural decisions early in
the project, which can be problematic if they are uncertain or unstable.
When this uncertainty is not considered when designing the software
architecture, changes are often costly and sometimes even unfeasible.
Some empirical studies on the subject have already been carried out,
but few have focused on the perspective of professionals with extensive
experience on the changes and uncertainties of NFRs. This work aims to
expand the understanding about the management, clarity and validation
of NFRs to fill this gap in the literature. To achieve this goal, a survey was
carried out with professionals to find out how NFRs were managed and
validated. For the research design, instead of generic questions, the ques-
tionnaire focused on some specific types of NFRs to induce participants
to recall and report concrete situations. As a result, 40 valid responses
were obtained, most from professionals with more than 10 years of expe-
rience. The results reveal that a significant number of NFRs were defined
after the delivery of software increments (more than 30%) and that revi-
sion and change occurred in about a third of the NFRs. Hence, this study
presents evidence that NFRs, as the functional ones, can also be uncer-
tain and change frequently, requiring agile approaches and techniques to
evolve the software architecture to consider this uncertainty.

Keywords: Non-functional requirements · quality attributes ·
software maintenance · software evolution · requirements engineering ·
empirical study

1 Introduction

Non-functional requirements (NFRs) are considered an important factor in soft-
ware architecture decisions. However, the most important architectural decisions
are usually made in the beginning of the project, even on agile projects [38],
when some NFRs are uncertain. Since changes in software architecture are often
expensive when its structure is not prepared to handle them, a late definition of
these requirements might represent a big risk for the project [24].
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 77–93, 2023.
https://doi.org/10.1007/978-3-031-33976-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_6&domain=pdf
http://orcid.org/0009-0007-3333-0283
http://orcid.org/0000-0001-5555-3487
http://orcid.org/0000-0003-1303-4173
http://orcid.org/0000-0001-8424-419X
https://doi.org/10.1007/978-3-031-33976-9_6


78 L. Viviani et al.

The uncertainty of functional requirements (FRs) is handled by agile methods
by using techniques that allow the code to be more easily changed, such as
TDD and refactoring [17]. During the early phases of software development, it is
common to see FRs being prioritized while NFRs are ignored or neglected until
later stages [6]. However, agile techniques, such as TDD and refactoring, might
not be enough for changes in NFRs, which can crosscut functionalities and affect
the entire system. Changing or introducing an NFR that is not compatible with
the current architecture might turn a software project into a failure [24].

Most NFRs are often handled ad-hoc during system testing, and software
engineers pay more attention to functional requirements that satisfies business
needs [29]. This neglect or late focus might affect the final product, as both FRs
and NFRs are necessary for the systems’ success [35]. Instability, uncertainty
and shallow focus on NFRs can result in high long-term maintenance costs [9].
Although the relevance of NFRs is widely accepted, the discourse and approaches
on how to deal with them are still dominated by how to differentiate them from
functional requirements [11,16]. Although more effort has been invested in satis-
fying NFRs [5], it seems that there is still an uneven emphasis on the importance
given to the system’s features and its quality requirements [15]. Understanding
when NFRs are defined and how they change during the project can provide
valuable evidence to guide software development, in particular, how the solution
design and architecture accommodate these changes.

Some empirical studies on NFRs are present in the literature, but few focus-
ing on professionals with large experience and high involvement in NFR man-
agement. The studies define or evaluate artifacts for the documentation of
NFRs [32], compare methodologies and practices of traditional and agile require-
ments engineering [1] or even propose new artifacts or automation in document
generation [30,32]. Other studies [20,24,26,34] aimed at identifying flaws in
NFRs definition and management, but they do not discuss the validation of
these NFRs, nor the impacts and difficulties caused by changes during develop-
ment.

This study aims to gather evidence on the late definition of NFRs, either
due to a lack of identification at the project start or due to later changes. That
evidence highlights the need for more agile approaches to deal with changes
and late identification of NFRs, since the ones used to handle changes in the
functional requirements do not consider that it might have a huge impact in
the software architecture. To achieve this goal, we conducted a survey with
professionals with experience managing NFRs. The questionnaire focused on
specific NFR types, stimulating participants to base their answers on concrete
situations rather than on general impressions. As a result, evidence was identified
of a relevant number of NFRs being defined after the start of the development
and changed in late-stages of development.

2 Background and Related Work

NFRs refer to system restrictions and the quality of their development and imple-
mentation, which is always related and connected to FRs [28]. The IEEE defines



An Empirical Study about the Instability and Uncertainty of NFRs 79

a non-functional requirement as “a software requirement that describes not what
the software will do, but how the software will do it” [19]. In other words, NFRs
are related to quality standards, as they describe the characteristics and needs
of software so that it is efficient and fits its purpose [22]. The International
Organization for Standardization (ISO) defines software quality as the level of
satisfaction with the stated and implied needs of the user [18]. Software quality
can be divided into two views: the first being that of “meeting specifications”
and the second being “satisfying the customer”, the latter means satisfying the
customer’s usage and consumption expectations, regardless of any measurable
characteristic [18]. NFRs can be related to both observable attributes, such as
performance, availability, and reliability of the system, as well as relative internal
characteristics, for example, maintainability and portability [14,16].

Since NFRs express objectives that may conflict with each other, these
requirements must be described as flexible goals. These conflicting objectives
lead to a need of refinement and negotiation to reach acceptable solutions [13].
According to Berntsson et al. [9], the perception of the importance and purpose
of an NFR may differ according to the professional’s role in software develop-
ment.

Several studies present the importance of NFRs to software project success.
For instance, when NFRs are incorrectly managed, software projects have a fail-
ure rate of 60% or more [6]. NFRs play a critical role during software life cycle,
and if defined or managed incorrectly, affect software maintainability, signifi-
cantly impacting deadlines and costs [13]. NFRs generally influence the system
architecture more than FRs [4,31], being key to ensuring a proper architecture.

Albeit their importance, NFRs receive less attention than their functional
counterpart, causing customer dissatisfaction and rework and impacting time
and cost [34]. This issue happens especially in projects employing agile meth-
ods [30], given these practices emphasis on functional aspects and lesser in doc-
umentation. The neglection of NFRs is a known issue for agile requirements
engineering [20]. This issue is linked to agile methods’ main characteristics of
accepting and absorbing changes during the project and a lack of information
at the beginning of the project for a proper upfront architecture [24]. However,
other agile approaches such as Scaled Agile Framework (SAFe) and Disciplined
Agile Delivery (DAD) have steps and procedures that aim to anticipate and
mitigate the risks associated with RNFs and their volatility [2,27].

Given the possibility of architectural changes, early decisions on architecture
in agile projects are encouraged [3,38,40]. This early definition contrasts with the
recurring changes in agile projects, especially in the NFRs, which mostly cause
impacts or revision in the architecture [24]. For instance, Ameller et. al [4] rein-
force the importance of continuous management of the NFRs, stating that the list
of NFRs of the project could never be considered complete even after the com-
pletion of development tasks. According to this work, this list should be evolved
and negotiated during all project development and maintenance phases. The
emphasis on continuously managing NFRs, reviewing and adapting the archi-
tecture to cope with possible impacts can be identified in the Sprint Zero of the



80 L. Viviani et al.

DAD [2] approach and in the Architectural Runway phases of the SAFe frame-
work [27], as well as all necessary adjustments for the proper testing strategy for
these requirements [2].

Some studies present evidence of the awareness about the importance of
NFRs, but without adequate focus on their management [10]. Other studies evi-
dence that lower importance is given to NFRs compared to FRs during software
development [36], which explains the significant deficits in the management of
NFRs, and how they are treated and prioritized. Only 40% of the NFRs are
measurably specified [4,31], which makes hard its verification and assessment.
The unified management of FRs and NFRs is defended by some studies, e.g., [8],
which describe them as orthogonal. Consequently, architectural decisions that
accommodate an FR may conflict with an NFR or vice versa.

3 Research Design

There is a lack of studies in the literature on the stability of NFRs, in particular,
on when and how often they are defined or modified. Thus, as the objective of
this study, we collected evidence from real projects on the definition and possible
modification of NFRs. For example, we tried to understand in which project steps
NFRs are defined and if they are modified in stages that lead to greater impact.
To guide the research, we proposed the following research questions:

RQ1 - How are NFRs defined in the software development process?
RQ2 - How do NFRs change and are updated during a software project?
RQ3 - How much does the approach for handling NFRs vary based on its type?

3.1 Methodology

To answer the research questions, we conducted a survey with professionals con-
sisting of questions about the occurrence of specific types of requirements in real
projects. The survey was designed to be answered by professionals with expe-
rience managing NFRs in software development projects. When answering the
questions, participants should report if they recall the presence of a particular
type of requirement in a project they had participated. In the case of a posi-
tive answer, a series of questions about this occurrence is presented, focusing on
understanding when it had been specified, if it had changed, and why it changed.

As a first validation step, a first version of the questionnaire was created
and reviewed by the authors and other invited collaborators. The survey was
refined and sent to five professionals as a pilot study. Based on feedback from
respondents, the demographic questions were improved, new options were added,
and examples of NFRs were used to make them easier to understand. The result
was the final version of the survey applied in the study. The participants from
the pilot study were invited to answer the questionnaire again.

As a dissemination strategy, the authors sent invitations for participation to
personal contacts, to software development email discussion groups and shared
them on social media. It was intended for more experienced professionals and



An Empirical Study about the Instability and Uncertainty of NFRs 81

that the estimated time to respond was 20min, but not many spontaneous
responses were received. Most participants were professionals with the target
audience’s profile, recruited through a direct invitation from one of the authors.
The described approach for convenience sampling aligns with some guidelines
from Rainer and Wohlin [33] to recruit credible participants.

We acknowledge that our sampling approach does not provide a representa-
tive sample (c.f. [7]). However, our goal could be stated as exploratory, i.e., look-
ing for evidence of problems regarding NFR management and not to describe,
for instance, how prevalent these problems are. We read and interpreted the
answers to the open questions considering the answers given to the multiple
choice questions, searching for any relevant complementary information.

3.2 Survey Design

Kitchenham and Pfleeger [23] suggest that the survey design must relate to
research objectives so that the data obtained and the analysis can answer the
questions defined for the study. We adopted a descriptive research design to
conduct a retrospective study, where participants report past events and cir-
cumstances to support the understanding and explanation of current phenom-
ena [23].

The questionnaire is available online1 and was organized into eleven steps:
(1) explanation of the research goals, presentation of the information about data
confidentiality, and request of participant’s consent; (2) presentation of the NFR
concept adopted in the study and a request to choose a project in which the
respondent participated as a reference for the following answers; (3) questions
about participant background and the company in which the project used as
a reference took place; (4) questions about the adopted practices for require-
ments engineering; (5–10) for each particular NFR type, a question regarding
the existence of that particular type, and, in case of a positive answer, additional
questions about it; (11) an optional open question about how NFR uncertainty
was handled in the reference project.

The second step was included to make sure that the participant chooses
a project as a reference for gathering data about a concrete experience. The
participant can only proceed after confirming that the choice was made. To avoid
misconceptions about the term “non-functional requirement”, a short description
was presented to the participant to agree for continuing.

In the third step, about the company, we asked the business segment and the
number of employees. About the participants, the survey asked which role they
played in the last five years (being able to select more than one option), years
of experience in software development, and self-evaluation about the knowledge
on NFRs. About the self-evaluation, five levels were defined (novice, advanced
beginner, competent, proficient, and expert) with a description describing the
expected expertise and knowledge for each. The fourth step assessed some infor-
mation about how the reference project handled NFRs. The participant answered

1 https://www.jmelegati.com/files/Survey-NFRs.pdf.

https://www.jmelegati.com/files/Survey-NFRs.pdf


82 L. Viviani et al.

about the level of influence different roles have in defining NFRs, and how often
these requirements were described in a more quantitative and measurable way
or using a more qualitative and abstract approach.

In steps 5–10, each section focused on a particular NFR type. The decision
to ask about specific NFRs was for the participants to recall a concrete past
experience in which they could answer the questions more precisely. Limiting to
six types enabled the exploration of different types of NFR without doing the
survey very long. The chosen NFRs were: response time, number of simultaneous
requests, scalability, flexibility, portability, and robustness. For each type, a defi-
nition and several concrete examples were provided to avoid misunderstandings.

If the respondent confirmed the presence of that type of NFR in the reference
project, the following multiple-choice questions were presented: (a) approach
used for NFR elicitation; (b) during each software development activity it was
elicited; (c) if it was reviewed or modified during the project; (d) in case of a
positive answer in the previous question, the reason it was reviewed or modified;
(e) the current adherence of the NFR to the current project state. Finalizing
each step, an optional open question asks details about the reported NFR.

The choice of these six specific types of NFRs can be considered a decision
in the study scope and was motivated by the authors’ individual experiences
in industry in the field of software architecture. In the discussions conducted
during the survey design, they pointed out that they had observed recurrent
changes and instability on these types of NFRs. We recognize that this choice
might introduce a bias in the study and we understand that the results should
be interpreted as restricted to them. However, the six NFR types represent
different kinds of quality attributes and cover relevant types of NFRs. Future
surveys might replicate this study with other NFRs and compare the results.

4 Results

The survey received 40 answers. The pilot was executed in December 2021, and
the survey received responses from April to June 2022. The following sections
describe the obtained results.

4.1 Participant and Company Profile

Among the 40 professionals who answered the survey, more than 50% said they
had worked in the last five years as a software architect or software engineer, and
almost 40% as a developer. Other roles receiving a significant number of answers
were researcher (20%), product manager (17%), and requirements analyst (17%).

The respondents fit the target profile based on the answers assessing their
professional experience. Figure 1 presents the distribution of the number of par-
ticipants according to their years of experience and their self-evaluation of their
expertise in handling NFRs in projects. Most answers came from experienced
professionals in the field.

The results revealed that projects used as a reference were developed in
companies from diverse segments, emphasizing the financial and e-commerce



An Empirical Study about the Instability and Uncertainty of NFRs 83

Fig. 1. Number of participants by years of experience and self-evaluated knowledge in
handling NFRs

branches, which together represent 43% of the companies. However, we also
received answers from 16 other segments, which received from one to three
answers (several informed in the “Other” option). About the company size, the
ones with more than 5000 employees add up to more than 56%. Since companies
with a range from 500 to 2000 employees were declared by 18%.

Figure 2 presents the distribution of the answers about the influence of dif-
ferent roles on NFRs definition. Architects, product managers, and developers
are among the roles with more significant influence. On the other hand, the ones
less influential were director/c-level, tester/QA, and final users. In the question
in which the respondents needed to classify from 1 to 5 how often they adopt a
qualitative versus a quantitative approach for NFR specification (where one was
always qualitative and five was always quantitative), the result was the following
distribution: 1 (10%), 2 (40%), 3 (23%), 4 (23%), and 5 (4%).

Fig. 2. Influence of Different Roles on NFRs

4.2 Answers About NFRs

As justified in the survey design, to obtain answers based on concrete situations
from real projects, the questions concentrated on six types of NFRs. Figure 3
presents the percentage of answers reported to have each NFR type present in
the reference project.



84 L. Viviani et al.

Fig. 3. Proportion of the projects in which the type of NFR was declared

For each NFR declared as present in the reference project, the survey asks
for information about the method used for elicitation, time of definition, con-
stancy during development, possible change motivators, and validation of project
adherence to the defined NFR. A general analysis of the NFRs present in the
study presents relevant information about the treatment and management of the
NFRs. To perform this analysis, each requirement reported independent was con-
sidered of its type, which resulted in 144 instances. To answer RQ1 and RQ2, we
considered these 144 instances together, and for RQ3 we compare the differences
between them.
Regarding the Elicitation Approach, as Shown in Figure 4, the elicitation
with stakeholders was the most mentioned (63%), which is a positive point since
user involvement is among the main success factors for projects [21]. The refer-
ence from other systems (39%), restrictions imposed by legacy systems (33%),
and regulation restrictions (28%) were also mentioned with significant frequency.
The second most cited approach was “based on professional experience” (47%),
even if systematically, this approach may be less suitable for requirements such as
response time and flexibility, as they would be based on experience, with possible
incompatibility with the actual requirements of the system. Other answers, such
as metrics collected in production (33%), problems found on the project (19%),
and complaints from users (32%), reveal that the elicitation was performed in
later stages.

Fig. 4. NFRs elicitation approach



An Empirical Study about the Instability and Uncertainty of NFRs 85

Figure 5 presents the answers during each activity the participants declared
that the NFR was defined. As expected, in most cases, the requirement was
elicited in the initial stages of design and analysis, however there are also answers
reporting moments after the software delivery.

Fig. 5. Activities in which NFRs were defined

When asked if the requirement changed or was reviewed during the project,
25% answered that it was reevaluated but not modified and 32% that it was
modified. Figure 6 presents the distribution of the answers about the drivers of
change in NFRs, in the instances in which a review or change was reported in
the previous question. In 87% of the cases, more than one reason was reported.
With a higher percentage, there were options revealing that requirement changes
were a reaction to something that happened in the system, such as changes in
architecture, behavior or tests in production. The options “technical evaluation”
and “regular review of requirements” represent more systematic approaches and
received a significant number of answers (25% and 24%, respectively).

Fig. 6. Driver of changes in NFRs

The final question about NFRs was if the current requirement state is accord-
ing to the system needs. To this question, 25% said that the requirement is
outdated, and 9% did not know.



86 L. Viviani et al.

5 Discussion

5.1 RQ1 - How are Non-functional Requirements Defined
in the Software Development Process?

Figure 5 presents the distribution of software development activities where the
NFRs were defined. The results show that 22% were determined during devel-
opment, and, for around 19%, their definition was reported to have happened
in activities typical in later stages, such as based on user feedback, monitoring
software in production, or testing. This result confirms that some requirements
are neglected during the initial phases of the project, being only introduced
when some event in the project points to that need. The literature reinforces the
importance of this definition at the beginning of the project for technology selec-
tion and choice of patterns [25]. One participant reported for response time: “the
requirement was not idealized in the conception or design, a performance was
expected, and during the tests we realized the need to include the requirement”.

Some participants mentioned bad consequences of a late identification of
requirements. For portability, one respondent mentioned that “due to its late
entry, it was adjusted and limited for having only a few capabilities”. This lim-
itation on implementing an NFR identified later was also reported regarding
flexibility. The current literature supports this result [1,34], highlighting possi-
ble negative consequences of NFR late definition.

Finding 1: A significant number, almost 1/3, of NFRs are not identified
at the beginning of the project.

The results show a great diversity of methods and techniques to elicit NFRs,
often in combination. The fact that in almost half (47%) of the cases professional
experience was reported as the approach used to define the requirement indicates
the absence of a systematic approach for NFR elicitation. The number of answers
that said the identification was based on problems found or user complaints also
evidence that this later identification brought bad consequences to the project.
For example, a respondent said “problems that emerge only at deploy time on
the client”. The work of Lauesen [26] points out this lack of fulfillment of the
requirements as a cause for project failures.

Finding 2: Almost 1/3 of NFRs are defined in response to problems found
on the project.

This elicitation deficit is also reflected in the number of NFRs that changed
later or are outdated to the system’s needs in production. According to the
results obtained, 34% of the requirements reported are not up to date with the
system in production, or its consistency is unknown. That is evidence that is
common to have NFRs neglected until the production stage. Indeed, a recent
study [37] pointed out not-clear and not-measurable NFRs as a problem in some
agile processes.



An Empirical Study about the Instability and Uncertainty of NFRs 87

This inconsistency with the system in production can also be explained by
unnecessary NFRs included at the beginning of the project, which were ignored
for not being important, but were not removed from the system requirements.
One participant stated that sometimes that is noticed only “when the technical
proof of its infeasibility or that it is something unnecessary”. In the same testi-
mony, it was also mentioned that “the costs presented to end users often make
them rethink whether something is really necessary”.

Finding 3: More than 1/3 of NFRs are identified in the project are out-
dated or have an unknown state to the system in production.

The answers about the qualitative versus quantitative approach for defining
NFRs might indicate one of the reasons for this deficit, revealing that a more
qualitative and non-objective way to define the requirements is frequently used.
That was confirmed by a developer whose answer to the survey stated that the
specification is deficient “often not knowing how to elaborate the artifacts as well
as the structure of the requirement text without objectivity”. Another participant
gave some examples of this lack of objectivity, mentioning “good response time”,
and “low cost for evolution”.

5.2 RQ2 - How Non-functional Requirements Change and are
Updated During a Software Project?

The responses to the survey revealed that around one-third of the NFRs changed
during the project. Considering the approach used for the requirement elicitation
described in the previous section, there are factors that could contribute to
changes in the NFRs due to flaws in its specification, like the usage of non-
systematic approaches and a qualitative and non-precise specification. Lack of
prioritization of NFRs is associated with rework and customer complaints [34].

Finding 4: The difficulty in dealing with the uncertainty and volatility of
NFRs results in reactive actions.

The reasons for changes or revisions of the NFRs are diverse, but there is
a strong relationship between the changes and the absence of a deeper analysis
of the real needs of the software. Absence or ineffective processes of continuous
management of NFRs, and strategies to anticipate and accommodate possible
changes [2,27] result in reactive actions and with impacts to the project [12].
Of the five most cited factors, only two result from a systematic assessment of
requirements, while the other three result from the demand for changes in the
architecture and behavior of the system in production. In addition to NFRs’
late elicitation, these results about the motivation of changes also evidence a
late validation of NFRs. Around 54% of the mentioned modifications occurred
only after analyzing the behavior or tests of the system in production, which
can add significant costs [12], and 35% required or were caused by architecture
review or system limitation.



88 L. Viviani et al.

Finding 5: A significant occurrence of changes on NFRs occurred after
analyzing the behavior of the system in production.

Several statements spontaneously written by the respondents point to the
impact of the changes of NFRs on the solution’s design and architecture, even
not having any question about it. As explicitly stated by one of them, changes
in NFRs “fundamentally change the design and architecture of a system”. One
respondent mentioned that the lack of visibility of the flexibility NFRs led to a
revision of the architecture to support a higher number of customers. Another
one mentioned that the system did not scale as it should, but it was in pro-
duction without many complaints from customers. About system reliability, one
mentioned that “due to the addition of new features and new error situations,
there came the need to change the requirements”. Because of that, the architec-
ture was modified, allowing more monitoring and failure recovery mechanisms.
Since architectural decisions are usually made in the beginning of the project [40]
and their implementation can be so interwoven in the code, changes might not
be feasible [38].

In the other direction, changes in the architecture might also cause a review
in NFRs. One respondent reported that after a change in the architecture “porta-
bility requirements (servers, platforms and database) have been revised”. The cost
to implement the NFR was also mentioned by another participant as relevant to
reconsider the requirement, revealing that some NFRs might be abandoned due
to trade-off analysis that give them up in exchange of some other factor.

Finding 6: Absence of a testing strategy makes it difficult to accommodate
and validate changes that cross-impact NFRs and architecture.

The close relationship between NFR and architecture results in managing and
planning properly to avoid major impacts [24]. In this way, it is essential to pay
attention to an adequate project testing strategy, anticipating and monitoring
changes to mitigate them and be prepared to accommodate them [2].

5.3 RQ3 - How Much the Approach for Handling NFRs Vary Based
on its Type?

For the previous research questions, we considered all the 144 reports from all
six NFR types targeted in the survey. To answer this one, we analyzed the
main differences between the answers given for each type. The first point to be
highlighted is the number of participants reporting each requirement. As shown
in Fig. 3, response time received the highest number of answers (75%), and the
simultaneous number of requests received the lowest (51%).

Regarding elicitation approaches, the two most mentioned in all types of
requirements were “elicitation with stakeholders” and “professional experience.”
Scalability and portability did not have any other elicitation method to be high-
lighted, but they were the ones with the higher number of answers that reported



An Empirical Study about the Instability and Uncertainty of NFRs 89

the elicitation with stakeholders, respectively 76% and 69%. For response time
and amount of simultaneous requests, which are easier to measure and observe
than the others, the reference from concurrent systems (respectively 54% and
47%) and measurements (respectively 46% and 58%) were mentioned more.
Complaints from users received a significantly higher number of occurrences
for response time (68%), which was more than double the overall percentage.
Finally, regulations and standards were mentioned more frequently for flexibil-
ity (38%) and restrictions from legacy systems for robustness (50%).

The following activities can be highlighted as being higher than the over-
all percentage: conception for portability (36%), analysis for scalability (20%),
design for flexibility (29%) and robustness (30%), and refinement for the amount
of simultaneous requests (26%). For response time, no activity alone received a
high number of answers, but it received most answers in activities more typical
of late project stages, such as development, tests, and user validation.

Finding 7: NFR identification might happen for different reasons depend-
ing on its type.

Regarding requirements changes, the NFR type that received less reviews or
changes was robustness (60% reporting no changes) while on the other extreme
were portability (36%) and amount of simultaneous requests (30%). Portability
was the most common to be reviewed but not changed (41%) and amount of
simultaneous requests the most changed one (45%).

The NFR types most affected by changes or revisions in the architecture
are scalability (45%), portability (44%) and flexibility (44%). While for response
time and robustness, there is not a specific driver that stands out, for the number
of simultaneous requests, the software behavior in production (41%) and exper-
iments/evaluations made by the technical team (47%) were the main drivers.

Finding 8: The most common drivers for change might be different for
each kind of NFR.

Although the survey revealed some common points to handling NFRs, each
type of requirement has its particularities. Based on that, suitable techniques for
elicitation and evaluating its suitability during the project should be employed
based on the target requirement. This result is aligned with another study [34]
that state that there no unique solution that will solve all requirements engi-
neering needs.

5.4 Threats to Validity

Empirical studies face certain validity threats which can be of construct, internal
validity, external validity and reliability [39]. Below, we describe the threats for
this study according to this classification and how we mitigated them.



90 L. Viviani et al.

Construct validity refers to ensuring correct operational measures for the
concepts (constructs) under study [39]. Since most of the questions regarded to
the description of real experiences from the respondents, threats in this regard
are limited. However, there is still a threat that respondents will not understand
the responses in the same way as the authors. To mitigate this issue, we carried
out a pilot to get feedback and perform some adjustments. Also regarding this
threat, the survey ask participants to answer based on a specific project, instead
of reporting a general experience.

Internal validity is associated with causal inference and happens when it
is believed that a certain condition is a consequence from a second condition
when, in reality, they are consequence of a third condition not considered in the
study [39]. Since this study is exploratory and it is not claiming the existence of
causal-effect relationships, this threat is reduced.

External validity is about generalizing the results to a large population [39].
As discussed in Sect. 3, this study has an exploratory goal and does not aim to
have a generalizable description of how NFRs are handled. The goal was to show
evidence of potential issues. Another point reinforcing external validity was the
fact that the study was directed to professionals with a specific profile without
previous definitions or suggestions, because the survey does not influence the
project chosen by professionals at the time of the answer. Besides that, as men-
tioned earlier, this study is restricted to six types of NFRs. We acknowledge
this limited scope however, by focusing on limited facets, we were able to col-
lect more precise answers from the respondents. Consequently, even though the
results should be understood as restricted to these types, they suggest the value
of further investigation of this research problem.

Reliability is related to the dependence of the data and results on the
researchers who performed the study [39]. To improve this aspect, we defined a
protocol, including a questionnaire and data analysis procedures. We also made
public the questionnaire to allow the replication of the study.

6 Conclusions

NFRs are essential aspects impacting the success of a software project. Although
some research focused on them, there was a lack of evidence related to changes
and their late definition. This paper presents a survey with experienced profes-
sionals on how NFRs were elicited and modified in concrete software projects to
fulfill this gap. We found a lack of a well-defined step for evaluating and review-
ing the NFRs, and a prevalence of changes in NFRs even in the late stages
of development. This evidence highlights the need for agile techniques to deal
with changes in NFRs, which can significantly impact the architecture if this
uncertainty is not considered to make it ready to change.

The limitations of this study include investigations of specific NFRs, chosen
to obtain more precise answers.

This limitation gives space for future studies directed to other NFRs. The
information obtained in the survey helped to understand existing issues in the



An Empirical Study about the Instability and Uncertainty of NFRs 91

management of NFRs in real projects, it was out of its scope to find the reasons
behind these issues. Future works could also delve into the relationship between
subjectivity in the definition of NFRs with the changes and real need for NFRs
in projects and investigate whether the project management model influences
the management quality of non-functional requirements during software devel-
opment.

References

1. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements in large-scale dis-
tributed agile projects – a systematic literature review. In: Grünbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 219–234. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0_17

2. Ambler, S., Lines, M.: Introduction to Disciplined Agile Delivery - Second Edition.
Project Management Institute, July 2020

3. Ambler, S.W.: Agile modeling. Wiley, Nashville (2002)
4. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects consider

non-functional requirements: an exploratory study. In: IEEE (2012)
5. Ameller, D., Franch, X., Cabot, J.: Dealing with non-functional requirements in

model-driven development (2010)
6. Bajpai, V., Gorthi, R.P.: On non-functional requirements: a survey (2012)
7. Baltes, S., Ralph, P.: Sampling in software engineering research: a critical review

and guidelines (2022)
8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI series

in software engineering, Addison-Wesley Educational, Boston, MA (2003)
9. Berntsson-Svensson, R., Gorschek, T., Regnell, B.: Quality requirements in prac-

tice: an interview study in requirements engineering for embedded systems. In:
REFSQ (2009)

10. Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The bad conscience of require-
ments engineering: an investigation in real-world treatment of non-functional
requirements. In: Third Conference on Software Engineering Research and Practice
in Sweden (SERPS 2003), Lund (2003)

11. Broy, M.: Rethinking functional requirements: A novel approach categorizing sys-
tem and software requirements, pp. 155–187. John Wiley & Sons, Insc., September
2018

12. Budiardjo, E.K., Wibowo, W.C., et al.: Non-functional requirements (NFR) iden-
tification method using FR characters based on ISO/IEC 25023. Int. J. Adv. Com-
put. Sci. Appl. (2021)

13. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Springer, New York (2012). https://doi.org/10.1007/978-1-
4615-5269-7

14. Dörr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-functional require-
ments in industry - three case studies adopting an experience-based NFR method.
In: 13th IEEE International Conference on Requirements Engineering (RE’05)
(2005)

15. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are “non-functional” requirements
really non-functional? In: ACM (2016)

16. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference. IEEE, October 2007

https://doi.org/10.1007/978-3-319-54045-0_17
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-1-4615-5269-7


92 L. Viviani et al.

17. Guerra, E., Aniche, M.: Achieving quality on software design through test-driven
development. Elsevier (2016)

18. Hoyer, R., Hoyer, B.: What is quality? Quality Progress (2001)
19. IEEE: Standard glossary of software engineering terminology. Std 610.12 (1990)
20. Jarzebowicz, A., Weichbroth, P.: A qualitative study on non-functional require-

ments in agile software development. IEEE Access 9, 40458–40475 (2021)
21. Johnson, J., Mulder, H.: Factors of succes 2015 (2015)
22. Kirner, T.G., Davis, A.M.: Nonfunctional requirements of real-time systems. In:

Advances in Computers (1996)
23. Kitchenham, B.A., Pfleeger, S.L.: Principles of survey research part 2. In: ACM

SIGSOFT Software Engineering Notes (2002)
24. Knauss, E., Liebel, G., Schneider, K., Horkoff, J., Kasauli, R.: Quality requirements

in agile as a knowledge management problem: more than just-in-time (2017)
25. Kumar, D., Kumar, A., Singh, L.: Non-functional requirements elicitation in agile

base models. In: Webology (2022)
26. Lauesen, S.: IT project failures, causes and cures. In: IEEE Access (2020)
27. Leffingwell, D.: SAFe 4.5 reference guide. Addison-Wesley Educational, Boston,

MA, 2 edn., July 2018
28. Mijanur Rahman, M., Ripon, S.: Elicitation and modeling non-functional require-

ments - A POS Case Study. arXiv e-prints (2014)
29. Nguyen, Q.L.: Non-functional requirements analysis modeling for software product

lines. In: IEEE (2009)
30. Oriol, M., et al.: Data-driven and tool-supported elicitation of quality requirements

in agile companies (2020)
31. Pohl, K., Rupp, C.: Requirements engineering fundamentals. Rocky Nook (2015)
32. Rahy, S., Bass, J.M.: Managing non-functional requirements in agile software devel-

opment. IET Softw. 16(1), 60–72 (2021)
33. Rainer, A., Wohlin, C.: Recruiting credible participants for field studies in software

engineering research. Inf. Softw. Technol. 151, 107002 (2022)
34. Sherif, E., Helmy, W., Galal-Edeen, G.H.: Managing non-functional requirements

in agile software development. In: Gervasi, O., Murgante, B., Hendrix, E.M.T.,
Taniar, D., Apduhan, B.O. (eds.) Computational Science and Its Applications –
ICCSA 2022. ICCSA 2022. LNCS, vol. 13376, pp 205–216. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-10450-3_16

35. Slankas, J., Williams, L.A.: Automated extraction of non-functional requirements
in available documentation. In: 1st International Workshop on Natural Language
Analysis in Software Engineering (NaturaLiSE) (2013)

36. Svensson, R.B., et al.: Prioritization of quality requirements: State of practice in
eleven companies. In: IEEE (2011)

37. Wagner, S., Fernández, D.M., Felderer, M., Kalinowski, M.: Requirements engi-
neering practice and problems in agile projects: results from an survey (2016)

38. Waterman, M., Noble, J., Allan, G.: How much up-front? a grounded theory of
agile architecture (2015)

39. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Plan-
ning. In: Experimentation in Software Engineering, vol. 9783642290, pp. 89–116.
Springer, Berlin, Heidelberg (2012)

40. Yang, C., Liang, P., Avgeriou, P.: A systematic study on the combination of soft-
ware architecture and agile development. J. Syst. Softw. 11, 157–184 (2016)

https://doi.org/10.1007/978-3-031-10450-3_16


An Empirical Study about the Instability and Uncertainty of NFRs 93

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	An Empirical Study About the Instability and Uncertainty of Non-functional Requirements
	1 Introduction
	2 Background and Related Work
	3 Research Design
	3.1 Methodology
	3.2 Survey Design

	4 Results
	4.1 Participant and Company Profile
	4.2 Answers About NFRs

	5 Discussion
	5.1 RQ1 - How are Non-functional Requirements Defined in the Software Development Process?
	5.2 RQ2 - How Non-functional Requirements Change and are Updated During a Software Project?
	5.3 RQ3 - How Much the Approach for Handling NFRs Vary Based on its Type?
	5.4 Threats to Validity

	6 Conclusions
	References




